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Abstract

We discuss the Kirillov method for massless Wigner particles, usually (mis)named “con-

tinuous spin” or “infinite spin” particles. These appear in Wigner’s classification of the unitary

representations of the Poincaré group, labelled by elements of the enveloping algebra of the

Poincaré Lie algebra. Now, the coadjoint orbit procedure introduced by Kirillov is a prelude to

quantization. Here we exhibit for those particles the classical Casimir functions on phase space,

in parallel to quantum representation theory. A good set of position coordinates are identified

on the coadjoint orbits of the Wigner particles; the stabilizer subgroups and the symplectic

structures of these orbits are also described.

1 Introduction

The Wigner unitary representations (unirreps) of the Poincaré group [1], describing relativistic

elementary particles, count among the most important mathematical objects in the whole of physics.

The Kirillov coadjoint orbit picture [2], on the other hand, has been known (for over a half

century now) to link symplectic geometry with harmonic analysis. It is therefore surprising that

relatively little work has been done so far so relate the Wigner unirreps with the phase space

orbits (homogeneous symplectic manifolds endowed with a canonical Liouville measure) for the

Poincaré group. The surprise only grows when one realizes that their correspondence is one-to-one,

particularly for maximal dimension orbits, like the ones considered here. A partial exception was

the paper by J. F. Cariñena and two of us [3], devoted to phase spaces corresponding to massive

particles. There, moreover, physical quantum averages were computed by means of phase space

integrals, in a Wigner–Moyal approach.

It is our view that classical elementary relativistic phase spaces are objects as intrinsic as –

and perhaps more readily understandable than – the corresponding Wigner unirreps. Observables
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defined on elementary classical systems are useful proxies for operator quantities, since relativistic

kinematics is the same for classical and quantum objects. In connection with the quantum field

theory procedures, it should be noted that quantization of the coadjoint orbit picture runs parallel

to induced representation theory [4], and allows to recover many of its results.

In this vein, we examine in this paper the phase space counterparts to Wigner’s so-called

“continuous spin” or “infinite spin” representations. These are misnomers (there is no such thing

as continuous or infinite spin, although “unbounded” passes muster), so we shall call them simply

Wigner particles, or WP for short. Till recently the latter had received scant attention, being

curtly dismissed in textbooks. However, the path-breaking series of papers on the WP properties

by Schuster and Toro [5–8] has awakened a lot of interest [9–11]; we retain chiefly [12], which

introduces a quantum stress-energy-momentum

To the best of our knowledge, this article is the first study of the coadjoint orbits for the Wigner

particle. We work out in detail the Poisson bracket structure for these lightlike systems. A crucial

task is to find, and to establish the properties of, good position functions on the orbits.

The paper is organized as follows. Section 2 recalls the basics of the Kirillov procedure, as

applied to the Poincaré group P. We find the classical Casimir functions on phase space, in striking

parallelism with quantum representation theory. Their values index the orbits corresponding to

such representations, on which a convenient set of coordinates for the description of WPs is found.

Subsection 2.3 dwells on an important kinematical question concerning massless particles.

In Section 3 the shape of the coadjoint orbits and their stabilizer subgroups are investigated. A

surprisingly simple kinematics is thereby uncovered. We deal as well with the symplectic structure

of those orbits and investigate the covariance properties of the coordinates under free motion.

Section 4 is the Conclusion.

Readers are advised to check our conventions for relativistic kinematics in Appendix A, before

tackling what follows.

2 The Kirillov program for the Poincaré group

The adjoint action AdofP on its Lie algebra pwe compute as follows. The notation ad(X)Y := [X,Y]

for X,Y ∈ p leads to Ad(exp X)Y = ead(X)Y = Y + [X,Y]+ 1
2!
[X, [X,Y]]+ · · · . From this one can find

Ad(exp X)Y whenever X = −a0H, a ·P, αm ·L or ζn ·K , with m and n denoting unit 3-vectors; here

Y = H ≡ P0, Pa, La or Ka are the respective generators of time and space translations, rotations

and boosts.

For instance, if X = ζn · K , Y = H, then

Ad(exp(ζn · K))H = H + ζ [n · K,H] +
ζ2

2!
[n · K, [n · K,H]] +

ζ3

3!
[n · K, [n · K, [n · K,H]]] + · · ·

= H − ζn · P +
ζ2

2!
H −
ζ3

3!
n · P + · · · = H cosh ζ − n · P sinh ζ .

In this way one obtains Table 1, exhibiting the adjoint action ofP in a perspicuous manner. Explicitly

for the rotation of angle α around the axis determined by the unit vector m, acting on a vector v:

Rα,mv = v cosα + m × v sinα + (m · v)m(1 − cos α). (2.1)
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Table 1: The adjoint action Ad(exp X)Y

Y�X −a0H a · P αm · L ζn · K

H H H H H cosh ζ − n · P sinh ζ

P P P R−1
α,mP P − Hn sinh ζ + (n · P)n(cosh ζ − 1)

L L L − a × P R−1
α,mL L cosh ζ − n × K sinh ζ − (n · L)n(cosh ζ − 1)

K K − a0P K + Ha R−1
α,mK K cosh ζ + n × L sinh ζ − (n · K)n(cosh ζ − 1)

Table 2: The coadjoint action Coad(exp X)y

y�X −a0H a · P αm · L ζn · K

h h h h h cosh ζ + n · p sinh ζ

p p p Rα,m p p + hn sinh ζ + (n · p)n(cosh ζ − 1)

l l l + a × p Rα,m l l cosh ζ + n × k sinh ζ − (n · l)n(cosh ζ − 1)

k k + a0p k − ha Rα,m k k cosh ζ − n × l sinh ζ − (n · k)n(cosh ζ − 1)

The coadjoint action Coad of P on elements of the Lie coalgebra p∗,

〈Coad(exp X)u,Y〉 := 〈u,Ad(exp(−X))Y 〉 for u ∈ p
∗,

can now be derived immediately. Let h be the linear coordinate on p∗ associated to H, and similarly

let pa, la, ka be the coordinates associated to Pa, La,Ka (a = 1, 2, 3). The action is given in these

coordinates by Table 2.

We shall need the natural Lie–Poisson bracket on p∗: given f ∈ C∞(p∗), one can regard df (u)

as an element of the Lie algebra, and one obtains:

{ f , g}(u) := 〈u, [df (u), dg(u)]〉 = cαβγ
∂ f (u)

∂uα
∂g(u)

∂uβ
uγ, (2.2)

where the cαβγ are the structure constants of p. Therefore, taking (h, p, l, k) as cartesian coordinates

on p∗, their Poisson brackets are given directly by the commutation relations (A.1) among the

corresponding Lie algebra generators. For reference:

{la, lb} = εab
c lc, {la, kb} = εab

c kc, {ka, kb} = −εab
c lc,

{la, pb} = εab
c pc, {pb, ka} = δabh, {h, ka} = pa. (2.3)

2.1 The Casimir functions

The Lie-Poisson bracket (2.2) restricts to symplectic structures on the coadjoint orbits foliating

it. Generally speaking, the orbits arise as level sets of two “Casimir functions” C1, C2 on p∗ that

are invariant by the coadjoint action. These are easy to obtain explicitly. Let p = (h, p) be the

energy-momentum 4-vector and w = (w0, w) the phase-space “Pauli–Lubański” 4-vector, defined

by

w
0
= l · p; w = k × p + h l .
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Clearly p and w are orthogonal in the Minkowski sense: (pw) = 0. From Table 2, with a little

work, one verifies that (w0, w) transforms like (h, p) under the coadjoint action. In particular, under

the boost Coad(exp(ζn · K)):

w
0 7→ w

0 cosh ζ + n · w sinh ζ,

w 7→ w + w0n sinh ζ + (n · w)n(cosh ζ − 1).

Lemma 1. The Poisson brackets of the components of w with the basic variables are given by:

{h,wµ} = 0, {ka,w0} = −wa, {la,w0} = 0,

{pa,wµ} = 0, {ka,wb} = −δab
w

0, {la,wb} = εab
cw

c; (2.4)

and among the components, the brackets are:

{w0,wa} = (w × p)a, {wa,wb} = εab
c(hw

c − w
0pc). (2.5)

Proof. By direct computation, using (2.3). �

Proposition 2. The Casimir functions we seek are

C1 := (pp) = h2 − |p |2, C2 := (ww) = (l · p)2 − |k × p + hl |2.

Proof. The relations (2.4) follow from (2.3). That {h,w0} = 0 is clear; the others are:

{h,wa} = {h, εa
bckbpc} = εa

bcpbpc
= 0,

{pa,w0} = δbd{pa, lb}pd
= δbdε

a
bcpcpd

= 0,

{pa,wb} = {pa, εb
cd kcpd

+ hlb} = εb
ad hpd

+ εab
chpc

= 0,

{ka,w0} = {ka, δbdlbpd} = δbd({ka, lb}pd
+ lb{ka, pd}) = εa

bckcpb − hla
= −wa,

{ka,wa} = {ka, εa
bdkbpd

+ hla} = −εa
bdε

ab
clcpd − lapa

= −δcd lcpd
= −w0,

{ka,wb} = {ka, εb
cd kcpd

+ hlb} = −εb
cdε

ac
elepd − εb

cakch − lbpa
+ εab

ckch

= lbpa − lbpa
= 0 if a , b,

{la,w0} = δbd{l
a, lbpd} = εa

bc(l
cpb
+ lbpc) = 0,

{la,wb} = {la, (k × p)b} + h{la, lb} = εab
c

(
(k × p)c + hlc

)
= εab

cw
c;

From these brackets, (2.5) follows easily:

{w0,wa} = {w0, εa
bdkbpd

+ hla} = εa
bdw

bpd
= (w × p)a,

{wa,wb} = {wa, εb
cd kcpd

+ hlb} = εb
cdδ

ac
w

0pd
+ εab

chwc
= εab

c(hw
c − w

0pc).

That C1 is a Casimir hardly needs proof. From formulas (2.4) it follows that

{ka,C2} = 0 = {la,C2};

and Proposition 2 is proved. �
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2.2 Searching for position coordinates

In order to find and study the orbits corresponding to the WP, it is natural to look for global position

functions.

Let us quickly review the massive case, to better understand the situation. That is, we restrict

ourselves to orbits for which C1 > 0, writing C1 = m2 and we decide on h = +
√

m2
+ |p |2. Note

that C1 ≥ 0 implies C2 ≤ 0. Let κ := (m, 0) be the vertex of the forward hyperboloid given by

p2
= m2. Consider the standard Lorentz boost Lp which takes (1, 0) to u := p/m; its relation to

Coad(exp(ζn · K)) is given by

n :=
u

|u |
=

u√
(u0)2 − 1

; u0
=: cosh ζ .

One thus obtains

Lpa =

(
ha0
+ p · a

m
, a +

(a0

m
+

p · a

m(m + h)

)
p

)
.

Now 0 = (pw) = (L−1
p p L−1

p w) = (κ L−1
p w). This means that L−1

p w = (0,ms) for some 3-vector s.

The Casimir C2 = (ww) = (L−1
p w L−1

p w) = −m2 |s |2 ≤ 0 is constant on any orbit; thus, if C2 < 0

we interpret s as the spin vector. From (0,ms) = L−1
p w one derives the relation:

ms = w −
w

0

m + h
p = w −

(w · p)

h(m + h)
p. (2.6)

For fixed C1 and C2, an orbit Oms+ has been obtained. One naturally takes as coordinates on it the

momenta p and spherical coordinates arising from ms. Three more come from a position triplet q,

given by [3]:

q := −
k

h
−

p × w

mh(m + h)
= −

k

h
−

p × s

h(m + h)
. (2.7)

The expressions of the p∗-coordinates l, k in terms of the Oms+ coordinates (q, p, s) over the orbit

are:

k = −hq −
p × s

m + h
, l = q × p + s.

ClearlyOms+ is homeomorphic toR6×S2, with isotropy (or stability) group isomorphic toR×SO(2)

– say, the subgroup fixing (0, 0, s)generated by time translations exp(−a0H) and rotations Rα,s, see [3,

Eqn. (30)].1 The degenerate “scalar” case C2 = 0 gives 6-dimensional orbits Om0+, homeomorphic

to R
6.

Using (2.2) together with the commutation relations, one verifies that { qa, pa } are canonical

coordinates, and that {sa, sb} = εab
csc; {sa, qb} = 0 = {sa, pb}. These coordinates, however, are

not particularly useful. They do not transform covariantly for s , 0; in [3] they were replaced by

others that do so. They are certainly useless to study the massless limit. We shall come back to the

question of different sets of position coordinates repeatedly.

We turn now to massless particles, the WP in particular. Over fifty years ago, Wightman wrote

a remarkable paper [14] proving that quantum spinning massless systems like the photon are not

1Coadjoint orbits always have even dimension [2]; and their isotropy groups for maximal dimensional orbits are

always abelian [13].
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localizable, in the sense that for them the action of the Euclidean group cannot be realized on a

set of three position coordinates in the standard way. However, he assumes commutativity of those

variables. In the first chapter of his book [15], Schwinger disclosed a view on relativistic position

operators that can be understood as a retort to Wightman’s. In fact, allowing for noncommutativity,

there are position operators for photons and other fixed-helicity particles, as well as for the WP,

with the correct transformation properties.

It is both instructive and convenient in our phase-space context to seek a position vector for the

massive case with good limit properties as m ↓ 0. Thus we adopt a set of coordinates r suggested

by Schwinger’s ideas,2 provided by

r := −
k

h
+

p × w

h2(m + h)
. (2.8)

Notice that as m ↓ 0, the right hand side of Eqn. (2.6) becomes:

t := w −
(w · p)p

h2
= w −

w
0

h
p . (2.9)

Now we consider the WP case, in which m = 0 but p ∦ w, in fact w2
=: −ρ2 < 0. We remark at

once that t ⊥ p, since (wp) = 0. For the same reason | t |2 = ρ2; and |(p/h) × t |2 = ρ2, as well.3

Position coordinates for the WP are given by

r := −
k

h
+

p × w

h3
= −

k

h
+

p × t

h3
=

(p · k)p

h3
+

p × l

h2
. (2.10)

Introduce the notation λ for the important helicity variable:

λ :=
l · p

h
=

w
0

h
.

One readily obtains the basic coalgebra functions k, l in terms of the new (r, p, λ, t) set of variables.4

w = λp + t, thus k = −h r +
p × t

h2
, l = h−1(w − k × p) = r × p +

λ

h
p. (2.11)

We require to have available the Poisson brackets involving the new variables. Remark first that

{λ, pa} = {λ, la} = 0, and that the first relation in (2.5) can be rewritten as:

{w0, ta} = {w0,wa} = −(p × w)a = −(p × t)a .

Lemma 3. The helicity and the 3-vector t have these Poisson brackets:

{λ, ka} = ta/h, {ta, tb} = 0,

{λ, t} = −p/h × t, {ka, tb} = tapb/h,

{λ, p/h × t} = t, {la, tb} = εab
c tc. (2.12)

2A discussion closer to the original treatment is given in Appendix B.

3The parameter ρ has the physical dimension of energy. Orbits with different values of ρ correspond to different

particles.

4We have seen that the last of these is constrained by t · p = 0 and t2 = ρ2, so certainly these maximal orbits are

8-dimensional.
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Proof. The first relation comes from

{λ, ka} = {w0h−1, ka} = {w0, ka}h−1 − w
0h−1{h, ka}h−1

= (wa − λ pa)/h = ta/h.

The fourth one is given by

{ka, tb} = {ka,wb − w
0pbh−1} = −δab

w
0
+ w

apbh−1
+ δab

w
0 − w

0pbpah−2
= tapb/h.

Furthermore,

{λ, t} = {λ, w} = {λ, k × p} = {λ, k} × p = −p/h × t,

and thus also

{λ, p/h × t} = p/h × {λ, t} = −p × (p × t)/h2
= (|p |2/h2) t = t,

on account of (pp) = 0 and p · t = 0. From equations (2.3) and (2.4), we see at once that

{la, tb} = εab
c tc. Note that the second relation of (2.5) can now be shortened to {wa,wb} = εab

c htc.

In consequence, the components of t Poisson-commute:

{ta, tb} = {wa,wb} − pa{λ, wb} − {wa, λ}pb

= εab
c htc

+ pa(p/h × t)b − (p/h × t)apb

= εab
c

(
htc
+ (p × (p × t))c/h

)
= 0. �

Lemma 4. The Poisson brackets involving the position variables are given by:

{ra, pb} = δab, {ra, h} = pa/h, {r,w0} = w‖/h, {ra, λ} = 0,

{ra, tb} = −tapb/h2, {la, rb} = εab
c rc, {ra, rb} = −εab

c λpc/h3, (2.13)

and also:

{ra,wb} = λδab − tapb/h2, {ra, kb} = −parb/h + εab
c(λpc − tc)/h2 − 2pa(p × t)b/h4.

Proof. A few of these follow directly from the basic Poisson brackets (2.3). Indeed, since {h, pb} = 0

and {(p × w)a, pb} = 0, the first reduces to {ra, pb} = −{ka, pb}/h = δab. That is to say, r and p

are conjugates, as is naturally demanded of a position vector.

In like manner, {ra, h} = −{ka/h, h} = pa/h. Also from (2.3) we get:

{la, rb} = −{la, kb}/h + {la, (p × w)b}/h3
= εab

c

(
−kc/h + (p × w)c/h3

)
= εab

c rc.

Three more relations follow from (2.12):

{r, w0} = −{k, w0}/h + {p × t,w0}/h3
= w/h + p × (p × t)/h3

= w/h − t/h = w‖/h,

{r, λ} = −{k, λ}/h + {p/h × t, λ}/h2
= −t/h2

+ t/h2
= 0,

{ra, tb} = −{ka/h, tb} = −tapb/h2.

These in turn imply that

{ra,wb} = {ra, λpb
+ tb} = {ra, λ}pb

+ λ{ra, pb} + {ra, tb} = λδab − tapb/h2.
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The last relation in (2.13) becomes a sum of three terms:

{ra, rb} = {ka/h, kb/h} − {ka/h, (p × t)b/h3} − {(p × t)a/h3, kb/h},

where

{ka/h, kb/h} = {ka, kb}h−2
+ ka{h−1, kb}h−1

+ kb{ka, h−1}h−1

= −εab
c lc/h2 − kapb/h3

+ kbpa/h3
= −εab

c w
c/h3;

−{ka/h, (p × t)b/h3} = εb
de{ka, td pe/h3}/h

= εb
de

(
{ka, td}pe/h4

+ td{ka, pe}/h4 − 3tdpe{ka, h}/h5
)

= εb
de

(
tapd pe/h4 − δaetd/h3

+ 3tdpepa/h5
)

= −εab
c tc/h3 − 3(p × t)bpa/h5;

and similarly, −{(p × t)a/h3, kb/h} = −εab
c tc/h3 − 3(p × t)apb/h5. Therefore,

{ra, rb} = −εab
c

(
h2
w

c
+ 2h2tc

+ 3(p × (p × t))c
)
/h5
= εab

c(t
c − w

c)/h3
= −εab

c λpc/h3.

Using Eqs. (2.11) and (2.13), it now follows that

{ra, kb} = −{ra, hrb} + {ra, εb
de pdte/h2}

= −{ra, h}rb − h{ra, rb} + εb
de

(
{ra, pd}te/h2

+ pd{ra, te}/h2 − 2pdte{ra, h}/h3
)

= −parb/h + εab
c(λpc − tc)/h2 − 2pa(p × t)b/h4. �

The formulas of the previous lemmata are valid for the fixed-helicity situations, by just dumping t

and “freezing” λ to a given value. The commutation relations {ra, rb} = −εab
c λpc/h3 were actually

found for the latter situation already in [16].

2.3 On the Wigner rotation

Let us return briefly to the massive case, m > 0. Let w′
= Λw, and consider accordingly

(0,ms′) := L−1
Λpw

′
= L−1

ΛpΛLp(0,ms).

This transformation is just the Wigner rotation g(Λ, p). The spin’s axis of rotation is given by p × n

for a boost Λ in the direction of n: when the boost is parallel to the momentum p, the Wigner

rotation is trivial. With m := (p × n)/|p × n |, the formula is [3]:

s′ = g(Λ, p)s = Rδ,m s = s + (m × s) sin δ −
(
s − (m · s)m

)
(1 − cos δ), (2.14)

with angle δ given by

sin δ =
(m + h) sinh ζ + (n · p)(cosh ζ − 1)

(m + h)(m + h′)
|p × n |, (2.15)

where h′ = h cosh ζ + n · p sinh ζ by Table 2.

Under a boost in the direction of n, the momentum also turns around p × n. This is true in all

generality: from the coadjoint action for boosts – see Table 2 – we obtain

p × p′ =
[
h sinh ζ + (n · p)(cosh ζ − 1)

]
p × n.
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Therefore, the component of p′ not along p stays on the plane perpendicular to p × n. The sine of

the rotation angle is given by

|p × p′|

|p | |p′|
=

h sinh ζ + (n · p)(cosh ζ − 1)

|p | |p′|
|p × n |. (2.16)

This is in general greater than the Wigner angle. Now comes a key point: although not all the

factors in its definition do so, the Wigner rotation formula itself makes perfect sense for m = 0.

Namely, keeping in mind that in this case h = |p | and h′ = |p′|, formula (2.15) then perfectly

matches formula (2.16).

For good measure, we give next the brute-force proof that rotating p around p × n with rotation

angle given by the massless limit of (2.15) yields the expected swing from a boost on p. We shall

also need that

cos δ = 1 −
|p × n |2

hh′
(cosh ζ − 1) (2.17)

in that limit. Before going to that, we pause to check that these are indeed trigonometric functions

of an angle. Using |p × n |2 = h2 − (n · p)2, the putative (cos2 δ + sin2 δ) turns out to be:

1 −
2(cosh ζ − 1)

hh′
|p × n |2 +

|p × n |2

h2h′2

(
(h sinh ζ + n · p(cosh ζ − 1))2 + |p × n |2(cosh ζ − 1)2

)
= 1 −

2(cosh ζ − 1)

hh′
|p × n |2

+

|p × n |2

h2h′2

(
h2 sinh2 ζ + 2hn · p sinh ζ (cosh ζ − 1) + h2(cosh ζ − 1)2

)
= 1 −

2(cosh ζ − 1)

hh′
|p × n |2 +

|p × n |2

h2h′2

(
2hh′(cosh ζ − 1)

)
= 1.

Now, since the axis of rotation m is perpendicular to p, one finds from Eqn. (2.14) that

Rδ,m(p) = p cos δ + (m × p) sin δ = p cos δ + (h2n − (n · p)p)
sin δ

|p × n |
,

= p −

{
cosh ζ − 1

hh′
(h2 − (n · p)2) +

n · p

hh′

(
h sinh ζ + n · p (cosh ζ − 1)

)}
p

+

h

h′

(
h sinh ζ + n · p (cosh ζ − 1)

)
n

= p −
1

h′

(
h(cosh ζ − 1) + n · p sinh ζ

)
p +

h

h′

(
h sinh ζ + n · p(cosh ζ − 1)

)
n

= p −
h′ − h

h′
p +

h

h′

(
h sinh ζ + n · p (cosh ζ − 1)

)
n

=

h

h′

(
p + hn sinh ζ + (n · p)n(cosh ζ − 1)

)
=

h

h′
p′. (2.18)

Therefore, p′/h′ = Rδ,m(p/h), with m = (p × n)/|p × n | and δ given by (2.17).

3 The shape of the orbits

A nagging worry for some readers may have been that, contrary to the massive case, there is no

distinguished point for the momentum in the orbit of a WP, nor there is a continuous cross-section

of the Lorentz principal bundle over it [17]. Fortunately, the kinematics of the WP saves the day.
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3.1 Coordinate transformations

In order to understand the structure of the orbits corresponding to Wigner particles, we need to

examine the effect of boosts on λ, t, r , which perhaps is not obvious a priori.

As previously indicated, the Coad formulas for (h, p) are good for (w0, w). With n the direction

of a boost, we therefore obtain for the helicity (an invariant under translations and rotations):

λ =
w

0

h
7−→

(w0)′

h′
≡

w
0 cosh ζ + n · w sinh ζ

h cosh ζ + n · p sinh ζ
= λ +

n · t tanh ζ

h + n · p tanh ζ
.

In particular λ is invariant in the case n = p/h.

Next, w − w
0 p/h = t 7→ t′, where

t′ := t + (n · t)n(cosh ζ − 1) −
n · t tanh ζ

h + n · p tanh ζ

(
p + hn sinh ζ + (n · p)n(cosh ζ − 1)

)
= t + n · t

(
(cosh ζ − 1)n − sinh ζ p′/h′

)
. (3.1)

The expression (3.1) is linear in t, with coefficients depending on p, n, ζ . We verify it:

t′ =
h′w′ − (w0)′p′

h′
=

1

h′

[
(h cosh ζ + n · p sinh ζ )

(
w + w0n sinh ζ + (n · w)n(cosh ζ − 1)

)
− (w0 cosh ζ + n · w sinh ζ )

(
p + hn sinh ζ + (n · p)n(cosh ζ − 1)

) ]
.

The computation proceeds by systematically cancelling all terms in w
0. There remains

t′ =
1

h′

[
h cosh ζ

(
t + (n · t)n(cosh ζ − 1)

)
−
(
h(n · t)n sinh ζ − (n · p)t + (n · t)p

)
sinh ζ

]
= t + (n · t)n(cosh ζ − 1)

−
1

h′

[
h(n · t)n sinh2 ζ + (n · t)p sinh ζ + (n · p)(n · t)n sinh ζ (cosh ζ − 1)

]
= t + (n · t)n(cosh ζ − 1) −

(n · t) sinh ζ

h′

[
p + hn sinh ζ + (n · p)n(cosh ζ − 1)

]
.

= t + (n · t)
[
(1 − cosh ζ )n − sinh ζ p′/h′

]
.

Theorem 5. The mapping t 7→ t′ is implemented by the same rotation Rδ,m of formula (2.18), with

axis m := (p × n)/|p × n | and angle δ given by (2.17). For n = ±p/h, the rotation is trivial and

t′ = t.

Proof. To check the equality t′ = Rδ,m(t), it is enough to show that these two 3-vectors have the

same components with respect to some 3-vector basis. For that purpose, choose the orthogonal

moving frame {p/h, t, p/h × t}. We claim that

(p/h) · t′ = (p/h) · Rδ,m t, t · t′ = t · Rδ,m t, (p/h × t) · t′ = (p/h × t) · Rδ,m t . (3.2)

10



First, of all,

(p/h) · t′ = (n · t)(n · p)
cosh ζ − 1

h
−
(n · t) sinh ζ

hh′

[
h2
+ hn · p sinh ζ + (n · p)2(cosh ζ − 1)

]
= (n · t)(n · p)

cosh ζ − 1

hh′

(
h′ − h(cosh ζ + 1) − n · p sinh ζ

)
−

h

h′
n · t sinh ζ

= −
n · t

h′

(
h sinh ζ + n · p(cosh ζ − 1)

)
= −

h n · t

|p × n |
sin δ

= (p/h) · (m × t) sin δ = (p/h) · Rδ,m t .

Next,

t · t′ = ρ2
+

(n · t)2

h′

[
h′(cosh ζ − 1) − h sinh2 ζ − (n · p) sinh ζ (cosh ζ − 1)

]
= ρ2

+

(n · t)2

h′

(
h cosh ζ (cosh ζ − 1) − h sinh2 ζ

)
= ρ2 −

h(n · t)2

h′
(cosh ζ − 1),

whereas

t · Rδ,m t = ρ2 −
(
ρ2 − |m × t |2

)
(1 − cos δ) = ρ2 −

|(p × n) × t |2

|p × n |2
(1 − cos δ)

= ρ2 −
h(n · t)2

h′
(cosh ζ − 1),

as claimed. We leave the proof of the third equation in (3.2) to the reader. �

Consider boosts along the special directions n = p/h, t/ρ and (p × t)/hρ. (a) For n = p/h, we

get t′ = t and p′/h′ = p/h: trivial rotation. (b) For n = t/ρ, we get h′ = h cosh ζ , m = (p × t)/hρ,

and

p′/h′ = (p/h) sech ζ + (t/ρ) tanh ζ, t′/ρ = −(p/h) tanh ζ + (t/ρ) sech ζ .

(c) For n = (p × t)/hρ, again h′ = h cosh ζ and p′/h′ = (p/h) sech ζ + (t/ρ) tanh ζ , but now

m = −t/ρ and t′ = t. In case (b) unsurprisingly there holds sin δ = tanh ζ and cos δ = sech ζ .

Corollary 6. Under the Lorentz group action, the moving frame rotates as a gyroscope:

p/h 7→ Rδ,m(p/h), t 7→ Rδ,m t, p/h × t 7→ Rδ,m(p/h × t),

where m = (p × n)/|p × n |.

Proof. The asserted result being true for all rotations and boosts, it is ipso facto true for all Lorentz

transformations. �

We deem quite noteworthy this remarkable kinematical behaviour of the WP. It has as a conse-

quence Wigner’s original equations of motion [18] in a first-quantized formulation [19].
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Table 3: The coadjoint action on orbital coordinates

u�X −a0H a · P αm · L ζn · K

λ λ λ λ λ + n · t tanh ζ/(h + n · p tanh ζ )

p p p Rα,m p p + hn sinh ζ + (n · p)n(cosh ζ − 1)

r r − a0 p

h
r + a Rα,m r r −

n · r

h′
(p sinh ζ + hn(cosh ζ − 1))

+

λ

hh′
(n × p) sinh ζ + (t-dependent term)

t t t Rα,m t Rδ,u t
(
with δ as given in (2.17) and u =

p×n

|p×n |

)

We now examine the position coordinates: −k/h + (p × t)/h3
= r 7→ r ′, where

r ′ :=
−k cosh ζ + (n · k)n(cosh ζ − 1)

h′
+

n × l sinh ζ

h′
+

Rδ,(p×n)/|p×n |(p/h × t)

h′2

=

hr cosh ζ − h(n · r)n(cosh ζ − 1)

h′
+

((n · p)r − (n · r)p) sinh ζ

h′
+

λ

hh′
(n × p) sinh ζ

−
p × t cosh ζ

h2h′
+

[n, p, t]n(cosh ζ − 1)

h2h′
+

Rδ,(p×n)/|p×n |(p/h × t)

h′2

= r −
n · r

h′
(p sinh ζ + hn(cosh ζ − 1)) + (λ, t)-dependent terms. (3.3)

The first three terms in (3.3), free of internal variables, look different from the transformation

rule for momentum ; however, we shall soon see that they make relativistic sense.

The action of the Poincaré group generators now follows from (3.1) and (3.3). They are given

in Table 3.

For good measure, the infinitesimal actions are also given in Table 4.5 It helps to note that

this action on w follows the pattern of its action on p: namely, (ζn · K) ⊲ h = ζn · p whereas

(ζn · K) ⊲ w0
= ζn · w; (αm · L) ⊲ w0

= 0; (ζn · K) ⊲ w = w
0ζn and (αm · L) ⊲ w = αm × w; and

the other generators act trivially on w
0 and w.

The (3, 4)-entry in Table 4 is found by expanding the right hand side of (3.3) in powers of ζ , using

sinh ζ = O(ζ ), cosh ζ − 1 = O(ζ2), cos δ = 1+O(ζ2), (p × n) sinh δ/|p × n | = −ζn× p/h+O(ζ2),

and h/h′ = 1 − ζn · p/h +O(ζ2). Therefore:

r ′ = r − (ζn · p/h)r +
(ζn · p)r − (ζn · r)p

h
+

λ

h2
ζn × p −

p × t

h3
+

(ζn · p)p × t

h4

+

p/h × t

h2
− 2(ζn · p/h)

p/h × t

h2
−
(ζn × p/h) × (p/h × t)

h2
+ O(ζ2)

= r − (ζn · r)p/h + λ ζn × p/h2 −
(ζn · p)p × t + ζn · (p × t)p

h4
+O(ζ2)

= r − (ζn · r)p/h + λ ζn × p/h2 − ζn × ((p × t) × p)/h4 − 2ζn · (p × t) p/h4
+ O(ζ2)

= r − (ζn · r)p/h + ζn × (λp − t)/h2 − 2ζn · (p × t) p/h4
+ O(ζ2).

5The information is already contained in the Poisson brackets, but it is good to cross-check them with the outcomes

in Table 3.
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Table 4: The infinitesimal coadjoint action X ⊲ u = coad(X)u

u�X −a0H a · P αm · L ζn · K

λ 0 0 0 ζn · t/h

p 0 0 α m × p hζn

r −a0p/h a αm × r −(ζn · r) p/h + ζn × (λp − t)/h2 − 2ζn · (p × t) p/h4

t 0 0 α m × t −(ζn · t)p/h

The shape of the orbit can be determined already: clearly r takes values in R
3, then p takes

values in R
3 \ {0} ≈ R × S

2 . Then λ ∈ (−∞,∞) and t takes values on a circle. Therefore6

Om=0,ρ ≈ R
3 × (R × S

2) × (R × S
1). (3.4)

3.1.1 On the stability subgroup

Choose any point u = (λ, p, r, t) in p∗ subject to the requirements |p |2 = h2 and | t |2 = ρ2 > 0. To

study its coadjoint orbit under the Poincaré group, it is also instructive to determine the isotropy

subgroup Pu, since the orbit is just the homogeneous space P/Pu.

The isotropy subgroups at different points on the orbit are conjugate, so to find a “representative”

isotropy group we choose a point where r = 0 and λ = 0. We tackle Table 3 one row at a time.

From invariance of λ, excluding the case ζ = 0, we get n · t = 0 for the boost component of an

element of the stability subgroup. Therefore

n = ap/h + b(p × t)/ρh, with a2
+ b2

= 1, (3.5)

and u ≡ (p × n)/|p × n | = t/ρ. Thus a boost leaving λ invariant will leave t invariant as well. That

is indeed so, since then Rδ,u is a rotation around the direction of t itself. The Rα,m component of

that element fixes t, too, so m = u. From the second row, we learn that a in equation (3.5) equals

(1 − cosh ζ )/sinh ζ (necessarily < 0), in order to keep |p | constant, whereby h′ = h in this case.

Since p rotates around t, this can be compensated by an ordinary rotation around the same axis,

with the same rotation angle in the opposite direction (i.e., αm = −δu). Finally, from the third

row, the nonvanishing terms of a boost action on r = 0 and λ = 0 produce components along p

and p × t, which can be compensated by a one-dimensional family of choices of a0, and a suitable

choice of a(ζ ) – we need not give its complicated formula here. Notice that in the present instance

no purely-Lorentz solutions can be found.7 The isotropy subgroup, freely parametrized by a0 and ζ ,

has the topology of the plane R2.

6There is now a coadjoint orbit that is not simply connected. For non-simply connected coadjoint orbits it is hard

to push forward the Kirillov paradigm – the known examples such as [20] correspond to groups with trivial stability

subgroups – towards the derivation of the unitary irreducible representations of the group.

7There is a one-dimensional subspace of translations that acts trivially: when ζ = 0, one can take α = 0 as well,

and Table 3 shows that the condition a = a0(p/h) yields invariance of u under the coadjoint action. This is identical to

what would occur for massive particles.
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3.1.2 Simultaneity hyperplanes

The ra coordinates are not canonical, since they do not commute among themselves. We next

examine whether they are relativistically covariant. Certainly they are covariant under Euclidean

transformations. The argument that follows, taken from [21, Ch. 20], allows to understand the rule

of change when going from one Lorentz frame to another (say with primed coordinates) by a boost.

In a Hamiltonian formulation, the position coordinates should be regarded as initial conditions for

free motion. Thus consider r(t) = r + (p/h) t and likewise r ′(t′) = r ′ + (p′/h′) t′, and assume the

standard transformation rules under boosts:

t′ = t cosh ζ + n · r(t) sinh ζ ; r ′(t′) = r(t) + tn sinh ζ + (n · r(t))n(cosh ζ − 1). (3.6)

We want to examine the resulting relation between r ′(t′ = 0) ≡ r ′ and r(t = 0) ≡ r . Let us set

t′ = 0, obtaining

t = −(n · r)
h sinh ζ

h′
and r(t) = r − (n · r)

p sinh ζ

h′
.

Then in (3.6) the second equation becomes:

r ′ = r − (n · r)p
sinh ζ

h′
+ (n · r)n

(
(cosh ζ − 1)(1 − (n · p) sinh ζ/h′) − h sinh2 ζ/h′

)
= r − (n · r)p

sinh ζ

h′
+ (n · r)n

h

h′

(
cosh ζ (cosh ζ − 1) − sinh2 ζ

)
= r − (n · r)

(
p sinh ζ + hn(cosh ζ − 1)

)
/h′,

reproducing the external coordinate part of the rule (3.3), on the nose. In conclusion, the first

three terms are the expected ones for a structureless particle. Such an expression as above does not

relate two coordinatizations of the same set of events, but two simultaneity hyperplanes. It renders

the position coordinates’ Lorentz transformation behaviour in a formulation in which time has

been eliminated: that is to say, the transformations are regarded as acting on the initial conditions

(points of the coadjoint orbit) of a covariant formulation – see [3, Sect. 3] as well as the discussion

in [21, Ch. 20].

In spite of the above, the r-position coordinates are not relativistically covariant, due to the

internal variables. When λ is just a parameter and t drops out, we are in the fixed-helicity context;

and that is still the case. The phenomenon is not new: for the massive particles with spin, one can

find both (global) canonical and covariant position coordinates; but they do not coincide. This has

been known for a good while [22]. The limit of the covariant coordinates x in the massive case,

x := −
k

h
−

p × s

mh
= −

k

h
−

p × w

m2h
,

as m ↓ 0, s ↑ ∞ is singular, at any rate. Local canonical coordinates always exist, due to Darboux’s

theorem – see the next subsection 3.2. It is an open question whether covariant coordinates exist in

our case; experience [3] suggests that it would be rewarding to work with them.
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3.2 Slant and the symplectic structure

Since t takes values on a circle, it is most natural to regard it as being given by an angle θ, as is done

in [23] for a quantum counterpart. Let t1(p), t2(p) ⊥ p, with moreover t1(p) ⊥ t2(p), be chosen

spacelike vectors of length ρ; and let us expand t in terms of these:

t = α1 t1(p) + α2 t2(p).

Then |α1 |
2
+ |α2 |

2
= 1, and we express t through α1 = cos θ, α2 = sin θ. Such an internal variable

θ we baptize here the slant. The decomposition is clearly non-unique, so some choices must be

made. In the present context it is natural to impose

{λ, t1(p)} = 0 = {λ, t2(p)}.

In this way,

α1(p/h × t1(p)) + α2(p/h × t2(p)) = p/h × t

= −{λ, t} = −{λ, cos θ} t1(p) − {λ, sin θ} t2(p)

leads us to choose t2(p) = p/h × t1(p), therefore t1(p) = −p/h × t2(p), so that

p/h × t = t2(p) cos θ − t1(p) sin θ and {λ, cos θ} = sin θ, {λ, sin θ} = − cos θ,

that is {λ, eiθ} = −ieiθ : thus λ, θ are symplectically conjugate variables.

Now consider the Poisson brackets involving components of r and t. Given that {r, λ} = 0,

the simplest choice seems to be to take {ra, cos θ} = {ra, sin θ} = 0, so that the spatial and internal

coordinates symplectically decouple completely. The only check that we have on our choices so far

is that {ra, t} = −ta p/h2, from (2.13). This can be satisfied on deciding for

{ra, t1(p)} = −(ta cos θ/h2
+ (p × t)a sin θ/h3) p, implying

{ra, t2(p)} = −(ta sin θ/h2 − (p × t)a cos θ/h3) p; and

{ra, t} = −(cos2 θ + sin2 θ) tap/h2.

It should be remarked that the moving-frame component of r along t alone does not Poisson-

commute with t:

{p · r, t} = 0 = {[p, t, r], t}; {t · r, t} = −(ρ2/h2) p.

Schwinger points in [15] to the duality of the spinning massless relativistic problem with that of

an electrically charged particle in the distant field of a stationary magnetic charge. This was further

explored by Bacry [24]. Indeed, in view of Lemma 4, the spatial component of the Poisson brackets

for our problem in the (ra, pb) coordinates is of the form

{ f , g}(r, p) =
∂ f

∂ra

∂g

∂pa

−
∂ f

∂pa

∂g

∂ra
− εabcλ

pc

h3

∂ f

∂ra

∂g

∂rb
;
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where in the fixed-helicity case λ is replaced by a number.8 We have arrived at a Poisson matrix of

the form

©
«

0 1 −λp3/h3 0 λp2/h3 0 0 0

−1 0 0 0 0 0 0 0

λp3/h3 0 0 1 −λp1/h3 0 0 0

0 0 −1 0 0 0 0 0

−λp2/h3 0 λp1/h3 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

ª®®®®®®®®®®®¬

;

and the helicity λ plays a role dual to a magnetic monopole charge. That is to say, the symplectic

form on the WP orbits is given by

ω = dra ∧ dpa − εab
c λpch−3 dra ∧ drb

+ dλ ∧ dθ.

Thus we have obtained a Schwinger–Bacry structure, by now well known [25–27]. A quaternionic

setting for it was devised by Emch and Jadczyk in [28], further explored by Cariñena, Marmo and

three of us in [29, 30] and by Soloviev in [26, 27]. It would be most interesting to know whether it

is relevant for the Wigner particle.9

Since the “magnetic terms” drop out from ω∧4, a Liouville measure on the orbit is immediately

seen to be

µ := ω∧4 ∝ dr1 ∧ dr2 ∧ dr3 ∧ dp3 ∧ dp2 ∧ dp1 ∧ dλ ∧ dθ.

By general theory, Darboux or canonical coordinates qa do always exist locally [33]. To find

them in our case, the systematic method advocated in [34] is not necessary. For the 6 × 6 principal

submatrix here they are computed by the standard physical procedure of defining a “vector potential”

V (p) such that

∂bVa − ∂aVb = −εab
c λpch−3

= εab
c λ ∂c(h

−1).

Then qa := ra
+ V a foots the bill. An example is: V (p) = (p2,−p1, 0)/|p |(p3 + |p |).10

4 Conclusion and outlook

The renewed excitement on the Wigner particles is a refreshing novelty in what seemed a foreclosed

issue: the identification of physical particles. Although it is true that the massless WPs analyzed

in this paper are not established members of the present zoo of particles, the fact that they have

been relatively little studied leaves the possibility of important surprises wide open. While the final

aim is a consistent quantum field theory [12], the Kirillov orbit method we have described here is a

prelude to a full-fledged first quantization of these particles.

The nonzero Poisson bracket among the coordinates (2.13) also makes the configuration space a

“noncommutative geometry”. One further step in that direction would be to proceed along the lines

8Since the r and p-variables are conjugate, by Lemma 4, in the rest of this section we shall write pb rather than pb

for the components of p, as is customary.

9The simpler ordinary “magnetic” Poisson bracket has been the object of several studies leading up to an (already

rather inexplicit) magnetic Weyl–Moyal product [31, 32].

10From this (or a similar) formula it should be clear that under quantization one expects functional-analytic compli-

cations in the ket space – of the kind discussed in [35].
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of deformation quantization, and present a Groenewold–Moyal star product, like the ones obtained

in [3]. This could be done with a generalization of the invertible Wigner transform to this case; it is

a nontrivial task. It is likely that the definition of a product to low orders in ~ à la Kontsevich may

be more tractable. We recall that a similar problem is found for the quantization of particles in a

magnetic monopole background [25–30]. A related issue is the existence of covariant coordinates,

and their eventual role in a quantization procedure.

Finally: with a few exceptions [36, 37], so far most of the studies of WPs have been made for

the bosonic case. Relatively little is known about them in the spin case, whose quantization may be

of interest.

A The Poincaré Lie algebra

We briefly summarize our notational conventions for the generators of the Poincaré group.

We use the Minkowski metric whose inner product of 4-vectors x = (x0, x), y = (y0, y) is

denoted by parentheses: (xy) = xµyµ := x0
y

0 − x · y. As usual, we write x2
= (xx) = xµxµ.

The (restricted) Poincaré group P is the semidirect product T4 ⋊L
↑
+
, with multiplication written

as (a,Λ) · (a′,Λ′) = (a + Λa′,ΛΛ′). Its Lie algebra p has a basis {H, Pa, La,Ka : a = 1, 2, 3},

corresponding respectively to time translations, space translations, rotations and boosts. The

nonzero commutation relations are as follows:

[La, Lb] = εab
c Lc, [La,Kb] = εab

c Kc, [Ka,Kb] = −εab
c Lc,

[La, Pb] = εab
c Pc, [Pb,Ka] = δabH, [H,Ka] = Pa. (A.1)

The Lorentz-subgroup generators are also denoted by J0a := Ka, Jab
= εab

cLc. Note as well that

J0a = −J0a
= −Ka, Jab = Jab

= εabcLc, and both J µν and Jρσ are skewsymmetric tensors. The

commutation relation of the latter may be summarized as

[Jρσ, Jµν] = −gρµJσν − gσνJρµ + gσµJρν + gρνJσµ .

The dual tensor J∗ρµ := −1
2
ερµντJντ plays a role in the theory of the WP. Here J∗0a

= −La and

J∗ab
= εab

cKc. Remark that

K · L = 1
2

JρµJ
∗ρµ and K2 − L2

=
1
2

JρµJ
ρµ
= −1

2
J∗ρµJ

∗ρµ

are the Casimirs of the Lorentz group.

B A pedestrian approach to the “Pauli–Lubański limit”

In our classical context, it is possible to obtain the WP data by carefully taking the m ↓ 0, s ↑ ∞ limit

(with ms finite). This we do essentially following Schwinger, mutatis mutandis. To the purpose, let

us go back to equation (2.6), where it is clear that

lim
m↓0, s↑∞

ms = t ⊥ p.

Clearly as well, from {sa, sb} = εab
csc we infer {ta, tb} = 0 and {λ, t} = −p/h × t, as well as the

other brackets in Lemma 3. The interesting part is that instead of q as given in (2.7), which is
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ill-defined in the m ↓ 0, s ↑ ∞ limit, one can define already an r-vector in the massive case enjoying

a smooth Pauli–Lubański limit by

r := q +
p × s

h2
= −

k

h
−

p × s

h(m + h)
+

p × s

h2
= −

k

h
+

p × ms

h2(m + h)
;

and already (2.11) holds, too, as well as the “magnetic” commutation relations between the ra given

in (2.13):

{ra, rb} = {qa, εb
e f pes f h−2} + {εa

cd pcsdh−2, qb} + εa
cd ε

b
e f pcpe{sd, s f }h−4

= −2εab
csch−2 − 2εb

cd papcsdh−4
+ 2εa

cd pbpcsdh−4
+ εa

cdε
b
e f ε

df
g pcpesgh−4

= −2εab
csch−2 − 2pa(p × s)bh−4

+ 2pb(p × s)ah−4
+ εab

c pc
w

0h−4,

on using w
0
= p · s in the massive case. Since p × (p × s) = w

0 p − h2s, this reduces to

{ra, rb} = εab
c

(
−2sch−2 − 2(w0pc − h2sc)h−4

+ w
0pch−4

)
= −εab

c w
0pch−4

= −εab
c λpch−3,

in agreement with the last formula of Lemma 4.
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