
1

Pre-print of : Angius, N. & Tamburrini, G. Philos. Technol. (2017) 30: 239. https://doi.org/10.1007/s13347-
016-0235-1

EXPLAINING ENGINEERED COMPUTING SYSTEMS’ BEHAVIOUR:

THE ROLE OF ABSTRACTION AND IDEALIZATION

Abstract

This paper addresses the methodological problem of analysing what it is to explain

observed behaviours of engineered computing systems (BECS), focusing on the crucial

role that abstraction and idealization play in explanations of both correct and incorrect

BECS. First, it is argued that an understanding of explanatory requests about observed

miscomputations crucially involves reference to the rich background afforded by

hierarchies of functional specifications. Second, many explanations concerning

incorrect BECS are found to abstract away (and profitably so on account of both

relevance and intelligibility of the explanans) from descriptions of physical components

and processes of computing systems that one finds below the logic circuit and gate

layer of functional specification hierarchies. Third, model-based explanations of both

correct and incorrect BECS that are provided in the framework of formal verification

methods often involve idealizations. Moreover, a distinction between restrictive and

permissive idealizations is introduced and their roles in BECS explanations are

analyzed.

Keywords: Philosophy of computer science · Miscomputation · Explanation · Abstraction ·

Idealization

1. Introduction

Engineered computing systems form a vast class of physical systems, comprising laptops and

personal computers, high performance computing systems and worldwide networks of other

general purpose machines, controllers of vending machines and special purpose computing

devices embedded into smart phones, household appliances, robots, and myriads of other hybrid

systems comprising both computing and non-computing subsystems. Computer scientists analyze

the behaviour of computing systems before releasing them into the market; and after release they

monitor their behaviour for a wide variety of purposes. In particular, computer scientists regularly

engage in the activity of evaluating whether the behaviour of engineered computing systems

(BECS) conforms to, or fails to comply with, the various requirements set out by their users,

programmers, producers, and other stakeholders. Accordingly, explaining BECS is a pervasive

activity in computer science.

2

The methodological problem of analyzing what it is to explain BECS has received relatively scarce

attention in the philosophy of computer science.1 Interestingly, the philosophy of computer

science entry (Turner 2014a) of the Stanford Encyclopedia of Philosophy mentions the word

‘explanation’ only once in connection with so-called inferences to the best explanation. Fresco and

Primiero (2013) remark that “whilst some attention has been given to the ontology of

computational objects in philosophy of computer science, the methodology of their explanation

has not yet been sufficiently investigated”(p. 255). Notable efforts to fill this gap include an

analysis of computer science explanations as causal-mechanistic explanations (Piccinini 2007;

Piccinini and Craver 2011; Piccinini 2015) and an analysis of incorrect executions of computing

systems and their explanations (Fresco and Primiero 2013; Floridi et al. 2014). This article aims to

contribute to analyses of explanation in computer science with an examination of the crucial role

that abstraction and idealization play in explanations of both correct and incorrect executions of

engineered computing systems. Moreover, it is worth pointing out that the ensuing analysis is

exclusively concerned with engineered computing systems. It is beyond the scope of this article to

address the question of how behaviours of computing systems that are not human artefacts are

best explained.

The central role of abstraction in computer science explanations is highlighted by means of a

straightforward example from the intricate landscape of BECS. This example concerns

miscomputations by a general purpose digital computer running offline a stored program written

in some high-level programming language. Explanations concerning incorrect behaviours of this

computing system are usually advanced against the background of what-how hierarchies of

functional specifications (section 2). At the top layer of these hierarchies one finds user

specifications about what the computing system is expected to do. These functional specifications

are broken down into sets of progressively more elementary specifications as one moves

downward along the what-how hierarchy.

The bottom layer in what-how hierarchies provides a description of physical components of the

computing system (e.g. transistors) and a description of the processes they engage into that is

couched in the language of physical theory. It turns out that correct, parsimonious, and intelligible

explanations of miscomputations are in many circumstances profitably advanced without

1 This neglect is at odds with a rising interest in methodological analyses of explanation in other areas of technological
inquiry (see for instance Pitt 2011 and van Eck 2015).

3

mentioning descriptions of physical entities and processes that one finds at this bottom layer of

the what-how hierarchy (section 3). The crucial role of abstraction in explanation can be expressed

in the language of mechanistic approaches to explanation (Glennan 1996; Machamer et al. 2000;

Bechtel and Abrahamsen 2005) by stating that in many circumstances mechanism schemata

enable one to achieve correct, parsimonious, and intelligible explanations of miscomputations

without having to fill in their functionally characterized causal roles by making direct reference to

specific physical entities and processes (Boone and Piccinini 2016).

Clearly, there are many other BECS explanation problems where an adequate explanans cannot be

identified by abstracting away from descriptions of physical components and processes of

computing systems that one finds at the bottom layer of what-how hierarchies. A significant case

in point are explanations of incorrect BECS arising from hardware malfunctions with respect to the

functional specifications of logic circuits and gates, where selective reference must be made to

physical role fillers and their processes. However, parsimonious causal models abstracting from

structural details concerning the continuous trajectories in the state spaces of the physical role

fillers are to be preferred there too (section 4).

Abstractions come with idealizations in some classes of BECS explanations. Idealization is the

practice of representing a target system counterfactually with the explicit aim of simplifying the

examination of some phenomenon pertaining to such system. Idealizations are usually introduced

by either listing some set of ceteris paribus clauses that are assumed to hold (Cartwright 1989) or

by directly including false assumptions into a model (Nowak 1979; McMullin 1985). Idealization

practices are as such distinct from abstractions, in that the latter involve the removal of data that

are not required to examine the target phenomenon without necessarily introducing distortions in

its representation (Cartwright 1989; Jones 2005). The combination of abstractions and

idealizations in BECS explanations is investigated here in the context of reactive computing

systems interacting with their environment (section 5). In particular, model-based explanations of

both correct and incorrect BECS that are provided on the basis of formal model checking (Baier

and Katoen 2008) are often found to involve significant idealizations. There, the observed

behaviour of some reactive system S satisfying a certain property Q is explained on the basis of an

abstract model of S involving spurious computation paths, that is, paths which do not represent

potential executions of system S. The presence of spurious computation paths in the model does

not jeopardize the correctness of the explanation unless they correspond to counterexamples

4

showing a violation of the checked property Q, often called false negatives. This paper investigates

the combined effect of abstraction and idealization, which prevents some downward expansions

of what-how hierarchies: while abstraction hides elements of lower-level descriptions, idealization

makes the inclusion of those elements impossible.

2. Specifications and their what-how hierarchies

Why was an incorrect output observed in this particular run of program P on personal computer C?

This question expresses an explanation request about an observed behaviour of personal

computer C executing (or running) program P. This explanation request presupposes the existence

of norms for executions (or runs) of program P on C insofar as the observed behaviour is qualified

as incorrect. Therefore, in order to understand what it is to answer adequately the above

question, a preliminary task is to identify the behavioural norms that are presupposed in the

explanation request.

Prospective users are a chief source of computing systems’ behavioural norms. Typically, users ask

programmers to fulfil some of their goals and intentions. Thus, for example, bank executives

express the interests of both their company and its clients when they require that an e-banking

program must always verify the PIN of bank account holders before accepting and processing

transaction orders. In explaining why some executions of an e-banking program P conform with

(or deviate from) user requirements one is ipso facto explaining why certain human goals and

intentions are (or are not) fulfilled in those runs of P.

Requirements on computer programs that are advanced by users, programmers, producers, and

various other stakeholders are usually called specifications (Turner 2011). Specifications emerge at

various stages of the composite process of designing, developing, programming, testing, and

revising computing systems. Programmers expand and unfold user specifications through iterated

cycles of program development, testing and revision. In the course of this process, one may even

undertake to modify user specifications that turn out to be difficult or even impossible to comply

with (Primiero and Raimondi 2015). Deviations from user requirements detected in some run of

program P count as failures of P relative to that particular requirement (Fresco and Primiero 2013).

5

More generally, the entire set of stakeholder requirements on runs of P determines whether in

any given execution there are failures of P.2

Usually, user specifications concern what is to be accomplished (or avoided) without saying much

about how this is to be done. Accordingly, programmers must choose one among the alternative

courses of action that are available to fulfil user specifications. Thus, by selecting Java, Pascal, C++

or some other high-level programming language L for writing a program, programmers introduce

additional constraints on how to fulfil user intentions, including the identification of the primitive

instructions that the virtual machine associated to L can carry out. The primitive instructions of L

contribute to determine how programmers intend to fulfil the what expressing user intentions and

goals. In turn, the programmer’s “how” with respect to some user “what” becomes an additional

“what” specification for the tasks of translating into machine language, and eventually running on

some computing system, the high-level instructions of L figuring in P.

In computer architecture textbooks one finds several layers or levels of functional organization

descriptions, jointly forming a hierarchy of layers induced by a binary what-how relationship.

Tanenbaum (2006, pp. 2-8) describes computing systems with as many as six hierarchically

organized layers. At the bottom level, one finds descriptions of logical gates and circuits. At a

higher level one finds a description of the microarchitecture, which includes functional

specifications of registers forming a local memory and of the distinguished circuit called Arithmetic

Logic Unit (ALU). Still ascending in the stratified architecture, but well before getting at the top

layer of programs written in high-level programming languages, one finds the so-called Instruction

Set Architecture (or ISA) layer, describing instructions that are, on the one hand, more elementary

than those that are written in any high-level programming language and, on the other hand, less

elementary than assembly language instructions.

Turner (2011; 2014b) points out that the descriptions one finds at each layer in what-how

hierarchies are to be identified with functional prescriptions for computing systems. For example,

any Pascal program is a text expressing must-prescriptions for the behaviour of a computing

system running that program. And these must-prescriptions bring with them a cascade of

2 Floridi, Fresco and Primiero (2015) distinguish between a dysfunction, an artefact’s behaviour not complying with
user specifications, and a misfunction, an artefact’s behaviour which does comply with its specifications but is
nevertheless prone to bring about undesired side effects. The authors emphasize how “the misfunction of an artifact
token may be due to a dysfunction of some component” (p. 1209). Accordingly, explaining a misfunction of computing
systems amounts to explaining a dysfunction of some given component of the system on the basis of the relevant
specifications which ought to be fulfilled by such component.

6

additional must-prescriptions for the same computing system at lower layers in the hierarchy. One

should be careful to note that the must-prescriptions one finds at any one of these layers are

solely concerned with functionally characterized properties of computing systems (Turner 2014b).

As we shall see, it turns out that abstraction from descriptions of physical components and

processes of computing systems that one finds below the logic circuit and gate layer plays a crucial

role in many BECS explanations. Indeed, abstractions of this sort enable one to eliminate irrelevant

causal information and to achieve greater intelligibility without losing in explanatory force. Let us

examine in some detail this role of abstraction in connection with the problem of explaining some

given incorrect BECS.

3. Abstraction in explanations of incorrect BECS

Consider some program P which is supposed to compute on a personal computer the factorial

function 𝑛!, whose recursive definition is given by the following equations:

0! = 1

(𝑛 + 1)! = (𝑛 + 1) ∗ 𝑛!

A programmer may decide to expand this specification into a program by means of the following

pseudo-Pascal code P:

1 𝐵𝐸𝐺𝐼𝑁

2 𝑟𝑒𝑎𝑑 (𝑛);

3 𝑖 ≔ 0;

4 𝑓 ≔ 1;

5 𝑊𝐻𝐼𝐿𝐸 𝑖 < 𝑛 𝐷𝑂

6 𝐵𝐸𝐺𝐼𝑁

7 𝑖 ≔ 𝑖 + 1;

9 𝑓 ≔ 𝑓 ∗ 𝑖;

10 𝐸𝑁𝐷

11 𝑤𝑟𝑖𝑡𝑒 𝑓

12 𝐸𝑁𝐷

P expresses functional must-prescriptions that are inherited at lower levels in the what-how

hierarchy which is induced by P and includes the assembly language code layer. In the MIPS

architecture (Patterson and Hennessy 2013), this layer is characterized by 32 registers. Of these

$𝑠0, $𝑠1, … , $𝑠7 are registers for program variables, $𝑡0, $𝑡1, … , $𝑡9 are additional temporary

registers that are needed to translate a high-level language program into an assembly language

7

program, and $𝑧𝑒𝑟𝑜 is a register which is always set to zero. Suppose the compiler, while

translating the program for the factorial function, assigns 𝑛 to register $𝑠0 and 𝑖 to register $𝑠1.

Then, line 5 of P is translated into the following assembly language instructions:

5.1 𝑠𝑙𝑡 $𝑡0, $𝑠1, $𝑠0

5.2 𝑏𝑒𝑞 $𝑡0, $𝑧𝑒𝑟𝑜, 𝐿1

MIPS computes the value of the inequality condition by means of instruction 𝑠𝑙𝑡 (‘set on less

than’) which is composed of three fields: the first field denotes a temporary register which is set to

1 in case the value contained in the register in the second field is less than the value assigned to

the register in the third field, and to 0 otherwise. Assembly instruction 5.1 above sets $t0 to 1 in

case 𝑖 < 𝑛, and to 0 otherwise. Assembly instruction 5.2 subsequently checks the value of $t0 by

the MIPS instruction beq (‘branch if equal’) which leads to instruction labelled (by the compiler) L1

in case the value contained in $t0 is equal to the value contained in $zero, i.e. if it equals 0.

The two assembly language instructions above provide in their turn functional “what”

specifications for machine-code instructions, defined by binary digits that are storable into

memory. In MIPS, the number of bits per instructions and data is 32. Assembly instruction 5.1 is

translated into the following six-field machine-code instruction

5.2.1 000000 10001 10000 01000 00000 101010
 op rs rt rd shamt funct

The operating code (op) field, jointly with the last field funct, express that this is an arithmetic

instruction, specifically a set on less than instruction. Fields op and funct instruct the main

combinatory element of the processor, the ALU, to evaluate an inequality. Fields rs and rt refer to

the source register and the target register containing the operands with respect to which the ALU

has to evaluate inequality (10001 is the binary code for $𝑠1 and 10000 for $𝑠0). The five bits of

field rd point to the destination register $𝑡0, that is, the temporary register that must be set to 1 if

the inequality holds and to 0 otherwise. Fields rs, rt, and rd refer to the Register File in the

processor (a state element collecting 32 registers which can be either read or written).3

Before getting to lower levels of the what-how hierarchy, let us suppose that the computing

system C running P manifested the following incorrect BECS with respect to user specifications: C

3 The shift amount field, named shamt and usually involved in data transfer and conditional-branch instructions, refers
to the shift left-side or right-side of a given bit in an instruction. Here it is set to 0, since it is of no significance for the
𝑠𝑙𝑡 instruction.

8

outputted some value 𝑘, with 𝑘 ≠ 𝑚!, when 𝑚 was given as input. As was emphasized in section

2, the what-how hierarchy outlined so far supplies one with a set of functional specifications

(Turner 2014b) against which one may look for an explanation of the observed incorrect BECS.

Downward movements along this hierarchy correspond to the breaking down of higher-level

specifications into sets of progressively more elementary specifications. Thus, in particular, the

recursive definition of n!, and the capacities that are required to compute n! in accordance with

that definition, are analyzed into specifications provided by means of the Pascal program

instructions and the capacities that the corresponding virtual machine must be endowed with in

order to carry them out. These specifications are in their turn broken down in terms of detailed

assembly language instructions until one reaches, further down along the what-how hierarchy, the

logic circuit and gate layer.

Candidate explanations for the observed miscomputation can be identified by selecting, in a what-

how hierarchy, the higher-level functional specification that fails to provide a correct how

decomposition for a what prescription that one finds at the next upper level in the hierarchy. To

exemplify, one might summon an incorrect recursive definition of the factorial function at the top

level of the hierarchy – where, say, the first recursion equation reads 0! = 2 instead of 0! = 1 – as

an erroneously conceived specification of the factorial function. 4 This is a perfectly adequate

explanation of the observed BECS provided that the incorrect specification expressed as a recursive

definition is inherited throughout the lower hierarchical levels. If this ceteris paribus assumption

holds, no additional explanatory force is achieved by mentioning any lower-level functional or

structural properties. Descriptions of functional roles or their causal role fillers one may find at

lower levels are selectively concerned with causal factors that do not ‘make a difference’ (Strevens

2008) in explaining the observed miscomputation under the above ceteris paribus assumption.

Those causal factors do make a difference in explaining why the observed computation occurred,

but they fail to make any difference in explaining why such computation is incorrect. The reason is

that the factorial recursive definition is itself a specification for lower levels: lower levels simply

add information about how the incorrect specification is instantiated without adding difference-

making what-details about its incorrectness. This, we argue, is a crucial feature of BECS

explanations which is rooted in the richly layered structure of what-how hierarchies of functional

specifications for engineered computing systems.

4 In the taxonomy provided by Fresco and Primiero (2013), miscomputation engendered by wrongly conceived
specifications are called mistakes.

9

Supposing that the recursive equations correctly define the factorial function, an explanation of

the observed incorrect BECS might be alternatively found by moving downward along the what-

how hierarchy and looking for Pascal code errors. Thus, a program debugger might point to an

error in, say, code line 5 – which reads 𝑊𝐻𝐼𝐿𝐸 𝑖 ⩽ 𝑛 𝐷𝑂 instead of 𝑊𝐻𝐼𝐿𝐸 𝑖 < 𝑛 𝐷𝑂5– to

explain an observed incorrect BECS. Clearly, explanations appealing to some program code error

only – without mentioning lower-level functional roles and their causal role fillers – presuppose

that the identified program code error is inherited throughout lower hierarchical levels.

If there are no errors in the Pascal code, one may look for an explanation of the observed incorrect

BECS by proceeding further down along the what-how hierarchy. There, the functional

specification expressed by means of Pseudo-Pascal instruction 5 can be further analyzed in terms

of, say, MIPS assembly language instructions 5.1 and 5.2 and their corresponding machine code

instructions.

Let us now briefly consider some implications of the above remarks about BECS explanations, as

these can be plausibly construed in the framework of causal-mechanistic models of explanation

(Piccinini 2007; Piccinini and Craver 2011; Piccinini 2015). For our present purposes, a mechanism

is identified with a set of “entities and activities organized such that they are productive of regular

changes from start or set-up to finish or termination condition” (Machamer et al. 2000, p. 3), and

a mechanistic explanation of some empirical phenomenon with some description of the

mechanism that brings about that phenomenon. A full-fledged description of an actual mechanism

is usually distinguished from a mechanism schema, that is, “a truncated abstract description of a

mechanism that can be filled with descriptions of known component parts and activities”

(Machamer et al. 2000, p. 15); and the latter is in turn distinguished from a mechanism sketch, “an

abstraction for which bottom out entities and activities cannot (yet) be supplied or which contains

gaps in its stages”. (p. 18).

Clearly, the candidate BECS explanations outlined above are not based on a full-fledged

description of an actual mechanism. More specifically, only functional roles for causal fillers in the

computational mechanism are used to explain some incorrect BECS. This fact does not unveil a

weakness of the candidate BECS explanations insofar as no explanatory benefit is accrued by

supplementing the description of an actual functional mismatch between, say, user requirement R

and program instruction I with a description that one finds at lower layers of the what-how

5 Syntax encoding errors count as slips in Fresco and Primiero’s (2013) terminology.

10

hierarchy of physical processes by means of which the incorrect specification I is actually carried

out. If the incorrect specification is inherited downward all the way through the what-how

hierarchy, these additional descriptions merely introduce non-difference-making information into

a more parsimonious explanans. Indeed, it is not always the case that if there is a mismatch

between R and I then some constraint is violated at lower levels too. Causal role fillers in lower-

level mechanistic details do not play a significant evidential role in this explanatory context – as

long as no information is available that some constraint has been violated at lower levels of the

what-how hierarchy. Thus, according to any reasonable construal of the notion of explanatory

force, no additional explanatory force is ceteris paribus accrued by supplementing the functional

mismatch description with additional information that one finds downward along some suitable

what-how hierarchy. Moreover, from a cognitive perspective, the inclusion of non-difference-

making causal details may jeopardize the intelligibility of explanantia. Therefore, abstraction from

causally irrelevant functional or structural details is an explanatory virtue in computer science.

A significant class of explanations in computer science are solely based on abstract mechanism

schemata; and the process of filling in these “truncated abstract descriptions” of mechanisms

“with descriptions of known component parts and activities” (Machamer et al. 2000, p. 15) is not

pursued for good reasons of explanatory adequacy and intelligibility. Machamer et al. (2000)

underline how “bottoming out is relative”(p. 13), that is, there is no a-priori bottom mechanistic

level in natural phenomena. Bottom levels are identified with mechanisms involved in the

explanandum phenomenon (where lower mechanisms are not). In the case of the candidate

explanantia of the observed miscomputation analysed in this section, one already knows that

there are bottoming out mechanisms insofar as those explanantia are provided by specifications

imposing what-constraints on lower specification layers in what-how hierarchies.

The conclusion that abstraction from descriptions that one finds at lower layers of the what-how

hierarchy does not invariably come with a diminished explanatory force of BECS explanations

converges with similar conclusions about explanations in psychology (Barrett 2014) and in

biological modelling (Levy and Bechtel 2013), about the explanatory role of functional constraints

in mechanistic explanations (Piccinini and Craver 2011) and about the role of abstraction in

adequate mechanistic explanations (Boone and Piccinini 2016). In particular, Boone and Piccinini

(2016) distinguish between epistemic roles and ontic roles of abstraction in mechanistic

explanations. Mechanism schemata are adequate explanations when epistemically motivated by

11

the choice of a specific level of organization of the involved mechanism. And epistemically

motivated abstractions are often used to explain misfunctions of mechanisms by identifying some

faulty properties of the mechanism and omitting causal details concerning proper functioning.

Specifications in the what-how hierarchy that fail to correctly instantiate requirements that one

finds higher up in the hierarchy are schemata of computing mechanisms providing adequate

explanations of occurred miscomputations. Indeed, one is identifying the appropriate mechanism

organization level wherein some required property of the underlying mechanism is not satisfied,

while avoiding reference to lower functional and causal details concerning satisfied properties of

the mechanism.

4. Role filling and the useful idealization of digital behaviour

 Higher-level descriptions cannot be always insulated in BECS explanations from lower-level

descriptions that one finds in what-how hierarchies. Clearly, if hardware malfunctions are the

source of an incorrect program run, then an adequate explanation of the observed BECS must

summon descriptions of the malfunctioning physical components. In that case, one must proceed

downward along the what-how hierarchy, reaching the descriptions that one finds at the logic

circuit and gate layer and further down to the descriptions of physical role fillers for logic circuit

and gate functions. Before considering an instance of hardware malfunction and its candidate

explanations, let us first unfold some of the functional specifications provided above for the

factorial function, all the way down to the logic circuit and gate layer.

Code instruction 5.2.1 examined in section 3 can be functionally analyzed in the framework of a

MIPS architecture (Figure 1) in terms of state and combinatory elements corresponding to the six

fields appearing in that instruction (Patterson Hennessy 2013, p. 248). For example, state (or

memory) elements represented in Figure 1 include the Register File, the data/instruction Memory,

the Program Counter (PC) containing the address of the instruction to be executed next, and

additional registers saving data from input registers that have to be processed in the immediately

following clock cycle.6 These additional registers include the Instruction Register, the Memory

Data Register, registers A and B inputted from the Register File, and the ALU Out register receiving

as inputs values computed by the ALU (see Figure 1). The Arithmetic Logic Unit (ALU) in Figure 1 is

a combinatory element.

6 In MIPS implementations, at each clock cycle of the processor, new data are written in all registers (whereas data
can be read anytime).

12

Instruction 5.3.1 takes four clock cycles to be executed by the processor in Figure 1. At the first

clock cycle the instruction is picked up from memory using the memory address contained in PC;

the instruction is saved in the Instruction Register so that it will not be lost before the next clock

cycle; and PC is incremented so as to point to the address of the next instruction. At the second

clock cycle, fields rs and rt in the machine code instruction ($𝑠1 and $𝑠0 in the Register File) are

read; the values contained there are saved in registers A and B to be used in the next clock cycle.

At the third clock cycle, fields op and funct are read to let the ALU compute the corresponding

mathematical operation; in the present case the ALU verifies the inequality between the values

inputted from register A and B, outputting 1 in case the first value is less than the second value

and 0 otherwise. The value is saved in the additional register ALU Out. During the last clock cycle,

the destination register in rd, in this case $𝑡0, is used to save the value in ALU Out.

Fig. 1 A MIPS architecture.

This is plainly a description of a computing mechanism (Piccinini and Craver 2011): state elements

and combinatory elements involved in the description, and described in Figure 1, are defined in

terms of functional units (Patterson and Hennessy 2013, p. 245), that is, black boxes which satisfy

certain input-output relations. The Registers box at the centre of Figure 1 is given there as a black-

box characterized by two input lines specifying the number of the two operand registers to be

read, two output lines for the two read values which have to be stored in the additional registers A

and B, and two input lines for the data to be stored in the destination register – the first one

specifying the register number and the second one sending the data to be saved. The MIPS

register file is functionally analyzed in terms of the organization of the 32 registers composing it.

13

And each register is in turn functionally analyzed in terms of flip-flops functional organization.

Consider now, as a simple kind of flip-flop, the S-R latch of figure 2.7

Fig. 2 An S-R latch.

This basic memory element is functionally characterized in terms of two input lines, S (set) and R

(reset), and two output lines, 𝑄 and its complement �̅�. It is obtained by suitably composing two

NOR logic gates. In S-R latches, when S is affirmed, 𝑄 is affirmed and �̅� is not affirmed. When S

stops being affirmed, 𝑄 keeps being affirmed. When R is affirmed, �̅� is affirmed, 𝑄 is not affirmed,

and �̅� keeps on holding when R stops being affirmed.

Figure 2 describes functional roles, specified in terms of input-output (I/O) relations, that any

physical device must satisfy in order to count as a physical role filler for an S-R latch. In current

computing systems, one generally uses sets of properly integrated transistors as physical role

fillers for S-R latches and the NOR logic gates that are involved. The identification of a single

transistor in this set which fails to make the state transitions that are associated with some I/O

relationship in the functional specification of an S-R latch may suffice to explain a variety of

incorrect BECS that are observed.8 In this case too, one is identifying the higher layer in the what-

how hierarchy which fails to satisfy some functional requirements that have been inherited

downward throughout the hierarchy. One should be careful to note that this layer – which is the

higher one from the viewpoint of functional requirement violation – happens to coincide with the

bottom layer of the what-how hierarchy. This is a relevant circumstance for explanations that one

builds by reference to the descriptions that one finds in this layer. Indeed, unlike the explanations

discussed in the previous section, the explanation advanced for violations of the functional must-

prescription for the S-R latch does make direct reference to physical role fillers that are expected

to fulfil that must-prescription.

The explanation advanced for violations of the S-R latch functional must-prescription turns out to

be a parsimonious explanation which can hardly achieve greater explanatory force by including

7 S-R latches do not take into consideration clock signals, so they are not, technically speaking, flip-flops. However, for
the sake of simplicity, only S-R latches are considered here.
8 This is an operational malfunction in Fresco and Primiero’s (2013) taxonomy.

14

additional causal details about the behaviour of (incorrectly or properly working) transistors

implementing the S-R latches. Let us explain.

The class of potential role fillers is circumscribed in the above functional specification of an S-R

latch simply by requiring that any physical role filler must possess distinguished states to be

conventionally associated to one value from the set {0, 1}, and that suitable Boolean functional

conditions must be satisfied for state transitions in the same set. Accordingly, these functional

specifications of an S-R latch involve the use of a finite collection of discrete variables only.

However, the orbits and state space trajectories of transistors and other devices (e. g. vacuum

tubes) that are used as role fillers for functional specifications of S-R latches and logic gates are

described in classical physics by means of continuous – rather than discrete – macroscopic

variables.9 As a consequence, a plurality of non-isomorphic logical models satisfy the above

functional specifications for S-R latches and logic gates. The domain of some of these models is a

state space formed by a non-countable set of states; the domain of some other models satisfying

the same specifications is a state space formed instead by a finite set of states. In models of the

former type, any switching transition between states representing the S-R latch values 0 and 1 is

described by means of a continuous trajectory in the state space. In models of the latter kind, the

same switch is described as an instantaneous change involving no intermediate state whatsoever.

Accordingly, in order to explain hardware malfunctions by reference to the logic circuit and gate

layer one can often dispense, and profitably so, with models involving uncountable domains and

continuous trajectories in the state space, relying instead on models allowing for instantaneous

transitions between states representing the values 0 and 1, respectively. Indeed, by mentioning

idealised digital behaviours and by simplifying accordingly the causal story that one may provide

about the behaviour of transistors in terms of classical physics, one focuses on the violation of the

relevant functional specifications at the logic circuit and gate layer by some S-R latch physical role

filler. If the explanatory goal is to identify in the faulty hardware component the causes of the

functional prescription violation, no additional explanatory force is accrued by providing a detailed

description, in the framework of (classical) physical theories, of how that faulty hardware

component brings about the incorrect behaviour in question. Those causal details turn out to be

irrelevant in that they do not make a difference in the violation of the S-R latch specification. The

9 See (Trautteur and Tamburrini 2007, and especially pp. 107-108) for a discussion of the discrete-continuous polarity

in the context of computing systems and their functional role fillers.

15

core factors (Weisberg 2007) causing the violation of the involved specifications are to be

identified here with failures to make transitions between states that are abstractly described as

states 0 and 1 in accordance with the S-R latch specification. Any other states in the continuous

trajectory are causal factors contributing to bring about the transistor’s behaviour, but they do not

make any difference with respect to the classification of the observed behaviour as incorrect.

One should be careful to note that, by providing explanations of incorrect BECS by reference to

idealised digital behaviours of hardware components satisfying the laws of classical physics, one is

making use of idealizations in explanation (Weisberg 2007). The use of idealizations for explaining

both incorrect and correct BECS is a widespread practice in computer science, which comprises as

a particular case the idealizations involved in the conceptual shift from a continuous to a discrete

dynamics in connection with descriptions of the behaviour of physical components of computing

systems. Prominent examples of a different sort, that we now turn to examine, are found in

explanations of BECS relying on specification and verification methods developed in theoretical

computer science.

5. Combining abstraction and idealization in BECS explanations

Many computing systems of interest in computer science are appropriately qualified as reactive

systems, that is, as systems interacting with their environment. A relatively simple case in point

are controllers of beverage vending machines, which interact with an unlimited sequence of users,

recognize their requests, and distribute beverages accordingly as long as they are properly

maintained and supplied with beverages as needed. Additional examples of simple reactive

systems are controllers of household micro-wave ovens and controllers of traffic light junctions

interacting with pedestrian requests.

Formal verification methods in theoretical computer science enable one to provide explanations

for both correct and incorrect BECS manifested by reactive systems on the basis of suitably

specified models of those systems. An examination of these models enables one to advance and

support the claim that many explanations of reactive systems’ behaviours involve an extensive use

of both abstraction and idealizations. On the one hand, abstraction hides the details of some

lower-level descriptions (Coulburn and Shute 2007). On the other hand, idealization makes the

inclusion of some lower-level descriptions impossible. Both abstraction and idealization are

introduced with the aim of offsetting the impact of complexity limitations on the applicability of

16

formal verification to predict and explain the behaviour of reactive systems. Here, we consider

interactions between abstraction and idealization in the context of model checking formal

verification methods (Baier and Katoen 2008; Clarke et al. 1999) and their implications for BECS

explanations.

Model checking enables one to verify whether the unending runs of some reactive system R

satisfy, according to a suitable model M of R, properties that are decidable (and efficiently so) in

M. Decidable properties of reactive systems that are of interest for system users, programmers,

and various other stakeholders, include safety, invariant, and liveliness properties. Safety

statements assert that states possessing some undesired feature are unreachable in any run of R,

invariant statements assert that all reachable states satisfy some desired feature, and liveness

statements assert that states satisfying some desired feature are eventually always reachable from

any state of R. Model checking allows one to explain why a reactive computing system reached (or

did not reach) a desired/undesired state by showing a computational path in the model starting

from some initial state and going through (or not going through) the desired/undesired state. In

case of explanations of miscomputations, those paths are often used to trace back error states in

the running program code (see, for instance, Callahan et al. 1996).

Let us concretely consider the case of a micro-wave oven controller, and suppose one would like

to check the liveness property that whenever the oven is on, it will eventually start heating. For

this verification purpose, one may develop a model abstracting from many features of the actual

computing system which controls the oven. A model consisting of eight states only will do – with

each state represented by a circle, arrows between states representing transitions between them,

and initial states represented as circles pointed to by an arrow incoming from an unspecified

source. Each one of the represented states is an abstract macrostate obtained by collapsing, into

one state, many actual states of the micro-wave oven controller. Abstract macrostates are

obtained by a data abstraction function mapping variables appearing in more fine-grained

representations of the controller into some macro-variables. The functional properties of macro-

states that one needs in order to check the desired liveness property can be represented as atomic

propositions start, ¬ start, close , ¬close, heat, ¬heat, error, ¬error.10 The resulting model can be

represented as the state transition diagram of Figure 3.

10 The example is taken from Clarke et al. (1999, pp. 38-39).

17

The state transition diagram of Figure 3 can be viewed as a Kripke Structure (KS) 𝑀 = (𝑆, 𝑆0, 𝑅, 𝐿)

defined by states in 𝑆 with a subset of initial states 𝑆0, the transition relation 𝑅 = 𝑆 𝑥 𝑆, and a

labelling function 𝐿: 𝑆 → 2𝐴𝑃 labelling each state with subset of a fixed set 𝐴𝑃 of atomic

propositions that are true in that state (Clarke et. al 1999, pp. 13-26). Abstract KSs of the kind

depicted in Figure 3 enable one to model the multiple processes that are concurrently executed by

a machine while carrying out a given task. Causal interactions among those processes can be

represented in an abstract model by means of compositions of different state transition systems -

where each one of these systems models a single process (Baier and Katoen 2008, pp. 19-8).11

Fig. 3: An abstract model for verifying a liveness property of a micro-wave oven.

In order to check whether the KS model satisfies the property one is interested in, the latter is

usually formalised by means of a temporal logic formula. The liveness property that whenever the

oven is on, it will eventually start heating can be formalized in Computation Tree Logic (CTL) by

11Kripke Structures have been more explicitly used to represent causal structures (see for instance Alur, McMillan, and
Peled 1998, p. 45). More in general, checking KSs against specified temporal formulas can be useful to infer causal
relations from temporal data (Kleinberg 2012).

s0 ¬

Start ¬

Close ¬

Heat ¬

Error

s4 ¬

Start

Close

Heat

¬ Error

S1

Start ¬

Close ¬

Heat

Error s3 ¬

Start

Close

¬ Heat

¬ Error

s7 Start

Close

Heat

¬ Error

s5 Start

Close

¬ Heat

Error

s6
Start

Close

¬ Heat

¬ Error

18

means of the formula 𝑨𝑮 (𝑆𝑡𝑎𝑟𝑡 → 𝑨𝑭 𝐻𝑒𝑎𝑡). This formula states that in all paths (A) starting

from any initial state, and in every state (globally: 𝑮) of those paths, if Start holds then in all paths

(A) starting from there Heat will finally (F) hold. The model checking technique makes use of a

depth-first search algorithm to explore the state space of a KS (or model) M and to check whether

𝑀 ⊨ 𝑓, that is, whether the temporal ordering constraints on program behaviours that are

expressed by a formula 𝑓are satisfied by model M. In the micro-wave example, the model

checking algorithm enables one to check whether 𝑀 ⊨ 𝑨𝑮 (𝑆𝑡𝑎𝑟𝑡 → 𝑨𝑭 𝐻𝑒𝑎𝑡) or not. In case

of a positive answer, the algorithm outputs a set of “witnesses”, that is, of paths in the KS that

fulfil the checked properties. And in case of a negative answer, “counterexamples”12 are advanced

by the algorithm, which consist of paths in the model violating the temporal logic formula.

In model checking an abstract description of the functional organization of the system is provided

in terms of macrostates and transitions between them (e. g. the microwave oven KS). Many

elements that would occur in a complete description of the system are irrelevant for prediction

and explanation purposes (its microstates). In particular, interactions between these components

in a fine-grained system’s description (microstates and their transition conditions) do not make a

difference in explaining a wide variety of the system’s temporal ordering properties holding

among the specified macrostates. The adopted explanation strategy is based on an abstract model

(that is, the KS viewed as an abstract model) which shares many distinctive aspects with scientific

models that are used in the empirical sciences for predictive and explanatory purposes (Angius

and Tamburrini 2011). If a system is functionally organized as specified in the KS, then it must

possess the reachability, safety, liveness properties that hold of the KS, and whose instances one

can observe in the system’s behaviour. Thus, one explains both complex behavioural regularities

(reachability, safety, liveliness, etc) and their instances by reference to the state transition

trajectories that are permitted or forbidden by the abstract description of the computing

mechanism (Piccinini 2015).

In addition to abstraction, idealizations (Nowak 1979; Cartwright 1989; Weisberg 2007) are

extensively introduced to build models in model checking. Abstraction and idealization, which are

introduced to simplify empirical models for representational or explanatory purposes, usually

12 Paths in the model violating the temporal logic formula are identifiable with counterexamples under the assumption
that model M provides a correct representation of the reactive system for the specific verification purpose at hand.
This crucial assumption can be empirically controlled by starting the reactive system under suitable initial conditions
and verifying whether the runs that are actually observed are correctly modelled by those paths in the model which
violate the temporal logic formula according to the model checking algorithm.

19

interact with each other in the construction of simplified models. In the following, interactions

between abstraction and idealization are examined in the context of model checking by reference

to the micro-oven controller example. In particular, a distinction between restrictive and

permissive idealizations is introduced and their respective impact on BECS explanations is

unravelled.

Restrictive idealizations come into play when one assumes that physically possible trajectories,

either reflecting “unreasonable” interactions with the environment or else arising on account of

hardware failures, will never occur. For example, path π’= s0, s3, s0, s3,..., s0, s3 , which is allowed in

the abstract model (KS) of figure 3, corresponds to the odd behaviour engendered by users

repeatedly opening and closing the oven door (whereby start is true but heat never holds). And a

malfunctioning oven hardware may give rise to a path π’’: s0, s1, s5, s3, s0, wherein the oven never

heats up and the states in the sequence are all error states. If these physically possible trajectories

are taken into account, then the CTL formula 𝑨𝑮(𝑆𝑡𝑎𝑟𝑡 → 𝑨𝑭 𝐻𝑒𝑎𝑡) is not satisfied in the

abstract model 𝑀 and the two paths shown above will be advanced as counterexamples together

with the negative answer to this satisfaction problem. In order to check solely whether the

controller’s software fulfils given functional requirements, one should discard executions in which

the violation of the property under examination does not depend on failures of the controller’s

software. This is usually achieved by imposing suitable fairness constraints. A fairness constraint is

defined in terms of the set of states that are required to appear infinitely often in any travelled

path of the KS and is expressed in terms of CTL formulas on a par with property specifications.13

Models satisfying fairness constraints are idealized models in that fairness constraints can be

identified with ceteris paribus clauses imposed on the model behaviour, whereby one assumes the

correct functioning of hardware components (Angius 2013). Fair KSs may still be used to develop

full-fledged mechanistic descriptions of computing systems carrying out computations satisfying

the functional constraints expressed by the KS, insofar as one is only making the false assumption

that some physically possible trajectories which are not relevant to explain software functional

properties, will never occur. This can be achieved in the micro-oven example (a) by dropping the

fairness constraints concerning hardware failures or unreasonable interactions with the

13 A path is fair in case it satisfies each CTL fairness formula infinitely often, and a fair KS 𝑁 = (𝑆, 𝑆0, 𝑅, 𝐿, 𝐹) is also
defined by a set 𝐹 ⊆ 2𝑆 of fairness constraints. A fairness constraint avoiding that unfair path be travelled by the
model checking algorithm exploring the KS of Figure 3 may be given by the formula 𝑆𝑡𝑎𝑟𝑡 ∧ 𝐶𝑙𝑜𝑠𝑒 ∧ ¬ 𝐸𝑟𝑟𝑜𝑟 which,
when satisfied by some fair path, require that the system will eventually enter a non-error state. Considering a fair KS
𝑀° for the microwave oven, 𝑀° ⊨𝐹 𝑨𝑮(𝑆𝑡𝑎𝑟𝑡 → 𝑨𝑭 𝐻𝑒𝑎𝑡) if there exists a fair path starting from an initial state,
that is, witness π’’’= s0, s1, s5, s3, s6, s7.

20

environment, and (b) by adding lower-level descriptions of the micro-oven physical components

and their physical processes.

Permissive idealizations come into play when one includes in the model trajectories that fail to

represent actual execution paths of the system that one is modelling. Some of these unrealistic

trajectories, however, are quite relevant to the BECS explanandum, unlike those excluded by

means of restrictive idealizations. In particular, consider a KS allowing for spurious paths that do

not match actual program executions. Permissive idealizations of this kind can be introduced by

the abstracting function from the program variables to the set of abstract functional variables,

which usually increases the granularity of the KS, so that each state in 𝑆 is a macrostate

corresponding to many actual program states. A very simple case is illustrated in Figure 4 wherein

abstract path 𝜋° = 1°, 2°, 3°, 4° is a spurious path in that it does not represent any software

execution represented by transitions between states in the set {1,2,3,4,5,6,7,8,9,10,11,12}. Each

abstract state is obtained by the collapse of three different program states and among those fine-

grained states one may rather find executions from state 1 to state 9 and from state 7 to state 12.

The collapse of both state 7 and state 9, together with state 8, into the abstract state 3° is

responsible for the spurious abstract path.

Fig. 4: A spurious abstract path.

After checking that 𝑀 ⊨ 𝑨𝑮 (𝑆𝑡𝑎𝑟𝑡 → 𝑨𝑭 𝐻𝑒𝑎𝑡), spurious paths of this sort may be outputted,

together with a positive answer, as elements of the set of witnesses. Some argue that idealized

models in science should be de-idealized, in order to restore the empirical adequacy of the model,

after using the distorted model for some representational or explanatory purposes (McMullin

1985; Weisberg 2013). However, a spurious path does not jeopardize locally the empirical

adequacy of the KS, that is, its empirical adequacy with respect to the temporal formula to be

checked for satisfiability in the KS. The spurious path needs to be removed if it corresponds to a

4° 1° 2° 3°

 10

 11

 12

 7

 8

 9

 4

 5

 6

1

2

3

21

false counterexample (or false negative), insofar as counterexamples are used to remove errors

from the checked faulty program. In such cases, the granularity of the KS is decreased until one

isolates the faulty modelled transitions, this process being known as abstraction refinement (Wang

et al. 2006). If the spurious path does not correspond to a false counterexample, there is no need

to remove it from the KS, for the satisfiability of the temporal formula under examination is

independent of the presence of the spurious path. In particular, if the formula 𝑨𝑮 (𝑆𝑡𝑎𝑟𝑡 →

 𝑨𝑭 𝐻𝑒𝑎𝑡) is positively model-checked, the observed behaviours of the micro-wave oven fulfilling

the liveliness property under consideration are correctly predicted and explained by reference to a

model (the KS) allowing for system runs that the actual micro-wave oven cannot perform.

Spurious paths are introduced as a by-product of principled approaches to reduce the amount of

computational resources one has to allocate in order to carry out the model checking procedure. If

one is interested in the temporal ordering of two system’s properties (such as those

corresponding to labels 𝑆𝑡𝑎𝑟𝑡 and 𝐻𝑒𝑎𝑡), and transitions are given between the program’s states

where one property holds and states where the other property holds, then one can idealize the

system’s representation as if there were one single transition between two macro states. Spurious

paths need not be removed if the idealized representation allows one to successfully check the

other temporal formulas of interest. If false counterexamples are traced by the model checking

algorithm, spurious paths are removed to check whether the property is still violated by the

revised model or not.

In conclusion, KSs and other state transition systems that are used in model checking to explain

correct BECS are models that are built by making extensive use of abstractions and idealizations.

Both abstractions and idealizations are often needed to decrease the state space of the resulting

model and to make an exhaustive search in the set of system trajectories computationally feasible.

Abstractions from program variables to macrostates in the model hide physical descriptions of

entities and activities of the full-fledged instantiating computational mechanisms. It was argued in

the previous sections that by adding to an abstract model information about physical role fillers in

computational mechanisms one does not necessarily increase the explanatory force of

explanations that are based on the abstract model. In this section, we have illustrated the practice

of introducing idealizations which distort computational models by assuming that some

“disturbing” processes that are involved in the actual computational mechanism do not take place

(restrictive idealizations), or by introducing processes that are not to be found in the actual

22

computational mechanism (permissive idealizations). Accordingly, BECS explanations relying on

models obtained by permissive idealizations are locally tailored to the (liveliness) property P under

examination. And the underlying model cannot be developed in order to serve a variety of

additional explanatory purposes, insofar as the model cannot accommodate some downward

expansions of what-how hierarchies – so as to include functional specifications of microstates and

their transitions, in addition to full-fledged descriptions of their role fillers that are couched in the

language of physical theory.

6. Conclusions

Explaining BECS is a pervasive and significant activity in computer science practice. An examination

of this activity was carried out above with the aim of addressing the methodological issue of what

it is to explain observed incorrect BECS, and to explain regular behaviours that some classes of

engineered computing systems are capable of manifesting. Both notions of correct and incorrect

BECS have been clarified on the basis of sets of specifications prescribing desired behavioural

properties of interest. Users, programmers, engineers, and other stakeholders furnish

specifications that are organized into hierarchies of what-how descriptions – wherein each

description affords a functional specification for lower-level descriptions, and the descriptions at

the bottom layer of the hierarchy include structural details about the physical devices

implementing logic circuits and gates.

Explanations of both correct and incorrect BECS can be given using as explanantia specifications

that one finds at various levels of the what-how hierarchy, without necessarily including

descriptions of the physical role fillers that one finds at the bottom level and that are couched in

the language of physical theory. Accordingly, explanations abstracting away from descriptions

provided at the bottom level of what-how hierarchies provide adequate answers for a wide

variety of explanatory requests arising in computer science practice. In the language of

mechanistic approaches to explanation, this means that in various circumstances, explanations

that are based on abstract mechanism schemata, rather than full-fledged mechanism descriptions,

are to be preferred on the multiple grounds of explanation correctness, relevance and

intelligibility.

The present analysis of combined abstraction and idealization in BECS explanations may prove

useful to evaluate, from a methodological perspective, explanatory strategies that one adopts in

23

areas of scientific inquiry that are collected under the name of “software intensive sciences”

(Symons and Horner 2014) insofar as one makes extensive use of computational methods there.

Notably, model checking and other formal verification methods are being profitably used to

perform in silico experiments in systems biology and to explore exhaustively the trajectories in the

state space of simulated biological cell systems (Fisher and Henzinger 2007; Angius 2015). There,

computational models provide abstract and idealized descriptions of cell systems, which are used

to predict and explain a variety of cell behaviours. However, an extensive use of permissive

idealization in executable cell biology may give rise to multiple and possibly incompatible models

(Weisberg 2007) of cell systems, whose respective representational, predictive, and explanatory

roles must be properly understood in the broader scientific context of systems biology.

Acknowledgments. We feel grateful to the unknown reviewers who helped us in focusing on the

main theses of the paper and suggested valuable improvements.

References

Alur, R., McMillan, K., & Peled, D. (1998). Deciding global partial-order properties. In International

Colloquium on Automata, Languages, and Programming (pp. 41-52). Springer Berlin Heidelberg.

Angius, N. (2013). Abstraction and idealization in the formal verification of software systems.

Minds and Machines, 23(2), 211-226.

Angius, N. (2015). Computer Simulations Without Simulative Programs in Executable Cell Biology.

Hypothesis Discovery and Justification. Paradigmi, 32(3), 67-82.

Angius, N., & Tamburrini, G. (2011). Scientific theories of computational systems in model

checking. Minds and Machines, 21(2), 323-336.

Baier, C., & Katoen, J. P. (2008). Principles of model checking (Vol. 26202649). Cambridge: MIT

press.

Barrett, D. (2014). Functional analysis and mechanistic explanation. Synthese, 191(12), 2695-2714.

Bechtel, W., & Richardson, R. C. (1993). Discovering complexity. Princeton, NJ: Princeton UP.

24

Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and

Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical

Sciences, 36(2), 421-441.

Boone, W., & Piccinini, G. (2016). Mechanistic Abstraction. Forthcoming in Philosophy of Science,

DOI: 10.1086/687855

Callahan, J., Schneider, F., & Easterbrook, F. (1996). Automated software testing using model

checking. In J. C. Gregoire, G. J. Holzmann and D. Peled (Eds), Proceeding Spin Workshop, pp. 118–

127. Rutgers.

Cartwright, N. (1989). Nature’s capacities and their measurement. Oxford, New York: Oxford

University Press.

Clarke, E. M., Grumberg, O., & Peled, D. (1999). Model checking. Cambridge: MIT press.

Colburn, T., & Shute, G. (2007). Abstraction in computer science. Minds and Machines, 17(2), 169-

184.

Cummins, R. (1975). Functional analysis. Journal of Philosophy, 72(20), 741–765.

Cummins, R. (1983). The nature of psychological explanations. Cambridge: The MIT Press.

Fisher, J., & Henzinger, T. A. (2007). Executable cell biology. Nature biotechnology, 25(11), 1239-

1249.

Floridi, L., Fresco, N., & Primiero, G. (2014). On malfunctioning software. Synthese, 192(4), 1199-

1220.

Fresco, N., & Primiero, G. (2013). Miscomputation. Philosophy & Technology, 26(3), 253-272.

Glennan, S. S. (1996). Mechanisms and the nature of causation. Erkenntnis, 44(1), 49-71.

Jones, M. R. (2005). Idealization and Abstraction: A Framework. In M. R. Jones, & N. Cartwright

(Eds.), Idealization XII: Correcting the model. Idealization and Abstraction in the Sciences, (pp. 173-

217). Amsterdam: Rodopi.

Kleinberg, S. (2012). Causality, probability, and time. Cambridge University Press.

25

Levy, A., & Bechtel, W. (2013). Abstraction and the organization of mechanisms. Philosophy of

science, 80(2), 241-261.

Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of

science 67(1), 1-25.

McMullin, E. (1985). Galilean idealization. Studies in History and Philosophy of Science Part A,

16(3), 247-273.

Nowak, L. (1979). The structure of idealization. Towards a systematic interpretation of marxian

idea of science. Dordrecht: Kluwer.

Patterson, D. A., & Hennessy, J. L. (2013). Computer organization and design: the

hardware/software interface. Waltham, MA: Morgan Kaufmann.

Piccinini, G. (2007). Computing mechanisms. Philosophy of Science, 74(4), 501-526.

Piccinini, G. (2015). Physical Computation: A Mechanistic Account. Oxford: Oxoford University

Press.

Piccinini, G., & Craver, C. (2011). Integrating psychology and neuroscience: Functional analyses as

mechanism sketches. Synthese, 183(3), 283-311.

Pitt, J. C. (2011). Doing philosophy of technology: essays in a pragmatist spirit (Vol. 3). Dordrecht:

Springer.

Primiero, G., & Raimondi, F. (2015). Software Theory Change for resilient near-complete

specifications. Procedia Computer Science, 52, 988-995.

Strevens, M. (2008). Depth: An account of scientific explanation. Harvard University Press.

Symons, J., & Horner, J. (2014). Software intensive science. Philosophy & Technology, 27(3), 461-

477.

Tanenbaum, A. S. (2006). Structured computer organization. Upper Saddle River, NEW JERSEY:

Pearson.

Trautteur, G., & Tamburrini, G. (2007). A note on discreteness and virtuality in analog computing.

Theoretical Computer Science, 371(1), 106-114.

26

Turner, R. (2011). Specification. Minds and Machines, 21(2), 135–152.

Turner, R. (2014a) The Philosophy of Computer Science. Resource Document. The Stanford

Encyclopedia of Philosophy (Winter 2014 Edition), Edward N. Zalta (ed.).

http://plato.stanford.edu/archives/win2014/entries/computer-science/

Turner, R. (2014b). Programming languages as technical artifacts. Philosophy & Technology, 27(3),

377-397.

van Eck, D. (2015). Mechanistic explanation in engineering science. European Journal for

Philosophy of Science, 5(3), 349-375.

 Wang, C., Hachtel, G. D., & Somenzi, F. (2006). Abstraction refinement for large scale model

checking. Berlin: Springer.

Weisberg, M. (2007). Three kinds of idealization. The Journal of Philosophy, 104(12), 639–659.

Weisberg, M. (2013). Simulation and similarity: Using models to understand the world. New York:

Oxford University Press.

http://plato.stanford.edu/archives/win2014/entries/computer-science/

