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SPECTRAL ANALYSIS OF THE WREATH PRODUCT
OF A COMPLETE GRAPH WITH A COCKTAIL PARTY GRAPH

FRANCESCO BELARDO a , MATTEO CAVALERI b AND ALFREDO DONNO b∗

ABSTRACT. Graph products and the corresponding spectra are often studied in the lit-
erature. A special attention has been given to the wreath product of two graphs, which
is derived from the homonymous product of groups. Despite a general formula for the
spectrum is also known, such a formula is far from giving an explicit spectrum of the
compound graph. Here, we consider the latter product of a complete graph with a cocktail
party graph, and by making use of the theory of circulant matrices we give a direct way to
compute the (adjacency) eigenvalues.

1. Introduction

Throughout this paper we consider only finite, undirected and simple graphs (loops or
multiple edges are not allowed). Let G = (V (G),E(G)) be a graph, where V (G) =V is the
vertex set and E(G) = E is the edge set, consisting of unordered pairs of type {u,v}= uv,
with u,v ∈V . The order of G is |V | and the size is |E|. If uv ∈ E, we say that the vertices u
and v are adjacent in G, and we write u ∼ v. A path in G is a sequence u1, . . . ,uℓ of vertices
such that ui ∼ ui+1, for each i = 1, . . . , ℓ−1. We say that such a path has length ℓ−1 and it
is denoted by Pℓ. A graph is said to be connected if, for every u,v ∈V , there exists a path in
G joining them. Some special types of graphs which are considered in this paper are the
cycle graph Cn, obtained from Pn = u1 · · ·un by adding the edge u1un, the complete graph
Kn, consisting of n vertices and all edges between them, and the cocktail party graph CP2n,
obtained from K2n by removing a perfect matching. For basic results on graph theory and
definitions not given here, the reader is referred to the book of Harary (1969).

Graphs are well-studied by means of the eigenvalues of some associated graph matrix.
Through this paper, we focus our attention to the adjacency matrix A(G) of the graph
G = (V,E). The adjacency matrix A(G) is the square matrix A = (au,v)u,v∈V , indexed by the
vertices of G, whose entry au,v is 1, whenever the corresponding vertices are adjacent, or it
is 0, otherwise. The degree of a vertex u ∈V is defined as deg(u) = ∑v∈V au,v. In particular,
we say that G is regular of degree d, or d-regular, if deg(u) = d, for all u ∈V . Note that, the
cycle Cn, the complete graph Kn and the cocktail party graph CPn (n is even) are the unique,
up to isomorphisms, regular connected graphs of degree 2, n−1 and n−2, respectively.
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A1-2 F. BELARDO ET AL.

Since the graph G is undirected, A(G) is a symmetric nonnegative matrix, therefore all
its eigenvalues are real and the spectral radius is the largest eigenvalue. The (adjacency)
spectrum of G comprises the eigenvalues of A(G) together with their multiplicities. For
basic results on the graph spectra and other graph matrices, we refer the reader to see
Cvetkovic et al. (1995, 2009).

In the literature, several graph products are defined and studied. For example, the join
of two graphs G and H is the graph obtained from a copy of G, a copy of H and by
adding all possible edges uv where u ∈ G and v ∈ H. A natural question within graph
products is to compute eigenvalues of the compound graph when the factors and their
spectra are known or given. Furthermore, many graph operations can be expressed in
terms of NEPS (non-complete extended p-sum) and the corresponding spectra are easy
to obtain by combining the eigenvalues of the factors according to the basis of the NEPS
(for more details see Cvetkovic et al. 1995). However, there are graph operations which
cannot be interpreted as NEPS and therefore the spectrum can be harder to be computed.
For example, the wreath product of graphs has an adjacency matrix which can be expressed
in terms of sums of Kronecker product of matrices (D’Angeli and Donno 2017), but the
spectrum cannot be explicitly given. By specializing the structure of the composite graphs,
the spectrum of the wreath product has been computed for complete graphs (Donno 2017),
still by further developing the tools used in the last mentioned paper, the spectrum can be
elegantly computed for classes of graphs with circulant graph matrices. Here, we consider
the wreath product of complete graphs with cocktail party graphs. We also want to mention
the article of Cavaleri and Donno (2018), where some degree and distance based invariants
- the Zagreb indices, the Wiener index, the Szeged index - have been studied for wreath
products of graphs.

The paper is organized as follows. In Section 2 we define the wreath product of two
graphs and we recall the basic results and notation useful for our investigation. In Section 3,
we derive the spectrum of the wreath product of complete graphs and cocktail party graphs,
and we conclude by giving some comments for further research.

2. Preliminaries

In this section we recall the definition of wreath product of two graphs and some useful
results obtained so far.

Definition 2.1. Let G1 = (V1,E1) and G2 = (V2,E2) be two finite graphs. The wreath
product G1 ≀G2 is the graph with vertex set VV1

2 ×V1 = {( f ,v)| f : V1 →V2, v ∈V1}, where
two vertices ( f ,v) and ( f ′,v′) are connected by an edge if:
(type I) either v = v′ =: v and f (w) = f ′(w) for every w ̸= v, and f (v)∼ f ′(v) in G2;
(type II) or f (w) = f ′(w), for every w ∈V1, and v ∼ v′ in G1.

It follows from the definition that, if G1 is a d1-regular graph on n vertices and G2 is a
d2-regular graph on m vertices, then the graph G1 ≀G2 is a (d1 +d2)-regular graph on nmn

vertices.
It is a classical fact (see, for instance, Woess 2005) that the simple random walk on

the graph G1 ≀G2 is the so called Lamplighter random walk, according to the following
interpretation: suppose that at each vertex of G1 (the base graph) there is a lamp, whose
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possible states (or colors) are represented by the vertices of G2 (the color graph), so that the
vertex ( f ,v) of G1 ≀G2 represents the configuration of the |V1| lamps at each vertex of G1
(for each vertex u ∈V1, the lamp at u is in the state f (u) ∈V2), together with the position v
of a lamplighter walking on the graph G1. At each step, the lamplighter may either go to a
neighbor of the current vertex v and leave all lamps unchanged (this situation corresponds
to edges of type II in G1 ≀G2), or he may stay at the vertex v ∈ G1, but he changes the state
of the lamp which is in v to a neighbor state in G2 (this situation corresponds to edges of
type I in G1 ≀G2). For this reason, the wreath product G1 ≀G2 is also called the Lamplighter
graph, with base graph G1 and color graph G2. See also the article of Donno (2013), where
a connection between the Lamplighter random walk and other graph products is described.
We also want to mention the article of Scarabotti and Tolli (2008), where the spectral
analysis of a different version of the Lamplighter random walk on the complete graph has
been developed, by using the representation theory of the wreath product of groups. See also
the article of Grigorchuk and Żuk (2001), where the Lamplighter model and the associated
Lamplighter group are studied in the setting of automata groups.

Example 2.2. In Figure 1, we have represented the graph K2 ≀K3. This is a 3-regular graph
on 18 vertices. Observe that it consists of 6 copies of the graph K3. This fact can be
interpreted as follows: edges within each copy of K3 are edges of type I, whereas edges
connecting two distinct copies of K3 are of type II.

FIGURE 1. The wreath product K2 ≀K3.

It is worth mentioning that the wreath product of graphs represents a graph analogue
of the classical wreath product of groups (Meldrum 1995), as it turns out that the wreath
product of the Cayley graphs of two finite groups is the Cayley graph of the wreath product
of the groups, with a suitable choice of the generating sets. Donno (2015) proved this
correspondence in the more general context of generalized wreath products of graphs,
inspired by the construction introduced by Bailey et al. (1983) for permutation groups. Also
notice that Erschler (2006) presented a different notion of generalized wreath product of
graphs.

D’Angeli and Donno (2017) introduced a construction called wreath product of matrices.
Let Mm×n(C) denote the set of matrices with m rows and n columns over C, and let In be
the identity matrix of size n.
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Recall that the Kronecker product of two matrices A= (ai j)∈Mm×n(C) and B= (bhk)∈
Mp×q(C) is the mp×nq matrix

A⊗B =

⎛⎜⎝ a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎞⎟⎠ .

We denote by A⊗n
the iterated Kronecker product A⊗·· ·⊗A  

n times

, and we put A⊗0
= 1.

Definition 2.3. (D’Angeli and Donno 2017) Let A ∈ Mn×n(C) and B ∈ Mm×m(C). For
each i = 1, . . . ,n, let Ci = (chk) ∈ Mn×n(C) be the matrix defined by

chk =

{
1 if h = k = i
0 otherwise.

The wreath product of A and B is the square matrix of size nmn defined as

A ≀B = I⊗
n

m ⊗A+
n

∑
i=1

I⊗
i−1

m ⊗B⊗ I⊗
n−i

m ⊗Ci.

D’Angeli and Donno (2017) proved the following theorem, which shows the correspon-
dence between wreath products of matrices and wreath products of graphs.

Theorem 2.4. Let A′
1 be the normalized adjacency matrix of a d1-regular graph G1 =

(V1,E1) and let A′
2 be the normalized adjacency matrix of a d2-regular graph G2 = (V2,E2).

Then the wreath product
(

d1
d1+d2

A′
1

)
≀
(

d2
d1+d2

A′
2

)
is the normalized adjacency matrix of the

graph wreath product G1 ≀G2.

Let n be a natural number. From now on, we will denote by Kn the complete graph on
n vertices, that is, the simple undirected graph on n vertices where every pair of distinct
vertices is connected by a unique edge. We will denote by CP2n the cocktail party graph
on 2n vertices, which can be described as follows. Suppose that we have enumerated the
vertices as 1,2, . . . ,2n. Then CP2n is defined as the simple undirected graph on 2n vertices
in which the i-th vertex is adjacent to the (i+ j)-th vertex, for every j ̸= 0,n, where the sum
i+ j must be considered modulo 2n. In Figure 2, the complete graph K6 on 6 vertices and
the cocktail party graph CP8 on 8 vertices are depicted.

FIGURE 2. The complete graph K6 and the cocktail party graph CP8.
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To develop our spectral analysis in Section 3, we recall the definition of circulant matrix.

Definition 2.5. A circulant matrix C of size k is a matrix with k rows and k columns, of type

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 · · · · · · ck−1

ck−1 c0 c1
...

...
. . .

. . .
. . .

...
...

. . .
. . . c1

c1 · · · · · · ck−1 c0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, with ci ∈ C, i = 0, . . . ,k−1. (1)

The reader can refer to the book of Davis (1994) as an exhaustive monograph on circulant
matrices. Let Jn denotes the uniform square matrix of size n, whose entries are all equal
to 1. It follows from the above definition that A(Kn) = Jn − In is a circulant matrix of size
n with c0 = 0, and ci = 1 for every i = 1, . . . ,n−1. Analogously, the matrix A(CP2m) is a
circulant one of size 2m with c0 = cm = 0, and ci = 1 otherwise.

3. Spectral analysis of the wreath product Kn ≀CP2m

From now on, we will focus our attention on the wreath product Kn ≀CP2m. It follows
from Theorem 2.4 that the adjacency matrix of the graph Kn ≀CP2m is

A(Kn) ≀A(CP2m) = I⊗
n

2m ⊗A(Kn)+
n

∑
i=1

I⊗
i−1

2m ⊗A(CP2m)⊗ I⊗
n−i

2m ⊗Ci, (2)

with Ci as in Definition 2.3. Observe also that Kn ≀CP2m is an (n+2m−3)-regular graph on
n(2m)n vertices. Moreover, the graph is connected, since Kn and CP2m are connected.

Example 3.1. In Figure 3, we have represented the graph K2 ≀CP6. This is a 5-regular graph
on 72 vertices. Observe that it consists of 12 copies of the graph CP6. This fact can be
interpreted as follows: the edges within each copy are edges of type I (the lamplighter does
not move, but he changes the color of the lamp at the current position); on the other hand,
the unique edge connecting two distinct copies of CP6 is an edge of type II (the lamplighter
moves to the neighbor state, leaving all lamps unchanged).

FIGURE 3. The wreath product K2 ≀CP6.
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In this section, we will give an explicit description of the spectrum of the graph Kn ≀CP2m,
namely, the spectrum of its adjacency matrix given by A(Kn) ≀A(CP2m) described in (2).
D’Angeli and Donno (2017) have proven the following theorem by using the analysis
developed by Tee (2007) for block circulant matrices.

Theorem 3.2. Let A be a square matrix of size n, and let B be a circulant matrix of size
m as in (1). Then the spectrum Σ of the matrix A ≀B is obtained by taking the union of the
partial spectra Σi1,...,in of the mn matrices of size n given by

M̃i1,i2,...,in = A+
n

∑
t=1

m−1

∑
i=0

ciρ
iitCt ,

where it ∈ {0,1, . . . ,m−1}, for every t = 1, . . . ,n, and ρ = exp
( 2πi

m

)
.

The last theorem has been used by D’Angeli and Donno (2017) to compute the spectrum
of the Lamplighter Random walk on the complete graph, with two colors. Donno (2017)
extended this spectral analysis to the case of the graph Kn ≀Km, and Belardo et al. (2018)
performed similar computations for the graph Kn ≀Cm, where Cm denotes the cyclic graph
on m vertices.

In the present section, Theorem 3.2 together with the fact that the matrix A(CP2m) is
circulant, will be used in order to determine the spectrum of the adjacency matrix

A(Kn) ≀A(CP2m) = I⊗
n

2m ⊗A(Kn)+
n

∑
i=1

I⊗
i−1

2m ⊗A(CP2m)⊗ I⊗
n−i

2m ⊗Ci.

In the proof of Theorem 3.3 we will make use of the multinomial theorem, which is recalled
below. Let r be a positive integer, and let x1, . . . ,xr be some variables. Let s be a nonnegative
integer. Then:

(x1 + x2 + · · ·+ xr)
s = ∑

k1+···+kr=s

(
s

k1,k2, . . . ,kr

) r

∏
t=1

xkt
t .

In particular, the number of terms in the multinomial sum is the number of monomials of
degree s in the variables x1, . . . ,xr, which is equal to

(s+r−1
r−1

)
. The multinomial coefficient( s

k1,k2,...,kr

)
= s!

k1!k2!···kr! can be interpreted as the number of ways of placing s distinct objects
into r distinct boxes, with ki objects in the i-th box, for each i = 1, . . . ,r.

We obtain the following result.

Theorem 3.3. The spectrum Σ of the graph Kn ≀CP2m is the union of the (n+1)(n+2)
2 partial

spectra Σk,h,q, where k,h,q are nonnegative integers satisfying the condition k+h+q = n,
each appearing with multiplicity

( n
k,h,q

)
mh(m−1)q. More precisely, we have:

Σk,h,q = {(2m−3)k−1,(−1)h−1,(−3)q−1,α,β ,γ}, (3)

where α,β ,γ are the zeros of the polynomial of degree 3

P(λ ) = λ
3 +(−h− k−2m−q+7)λ 2 +(2hm+2mq−6h−4k−8m−4q+15)λ

+ 6hm+2mq−9h−3k−6m−3q+9. (4)
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Proof. By Theorem 3.2, the spectrum of Kn ≀CP2m is obtained by taking the union of the
partial spectra Σi1,...,in of the matrices

M̃i1,i2,...,in = A(Kn)+
n

∑
t=1

2m−1

∑
i=0

ciρ
iitCt ,

where it ∈ {0,1, . . . ,2m− 1}, for each t = 1, . . . ,n, and ρ = exp
(

πi
m

)
. Notice that the

numbers ci, for i = 0, . . . ,2m−1, are the entries of the circulant matrix A(CP2m), so that
c0 = cm = 0 and ci = 1 otherwise. Moreover, we have

2m−1

∑
i=0

ρ
iit =

{
2m if it = 0
0 if it ̸= 0

and so

∑
i̸=0,m

ρ
iit =

⎧⎨⎩ 2m−2 if it = 0
−2 if it ̸= 0 is even
0 if it is odd.

Therefore, the matrix M̃i1,i2,...,in can be rewritten as

M̃i1,i2,...,in = Jn − In +(2m−2) · ∑
t:it=0

Ct −2 · ∑
t:it ̸=0 even

Ct .

It follows that, up to perform a rearrangement of the rows of M̃i1,i2,...,in , the spectrum of the
matrix M̃i1,i2,...,in only depends on the number of indices t ∈ {1, . . . ,n} such that the value
it ∈ {0,1, . . . ,2m−1} is equal to 0, or equal to a nonzero even number, or equal to an odd
number. Therefore, we can assume:

it =

⎧⎨⎩ 0 for t = 1, . . . ,k
even ̸= 0 for t = k+1, . . . ,k+q
odd for t = k+q+1, . . . ,n.

Then we can write M̃i1,...,in = Jn +Q, with

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2m−3
. . .

2m−3
−3

. . .
−3

−1
. . .

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where k diagonal entries are equal to 2m− 3; q diagonal entries are equal to −3; and h
diagonal entries are equal to −1, where we put h = n− (k+q).
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Now we have:

det(λ In − M̃i1,...,in) = det(λ In − Jn −Q)

= det
(
(λ In −Q)

(
In − (λ In −Q)−1Jn

))
= det(λ In −Q) ·det

(
In − (λ In −Q)−1Jn

)
. (5)

It is clear that

det(λ In −Q) = (λ −2m+3)k(λ +3)q(λ +1)h. (6)

Now it can be easily checked that the matrix (λ In −Q)−1Jn has n−1 eigenvalues equal to
0, and one eigenvalue equal to

k
λ −2m+3

+
q

λ +3
+

h
λ +1

.

This implies that the matrix In − (λ In −Q)−1Jn has n−1 eigenvalues equal to 1, and one
eigenvalue equal to

1−
(

k
λ −2m+3

+
q

λ +3
+

h
λ +1

)
,

so that

det(In − (λ In −Q)−1Jn) = 1−
(

k
λ −2m+3

+
q

λ +3
+

h
λ +1

)
. (7)

By gluing together the contributions (6) and (7), we can rewrite (5) as

det(λ In − M̃i1,...,in) = (λ − (2m−3))k−1(λ +3)q−1(λ +1)h−1P(λ ),

with P(λ ) as in (4). In order to complete the proof, for what concerns the multiplicity of the
partial spectrum Σk,h,q, we can observe that it must be k+h+q = n, with 0 ≤ k,h,q ≤ n, and
that the nonzero even integers in the set {0,1, . . . ,2m−1} are in number of m−1, whereas
the odd integers in the set {0,1, . . . ,2m− 1} are in number of m. Then the multinomial
theorem, with r = 3 and s = n, implies that there are

(n+3−1
3−1

)
= (n+1)(n+2)

2 distinct partial
spectra, and each partial spectrum Σk,h,q appears with multiplicity

( n
k,h,q

)
mh(m−1)q. This

completes the proof. �
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k h q Multiplicity Partial spectrum
2 0 0 1 3,5
1 1 0 6 2±

√
5

1 0 1 4 1±
√

10
0 2 0 9 ±1
0 1 1 12 −1±

√
2

0 0 2 4 −3,−1

TABLE 1. Spectrum of the graph K2 ≀CP6.

Remark 3.4. When at least one of the integers k,h,q is equal to 0, the partial spectra Σk,h,q
in (3) reduce to:

Σn,0,0 = {(2m−3)n−1,2m+n−3}, with multiplicity 1;

Σ0,n,0 = {(−1)n−1,n−1}, with multiplicity mn;

Σ0,0,n = {(−3)n−1,n−3}, with multiplicity (m−1)n;

Σk,n−k,0 =

{
(2m−3)k−1,(−1)n−k−1,

2m+n−4±
√
(2m−n)2 +8(km− k−m)+4n+4

2

}
,

with multiplicity
(

n
k

)
mn−k;

Σk,0,n−k =

{
(2m−3)k−1,(−3)n−k−1,

2m+n−6±
√
(2m−n)2 +8km
2

}
,

with multiplicity
(

n
k

)
(m−1)n−k;

Σ0,n−q,q =

{
(−3)q−1,(−1)n−q−1,

n−4±
√
(n+2)2 −8q
2

}
,

with multiplicity
(

n
q

)
mn−q(m−1)q.

Example 3.5. The spectrum of the graph K2 ≀CP6, depicted in Figure 3, is explicitly
described in Table 1. In this case we have n = 2, m = 3, so we get 6 distinct partial spectra.

Example 3.6. The spectrum of the graph K3 ≀CP4 is depicted in Table 2. In this case we
have n = 3, m = 2, so we get 10 distinct partial spectra. Here, the real numbers

α ≈ 2,77846; β ≈−0,28917 γ ≈−2,48929

are the zeros of the polynomial λ 3 − 7λ − 2 which is, for instance, the characteristic

polynomial of the matrix M̃0,1,2 =

⎛⎝ 2 1 1
1 0 1
1 1 −2

⎞⎠.
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k h q Multiplicity Partial spectrum

3 0 0 1 12,4

2 1 0 6 1, 3±
√

17
2

2 0 1 3 1, 1±
√

33
2

1 2 0 12 −1,0,3

1 1 1 12 α,β ,γ

0 3 0 8 (−1)2,2

0 2 1 12 −1, −1±
√

17
2

0 1 2 6 −3,−2,1

1 0 2 3 −3, 1±
√

17
2

0 0 3 1 (−3)2,0

TABLE 2. Spectrum of the graph K3 ≀CP4.

Compared with the spectrum obtained for the same graph in the article of Belardo et al.
(2018), where the second factor graph CP4 is regarded as a cyclic graph C4 on 4 vertices. In
that paper, the spectrum of the graph K3 ≀C4 turns out to be the union of 20 partial spectra,
so that the spectral decomposition obtained in terms of the cocktail party graph seems to be
more convenient.
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