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Introduction (en francais)

Ce manuscrit contient trois résultats principaux :

0.1 Conjecture du soufflet au niveau des flexions infinitésimales

Un polyedre (plus précisement, une surface polyedrale) est appelé flexible si sa forme spatiale
peut étre changée continiement seulement par suite des changements de ses angles diedres, c’est
a dire, si chaque face reste congruente a elle-méme pendant la déformation. Cette déformation
est dite une flexion continue du polyedre.

En 1897 Raoul Bricard a décrit tous les octaédres flexibles dans R3. La méthode moderne de
construction des octaedres de Bricard a été proposée par Henri Lebesgue [Leb67]. Les octaédres
de Bricard sont les premiers exemples des polyédres flexibles (avec des auto-intersections). En
1976 Robert Connelly [Con] a construit le premier polyedre flexible plongé dans R3.

La conjecture du soufflet qui déclare que chaque polyedre flexible conserve son volume orienté
pendant la flexion continue, est une question trés connue dans la théorie de rigidité des polyedres.
En 1996 Idjad Sabitov [Sab96] a donné une réponse affirmative & la conjecture du soufflet dans
I’espace euclidien a trois dimensions. Une preuve améliorée de ce résultat se trouve dans le
papier [CSW97] de Robert Connelly, Idjad Sabitov et Anke Walz. En 1997 Victor Alexandrov
[Ale97] a construit un polyedre flexible dans 1’espace sphérique a trois dimensions qui change son
volume pendant la flexion continue. La question si la conjecture du soufflet est vrai dans I'espace
hyperbolique a trois dimensions est encore ouverte.

Une déformation d’une surface polyédrale S est une famille des surfaces S(t), t € (—1,1),
qui dépend analytiquement du parametre ¢, conserve la structure combinatoire de S et telle que
S(0) = S. Une déformation d’une surface polyedrale S avec les faces triangulaires est dite sa
flexion infinitésimale si les longueurs de toutes les arétes de S(t) sont stationnaires & t = 0. Une
flexion infinitésimale est dite nontriviale 8’il y a deux sommets de S(t) qui ne sont pas connectés
par une aréte de S(¢) et tels que la distance spatiale entre eux n’est pas stationnaire. Un polyedre
est dit infinitésimalement flexible s’il posseéde une flexion infinitésimale nontriviale.

Pour attaquer la conjecture du soufflet, déja en 1980 Idjad Sabitov a proposé de considérer
la conjecture des soufflets au niveau des flexions infinitésimales. En gros, nous pouvons formuler
la question de Sabitov comme suit : est-ce que c’est vrai que le volume de chaque polyedre
infinitésimalement flexible est stationnaire sous la flexion infinitésimale ? Dans [Ale89] et [Ale97]
Victor Alexandrov répond par la négative a cette question pour les polyedres infinitésimalement
flexibles dans les espaces euclidien et sphérique a trois dimensions.

Dans le chapitre 1 de la thése je donne une réponse négative a la conjecture du soufflet au
niveau des flexions infinitésimales dans 1’espace hyperbolique & trois dimensions [Slull] :

Théoreme 0.1. Dans l'espace hyperbolique d trois dimensions il y a un polyédre sans auto-in-
tersections, homéomorphe a une sphére et il y a une flexion infinitésimale tels que le volume du
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Introduction (en francais)

polyedre n’est pas stationnaire sous la flexion infinitésimale.

J’ai présenté ce résultat a la conférence scientifique internationale "Les inégalités sur des
volumes" & Banff, Alberta, Canada en mars 2010.

0.2 Condition de flexibilité d’'une suspension dans H?

Une suspension est un polyedre avec deux sommets spéciaux (appelés les pole nord et sud)
qui n’ont pas d’aréte commune, et tels que tous les autres sommets du polyeédre (appelés les
sommets de ’équateur) sont joints par arétes avec les deux pdles, et les arétes qui joignent des
sommets de I’équateur forment un cycle.

Les octagdres de Bricard [Leb67] sont des exemples des suspensions flexibles. En 2002 Hell-
muth Stachel [Sta06] a démontré la flexibilité des analogues des octaedres de Bricard dans I’espace
hyperbolique.

En 1975 Robert Connelly [Con75] a démontré qu’une combinaison des longueurs des arétes
de I’équateur d'une suspension flexible dans R? est égale a zéro (dans cette combinaison, chaque
longueur est prise soit positive soit négative). En 2001 Sergey Mikhalev [Mik01] a redémontré le
résultat susmentionné de Connelly par des méthodes algébriques. De plus, Mikhalev a démontré
que pour chaque quadrilatere spatial formé par des arétes d’une suspension flexible qui contient
ses deux pdles il y a une combinaison des longueurs (prises soit positives soit négatives) des arétes
du quadrilatere qui est égale a zéro.

A la suite de Robert Connelly et Sergey Mikhalev, j’ai démontré le résultat suivant [Slu13]
dont la preuve est donnée aussi dans le chapitre 2 de ce maniscrit :

Théoreme 0.2. Soit P une suspension flexible non dégénérée dans l’espace hyperbolique d trois
dimensions avec les poles S et N et avec les sommets de léquateur Pj, j =1,...,W. Alors

w
> 041l PiPisa] =0,
j=1

0l 05 j+1 € {+1, =1}, |PjPj+1| est la longueur de laréte PjPj+1, j = 1,...,W, et, par définition,
def def

PwPyi1 = PwPy, owwil = ow.i-

Dans [Slul3] je vérifie également le théoréme 0.2 pour les octaeédres de Bricard-Stachel dans
I’espace hyperbolique a trois dimensions.

J’ai présenté ce résultat a la conférence scientifique internationale "La quatriéme rencontre
géométrique" dediée a la centenaire de A. D. Alexandrov & Saint-Pétersbourg, Russie, en aofit
2012.

0.3 Métriques polyedrales sur les bords de variétés quasi-Fuchsiennes con-
vexes
Tout d’abord je rappelle deux résultats trés connus dans la géométrie métrique. Le premier
est dii & Alexandr Alexandrov et Alexei Pogorelov [Pog73] :
Théoréme 0.3. Soit h une métrigue C>®-réguliére sur la sphére S a courbure strictement supé-

rieure a —1, il existe alors une immersion isométrique de (S%,h) dans H3, unique auzx isométries
de H? prés. De plus, cette immersion borde un conveze de H3.

Le deuxiéme est di & Mikhael Gromov [Gro86] :
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0.3. Métriques polyedrales sur les bords de variétés quasi-Fuchsiennes convexes

Théoréme 0.4. Soit S une surface compacte de genre supérieur ou égal d 2, munie d’une métrique
h C*®-réguliére o courbure supérieure a —1. Il existe alors un groupe fuchsien I' agissant sur H3
tel que (S, h) se plonge isométriquement dans H3/T.

Une variété de dimension trois hyperbolique compacte M a bord M est dite strictement
conveze [Lab92] si deux points quelconques de M peuvent étre joints par une géodésique mini-
misante incluse dans l'intérieur de M. Cette condition entraine que la courbure intrinseque de
OM est supérieure & —1 (ici hyperbolique signifie courbure constante —1).

En 1992 Frangois Labourie [Lab92] a obtenu le résultat suivant qui peut étre congu comme
la généralisation des théorémes 0.3 et 0.4 :

Théoréme 0.5. Soit M une variété compacte d bord (différente du tore plein) et qui admette une
structure de variété hyperbolique strictement convexe. Soit h une métrique C*°-réguliére sur OM
a courbure strictement plus grande que —1, il existe alors une métriqgue hyperbolique convexe g
sur M qui induise h sur OM :

g lom=h.

Une variété hyperbolique M est dite quasi-Fuchsienne si 'ensemble limite Aps sur le bord a
Iinfini du revétement universel M de M est une courbe de Jordan.
Récemment j’ai obtenu I'extension suivante du théoreme 0.5 :

Théoreme 0.6. Soit M une variété compacte a bord de genre supérieur ou égal a 2 et qui admette
une structure de variété quasi-Fuchsienne strictement convexe. Soit h une métrique hyperbolique
a singularités coniques d’angle inférieur a 2w sur OM , il existe alors une métrique hyperbolique
g sur M a bord convexe, pour laquelle la métrique induite sur le bord est h.

Les chapitres 3 et 4 de ma these contiennent la preuve de ce résultat.
Rappelons un résultat classique sur les polyedres convexes dil & Alexandr Alexandrov [Ale06] :

Théoréme 0.7. Soit h une métrique sur la sphére S? d courbure sectionnelle constante K avec
des singularités coniques tels que l’angle total autour chaque point singulier de h plus petit que
27. Il existe alors un polyédre convere muni de métrique h dans l’espace a trois dimensions Ri a
courbure constante K, K € R, unique aux isométries de Ry prés. Ici, nous incluons les polygones
convexes doublement couverts dans I’ensemble des polyédres convexes.

Le théoréeme 0.6 peut étre congu aussi comme un analogue du théoreme 0.7 pour les variétés
hyperboliques convexes a bord polyedral.

En 2002 Jean-Marc Schlenker [Sch06] a démontré I'unicité de la métrique g dans le théo-
reme 0.5. Ainsi, il a obtenu

Théoréme 0.8. Soit M une variété compacte connectée a bord (différente du tore plein) et qui
admette une métrique hyperbolique compléte convexe co-compacte. Soit g une métrique hyperbo-
lique de M telle que OM est C*°-régulier et strictement convexe. Alors la métrique induite I sur
OM a la courbure intrinséque K > —1. Chaque métriqgue C°-réguliére sur OM avec K > —1 est
induite sur OM pour un choiz unique de g.

Il est alors naturel de conjecturer que la métrique g dans I’énoncé du théoreme 0.6 est unique.
Les méthodes que j'utilise dans la démonstration du théoreme 0.6 ne me permettent pas pour
Iinstant d’attaquer ce probléme.
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Chapter 1

An infinitesimally nonrigid polyhedron with nonsta-
tionary volume in hyperbolic 3-space

The Bellows Conjecture states that every flexible polyhedron preserves its oriented volume
during the flex. In 1996 I. Kh. Sabitov [Sab96] gave an affirmative answer to the Bellows Con-
jecture in Euclidean 3-space. An improved demonstration of this result is given in the pa-
per [CSW97] by R. Connelly, I. Kh. Sabitov, and A. Walz. In 1997 V. A. Alexandrov [Ale97] has
built a flexible polyhedron in spherical 3-space which changes its volume during the flex. The
question whether the Bellows Conjecture holds true in hyperbolic 3-space is still open.

In the note of the editor of the Russian translation of [Con80] I. Kh. Sabitov proposed to
consider the Bellows Conjecture at the level of infinitesimal flexes. We say that a polyhedral
surface is non-trivial if none of its vertices lies in the interior of a piece of the surface contained
in a plane. We can now formulate I. Kh. Sabitov’s question as follows: is it true that, for
every infinitesimally non-rigid non-trivial polyhedron, the volume it bounds is stationary under
its infinitesimal flex? In case the answer to I. Kh. Sabitov’s question were positive, we would
automatically validate the Bellows Conjecture for the flexible polyhedra.

Having constructed a non-trivial counterexample in [Ale89], V. A. Alexandrov gave a negative
answer to I. Kh. Sabitov’s question for infinitesimally nonrigid polyhedra in Euclidean 3-space.
An example of a flexible polyhedron in spherical 3-space, constructed in [Ale97], which changes its
volume during the flex, yields that the answer to this question is also negative for infinitesimally
nonrigid polyhedra in spherical 3-space. In this Chapter we prove

Theorem 1.1. In hyperbolic 3-space there is a non-trivial, non-self intersecting polyhedral surface,
homeomorphic to a sphere, that has an infinitesimal flex such that the volume it bounds is not
stationary under the flex.

This result is published in [Slull].

The polyhedron mentioned in Theorem 1.1 is built explicitely. It’s similar to a polyhedron
in Euclidean 3-space which was first constructed by A.D. Alexandrov and S.M. Vladimirova
[AV62] and later studied by A.D. Milka [Mil02]. Another example of an infinitesimally nonrigid
polyhedron in Euclidean 3-space (an octahedron of a special type) was described by H. Gluck
in [Glu75].

1.1 Constructing S

Throughout this chapter we call a polyhedral surface a polyhedron.

13



Chapter 1. An infinitesimally nonrigid polyhedron with nonstationary volume in hyperbolic 3-space

N

A1
Bi Bi+1

Figure 1.1: The lateral surface of P. Figure 1.2: The tetrahedron 7.

Consider a regular pyramid P in hyperbolic 3-space with a regular concave star with n petals
as the base. We denote vertices of the star by A;, B;, i = 1, ..., n, and we note that the orthogonal
projection of the vertex IV of P onto its base coincides with the center C' of the star, see Fig. 1.1.
We reflect P in the plane that contains its base and denote by S a suspension which consists of
both initial and reflected pyramids with their common base. We denote by S the vertex of &
symmetric to N with respect to the plane containing the base of P. A cycle formed by the edges
of the base of P is called the equator of the suspension S.

Note that the lengths of all edges of the equator of S are equal to each other by construction.
Moreover, the lengths of all edges SA;, NA;, i = 1,...,n, are equal to each other, and also the
lengths of all edges NB;, SB;, i = 1, ...,n, are equal to each other too.

By construction, S possesses multiple symmetries and the spatial body bounded by S consists
of identical tetrahedral “bricks”. Consider one of these tetrahedra, see Fig. 1.2. Denote its surface
by T, and its vertices by N, A, B, C. Note that ZACN = ZBCN = 7/2 by construction. Let’s
use the following notation for the lengths of the edges and for the plane angles of T: |[CN| = h,
|CA| = p, |CB| =gq, |AB| = a, |[INA| = b, INB| = ¢, ZACB = o, ZCAN = 3, ZBAN =,
/CAB =46, ZCBN = ¢, ZCBA =, ZABN =0, ZANB = \, Z/CNA =y, ZCNB = v.
Denote the dihedral angles of T at the edge AB by ZAB, at the edge NA by /N A, and at the
edge NB by ZNB.

By construction, the dihedral angle of 7 at the edge C'N is equal to «, the dihedral angles
of S at the edges of its equator are equal to 2/AB, at the edges NA; and SA; ,i=1,...,n, are
equal to 2/N A, and at the edges NB; and SB; , i =1,...,n, are equal to 2/NB.

Further we show that the suspension S constructed above can be taken as a polyhedron whose
existence is proclaimed by Theorem 1.1.

1.2 A condition for infinitesimal nonrigidity
A deformation of a polyhedral surface S is a family of surfaces S(¢), t € (—1,1), which
depends analytically on the parameter ¢, preserves the combinatorial structure of S, and is such

that S(0) = S.
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1.2. A condition for infinitesimal nonrigidity

A deformation of a polyhedral surface S with triangular faces is called its infinitesimal flex if
the lengths of all edges of S(t) are stationary at ¢ = 0.

An infinitesimal flex is called nontrivial if there exist two vertices of S(¢) which are not
connected by an edge of S(t) and are such that the spatial distance between them is not stationary.

A polyhedron is called infinitesimally nonrigid if it possesses a nontrivial infinitesimal flex.

Determine a deformation of the suspension S constructed in the previous section as follows.
The point C' is fixed. At the moment ¢, the point N goes to the point N(t) lying on the ray C*'Nk
at the distance from C' determined by the formula

h(t) = h + tu, (1.1)

where wu is a real number which has a meaning of velocity and which will be specified below. The
point S goes to the point S(t) lying on the ray C'S at the distance from C determined by the
formula (1.1). The point A4;, i = 1,...,n, goes to the point A;(t) lying on the ray CT%?Z at the
distance from C' determined by the formula p(t) = p + tv, where v is a real number which has a
meaning of velocity. The point B;, i = 1,...,n, goes to the point B;(t) lying on the ray 551 at
the distance from C determined by the formula ¢(t) = ¢ + tw, where w is a real number which
has a meaning of velocity and which will be specified below.

In order to determine the movements of other points of the suspension S(t) let’s use the
statement of Ceva’s theorem in hyperbolic space [Pra04]:

Theorem 1.2. Given a triangle AABC and points zzl,N B, and C that lie on sides BC, CA, and
AB of ANABC. Then the segments AA, BB, and CC intersect at one point if and only if one
of the following equivalent relations holds:

sin ZACC sin /BAA sin /CBB _
sin /COB sin /AAC sin /BBA

bl

sinh AC sinh BA sinh CB _
sinh CB sinh AC sinh BA

(1.2)

In terms of the statement of Ceva’s Theorem 1.2, let’s take the point P(t) of the segment
A(t)B(t) for which the equality

sinh A(t)P(t)  sinh AP
sinh P(t)B(t)  sinh PB

holds true, as a new position of any point P of the edge AB at the moment ¢.

To determine the movement of an internal point @ of the face AABC, at first we construct
points A, B, and C, as the intersections of the edges BC, C'A, and AB with the rays AQ,
BQ, and CQ, and then determine their positions A(t), B(t), and C(t) at the moment ¢ by the
method described above. By Ceva’s Theorem 1.2, the segments A(t)A(t), B(t)B(t), and C(t)C(t)
intersect at one point (the relation (1.2) remains true at every moment ¢). Consider this point
of intersection as a new position Q(¢) of the point @ at the moment ¢.

The deformation of S described above, naturally produces a deformation of the tetrahedron
T which we denote by T(t). The lengths of all edges as well as the values of all plane and
dihedral angles of T are functions in ¢ and their notation naturally follow from the notation for
the corresponding entities of 7. For example, we denote the length of the edge N(¢)A(t) by b(t),
the value of the plane angle ZCA(t)N(t) by 5(t), and the value of the dihedral angle of T (¢) at
the edge N(¢t)A(t) by £LN(t)A(t), etc.

15



Chapter 1. An infinitesimally nonrigid polyhedron with nonstationary volume in hyperbolic 3-space

Let’s find a relation between u, v, and w implying that the deformation S(t) is an infinitesimal
flex. We only need to study the deformation of the face ABN in T because all faces of S move
in the same way.

Apply the Pythagorean Theorem for hyperbolic space [AVS93] to the triangle AN (t)C A(t):

cosh b(t) = cosh(h + tu) cosh(p + tv) (1.3)
and to the triangle AN (¢t)C'B(t):
cosh ¢(t) = cosh(h + tu) cosh(g + tw) (1.4)

of T(t).
Using the Cosine Law for hyperbolic space [AVS93] applied to the triangle AA(¢)CB(t), and
taking it into account that the angle o remains constant during the deformation (and is equal

to I), we get:

cosh a(t) = cosh(p + tv) cosh(q + tw) — sinh(p + tv) sinh(g + tw) cos a. (1.5)

Further it will be useful for us to study stationarity of the function f(¢) = coshl(t) instead
of stationarity of the length I(¢) of any edge of S(t), because f'(0) =1(0)sinh(0) and {(0) > 0,
and thus f'(0) = 0 if and only if ’(0) = 0.

Let’s differentiate (1.3): (coshb(t))’ = usinh(h + tu) cosh(p + tv) + v cosh(h + tu) sinh(p +
tv). Thus, stationarity of the length b(¢) of the edge N(t)A(t) is equivalent to the condition
(cosh b(t))|t=0 = wsinh h coshp + v cosh hsinhp = 0, or

tanh h
— u.
tanhp

(1.6)

Similarly, stationarity of the length c(t) of the edge N(t)B(t) is equivalent to the condition

tanh h
— Uu.
tanh g

(1.7)

Differentiating (1.5), we find the condition for stationarity of the length a(t) of the edge A(t)B(t):
(cosha(t)) |t=o = vsinh pcosh ¢ + w cosh psinh ¢ — cos a{v cosh psinh ¢ + w sinh p cosh ¢} = 0.

(1.8)
Substituting (1.6) and (1.7) into (1.8), we get:

=0.

coshpsinhg sinhpcoshgq sinhpcoshg coshpsinhg
utanhh[cosa{ } — — =

tanh p tanh ¢ tanh p tanh ¢

Thus, the deformation under consideration of § is an infinitesimal flex if and only if (1.6), (1.7)
and

coshpsinhg sinhpcoshgq
cos { } = 2coshpcoshg
tanh p tanh ¢

hold true. Hence, S allows the infinitesimal flex of the form described in the beginning of this
section if and only if p, ¢, and « satisfy the following relation:

tanhp 1+sina

= 1.9
tanh ¢ cos & (19)

The so-constructed infinitesimal flex is nontrivial because the distance between the poles N (t)
and S(t) is not stationary.
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1.3. Calculating metric elements of 7 (¢)

As Professor Robert Connelly remarked, there is a natural correspondence between infinites-
imal flexes of a polyhedron (or framework) in Euclidean space and infinitesimal flexes of a poly-
hedron (or framework) in hyperbolic space (and in spherical space as well). One way to see this
is through the Pogorelov correspondence and another way is by coning. The consequence is that
the infinitesimal flex of the polyhedron S can also be checked in Euclidean space (say, when
S is placed in the Kleinian (projective) model of hyperbolic space, S can be considered as an
Euclidean polyhedron as well), but the parameters of the flex of S must be recalculated properly
for Euclidean space. There is an interesting projective approach to the study of infinitesimal
flexes and other rigidity problems in some of Walter Whiteley’s papers, for example, in [CW82].

1.3 Calculating metric elements of 7T (t)

Let’s obtain formulae for the dihedral angles ZA(¢)B(t), ZN(t)A(t), and ZN(t)B(t) of the
tetrahedron 7 (¢), which will be used in a proof of Theorem 1.1.

First we calculate the sines and cosines of the plane angles of T (¢).

Apply the Cosine Law for hyperbolic space to the triangle AC A(¢) N (¢) to calculate the cosine
of the angle §(t): cosh(h + tu) = cosh(p + tv) cosh b(t) — sinh(p + tv) sinh b(t) cos B(t). Thus,
taking into account (1.3) and formulae of hyperbolic trigonometry, we get:

cos (1) = S ) cosh(l+ tu) __sinh(p+ to) cosh(h + tu) (1.10)
sinh b(t) \/cosh2 (h+ tu)cosh2 (p+tv)—1

(Here and below /s stands for a branch of the square root that takes a positive real value for a
positive real s.) To calculate the sine of 3(t) we apply the Sine Law for hyperbolic space [AVS93]
to ACA(t)N(t):

sing(t)  sinm/2 1

sinh(h +tu)  sinhb(t) \/coshQ(h + tu)cosh®(p + tv) — 1

and therefore,

sin (1) = sinh(h +tu) sinh(h + tu) (111)
sinh b(¢) \/cosh2 (h + tu)cosh?(p + tv) — 1

Similarly, we obtain the formulae for the cosine and sine of the angle ¢(t) in ACB(t)N(¢):

cos p(t) = sinh(q 4 tw) cosh(h 4 tu) sinh(q + tw) cosh(h + tu) (1.12)
sinh c(t) \/cosh2 (h + tu)cosh®(q + tw) — 1
sin o(t) = sinh(h + tu) _ sinh(h + tu) (1.13)
sinh () \/coshQ(h + tu)cosh?(q + tw) — 1

for the cosine and sine of the angle p(t) in ACA(t)N(¢):

cos p(t) = sinh(h + tu) cosh(p + tv) _ sinh(h + tu) cosh(p + tv) , (1.14)

sinh b(¢) \/cosh2 (h + tu)cosh®(p + tv) — 1
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inh inh
sin u(t) = sinh(p + tv) _ sinh(p + tv) (1.15)

sinh b(t) \/coshQ(h + tu)cosh?(p + tv) — 1

and for the cosine and sine of the angle v(t) in ACB(t)N(¢):

cosv(t) sinh(h + tu) cosh(q + tw) sinh(h + tu) cosh(q + tw) (1.16)
v(t) = _ = ) .
sinh () \/coshQ(h + tu)cosh?(q + tw) — 1
) sinh(q + tw) sinh(q 4 tw)
siny(t) = Sinh c(0) = . (1.17)
\/cosh2 (h + tu)cosh?(q + tw) — 1

The Cosine Law for hyperbolic space applied twice to the triangle AA(t)CB(t) leads us to
the formulae:

cos (1) = cosh(p + .tv) cosh a(t).— cosh(q + tw) 7 (1.18)
sinh(p + tv) sinh a(t)
cosh(g + tw) cosh a(t) — cosh(p + tv)
t) = 1.19
cos(t) sinh(q + tw) sinh a(t) (1.19)
From the Sine Law for hyperbolic space applied to AA(t)CB(t), it follows that:
sind(t)  sina sin(1)
sinh(q 4+ tw)  sinha(t)  sinh(p + tv)’
and thus the formulae h( )
. sin aesinh(q + tw
o(t) = 1.2
sind(t) sinh a(t) ’ (1.20)
) sin asinh(p + tv)
= 1.21
sin () sinh a(t) (121)

hold true.
The Cosine Law for hyperbolic space applied three times to the triangle AA(t) N (t) B(t) leads

us to the formulae:
cosh a(t) cosh ¢(t) — cosh b(t)

cos9(t) = sinh a(t) sinh ¢(t) ’ (122)
_coshaf(t) coshb(t) — cosh c(t)

cos(t) = sinh a(t) sinh b(t) ’ (123)
_coshb(t) cosh¢(t) — cosha(t)

cos A(t) = = () sinh c(t) (124)

Taking into account (1.3)—(1.5), we calculate sinha(t), sinhb(¢), and sinh ¢(¢) from (1.10)—
(1.24):

sinha(t) = \/cosh?a(t) — 1 = \/(cosh(p + tv) cosh(q + tw) — sinh(p + tv) sinh(q + tw) cos a)? — 1,

sinh b(t) = 1/ cosh?b(t) — 1 = y/(cosh(h + tu) cosh(p + tv))2 — 1,
sinh ¢(t) = \/cosh?¢(t) — 1 = \/(cosh(h + tu) cosh(g + tw))2 — 1.
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1.3. Calculating metric elements of 7 (¢)

The fact that the values of the angles in a hyperbolic triangle are greater than 0 and less
than 7 yields that the sines of the angles of a hyperbolic triangle are nonnegative. Hence,
sinf(t) = y/1 — cos?6(t), siny(t) = /1 — cos?y(t), sin A(t) = /1 — cos?A(t).

Consider the unit sphere ¥ centered at the vertex A(t) of 7 (¢). Denote the points of the
intersection of ¥ and the rays A(t)C, A(t)N(t), and A(t)B(t; by Ca(t), Na(t), and Ba(t)
correspondingly. They determine a triangle AC4(t)Na(t)Ba(t) which consists of the points of
the intersection of 3 and the rays emitted from A(¢) and passing through the points of the face
ACB(t)N(t) of T (t). By construction, the angle of the spherical triangle AC4(t)Na(t)Ba(t) at
the vertex C'4(t) is equal to 7/2, the angle at N4 (t) is equal to ZN () A(t), the angle at B, (¢) is
equal to ZA(t)B(t), the length of the side C4(t)Na(t) is equal to 5(t), the length of Na(t)Ba(t)
is equal to y(t), and the length of C4(t)Ba(t) is equal to 6(¢).

Similarly, we build a spherical triangle ACp(t)Np(t)Ap(t). Its angle at the vertex Cp(t) is
equal to m/2, the angle at Np(t) is equal to ZN(t)B(t), the angle at Ap(¢) is equal to ZA(t)B(t),
the length of the side Cp(t)Np(t) is equal to ¢(t), the length of Np(t)Ap(t) is equal to 6(¢), and
the length of Cp(t)Ap(t) is equal to (t).

Applying the Cosine Law for spherical space [AVS93] twice to AC4(t)Na(t)Ba(t), we obtain
the formulae:

cos B(t) — cosy(t) cosd(t)

sin y(t) sin §(t) ’
cosd(t) — cos(t) cos B(t)

siny(t) sin B(¢)
Again, applying the Cosine Law for spherical space to ACE(t)Np(t)Ap(t), we get:
cos(t) — cos p(t) cos B(t)

sin p(t) sin 6(¢)
Now apply the Sine Law for spherical space [AVS93] to ACA(t)Na(t)Ba(t):

sin /N(t)A(t)  sinZA(t)B(t)  sinm/2

sind(t)  sinB(t)  siny(t)’

cos ZA(t)B(t) =

cos LN (1) A(t) =

cos LN (t)B(t) =

Hence,
) _ sin (1) sin d(t)
sin ZA(t)B(t) = (D) S (1)’

Again, apply the Sine Law for spherical space to ACgE(t)Np(t)Ap(t):
sin ZN(t)A(t) sin ZN(t)B(t) sin &

and sin ZN(t)A(t) =

sin v(t) sinp(t)  sinA(t)
Thus,

In the proof of Theorem 1.1 given below we use also the following three evident relations:

dZN(DA®E)  Flcos ZN(B)A())

dt - sin4N(HA®)
d/N(t)B(t)  £(cos ZN(t)B(t))
dt T SsinZN@)B(@)

and
dLA(t)B(t) g (cos ZA(t)B(t))

dt - sinZA(t)B(t)
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Chapter 1. An infinitesimally nonrigid polyhedron with nonstationary volume in hyperbolic 3-space

1.4 Proof of Theorem 1.1

Remind that, according to the Schlafli formula for polyhedra in hyperbolic 3-space [AVS93]
of the curvature —1, the equality

1
dV =—3 z;zedee (1.25)

holds true, where dV stands for the variation of the volume of the polyhedron, [, stands for the
length of an edge e of the polyhedron, df. stands for the variation of the dihedral angle of the
polyhedron attached to the edge e, and summation is taken over all edges e of the polyhedron.

Show that the polyhedron S(0) from the family of suspensions S(t), t € (—1, 1), constructed
in Section 1.1, with parameters of the tetrahedron 7

1 3 1
p = artanh -, ¢ = artanh i, h =artanh -, a= T (i. e. n=6) (1.26)
2 2 2 6
and the velocities of deformation
V3 V3 1
U—T, UffT, ’LU—*Z, (127)

can be taken as a polyhedron whose existence is asserted in Theorem 1.1.

The suspension §(0) is not infinitesimally rigid because p, ¢, and « from (1.26) satisfy (1.9).

Let’s verify that the nontrivial infinitesimal flex from Section 1.2 with the coefficients (1.27)
can be taken as an infinitesimal flex whose existence is stated in Theorem 1.1.

Using the Schlafli formula (1.25) and taking into account notation and remarks of Section 1.1,
we see that the variation of the volume of S(t) at t = 0 can be written as follows:

d/A(t)B(t) dZN(£)A(t)

dt

d/N(4)B(t)

(0)+5(0) =

dVs (o) = —12 (a(()) (0) + ¢(0) (0)>dt. (1.28)

Substituting the values of parameters from (1.26) and (1.27) into the formulae of Sections 1.2
and 1.3, we sequentially find the hyperbolic sines and cosines of the lengths of the edges and the
variations of the dihedral angles of the tetrahedron 7 (¢) at t = 0:

1 1
cosh a(t) = cosh <artanh 5) cosh (artanh ?) 7? sinh <artanh 5) sinh (artanh \/75) ,

1 1 1
cosh b(0) = cosh <artanh 5) cosh <artanh §>, cosh c(t) = cosh (artanh 5) cosh <artanh ?),

d/A(t)B(t)
dt
and thus, by (1.28),

dVso) 1o V13
at 4

V13 dLN(t)A(t) 0 V7 dIN(H)B(t) 0) = Vi3
= A el W i 4

) o= = (0) = -2,

arcosh (cosh < — artanh %) cosh ( — artanh ?) —
— ? sinh (artanh %) sinh (artanh ?) ) +g arcosh (cosh <artanh %) cosh <artanh %) ) —

Vi3 arcosh (cosh <artanh %) cosh < — artanh ?) )} =
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1.5. Concluding remarks

—3[\/?arcosh% +\/E(arcosh% — arcosh %)} = —3{\/?11r14—’—3\/7 ++13In %\/ﬁ} <
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3 6 8 3 6
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Another polyhedra (say, hyperbolic analogues of H. Gluck’s infinitesimally nonrigid octahe-
dra [Glu75]) could probably also serve as an example for Theorem 1.1, but we don’t verify it
here.

1.5 Concluding remarks

Using notation of Section 1.4, we determine the integral mean curvature of a polyhedron S(t)
in 3-space as follows:

M(S(1) = 5 3 1(t)(r — 0e(0).

R. Alexander [Ale85] proved that the integral mean curvature of any polyhedron in Euclidean
3-space is stationary under every its infinitesimal flex.

The lengths of the edges of the suspension S(t) are stationary under the infinitesimal flex of
S(t) from Section 1.2. Hence, the variation of the integral mean curvature of S(¢) at ¢t = 0 is equal
to the variation of the volume dVs ). Therefore, the proof of Theorem 1.1 automatically implies
that the variation of the integral mean curvature for the infinitesimal flex of S(t) constructed
above is not equal to zero. Thus, the integral mean curvature of an infinitesimally nonrigid
polyhedron is not always stationary in hyperbolic space as well as in the spherical space but is
always stationary in Euclidean space.
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Chapter 2

A necessary flexibility condition of a nondegenerate
suspension in hyperbolic 3-space

A polyhedron (more precisely, a polyhedral surface) is said to be flexible if its spatial shape
can be changed continuously due to changes of its dihedral angles only, i.e., if every face remains
congruent to itself during the flex.

In 1897 R. Bricard [Bri97] described all flexible octahedra in Euclidean 3-space. The Bricard’s
octahedra were the first examples of flexible polyhedra (with self-intersections). BricardTs octa-
hedra are special cases of Euclidean flexible suspensions. In 1974 R. Connelly [Con75] proved that
some combination of the lengths of all edges of the equator of a flexible suspension in Euclidean
3-space is equal to zero (each length is taken either positive or negative in this combination).
The method applied by R. Connelly, is to reduce the problem to the study of an analytic function
of complex variable in neighborhoods of its branch points.

In 2001 S.N. Mikhalev [Mik01] reproved the above-mentioned result of R. Connelly by alge-
braic methods. Moreover, S. N. Mikhalev proved that for every spatial quadrilateral formed by
edges of a flexible suspension and containing its both poles there is a combination of the lengths
(taken either positive or negative) of the edges of the quadrilateral, which is equal to zero.

The aim of this work is to prove a similar result for the equator of a flexible suspension in
hyperbolic 3-space, applying the method of Connelly [Con75].

2.1 Formulating the flexibility condition

Let K be a simplicial complex. A polyhedron (a polyhedral surface) in hyperbolic 3-space is
a continuous map from XC to H?, which sends every k-dimensional simplex of K into a subset of
a k-dimensional plane of hyperbolic space (k < 2). Images of topological 2-simplices are called
faces, images of topological 1-simplices are called edges and images of topological 0-simplices
are called vertices of the polyhedron. Note that in our definition an image of a simplex can
be degenerate (for instance, a face can lie on a straight the hyperbolic line, and an edge can be
reduced to one point), and faces can intersect in their interior points. If vy, ..., vy are the vertices
of K, and if P : K — H? is a polyhedron, then P is determined by W points Pi, ..., Py € H?,
where P; def Pv,),j=1,..,W.

IfP: K — H?and Q : K — H? are two polyhedra, then we say P and Q are congruent
if there exists a motion A : H® — H? such that @ = Ao P (i.e. the isometric mapping A
sends every vertex of P into a corresponding vertex of Q: @Q; = A(F;), or in other words
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Chapter 2. A necessary flexibility condition of a nondegenerate suspension in hyperbolic 3-space

N=S5 N

Figure 2.1: A double covered cap. Figure 2.2: A suspension with a wing.

Qvj) = A(P(vj)), 7 =1,...,W). We say P and Q are isometric (in the intrinsic metric) if each
edge of P has the same length as the corresponding edge of Q, i.e. if (vj, vx) is a 1-simplex of K
then dgs(Q;, Qx) = dgs (Pj, Py), where dys (-, -) stands for the distance in hyperbolic space H3.
A polyhedron P is flexible if, for some continuous one parameter family of polyhedra P; :
K — H3, 0 <t < 1, the following three conditions hold true: (1) Py = P; (2) each P is isometric
to Po; (3) some P is not congruent to Po.
Let K be defined as follows: K has vertices vg, v1, ..., vy, vy +1, Where vy, ..., vy form a cycle

(v; adjacent to v;y1, j = 1,...,V — 1, and vy adjacent to v1), and vg and vy 41 are each adjacent

to all of vy,...,vy. Each polyhedron P based on K is called a suspension. Call N def P(vo)

the north pole, and S ef P(vv41) the south pole, and P; def P(v;), j =1,...,V vertices of the
equator P.

Assume that a suspension P is flexible. If we suppose the segment NS to be an extra edge,
then P becomes a set of V' tetrahedra glued cyclically along their common edge N.S. We call
a suspension nondegenerate if none of these tetrahedra lies in a hyperbolic 2-plane. Note that
a nondegenerate suspension P does not flex if the distance between N and S remains constant.
Therefore, as in the Euclidean case [Con75] we assume that the length of NS is variable during
the flex of P. Examples of degenerate suspensions are a double covered cap — a suspension with
coinciding poles (see Fig. 2.1), and a suspension with a wing — a suspension whose vertices N,
S, P,_1, and P;11 lie on a straight line for some ¢ (see Fig. 2.2). In this chapter we will not study
the degenerate flexible suspensions.

In this Chapter we prove
Theorem 2.1. Let P be a nondegenerate flexible suspension in hyperbolic 3-space with the poles
S and N, and with the vertices of the equator Pj, j = 1,...,V. Then for some set of signs
041 € {+1,-1}, j =1,...,V, the combination of the lengths e; j+1 of all edges P;Pj11 of the
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Pj-1

X
X
Figure 2.3: A fragment of the lateral surface of Figure 2.4: A projection of P on Ozxy .
P.
equator of P taken with the corresponding signs oj j+1 is equal to zero, i.e.
v
Z 0jj+1€5+1 = 0. (2.1)
j=1
def

. . . def def
(Here and below, by definition, it is considered that Py+1 = Py, PyPyy1 = Py P, oyvy1 =
def
ov,, and eyy 11 = ev,1.)

This result is published in [Slul3].

2.2 Connelly’s equation of flexibility of a suspension

R. Connelly in [Con75] obtained an equation of flexibility of a nondegenerate suspension in
Euclidean 3-space. Following him, in this section we will obtain an equation of flexibility of a
nondegenerate suspension in hyperbolic 3-space.

Let us place a nondegenerate suspension P into the Poincaré upper half-space model [And05]
of hyperbolic 3-space H? in such a way that the poles N and S of P lie on the axis Oz of the
Cartesian coordinate system of the Poincaré model (see Fig. 2.3). Let S has the coordinates
(0,0, zg), N has the coordinates (0,0, zn), and P; has the coordinates (z;,y,,2;), j = 1,...,V.
Also we denote the length of the edge NP; by e;, and the length of SP; by e}, j=1,...,V.

Consider a Euclidean orthogonal projection P of P in the plane Oxy (see Fig. 2.4). Also P is
a the hyperbolic projection of P on Ozy from the only point at infinity of H?® which does not lie
on Ozxy. This projection sends poles N and S of P to the origin O (0,0) in the plane Oxy, P; to

the point P; (z;,y;), edges NP; and SP; to the Euclidean segment OP;, and the egde P;Pj;1
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y

Pi

Figure 2.5: The coordinates of Igj.

of the equator of P to the Euclidean segment 15j15j+1, j=1,...,V (here and below ]SVH def 151,

def def def
Tv41 = 1, Yv+1 = Y1, 2V41 :~Zl)-

Polar coordinates (p;,8;) of P;, j = 1,...,V, are related to its Cartesian coordinates by the
formulas (see Fig. 2.5):

p; = ,/x? +y]2, sinf; = Yi_ Y , cosf; = i R (2.2)
Pi a3 +y? Pj /gc? +y2
Note that by construction, the dihedral angle 6; ;41 of the tetrahedron NSP;P; at the
edge NS is equal to the flat angle ZP;OP;1,j=1,...,V, and
0j+1 = Oj+1 — 0;. (2.3)

Note as well that the value of 6; ;1 can be negative. Applying the trigonometric ratio of the
difference of two angles and (2.3), we get:

cos; jy1 =coslq1cosb; +sinfjqsinf;, sinb; ;i1 =sinbjiqcos; —cosh;yqsinb;. (2.4)
Taking into account (2.2) we reduce (2.4) to
TiTj+1 + YiYi+1

\/xfﬂ + Y \/ﬁ +yj

Then, according to Euler’s formula,

TjYj+1 — YiTit1
2 2 2 2
\/zj+1 T Yi \/xj T Yj

cos b jy1 = , sinbj 4 =

(TjTjt1 +yy5+1) + (Y5401 — YiTi41)

€3I = c0s 0541 +ising a1 = > 2 2 | .2
\/$j+1 T Y1 \/zj +Yj
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Following R. Connelly [Con75], we remark that the sum of the dihedral angles 6; ;11 of all
tetrahedra NSP;Pj11, j = 1,...,V, at the edge NS is constant and a multiple of 27 (here and

def def def .
below Oy,yv11 = Ov,1, Ovir = 01, pvy1 = p1), e

v
ZGj,jJrl = 2mm for some integer m, (2.6)
j=1

and remains so during the deformation of the suspension, when the values of the angles 0, j 11,
7 =1,...,V, vary continuously.
We rewrite the equation of flexibility (2.6) in a convenient form:

v
[ e+ =1 (2.7)
j=1
Thus, taking into account (2.5), we see that coordinates of vertices of P are related as follows:
v ,
11 (2541 +Ysyi41) +U@5Y541 —Y5Tje1) _ (2.8)
j=1 i TY;
or in other notation
VoG Voa -
By = [ 2 T St =, (29)
H j] H 1 PiPj+1 j]';‘[l P?
. Gim def
where G = (2T +YjYm) T 1T jYm —YjTm ) Fjm = orpary By = LV,and Gyy i1 = Gy,

def
Fyyvi = Fy.

When studying the deformation P; of the suspension P, all objects and values related to P
naturally succeed from the notation for the corresponding entities related to P. For example, the
coordinate x;(t) of the point P;(t) of the deformation P, corresponds to the coordinate z; of the
point P; of the suspension P, the dihedral angle 6; ;1 (¢) of the tetrahedron N (¢)S(¢)P;(t)Pj+1(t)
at the edge N(t)S(t) corresponds to the dihedral angle 6, ;11 of the tetrahedron NSP;P;1; at
the edge NS, etc.

2.3 The equation of flexibility of a suspension in terms of the
lengths of its edges

In this section we are going to express the equation of flexibility of a suspension (2.8) in terms

of the lengths of edges of P. Recall that the lengths of the edges of P remain constant during

the flex. To this purpose we need to demonstrate the truth of two following statements. The
first of them can be verified by direct calculation (see also Fig. 2.6).

Lemma 2.2. Given a Poincaré upper half-plane H? with the coordinates (p,z) (i.e., with the

metric given by the formula ds® = i%). Then the distance between the points A (po,za) and
B (po, zB), having the same first coordinate po, is calculated by the formula

s (A, B) = ’m ’z—j . (2.10)
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O P 0, P

Figure 2.6: Points in a plane from the Figure 2.7: Points in a plane from the
lemma 2.2. lemma 2.3.

Lemma 2.3. Given a Poincaré upper half-plane H? with the coordinates (p,z) (i.e., with the
metric given by the formula ds®> = d,f%dz?). Then the distance | dyz(A, B) between the points
A (pa,za) and B (pp,zB) is related to their coordinates by the formula

(pB — pa)® + 234 + 2% = 2z42p cosh . (2.11)

Proof. According to the part (2) of the Corollary A.5.8 [BP03], the distance between the
points with the coordinates (z,t) and (y, s) in the Poincaré upper half-space model R” x RT of
hyperbolic (n + 1)-space H" ! is calculated by the formula

o~ > + (¢~ s>2)”2

dgn+1((z, 1), (y,s)) = 2artanh , 2.12
o (2.1). (3.9) (=t (2.12)

where the symbol || - || stands for the standard Euclidean norm in R”.
By (2.12) the distance between the points A and B (see Fig. 2.7) is calculated by the formula

o 2 . 2\ 1/2
| = 2artanh <(pA pp) (24 ZB)2> , (2.13)

(pa —pB)?+ (24 + 2B)

where n = 1, (x,t) = (pa, 24) and (y,s) = (pp, 2B).
After a series of transformations of the formula (2.13) we get:
l l l l l l
(pa—pB)* (coshQE —sinh? 5) + (24 +2%) (cosh2 3 —sinh? 5) =2z42pB (coshQE +sinh? 5) . (2.14)
. o . 20 121 _ _ 21 | ainh2l
By two identities of the hyperbolic geometry, cosh”5 —sinh”5 = 1 and coshl = cosh”5 +sinh” 3,

(2.14) reduces to (2.11). O
Let us express G j+1 and p? in terms of the length of edges of P.

We assume that the coordinates of the south pole S are (0,0,1). Let ¢ def edus (NS) - where
dgs (N, .S) is the distance between the poles N and S of P. Without loss of generality, we assume
that zny > zg. Then, by Lemma 2.2, the coordinates of N are (0,0,¢).
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Applying Lemma 2.3 to the points S and P; lying in the hyperbolic plane SNP;, by the
formula (2.11) we get:
p; + 27 +1 =2z coshe. (2.15)

Now we apply Lemma 2.3 to the vertices N and P;:
p? + zJQ + 1% = 2tz; coshe;. (2.16)

Subtracting (2.15) from (2.16), under the assumption that ¢ coshe; # cosh e/, we get:

it (2.17)
7 2(tcoshe; — coshel)
Also, taking into account (2.15) and (2.17), we obtain:
t? — 1) coshe’; (t? —1)?
2 r_ 2 ( j
2 — 9, . coshe. — 22 —-1= — - 1. 2.18
Pj = 225 COSRE; T F (tcoshej —coshel)  4(tcoshe; — coshe)? (2.18)

Let pj j+1 denote the Euclidean distance between the points 15j and ]SjH, ji=1,...,V (here
and below py v 1 def pv,1). Applying Lemma 2.3 to the vertices P; and Pjt1, we get:

P j+1 = 2252541 c08he; ji1 — 25 — 27,1 (2.19)

By the Pythagorean theorem p; ;i1 is related to the Cartesian coordinates of lgj and ]Sj_H by
the formula

Pig+1 = \/(szrl —25)% + (Y41 — ;)% (2.20)

By (2.2) the equation (2.20) reduces to:
2= (g2 42 2 2 Vg 1) = p2 4+ 02— 2zxs s
pije1 = (@5 +y7) + (@5 +y50) (zjzj01 + Yjyj+1) = pj + Pjt1 (Zjzjr1 + YjYjs1)-
Thus, taking into account (2.18) and (2.19), the expression z;xj41 + y;¥;j+1, which is a part of
Gj.j+1 from (2.9), is related to the lengths of edges of P by the formula
Pyt P = Pl
2

Substituting (2.17) in (2.21) we get:

/ /
TjTj41+YiYi+1 = = zjcoshe+zj1 coshe) | —2;2j41 coshe; i —1. (2.21)

1 (t* — 1) coshe) (t* — 1) coshef,,

Tyt T Y = g ((t coshe; — coshe)) * (tcoshe;y1 — cosh e;-H)i

(t* — 1)%coshej j11

_ ;- 2). (2.22)

2(t coshe; — coshe})(tcoshej1 — coshe’,

Let us now express x;y;+1 — ¥;&;+1, which is also a part of G, j 41, in terms of the length of
edges of P.
According to (2.5) we know that

TiTi+1 + YiYji+1 and  sing, ., = TjYj+1 — YjTj+1 (2.23)
75 - . .

costj i1 =
PiPj+1 PiPj+1

Note that by definition (2.2), p; >0, j=1,...,V.
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By the Pythagorean trigonometric identity, the formula

sinfj 41 = 0j5411/1 = cos? 0 11 (2.24)

holds true, where o ;41 = 1 if sin6; ;41 > 0, and o j4+1 = —1 if sinf; ;11 < 0 (remind that
0; j+1 is determined in (2.3)). Then (2.23) and (2.24) imply

. = D 1 SO 1 = O 1D Drsn] 29. . —
TiYje1 — YiTie1 = Pipj+15inbj 401 = 05 54105p5414/1 — cos? b1 =

(@21 + yy541)
= Uj,j+1/)j/)j+1\/1 i 22 = = Uj,j+1\/P?P?+1 — (wjzj41 +yjy541)%.  (2.25)
Pj+1

Substituting (2.18) and (2.22) in (2.25) we get

(t* — 1) cosheé) (t? —1)? )
TiYir1 T Yitirl = 9hg+ (tcoshe; —coshe’)  4(tcoshe; — coshe’)?

4

x(( (2 = 1) cosh e/, (£ - 1)? B 1) 1 (( (12 — 1) coshe!

. ’ - . )2 . ’
tcosheji1 —coshe, ;) 4(tcoshejyq —coshel, ) tcoshe; — coshe))

(t? —1) coshe’ (t* — 1)%coshej j11 2

2
— -2 . 2.26
(tcosheji1 —coshely;)  2(tcoshe; —coshe))(tcoshejyr —coshel ) ) } (226)

Substituting (2.18), (2.22), and (2.26) in (2.8) we obtain the equation of flexibility of a
suspension in terms of the lengths of edges of P.

2.4 Proof of Theorem 2.1

Assume that a nondegenerate suspension P flexes. Then, as we have already mentioned in

the section 2.1, the distance [yg between the poles of P changes during the flex. Let ¢ def eins
be the parameter of the flex of P. The identity (2.9) holds true at every moment ¢ of the flex,
as the values of the expressions Fj i1, Gj j+1, p?, j=1,...,V, which make part (2.9), vary as ¢
changes. Here the functions Gj j41(t) = [z2541 + y5541] () + i[z5y541 — yj2501](t) and p3 (1),
j=1,...,V, are determined in (2.18), (2.22) and (2.26).

Assume now that for some j € {1,...,V} the dihedral angle 6; ;11 (¢) remains constant (the
value of 6; ;41(t) can also be equal to zero) as ¢ changes. In this case the length of the edge
N(t)S(t) of the tetrahedron N (t)S(t)P;(t)Pj+1(t) must be constant as well (all other edges of
the tetrahedron are also the edges of Py, therefore there lengths are fixed), i.e. the value of ¢ does
not change. As we mentioned in the section 2.1, in this case P can not be flexible. Thus we have
the contradiction. Therefore, the values of the angles 0; ;+1(t), 7 = 1, ..., V, change continuously
during the flex. Hence, there exists such an interval (¢1,¢2) that for all ¢ € (¢1,¢2) it is true that
0; j+1(t) # 0 for every j € {1,...,V}.

We extend both sides of the equation of flexibility (2.9) as functions in ¢ on the whole complex
plane C. By Theorem on the uniqueness of the analytic function [Bit84], the expression (2.9)
remains valid.

Recall that a function w = f(z) of a single complex variable z is called algebraic, if there is a
polynomial p(w, z) in two variables which does not vanish identically and such that p(f(2), z) = 0.
It is known that an analytic function of a single complex variable is an algebraic function if and
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only if it has a finite number of branches and at most algebraic singularities [Ahl78, Theorem 4,
p. 306]. Thus, the analytic functions Fj ;41(¢), j = 1, ..., V, which are also algebraic, have a finite
number of branch points. Without loss of generality we can assume that none of these points
lies in the interval (¢1,t2). For every Fj;i1(t), j = 1,...,V, we choose a single-valued branch
(Fjj+1(t), D), where D C C is an unbounded domain containing (¢1,¢2). Let W C D be a path
connecting to € (t1,t2) and oo, such that ¢ is a unique real point of W. Let us calculate the
limit of Fj j11(t) as t — oo along W.

Taking into account (2.18) we get

2(¢ 1 t2 — 1) cosh e, 12 —1)2 1
lim pj—g) = lim [ ("~ Deoshe; Gl :-1)| = -—5— @27
t—oo t t—oo Lt? \ (t coshe; — coshe’) 4(tcoshe; — coshe)) 4 cosh” e;
Similarly, from (2.22) we derive that
i EiTir T Yiy+)(E) _ coshejj (2.98)
00 12 4coshejcoshejyq '

Also from (2.25) and taking into account (2.27) and (2.28) we have:

lim
t—o00 t4 t—o00

(Tjyim —yimi)*(t) lim [/)?(t)/)?ﬂ(t) — (7711 +yjyj+1)2(t)} _
_ - —

1 COSh2 €j,5+1 1-— COSh2 €j,5+1

16cosh®ejcosh®ej;  16cosh”e;cosh®ejy1  16cosh® e; cosh? ey

q/cosh2 ejir1 — 1
n (2.29)

Y
4 coshejcoshe;iq

Hence,

(wyyi0 = ya)(t)
tlggo t2

= 10j,j+1

where 041 € {+1,—1} is determined by the single-valued branch (Fj;+1(t), D) and by the
path W.
By definition of G, ;11 (t) and according to (2.28) and (2.29), we get:

lim Gjj(t) _COSheerl + 0jj+1/cosh™ €541 1_ (2.30)

t—00 12 4 coshejcoshe;yq

By (2.30) and (2.27), the limit of the left-hand side of (2.9) at t — o

T o 7T B/ . . \/2—
tligle:l Fjjn(t) = tligloj:l W = Jl;[l (coshe“H +0j j+11/cosh’e; jy1 — 1),
and (2.9) at t — oo transforms to
%
H (coshej7j+1 + 0411/ cosh’e; ;11 — 1> =1. (2.31)
j=1

By the following trigonometric identity of the hyperbolic geometry, cosh? x —sinh? z = 1, and
because e; ;11 > 0, we have

\/COSh2€j7J‘+1 —1= \/Sinh2€j,j+1 = sinh €5 j+1- (2.32)
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By (2.32) the equation (2.31) transforms to

< 2

(COSh€j7j+1 + 0j,5+1 sinh €j7j+1) =1. (233)

<.
I
—

x —x . r_ _—x
£ Jr; and sinhz = <=

By coshz = , we have

efhi+1  for 0j.5+1 = 1,

Giii1€s s
o — 95, +165.5+1 234
e~ %.d+1  for 0j.j+1 = —1. ( )

cosh €j,5+1 + 0j,5+1 sinh €jj+1 = {
Substituting (2.34) in (2.33) and taking the logarithm of the resulting equation, we get (2.1) OJ.
The study of the behavior of the equation of flexibility (2.9) in neighborhoods of other branch
points of the left-hand side of (2.9) did not give us interesting results: either we were obtaining
trivial identities like 1 = 1 (for instance, as ¢ — 1), or the limit of the left-hand side of the
equation of flexibility was too complicated to distinguish interesting patterns there.

2.5 \Verification of the necessary flexibility condition of a non-
degenerate suspension for the Bricard-Stachel octahedra
in hyperbolic 3-space

In 2002 H. Stachel [Sta06] proved the flexibility of the analogues of the Bricard’s octahe-
dra in hyperbolic 3-space. Let us verify the validity of the necessary flexibility condition of a
nondegenerate suspension for the Bricard-Stachel octahedra in hyperbolic 3-space.

We define an octahedron O as the suspension NABCDS with the poles NV and S, and with
the vertices of the equator A, B, C, and D. Note that we can consider vertices A and C' as
the poles of O (in this case the quadrilateral NDSB serves as the equator of 0). Also we can
consider vertices B and D as the poles of O (in this case the quadrilateral NC'S A serves as the
equator of O).

2.5.1 Bricard-Stachel octahedra of types 1 and 2

The procedure of construction of the Bricard-Stachel octahedra of types 1 and 2 in hyperbolic
3-space is the same as for the Bricard’s octahedra of types 1 and 2 in Euclidean 3-space [Sta06],
[Ale10].

Any Bricard-Stachel octahedron of type 1 in H? can be constructed in the following way.
Consider a disk-homeomorphic piece-wise linear surface S in H?® composed of four triangles
ABN, BCN, CDN, and DAN such that dgs(A, B) = dygs(C, D) and dys (B, C) = dys (D, A).
It is known that a spatial quadrilateral ABCD which opposite sides have the same lengths, is
symmetric with respect to a line £ passing through the middle points of its diagonals AC and
BD (see Fig. 2.8; for a more precise analogy with the Euclidean case, in this Figure as well as in
the following Figures we draw polyhedra in the Kleinian model of hyperbolic space where lines
and planes are intersections of Euclidean lines and planes with a fixed unit ball). Glue together
S and its symmetric image with respect to L along ABCD. Denote by S the symmetric image
of N under the symmetry with respect to L (see Fig. 2.9). The resulting polyhedral surface
NABCDS with self-intersections is flexible (because S is flexible) and combinatorially it is an
octahedron (according to the definition given above). We will call it a Bricard-Stachel octahedron
of type 1. By construction it follows that dgs(A, N) = dgz(C,S), dugs(B,N) = dgs(D, S),
dgs (C, N) =dgs (A4, 5), and dgz (D, N) = dgs (B, S).
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A T

A C

Figure 2.8: The construction of the Bricard- Figure 2.9: The construction of the Bricard-
Stachel octahedron of type 1. Step 1. Stachel octahedron of type 1. Step 2.

Figure 2.10: The construction of the Bricard- Figure 2.11: The construction of the Bricard-
Stachel octahedron of type 2. Step 1. Stachel octahedron of type 2. Step 2.
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B

Aq

Ao

Figure 2.12: The construction of the Bricard-Stachel octahedron of type 3 based on circles. Step
1.

Any Bricard-Stachel octahedron of type 2 in H? can be constructed as follows. Consider a
disk-homeomorphic piece-wise linear surface S in H? composed of four triangles ABN, BCN,
CDN, and DAN such that dgs (A, B) = dgs(B,C) and dygs(C, D) = dgs(D, A). Tt is known
that a spatial quadrilateral ABC D which neighbor sides at the vertices B and D have the same
lengths, is symmetric with respect to a plane H which dissects the dihedral angle between the
half-planes ABD and CBD (see Fig. 2.10). Glue together S and its symmetric image with
respect to H along ABCD. Denote by S the symmetric image of NV under the symmetry with
respect to H (see Fig. 2.9). The resulting polyhedral surface NABCDS with self-intersections
is flexible (because S is flexible) and combinatorially it is an octahedron. We will call it a
Bricard-Stachel octahedron of type 2. By construction it follows that dgs(A, N) = dgs(C, S),
dgs (C,N) =dms (A, S), dgs (B, N) = dgs (B, S), and dgs (D, N) = dgs (D, S).

It remains to note that for every considered octahedron each of three its equators has two
pairs of edges of the same lengths. Hence, Theorem 2.1 is valid for the Bricard-Stachel octahedra
of types 1 and 2.

2.5.2 Bricard-Stachel octahedra of type 3

There are three subtypes of the Bricard-Stachel octahedra of type 3 in hyperbolic space
[Sta06] which construction is based on circles, horocycles or hypercircles correspondingly. The
procedure of construction is common for all subtypes of the Bricard-Stachel octahedra of type 3
and it is the same as for the Bricard’s octahedra of type 3 in Euclidean space.

Any Bricard-Stachel octahedron of type 3 in H? can be constructed in the following way.
Let Kac and Kap be two different circles (horocycles, hypercircles) in H? with the common
center M and let A;, As be two different finite points outside Kac and Kap. In addition,
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B>

Aq

Az

Figure 2.13: The construction of the Bricard-Stachel octahedron of type 3 based on circles. Step
2.

suppose that Kac, Kap, A1 and Ay are taken in such a way that the straight lines tangent
to Kap and passing through A; and A, intersect pairwise in finite points of H2 and form a
quadrilateral A; By A Bs tangent to K 4p; moreover, that the straight lines tangent to K 4¢ and
passing through A; and A, intersect pairwise in finite points of H? and form a quadrilateral
A1C1A2Cy tangent to Kac (see Fig. 2.12; for clarity, we placed circles Kap and K¢ so that
their common center coincides with the center of the Kleinian model of hyperbolic space. In this
case Kap and K ¢ are Euclidean circles as well). A polyhedron O with the vertices A;, B;, C,
with the edges A;B;, A;C, B;C), and with the faces AA;B;Cy, i, 7,k € {1,2}, is an octahedron
in the sense of the definition given above (see Fig. 2.13). The following pairs of vertices can
serve as the poles of O: (A;, Ag) with the corresponding equator B;C1B2Ca, (B, B2) with the
equator A1C1A2Cy, and (Cq, Cs) with the equator Ay By A2 By, Suppose in addition that O does
not have symmetries. We will call such octahedron O a Bricard-Stachel octahedron of type 3.

According to H. Stachel [Sta06], O flexes continuously in H3. Moreover, O admits two flat
positions during the flex (we constructed O in one of its flat positions). Hence, for every equator
of O, AyB1A3By, B1C1B2C5, and A;C1 A>Cy, all straight lines containing a side of the equator
are tangent to some circle (horocycle, hypercircle) at least in one flat position of O. Using this
fact, we will prove that Theorem 2.1 is valid for the Bricard-Stachel octahedra of type 3. We
have to consider three possible cases: when an equator of O is tangent to a circle, to a horocycle,
or to a hypercircle in H2. Here we study the most common situation when any three vertices of
an equator of a flexible octahedron in its flat position do not lie on a straight line.
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An equator of a Bricard-Stachel octahedron of type 3 is tangent to a circle in H?>

Let M be the center of the circle K45 with the radius R in H2 and let all straight lines
containing a side of the quadrilateral A;B;A;By are tangent to K4p. Let us draw the seg-
ments M Py, M Py, M P3, M P, connecting M with the straight lines Ay By, As By, As By, A1 B
and perpendicular to the corresponding lines. By construction, dgz(M, P1) = dgz(M, P2) =
dyz (M, Ps) = dy2(M, P;) = R.

By the Pythagorean theorem for hyperbolic space [AVS93] applied to AA; M Py and AA; M Py,
we obtain: coshdy2 (A1, Py) = coshdy2(A1, Py) = coshdyz2(A;, M)/ cosh R. Thena o dy2 (A1, P) =
de (Al, P4) Slmllarly we get: b dZEf d]HP (BQ, Pl) = de (BQ, PQ), C déf de (AQ, PQ) = de (AQ, Pg),
and d % dye (B, P3) = dyz(By, Py).

If the circle Kap is inscribed in the quadrilateral AyByA3Bs (see Fig. 2.12), then
dH2(A1,BQ) = a + b, dHQ(AQ,BQ) = + C, dH2(A2,Bl) = c+ d, dH2(A1,Bl) = a+ d, and
the identity

de (Al, BQ) — de (AQ, BQ) + d]HP (Al, Bl) — d]HP (Al, Bl) =0 (235)
holds true.

If the circle K 4 is tangent to the quadrilateral A; By A3 By externally (this case corresponds
to the quadrilateral AqC1A3C5 and to the circle K ¢ in the Fig. 2.12), then dgz(A;, B2) = a—0b,
dp2 (AQ, BQ) =b+c, dye (AQ, Bl) =c—d, dge (Al, Bl) = a + d, and the identity

d]HP (Al, BQ) + dH2 (AQ, BQ) — d]HP (Al, Bl) — dHZ (Al, Bl) =0 (236)

holds true.
By (2.35) and (2.36), the theorem 2.1 is valid for any equator of a Bricard-Stachel octahedron
of type 3 tangent to a circle in at least one of its flat positions.

An equator of a Bricard-Stachel octahedron of type 3 is tangent to a horocycle in H?

Let us consider the Poincaré upper half-plane model of the hyperbolic plane H? with the
coordinates (p, z) (i.e., with the metric given by the formula ds?> = @). Without loss of
generality we can assume that the center of the horocycle tangent to the equator of a Bricard-
Stachel octahedron O of type 3, coincides with the (unique) point oo at infinity of H? which
does not lie on the Euclidean line z = 0. We denote the family of such horocycles by K = {p =
R|R > 0}. Let K € K and let A; = (pa,, 24,) and Ay = (pa,,24,) be two opposite vertices of
O, such that the straight line (in H?) passing through A; and Aj is not tangent to K. All the
vertices of O are located outside K, hence z4, < R and z4, < R. We will construct all possible
quadrangles tangent to K with the opposite vertices A; and As, i.e., all quadrangles that can
serve as equators of O. Then we will verify the validity of the theorem 2.1 for such quadrangles.

Let T = (pr,27) be a point in H? and let A be a straight line in H? passing through T
which is realized in the Poincaré upper half-plane as the Euclidean demi-circle with the radius
V(pr — pr,a)? + 2% and with the center OF = (pr4,0). Then the angle ¢4 &f ZTO%Yp € (0,7)
determines uniquely a position of 7" on A.

Remark 2.4. For every finite point T = (pr, 2z1), 27 < R, there exist precisely two straight lines
AlT and AT tangent to the horocycle Kr and containing T. They are realized in the Poincaré upper
half-plane as the Fuclidean demi-circles with the radius R and with the centers OlT = (pr,41,0)
and O? = (p1.r,0), pr; < pr < prr. The angles galT def LTOlTp and def LTO,Tp serve as the
coordinates of T on AlT and AT correspondingly. Then, by construction, we get: @ =7 — galT.
Hence,

cos @l = — cos P (2.37)
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Bricard-Stachel octahedra in hyperbolic 3-space

According to the remark 2.4, there are two straight lines, Af‘l, and A1, passing through A,
and tangent to K g, which are realised in H? as the Euclidean demi-circles with the radius R and

A
with the centers OZA1 = (pa, 1,0), OA = (pa,.r,0), pa,1 < pa, < pa, . The angles 04 def
A
ZAlOlAlp, @ggl et ZA1041p serve as the coordinates of A; on Af‘l and A correspondingly.
Moreover,
AAL A
cos " = —cosp, . (2.38)

Similarly, there are two straight lines, Af2, and AZ2) passing through As and tangent to
Kpg, which are realised in H? as the Euclidean demi-circles with the radius R and with the

A2 def
centers OZA2 = (pa,.1,0), 022 = (pa, +,0), pay1 < pa, < pa,r. The angles A = LAQOpr,

A
(pﬁgz def ZA2042p serve as the coordinates of Ay on Afb and AA? correspondingly. Moreover,
A AA2
cos @2’; * = _cos ©a (2.39)

A As - . ALA1 def A
Suppose that A;"' and A;™® intersect at a point Bi. Then the angles o5 = ZB10; " p,
A2 def

vg, = 43101’42/) serve as the coordinates of By on Afl and AZA2 correspondingly. Moreover,
AA2 AAl
cospg = —cospg . (2.40)

A
Also suppose that A%+ and A2 intersect at a point By. Then the angles (p%;l def /By041p,

A2 def
@%;2 el /By022p serve as the coordinates of By on A2! and A2 correspondingly. Moreover,
A A
cos 90%;2 = —cos wg’;l. (2.41)

A
Let the straight lines A4 and Af‘Z intersect at a point C;. Then the angles gpg: - /C10%p,
A2 def

Yo, = 401024 ?p serve as the coordinates of C; on A1 and Af 2 correspondingly. Moreover,
AM2 AM
cosp = —cospg . (2.42)
A1
Also, let the straight lines Af U and AA? intersect at a point Co. Then the angles gpé’z def
A
ZCQOlAlp, gog; et /03042 p serve as the coordinates of Cy on AZA1 and A#2 correspondingly.
Moreover,
A2 A
COS Pl = —CoSPg (2.43)

By construction, the quadrangles A; By A2Bs and A1C1AxCy are tangent to K, and the
points Aj, As are opposite vertices of each of these quadrangles. In order to verify the validity
of Theorem 2.1 for the flexible octahedra with the equator Ay B1AsBs or A1C1A2Cy we need to
prove the following easy statement.

Lemma 2.5. Given a Poincaré upper half-plane H? with the coordinates (p,z) (i.e., with the
2 2
metric given by the formula ds®> = dpz%dz). Let A and B be points on the straight line A realized
in H? as the Euclidean demi-circle with the raduis R and with the center Op = (po,,0), and let

the angles p4 def LAOpp, vB def ZBOpp serve as the coordinates of A and B correspondingly
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Chapter 2. A necessary flexibility condition of a nondegenerate suspension in hyperbolic 3-space

on A. Also we assume that 0 < o4 < ¢p < w. Then the distance between A and B is calculated

as follows:

dwe (A, B) = %m [(

14 cosp

1+cos<pA)(1

B/ \1

— CoS ng)
—Ccospa

]

(2.44)

Proof. The hyperbolic segment A 4p connecting the points A and B is specified para-

metrically by the formulas Aap(t) :

(p(9),2(9)), ¢ € [pa,eB], where p(p) = po, + Rcos,

z(p) = Rsingp, A = Aap(va), B=Aap(pp). The direct calculation shows that the lengths of
A4 is equal to the right-hand side of (2.44). O
By Lemma 2.5, the lengths of the edges of the quadrilateral A; B;A;By are calculated as

follows:

de (Al, Bl) =

de (AQ, Bl) =

dH2 (BQ, Al) =

dH2 (BQ, AQ) =

Then, by (2.38)—

dHZ (Al, Bl) + dH2 (AQ, Bl)

(2.41), we get:

1
—1In
2
1
—1In
2
—1In

—1In

(
:<1+COS<P
(

1

1+cos<pA

- AP
1 +cosp, 1—cosppy
A
1+ cospp 1fcosgpA

1 —cosgoB

A -
A

1

A
A, 1

1+cos<pB

)

1fcosgpA

1fcosgpA

1+cos<pA

1+cos<pB

)

1 —cos ng

1fcosgpA

1+cos<pA

(
(
)

— dH2 (Bg, Al)

1-— cosng

— dgz (B2,

)
)
)

A3) =0

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

By Lemma 2.5, the lengths of the edges of the quadrilateral A;C7AsCy are calculated as

follows:

de (Cl, Al)

dyz(Ca, Ay) =

dpz (A2, CY) =

dm2 (A2, C) =

1
=—-In
2

1
—1In
2
1
—1In
2

1
—1In
2

1 —cospy’

A

- A
1+ cos <p£{ '
A

1+ cospy”

1 — cos goc

1fcosgpA

l

- AP
<1+coscpcl2 ><
A
l
L\1+cosp,

1 — cos goc

1 —cos gpc

- AA2
<1+cos<pAl2 ><
A2
1
L\1 +cosps!

1—cos<pA

1 — cos goc

_<1+cos<pA;

A2
AfZ ) <

1+ coseg,

1—cos<pA

By (2.38), (2.39), (2.42), and (2.43), it is easy to verify that

dg2(C2, A1) + dg=2(Ch, A4)

— dm2(A2,C) —

dHZ (AQ,

)
)
)

Cy) =0

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

According to (2.49) and (2.54), the theorem 2.1 is valid for any equator of a Bricard-Stachel

octahedron of type 3 tangent to a horocycle in at least one of its flat positions.
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2.5. Verification of the necessary flexibility condition of a nondegenerate suspension for the
Bricard-Stachel octahedra in hyperbolic 3-space

An equator of a Bricard-Stachel octahedron of type 3 is tangent to a hypercircle in H?

Let us consider the Poincaré upper half-plane model of the hyperbolic plane H? with the
coordinates (p,z) (i.e., with the metric given by the formula ds? = %). Without loss
of generality we can assume that the hypercircle tangent to the equator of a Bricard-Stachel
octahedron O of type 3, passes through the (unique) point oo at infinity of H? which does not
lie on the Euclidean line z = 0, and through the point O = (0,0) at infinity of H2. Every such
hypercircle is specified by the equation z = ptan a for some o € (0, T)U(5, 7). By the symmetry
of H? with respect to the straight line p = 0, it is sufficient to consider the family of hypercircles
K ={z=ptanala € (0,%)}. Let K, € K. We will construct all possible quadrangles tangent
to K, such that none of their vertices belongs to K, i.e., all quadrangles that can serve as
equators of O. Then we will verify the validity of the theorem 2.1 for such quadrangles.

Let us study the quadrangles based on the straight lines Af‘l, AAL Af‘Z, A2z tangent to
K,, which are realised in H? as the Euclidean demi-circles with the centers OZA ' = (pa, 1,0),
O = (pa, i, 0), O = (pa,1,0), 022 = (pa, ., 0). Also, let A" and A4 intersect at a point
Ay, Af‘Z and A2 intersect at a point As. Assume that A; and A, are two opposite vertices of
O, and that the inequalities 0 < pa,1 < pa,r, 0 < pa,1 < pa,,r hold true.

Remark 2.6. Let T = (pr,27) be a point in H?, which serves as the intersection of straight lines
AT and AT tangent to a hypercircle Ko, and let Al and AT are realised in H? as the Euclidean
demi-circles with the centers OF = (pr.1,0), OF = (p7.+,0) (pr1 < pr.s). Then, by Remark 2./,
the angles . def ZTOF p and ¢} def ZTOFp determine uniquely the positions of T on A and
AT correspondingly. Moreover,

P cos?a 1 sin «v _pTy cos?a 1 sin «v

l T
= d = — — . (2.55
coser an coser prr2sina 2sina 2 ( )

P, 2sino ~ 2sina 2

Proof. A7 and AT are tangent to K. Hence, the radii R; and R, of the demi-circles realizing
AT and AT in H? are determined by the formulas

Ry =prysina and R, = pr,sino. (2.56)

Let Too be a point with coordinates (pr,0). Applying the Euclidean Pythagorean theorem
to ATT,OT and simplifying the obtained expression, we get:

0%+ 2% = 2pTpr) — pf2r7lcos2a. (2.57)
Similarly, from ATT,OF we get that

P+ 23 = 207 P10 — pf2r7rc052a. (2.58)
Subtracting (2.57) from (2.58), we easily deduce:

= pﬂrf—’—pT’lCOS2Oz. (2.59)

From the definitions of the cosines of ¢} and ¢ (cos @y = (pr — pr.1)/Ri and cos @} =
(pr — pr,r)/Ry), taking into account (2.56) and (2.59), we obtain (2.55). O

A1 A
By Remark 2.6, the angles gpﬁ’l qef LAlthp and gpﬁ;l et ZA;041p determine uniquely

the positions of A; on Af‘l and A4t correspondingly. Moreover,

A pay gy cosPa 1 sin a 4 AM pag cosPa 1 sin o
cosp, = - - = and cosp,’ = - - — —
PA,,l 2sina 2sino 2 PA,r2sina 2sino 2
(2.60)
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Chapter 2. A necessary flexibility condition of a nondegenerate suspension in hyperbolic 3-space

- A2 4 .
Similarly, the angles ¢, o /A0 p and 902;2 & /A2072p serve as the coordinates of Ay
on AlA2 and AA? correspondingly. Moreover,
cosgoAlAZ _ Phsr cosa B 1 B sin av and cosgoAﬁb _ PAsl cos2a B 1 B sin a
Az PA,l 2sina 2sina 2 Az PA,r2sina 2sina 2
(2.61)
Suppose that the straight lines Afh and Af‘Z intersect at a point B;. Then the angles
AM A2 .
Y5 qef LBlthp and g qef ABlOlAZp serve as the coordinates of B; on Afh and Af‘z
correspondingly. Moreover,
AN pag cos?a 1 sin «v A2 pag cos?a 1 sin «v

cos g and cosgg . (2.62)

PA,2sina 2sino 2 PA,2sina 2sino 2

A
Suppose also that A7t and A2 intersect at a point By. Then the angles gp%,; b odef /ByOhip

A
and 90%;2 o Z/B20%2p serve as the coordinates of By on A4t and A2 correspondingly. More-
over,
ASL PAs,r cos?a 1 sin a q A2 PALr cosZa 1 sin av
cos = — — and cos = — —
¥B, PA,,r2sina 2sino 2 ¥B, PA,r2sina 2sina 2
(2.63)
S hat A% and A2 | int Cy. Then the angles ¢ %' /1,041 p and
uppose that A" and A;™* intersect at a point C;. en the angles ¢ = 1071 p an
A2 . .
oc def 40101’42 p serve as the coordinates of C; on A2 and AZA2 correspondingly. Moreover,
A2 pa,r cosPa 1 sin « d AN pay cosPa 1 sin «
cos = — — and cos = — —
Ya PA,l 2sina 2sina 2 va PA,r2sina 2sina 2
(2.64)
S Iso that A" and A4z i ¢ int Cy. Then the angles ol % ZC,0/
uppose also that A;™* and A;* intersect at a point Co. en the angles ¢, = 207 'p
A
and <pjc\,; 2 def /03042 p serve as the coordinates of Co on Afl and A#2 correspondingly. Moreover,
AN pay. cosPa 1 sin « d A% payy cosPa 1 sin «
cos = — — and cos = — —
ve, PA,l 2sina 2sina 2 ve, PA,r2sina 2sina 2
(2.65)

As in the case of the quadrangles tangent to a horocycle in H?2, the lengths of the edges
of A1 B1A2Bs are expressed in (2.45)—(2.48), and the lengths of the edges of A;C1A>Cs are
calculated in (2.50)—(2.53). Taking into account (2.60)—(2.65), it is easy to state the validity
of (2.49) and (2.54).

According to (2.49) and (2.54), the theorem 2.1 is valid for any equator of a Bricard-Stachel
octahedron of type 3 tangent to a hypercircle in at least one of its flat positions.

The case when three vertices of an equator of a flexible octahedron in its flat position lie on

a straight line, is similar. The case when all four vertices of an equator lie on a straight line, is
trivial.
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Chapter 3

Construction of a compact convex quasi-Fuchsian
manifold with a prescribed hyperbolic polyhedral met-
ric on the boundary

The problem of existence and uniqueness of an isometric realization of a surface with a
prescribed metric in a given ambient space is classical in the metric geometry. Initially stated
in the Euclidean case, it can be posed for surfaces in other spaces, in particular, in hyperbolic
3-space H3.

One of the first fundamental results in this theory is due to A. D. Alexandrov. It concerns
the realization of polyhedral surfaces in the spaces of constant curvature.

As in [Ale06], Rk stands for spherical 3-space of curvarure K in the case K > 0; R stands
for hyperbolic 3-space of curvarure K when K < 0; and in the case K = 0, Rx denotes Euclidean
3-space.

Then the result of A. D. Alexandrov reads as follows:

Theorem 3.1. Let h be a metric of a constant sectional curvature K with cone singularities on
a sphere S? such that the total angle around every singular point of h do not exceed 2w. Then
there exists a closed convex polyhedron in Ry equipped with the metric h which is unique up to
the isometries of Ri. Here we include the doubly covered convex polygons, which are plane in
Ry, in the set of convex polyhedra.

Later, A. D. Alexandrov and A. V. Pogorelov proved the following statement in H?® [Pog73]:

Theorem 3.2. Let h be a C°-reqular metric of a sectional curvature which is strictly greater
than —1 on a sphere S?. Then there exists an isometric immersion of the sphere (S?,h) into
hyperbolic 3-space H> which is unique up to the isometries of H3. Moreover, this immersion
bounds a convex domain in H?3.

Definition. [MT98, p. 30], [Ota96, p. 11] A discrete finitely generated subgroup I'r C
PSLy(R) without torsion and such that the quotient H?/T'z has a finite volume, is called a
Fuchsian group.

Given a hyperbolic plane P in H? and a Fuchsian group I'p C PSLy(R) acting on P, we can
canonically extend the action of the group I'p on the whole space H?3.

Here we recall another result on the above-mentioned problem considered for a special type
of hyperbolic manifolds, namely, for Fuchsian manifolds, which is due to M. Gromov [Gro86]:
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Chapter 3. Construction of a compact convex quasi-Fuchsian manifold with a prescribed hyperbolic
polyhedral metric on the boundary

Theorem 3.3. Let S be a compact surface of genus greater than or equal to 2, equipped with a
C*°-regular metric h of a sectional curvature which is greater than —1 everywhere. Then there

exists a Fuchsian group T'r acting on H®, such that the surface (S, h) is isometrically embedded
mn Hg/FF.

Remark 3.4. The hyperbolic manifold H3 /T r from the statement of Theorem 3.3 is called Fuch-
sian. Note also that the limit set A(Tr) C OxoH? of a Fuchsian group T'r is a geodesic circle
in projective space CP* regarded as the boundary at infinity dsH? of the Poincaré ball model of
hyperbolic 3-space H?>.

Definition. [Lab92] A compact hyperbolic manifold M is said to be strictly convex if any
two points in M can be joined with a minimizing geodesic which lies inside the interior of M.
This condition implies that the intrinsic curvature of dM is greater than —1 everywhere (the
term "hyperbolic" means for us "of a constant curvature equal to —1 everywhere").

In 1992 F. Labourie [Lab92] obtained the following result which can be considered as a
generalization of Theorems 3.2 and 3.3:

Theorem 3.5. Let M be a compact manifold with boundary (different from the solid torus) which
admits a structure of a strictly convex hyperbolic manifold. Let h be a C*°-reqular metric on OM
of a sectional curvature which is strictly greater than —1 everywhere. Then there exists a convex
hyperbolic metric g on M which induces h on OM :

g loas= h.

Definition. [MT98, p. 120] A quasi-Fuchsian space is the quasiconformal deformation space
QH(Tr) of a Fuchsian group I'r C PSLa2(R).

In other words, the quasi-Fuchsian manifold QH (I'r) is a quotient H3 /T, r of H? by a discrete
finitely generated group I'yr C PSLo(R) of hyperbolic isometries of H? such that the limit set
A(T) C 0ooH? of T is a Jordan curve which can be obtained from the circle A(T'r) C d-.H? by a
quasiconformal deformation of 0., H3.

In geometric terms, a quasi-Fuchsian manifold is a complete hyperbolic manifold homeomor-
phic to § X R, where S is a closed connected surface of genus at least 2, which contains a convex
compact subset.

Our main goal is to prove the following extension of Theorem 3.5:

Theorem 3.6. Let M be a compact connected 3-manifold with boundary of the type S x [—1,1]
where S is a closed connected surface of genus at least 2. Let h be a hyperbolic metric with
cone singularities of angle less than 2w on OM such that every singular point of h possesses
a neighborhood in OM which does not contain other singular points of h. Then there exists a
hyperbolic metric g in M with a convex boundary OM such that the metric induced on OM is h.

Theorem 3.6 can also be considered as an analogue of Theorem 3.1 for the convex hyperbolic
manifolds with polyhedral boundary.

Definition. [CEG06]A pleated surface in a hyperbolic 3-manifold M is a complete hyperbolic
surface S together with an isometric map f: & — M such that every s € § is in the interior of
some geodesic arc which is mapped by f to a geodesic arc in M.

A pleated surface resembles a polyhedron in the sense that it has flat faces that meet along
edges. Unlike a polyhedron, a pleated surface has no corners, but it may have infinitely many
edges that form a lamination.

Remark 3.7. The surfaces serving as the connected components of the boundary OM of the
manifold M from the statement of Theorem 3.6, which are equipped by assumption with hyperbolic
polyhedral metrics, do not necessarily have to be polyhedra embedded in M: these surfaces can
be partially pleated.
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3.1. Proof of Theorem 3.6

Definition. [MS09] Let M be the interior of a compact manifold with boundary. A complete
hyperbolic metric g on M is convex co-compact if M contains a compact subset K which is
convex: any geodesic segment ¢ in (M, g) with endpoints in K is contained in K.

In 2002 J.-M. Schlenker [Sch06] proved uniqueness of the metric g in Theorem 3.5. Thus, he
obtained

Theorem 3.8. Let M be a compact connected 3-manifold with boundary (different from the solid
torus) which admits a complete hyperbolic convex co-compact metric. Let g be a hyperbolic metric
on M such that OM is C*°-regular and strictly convex. Then the induced metric I on OM has
curvature K > —1. Each C*-regular metric on OM with K > —1 is induced on M for a unique
choice of g.

It would be natural to conjecture that the metric g in the statement of Theorem 3.6 is unique.
The methods used in the demonstration of Theorem 3.6 do not presently allow to attack this
problem.

At last, recalling that the convex quasi-Fuchsian manifolds are special cases of the convex
co-compact manifolds, we can guess that Theorem 3.6 remains valid in the case when M is a
convex co-compact manifold. It would be interesting to verify this hypothesis in the future.

3.1 Proof of Theorem 3.6

A compact connected 3-manifold M of the type S x [—1, 1] from the statement of Theorem 3.6,
where S is a closed connected surface of genus at least 2, can be regarded as a convex compact 3-
dimensional domain of an unbounded quasi-Fuchsian manifold M° = H3/ I'gr where I'gr stands
for a quasi-Fuchsian group of isometries of hyperbolic space H?. Note that the boundary OM
of such domain M consists of two distinct locally convex compact 2-surfaces in M°. Thus, the
metric h from the statement of Theorem 3.6 is a pair of hyperbolic metrics with cone singularities
of angle less than 27 (or, in other words, a pair of hyperbolic polyhedral metrics) of compact
connected surfaces of the same with M genus, and our aim is to find such quasi-Fuchsian subgroup
Tor of isometries of hyperbolic space H? and such convex compact domain M C M° that the
induced metric of its boundary dM coincides with h.
The main idea of the proof of Theorem 3.6 is
(1) to approximate the metric A with singularities by a sequence {hy,}nen of C*-regular
metrics for which the Labourie-Schlenker Theorem 3.8 is applicable, and therefore, there are
such quasi-Fuchsian groups I',, of isometries of H? and such convex compact domains M,,
in the quasi-Fuchsian manifolds M¢ = H?/T,, that the induced metrics of the boundaries
OM,, of the sets M,, are exactly h,, n € N;

(2) to find a sequence of positive integers ny E;) oo such that the subsequences of groups

{Th, tren and of domains { M, }ren converge (the types of convergence will be precised
later);

(3) and to show that the induced metric on the boundary of the limit domain M coincides

with h.

For convenience, let us introduce new notation of some entities that we considered before:
we redefine the domain M and the quasi-Fuchsian manifold M° by the symbols My, and M2,
correspondingly. Also, let us denote the connected components of the boundary M, of the
limit domain M, by S& and S, and the induced metrics on the surfaces S and S by hi
and h__, respectively. Therefore, to define the metric h from the statement of Theorem 3.6 means
to give a pair of hyperbolic polyhedral metrics hZ, and hZ.
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3.1.1 Construction of sequences of metrics converging to the prescribed
metrics

In this Subsection, we obtain two preliminary results.

Lemma 3.9. Let S be a surface with a hyperbolic polyhedral metric h (i.e. of the sectional
curvature —1 everywhere except at a discrete set of points with conic singularities of angles less
than 2m). Then there is a sequence of C-reqular metrics {hy}nen with sectional curvatures
greater than or equal to —1 everywhere, converging to the metric h.

Az

Figure 3.1: The circular cone €p in the Kleinian model K* of hyperbolic space H?.

Proof. Consider a singular point P € S of a hyperbolic polyhedral metric h together with a
neighborhood Up C S which does not contain other singular points of h. The domain Up
equipped with the restriction h|y, of the metric h is isometric to a piece of a circular cone €p
in hyperbolic space H?, where the point P corresponds to the apex of €p.

The Kleinian model K2 of hyperbolic space H? can be viewed as the unitary ball centered at
the origin O of the Cartesian coordinate system Oxyz in Euclidean 3-space R3. Recall that the
hyperbolic geodesics in K? are Euclidean segments. Thus, a hyperbolic cone in the projective
model K? of H? is a Euclidean cone in R3. Let us place the cone €p into the Kleinian model
K? so that the apex of €p is identified with the origin O of the Cartesian coordinates Oxyz and
the axis of symmetry of €p coincides with the axis Oz (see Fig. 3.1). Then the cone €p can be
represented as the surface of revolution around the axis Oz of the graph of a function of the type

2= fulz) € plal, zeR,
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where the parameter p is a negative real number.
Recall the following classical result due to S. L. Sobolev:

Theorem 3.10 (Theorem in §2.4 of Chapter | [Sob63], p. 13). For every function ¢ € L, there
exists a sequence {dx tren of C™-regular functions converging strongly to ¢.

In the demonstration of Theorem 3.10 given in [Sob63] the regular approximations ¢, k € N,
of the function ¢ are constructed by convolution of ¢ with applications of the type

2
L,z _ T
we(x) = e, we[=nrl, where the constant ¢, = / eP=7 dt, (3.1)
0, z€R\][-r71], —r

and the parameter r is a positive real number.

Since we need to consider only a small part of the cone €p which is placed inside the Euclidean
unitary ball centered at O (the interesting part corresponds to the neighborhood Up of the
point P € §), it suffices to assume that the function f,(x) is defined in the segment [—1,1].
Hence, being a continuous function with a compact support, f, belongs to Lebesgue space L,, for
any p. Therefore, choosing a monotonically decreasing sequence of small positive real numbers

Tk k—> 0 and convoluting f,, with the applications w,,, k¥ € N, we construct a sequence of
—00

def fu * wr, () }ken converging to f,. By Theorem 3.10, the

convex even functions {z = fl’f(z)
functions f;j are C°-regular, k € N.

Let us study the graphs of the functions f;f , keN.

The first generalized derivative D f,(z) of the application f,(x) can be characterized by the
following representative:

—p, € [—00,0]
Df,(x) = 0, z =0, (3.2)
w, x€]0,0].

Note that it can be expressed through the Heaviside function

0, z€[—00,0]
H(z)=1{ 1, r=0,
1, z€]0,00],
as follows:
Dfu(2) = 2uH(z) — p. (3.3)

By a property of the convolution, the first generalized derivative D f,’f (x) of the application fl’f (x)
is related with Df, () as follows:

Dfy(w) = Dlfy *wr (@) = (Dfy) * wr, ().

Also, according to (3.1), the function w,, (x — t) of the variable ¢ is zero outside the segment
[z — ri,x + ri]. Moreover, by (3.2), for any « > 7, we have that Df,(t) = p for all t €
[x — g,z + 7). Thus, for any = > ry

) T+rE

wn (& — O)Df(£)dt = / (& — O)D ()t

T—T

Dffi(a) = (Dfis)  wp, (2) = /

— 00

Tt T=x—1 Tk Tk
=/ wn (& — t)pudt u/ MAﬂkm1=u/ iy (Tl = p,
xT Tk

—rE ; —Tk
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which implies that the function f[f(z) is a linear application on the half-line [ry, co[ of the type
fl’f(z) = px+cy, where ¢4 is a real constant. Similarly we obtain that f,’f (z) is a linear application
on the half-line ] — oo, —r] of the type f;f(x) = —ux + c_, where c_ € R. By symmetry we get
that ¢, = c_. Since the functions f[f, k € N, approximate f, = ul|z|, we can put ¢4 = c_ = 0.
We have just showed that the graphs of the maps fl’f, k € N, coincide with the graph of f,
outside small neighborhoods of (0,0) € R?.

Let us now study the convexity of the functions flf, k € N. By the formula (3.3), the
second derivative D?f,(x) of the application f,(z) regarded as a generalized function is equal
to 2ud(x), where §(z) stands for the Dirac delta function (remind that DH (z) = §(z)). Also,
by construction, the applications wy,, k € N, are even functions. Hence, the generalized second
derivative D? f,’f of f;f can be calculated as follows:

D2f,§($) = DQ[fM * wTk](x) = (DQfH) * Wry, (,T) = 240 * wTk(‘T) = QMWTk(_w) = QMWTk(‘T)'

Recall that the constant u is negative. Taking into account (3.1), we conclude that D? f;f(ac) <0
for all z € R. Thus, for any k € N the function f[f is concave everywhere on R, and the graph of
f[f smoothes out the angle formed by the graph of f,, at the point (0,0) € R2.

Rotating the graphs of the functions f[f, k € N, on the plane Ozxz around the axis Oz,
we obtain a sequence of convex C*°-regular surfaces {Qﬁ’;}keN which converges to the cone €p.
Again, the surfaces €% smooth out the conic singularity of €p at its apex, and they coincide
with €p outside small neighborhoods of O € K3, k € N.

As the notions of convexity are equivalent in Euclidean space R? and in the Kleinian model K3
of hyperbolic space H?, the sets €%, k € N, regarded as surfaces in H3, are convex. Therefore,
the Gaussian curvature of the surfaces Qf’f; C H3 is greater than or equal to —1 everywhere,
k € N. Denote by hi|y, the induced metrics of the surfaces CII% C H3, k € N, restricted on the
sets corresponding to the neighborhood Up of the point P € S. By construction, the sequence
of C*°-smooth metrics {h|v, }ken converges to hly, as k — oo, and moreover, these metrics
coincide with h|y, near the boundary of Up on S. Thus, replacing the metric hly, as a part
of the metric h on the surface S by the metrics hi|y,, k € N, we obtain a sequence of metrics
{hi}ren on S converging to h as k — oo.

The procedure described above should be applied simultaneously to all singular points of the
metric h. O

Lemma 3.11. Consider a regular metric surface (S,h), where S stands for a 2-dimensional
surface, h is a metric provided on S, and Kp(x) denotes the sectional curvature of (S,h) at a
point x € S. If we consider another metric surface (S,g), where the metric g = A\h is a multiple
of h and A > 0 1is a positive constant, then the sectional curvature K4(z) of (S,g) at a point
x € S is related to Kp(x) as follows:

K, (z) = %Kh(x). (3.4)

Proof. First, according to Theorem 2.51 [GHLO04, p. 70], the consistence of the connection V
with the metric h means that for any vector vields U, V', and W on S the following relation
holds:

Uh(V,W)=h(VygV, W)+ h(V,VyW¥). (3.5)

Multiplying (3.5) by A and recalling that g = Ah, we easily get:
Ug(V,W)=g(VuV,W) +g(V,VuyW).
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Hence, the connection V is also consistent with the metric g.

Then, by Definition 3.7 [GHLO04, p. 107], we remark that the curvature tensor R, (u,v)w
defined for an arbitrary point z € S and for any vectors u, v, and w of the tangent space T, S
depends only on the connection V consistent with the metrics h and g. Thus, the curvature
tensor R (u,v)w is common for both metrics h and g on the surface S.

At last, according to Definition 3.3 [GHLO04, p. 109], the sectional curvature Kp(x) of the
surface (S, h) at a point € S can be expressed as follows:

hy (Ry(u, v)u, v)
(u, u)hy(v,v) — (he(u,v))?

Kh(ac) = hz (36)

and does not depend on the choice of an orthogonal basis {u,v} of the tangent space T,S.
Similarly, the sectional curvature K (z) of the surface (S, g) at a point z € S is defined by the
formula:
B 9z (Ra(u, v)u, v)

9 (1, w) 9z (0,v) = (g2(u, v))

Ky(x) (3.7)

27

where {u, v} is an orthogonal basis of the tangent space T,,S.
Comparing the relations (3.6) and (3.7) and taking into account that g = Ah, we obtain (3.4).
O

3.1.2 Convergence of convex surfaces in a compact domain in H3

Figure 3.2: The surfaces S;7 and S;; in the quasi-Fuchsian manifold M.
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Let h%, and hZ, be two polyhedral hyperbolic metrics on a closed compact surface S of genus
g. By Lemma 3.9, there are two sequences of C°°-smooth metrics {f }nen and {f,, }nen on S,
with sectional curvature > —1 everywhere, converging to h, and hy as n — co. In order to

be able to apply the Labourie-Schlenker Theorem 3.8, let us chose a monotonically decreasing

sequence of real numbers A, —> 1 and let us define the metrics h+ = )\ Rt and h;, def Anly,

on S, n € N. Thus, by Lemma 3.11, the sectional curvatures of the metrics b\ and h,; is strictly
greater than —1 everywhere on S, and, by construction, the sequences of C'"*°-smooth metrics
{h}}nen and {h }nen converge to bt and h, as n — oo. Therefore, by the Labourie-Schlenker
Theorem 3.8, for each n € N there is a unique compact convex domain M, of a quasi-Fuchsian
manifold M? with hyperbolic metric g,, such that the induced metrics of the components S; and

S, of the boundary OM,, &f ST US, are equal to il and h;, (see also Fig. 3.2). It means that,
for each n € N there exist isometric embeddings fg+ : (S, hn) — M and fg- 1 (S, hy) = M3,
such that fg+(S) =S C M} and fg-(S) =S, € M;.

As M can be retracted by deformation on S; and S,;, we conclude that their fundamental
groups are homomorphic:

T (ST) =~ 1 (MD) = 71 (S;,)).

n

Also, by construction,
m1(S) = m (S) =~ m(S,,).

Hence, for all n € N
T (M) = m(8S). (3.8)

Since the manifolds M7, n € N, are hyperbolic, their universal coverings ]\Z;’l are actually
copies of hyperbolic 3-space H?. Moreover, as each M, is quasi-Fuchsian, there exists a holon-
omy representation p, : 71(M2) — I(MS)(= Z(H3)) of the fundamental group of M in the
group of isometries of the universal covering M2 (= H3) such that M = M2 /[p(71(M?2))] =
H3/[py(m1(MS))] and the limit set A,, C dcH? of py(m1(M2)) is homotopic to a circle. By
(3.8), we can also speak about the holonomy representation pS : m (S) — I(./T/l/,ol)(: Z(H3)) of
the fundamental group of § in the group of isometries of the universal covering Mv%(: H?3) such
that p3(m1(8)) = pa(m1(M5,)). Thus we have that Ms, = M, /[p5(m1(S))] = H*/[o5 (m1(S))]
and the limit set A,s of p3(m1(8S)) is just A,,, n € N. We also suppose that m(S) is generated
by the elements {~1,...,7}.

Inside M%(: H3), n € N, we can find a convex set M, serving as a universal covering of the
domain M,, C M2, i.e. such that M,, = M, /[0S (71(8))], and a pair of convex surfaces S and
g; serving as universal coverings of the surfaces S;F € M¢ and S, € M? (see Fig. 3.3), i
such that S = SF/[pS(71(S))] and S; = S, /[pS (m1(S))]. By construction, M, =S U S’

and the boundaries at infinity O M, = 0 S = 0o S_ = A,s. Denote by p,, : M, — M,, the
projection of M,, on M., n € N. By construction, St = pn(8+) and 87 = p,(S7), n € N.

For every n € N we lift the metric g, of the manifold M, to the metric g, of the universal
covering M, in such a way that for any v € m1(S) and for z € M,, and & € M,, satisfying the
relation & = p,, (%), we have G, (&) = pp*gn (), i.e. the metric §, () € T3 M, is a pull-back of the
metric gn(z) € T;M,,. We have already remarked that, since g, is hyperbolic, g, is hyperbolic
too. Denote by hJr the restriction of the metric g, on the surface S+ and by h the restriction
of the metric §, on the surface S , n € N. By construction, the metric i is the lift of 2 from
the surface S; to its universal covering S} and the metric . is the lift of h from S to Sy,
n € N.
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Figure 3.3: The universal coverings g’j{ and 57; in the Kleinian model K? of hyperbolic space
HS3.

Definition. The diameter § of a set S with a metric h is the following quantity: ¢ det

sup{dp (u,v)|u,v € S} where dp(u,v) stands for the distance between points v and v in the
metric h.

Lemma 3.12. There exists a positive constant s < oo which bounds from above the diameters
Ot and b, of the surfaces (S,h}) and (S, h;,) for all n € N.
Proof. First, note that the procedure of construction of the metrics it and h,, n € N, by
smoothing the hyperbolic polyhedral metrics A}, and h, with the help of convolution, as it was
described in the proof of Lemma 3.9, does not increase the distance between any two points on
the surface S. On the other hand, multiplying the metrics i} and A, by the real number \,, > 1,
and thus, obtaining the metrics h;" and h,;, n € N, we increase all distances on S by v/\,,.
Recall that the sequence of numbers {\, },en is decreasing. Hence, Ay > A, for every n € N.
Therefore, the distances on S measured in the metric h;f def Alhjo are not smaller than the
corresponding distances measured in the metrics h;} for all n € N. Similarly, the distances on S

measured in the metric h} qef A1h, are not smaller than the corresponding distances measured
in the metrics h,, for all n € N.

Since S is compact, the diameters 6 and 5 of the surfaces (S,h}) and (S, h}) are finite
numbers. We can pose ds = max(dy,d; ). O

Lemma 3.13. There exists a positive constant g < 0o such that for each n € N and for every
pair of points u € S;f C M, and v € S;; C MY the distance dg, (u,v) between u and v in the

51



Chapter 3. Construction of a compact convex quasi-Fuchsian manifold with a prescribed hyperbolic
polyhedral metric on the boundary

manifold M, is less than .

Proof. By Theorem 4.1 in Chapter 4 of this thesis, the distances o5 between the surfaces S and
S, n € N, are uniformly bounded by a constant os. Also, by Lemma 3.12, the diameters of S,
and S, are both bounded by a constant ds which does not depend on n. Hence, our assertion
is valid if we take drq to be equal to os + 20s. O

Professor Gregory McShane remarked that the existence of a constant d,q > 0 which serves
as an common upper bound for the distances between the boundary components S;" and S, of
the domains M,,, n € N does not guarantee that the diameters of M,, are uniformly bounded
from above.

Indeed, Jeffrey Brock in his PhD thesis (see also [Bro01]) studied the following example.

Given a pair of homeomorphic Riemann surfaces X and Y of finite type and a "partial pseudo
Anosov" mapping class ¢, by the Ahlfors-Bers simultaneous uniformization theorem there is a
sequence of quasi-Fuchsian manifolds {Q(¢"X,Y)}22 ;. The diameters of each of the boundary
components of the convex hull of Q(¢"X,Y) is uniformly bounded in n and so is the distance
between the two boundary components but the diameter of the convex hull of Q(¢"X,Y") goes
to infinity because of a "cusp growing there" as n — co.

However, the diameters of the domains M,,, n € N do not play role in the demonstration
of Theorem 3.6; only the distances between the surfaces S and S, n € N, are of importance
here.

Let us now return to the proof of Theorem 3.6.

Let us fix an arbitrary point z € S, which is not, however, a point of singularity for the metrics
hi and h, on S, and let us denote z;’ L fs+(x) € S C M;, and &f fs-(x) € Sy C My,
n € N. Denote also the distance between the points z;7 and z,, in M2 by ¢%, n € N. By
Lemma 3.13, 0 < dpq for all n € N.

Let us consider two copies <S~'+~and S~ of the universal covering of the surface S with the
projections p™ : ST — Sand p~ : S~ — & and let us fix some points z+ € ST and = € S~ such
that pT(2%) = x and p~ (™) = x. Without loss of generality we may think that the fundamental
group 71 (S) acts on ST and S~ in the sense that S ~ St/ (S) and S ~ S~ /m1(S). For every
n € N we fix an arbitrary pair of points &} € ST € M2 (= H3) and &; € S; C M, verifying
the conditions p, (%) = z and p,(Z;) = =z, and such that the distance in M2 between
@} and 7, is equal to op. The functions fg+ : & — S and fg- : S — S defined above
induce the canonical bijective developing maps fgi LSt o gj[ and f§; LS o g; with the
properties fgﬁ (Zt) = &F and fg; (z7) = Z;; and such that for any v € m1(S) it is true that

Far(r-@%) = pl(7). & and fz- (v.27) = p3(7).&,, n € N,

Remark 3.14. The above-mentioned property of developing maps holds for any points gt e §+,
g~ € 8™ and for every v € m1(S):

Far (gt ) = pn(N)-Jge (3) and fo-(v.57) = (1) (), neN.

Let the metrics Bi and ﬁ; on the universal coverings S* and S~ of the surface S be the
pull-backs of the metrics h{ and h; on S defined in the proof of Lemma 3.12. We are now able

to construct the Dirichlet domains At € St and A~ C 8~ of S with respect to the metrics h;\"
and h) based in the points 7 € ST and 2~ € S, respectively. In what follows we will work
with the fundamental domains AT € ST and A~ C S~ of S.
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Lemma 3.15. For each n € N the domains A} def f~ (AT) Cc SF Cc H? and A;; def fS (A7) C

S- C H3 are included in the hyperbolic balls B(%; 55) and B(%;,,0s) of radius ds centered at
the points T} and Z,, correspondingly.

Proof. Tt suffices to prove this statement for the domain A}.
Assume that the surface ST is equipped with the metric h;\". It follows from the definition of

the Dirichlet domain that the distance from any point z € AT C S* to the center 7+ of A+ is not
greater than the diameter of the surface (S, k) which is less than or equal to ds (see the proof

of Lemma 3.12). Recall that the developing map f~ (ST > §+ can be viewed as the identical
application from one copy of the surface S+ equ1pped with the metric h+ to another copy of S+
equipped with the metric hJr Also, by the construction made in the proof of Lemma 3.12, all
distances on the surface S measured in the metric A} do not exceed the corresponding dlstances
on S in the metric hJr Hence, this property is valid for the pull-backs hJr and hJr on St of the
metrics A, and kY on S. Therefore, the distance from any point v € A} = fgn (A*) c S to

the center T} = f§+ (#1) of A} is not greater than ds.

To complete the proof we remark that for any couple of points vi,vs € §TJ{ the distance
between them in the hyperbolic metric of 3—Space~H3 does not exceed the distance between vy
and vy in the induced metric ;) on the 2-surface S;f: dus (v1,v2) < dj+ (v1,v2). O

Denote by AT C S* the union of A* with all "neighbor" fundamental domains of S of the
form v.A™T for all v € m1(S) such that cl AT Ncly. AT = ). Similarly we define the set A~ C §~.

Lemma 3.16. For cach n € N the domains A} def fgg(ﬁﬂ C S CH3 and A; def f~ (A) C

S C H? are included in the hyperbolic balls B(i;,30s) and B(&;,30s) of radius 30s centered
at the points &} and &, correspondingly.

Proof. Tt suffices to prove this statement for the domain ﬁ*

First, by Lemma 3.15, the domain A} is inscribed in the ball B(Z},ds). Similarly, for each
v E m (8) the domain pn( ).AF (1sometr1(: to Af) is inscribed in the ball B(pS(y).%},6s).
Note that A} is the union of A} with the domains of the form pS(v).AF such that cl A N
lpS(y).AF # 0, where v € m1(S). Thus, the set A is contained in the union Uz of the ball
B(i;,8s) and all balls of the type B(pS (7).7;,6s) such that B(ps (7).2},6s) N B(%},6s) # 0.
Clearly, Ug lies entirely inside the ball B(Z;,, 3ds). O

The following statement is an immediate corollary of Lemmas 3.13 and 3.16.

Lemma 3.17. For cach n € N the domains A o fgx(ﬁﬂ CSFCH3 and A; o fS (A) C

g’; C H3 are both included in the hyperbolic balls B(%,,36s + dm) and B(Z,,,30s + dm) of
radius 30s + dam centered at the points T} and T, .

It is high time to identify the universal coverings M,"L (which are copies of H?) by supposing
that the points Z; coincide for all n € N. Let us temporarily forget the 3-dimensional domains
Mvn of hyperbolic space Hiin order to concentrate our attention on the study of properties of
the sequences of surfaces {S; },en and {8, }nen-

Recall the statement of the classical Arzela-Ascoli Theorem.

Theorem 3.18 (Theorem 7.5.7 in [Die60], p. 137). Suppose F' is a Banach space and E a compact
metric space. In order that a subset H of the Banach space Cyp(E) of continuous functions from
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FE to F be relatively compact, necessary and sufficient conditions are that H be equicontinuous
and that, for each © € E the set H, of all f(x) such that f € H be relatively compact in F.

We will apply it in the following

Lemma 3.19. There exist subsequences of functions {f§+ CAt H3} ken and { ~§, CAT
e b

H3} ren that converge to continuous functions f§+ : AT 5 B and fg, c A 3 correspond-
ingly.

Proof. Tt suffices to find a converging subsequence of the sequence of functions { f§+ L AT S
H3},en. To this purpose we will apply the Arzela-Ascoli Theorem 3.18.

Let us equip the domain A+ C S8t with the restriction il;\’_ |~, of the metric il;\’_ Consider

A+
the domain (A*,izj{ |K .) as a compact metric space E from the statement of Theorem 3.18;
hyperbolic space H? as a Banach space F'; the sequence of functions {f§+ C At H3} ey in
the space of continuous functions from (ﬁ*‘, ht 134) to H? as the set H C Cp(E).

By Lemma 3.17, the images 3: = fgﬁ (AJF) C S C H? of the maps fgi’ n € N, are all
included in the ball B(Z;},30s + ) (recall that we identified all points Z;7 € H3, n € N). Thus,
for each x € F the set H, is relatively compact in F'. }

As it was already done in the proof of Lemma 3.15, we consider every developing map f§+ :

At §7J{ as the inclusion of the domain A+ equipped with the metric ht |3, to the surface
S* with the metric iﬁ{, n € N. So, for any € > 0 if we pose  := ¢ then for every pair of points
x,y € AT such that dit (x,y) < ¢ it is true that st(f:if (x), far (yN)) < dﬁz(fgg (), far (y) <e
(recall that, by construction, distances measured in the metric hj{ are not smaller than the
corresponding distances measured in the metric fL,J{ ), n € N. Thus, the functions { f§+ AT —

H3},en are equicontinuous. ~
Therefore, by the Arzela-Ascoli Theorem 3.18, there exists a subsequence of functions { f§+ :
"k

At = H3}en that converges to some continuous function f§+ C AT - HB. Similarly we obtain
that there exists a subsequence of functions { fg, C AT o H3}ren that converges to some
"k

continuous function f~ : A~ — HS. O

oo

Assumption 3.20. Further we assume that the sequences of functions {f’§+ CAT H3}en and

{fg, AT o H3},en converge to continuous functions f§+ C At 5 HB and fg, C AT HB.

3.1.3 Convergence of the hglonomy representations jp‘s}neN and of the de-
veloping maps {fz : ST = H’}eny and {fz : S™ — H?}en
Now we need to derive several properties of the holonomy representations pS (71 (S)), n € N.

Lemma 3.21. Given two points y,y?> € H? together with orthogonal bases {e!,e? e3} and
{el,é2,e3} of the tangent spaces T,,H? and T,2H3, there is a unique isometry 9 € Z(H?) such
that y* =9.y' and &' =d,d(e?), i =1,...,3.

Proof. Following Chapter 1, § 1.5 in [AVS93, p. 13] let us recall the construction of the hyper-
boloid model I? of hyperbolic space H?. Denoting the coordinates in space R* by xq, z1, o, 23,
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we introduce the Minkowski scalar product in R* by the formula

(T, y)m = —ToYo + T1Y1 + T2y + T3Y3, (3.9)

which turns R* into a pseudo-Euclidean vector space, denoted by R,
A basis {u®, ul,u? u?} C R®! is said to be orthonormal if (u®,u®)y = —1, (u?,u?)p = 1 for
i # 0, and (u’,u?)p = 0 for i # j. For example, the standard basis

{60,61,62,63} = {

o= O O
_— o O o

} C R3! (3.10)

o O O
o o = O

is orthonormal.
Each pseudo-orthogonal (i.e. preserving the above scalar product) transformation of R3!
takes an open cone of time-like vectors

C={recR* :(2,2)y <0}
consisting of two connected components
¢r={re€:2>0}, € ={re€:z <0}

onto itself. Denote by O(3,1) the group of all pseudo-orthogonal transformations of space R3:1,
and by O’(3,1) its subgroup of index 2 consisting of those pseudo orthogonal transformations
which map each connected component of the cone € onto itself.

Using notation developed in § A.1 [BP03, p. 1] we remind that the manifold

B ={zcR>: (z,2)p = 1,20 > 0}

with the metric induced by the pseudo-Euclidean metric (3.9) is called the hyperboloid model
I3 of hyperbolic space H?, and the restrictions of the elements of O’(3,1) on I? form the group
Z(H3) of all isometries of H3.

Again, by Chapter 1, § 1.5 in [AVS93, p. 13], for any o € I? we can naturally identify the
tangent space T,I? with the orthogonal complement of the vector z in space R®!, which is a
3-dimensional Euclidean space (with respect to the same scalar product). If {u!,u? u3} is an
orthonormal basis in it, then {z,u’, u? u3} is an orthonormal basis in the space R3!.

Obviously, the vector €” of the standard basis (3.10) R3! lies in I? and the vectors {e!, €2, €3}
defined in (3.10) form an orthonormal basis of the tangent space T.oI®. Also, according to
a fact mentioned in the previous paragraph, the sets of four vectors {y!,e!,e? e3} C R3!
and {y?,é!,é2,83} C R>! from the statement of Lemma 3.21 are orthonormal bases of R31L.
Define the linear transformations ¥; and ¥ of R3! determined by their 4 x 4-real matrices
Mf def (y*, el e?,e3) and Mg def (y?,ét,é2,63) with the columns consisting of the coordi-
nates of the corresponding vectors in the standard basis of R*!. A direct calculation shows
the transformations ¥; and 92 send the standard base to the orthonormal bases {y!,e!, e? 3}
and {y?, et, é2 &3} of R3!, respectively. Moreover, we know that the vectors €, y!, and y? belong
to the upper cone €*. Hence, 97 and 95 are elements of the group O’(3,1), and we can take the
transformation ¥ from the statement of Lemma 3.21 to be equal to ¥2[1] 1. O

Definition. Given a sequence of hyperbolic isometries {1, € Z(H?)},en determined by
points y,,, 5 € H® and orthogonal bases {e},, ez, e}, {é},,€2,¢>} of the tangent spaces T,,1 H?
and TyiH?’, we say that the isometries {¢,, }nen converge to an isometry 9., € Z(H?) in the sense
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of Lemma 3.21 if the sequences of base points {yn}neN, {yn}neN converge to points yl ,y% € H3
and the sequences of orthogonal bases {el,e2 e} en, {61,862, n}nEN converge to orthogonal
bases {el,,e2,,e3 }, {el,,é2,,e2.} of the tangent spaces Ty1 H* and T2 H?, and the above-
mentioned limits define uniquely the isometry 9¥.,. Denote a convergence of isometries in the
sense of Lemma 3.21 by ¢,, = ¥, as n — oo.

Definition. We say that hyperbolic isometries {19, € Z(H?)},en converge to an isometry
Voo € Z(H?) in a "weak" sense if for any point y € H? the sequence {1J,,.y}nen converges to the
point Poe.y € H3 as n — co. Denote a "weak' convergence of isometries by 9, — Yoo

Lemma 3.22. Given a collection of hyperbolic isometries {9, € T(H3)}2;, ¥, = Voo asn — 00
if and only if ¥, — Poo

Proof. A hyperbolic isometry 9 : H?> — H? which sends any y € H? to the point ¥.y € H? can be
interpreted as a linear transformation of Minkowski space R%! as it was mentioned in the proof
of Lemma 3.21. Therefore, 9(y) depends continuously on y € H?3.

Suppose that ¥, = ¥ as n — co. By construction, a transformation ¥ € Z(H3) from
Lemma 3.21 depends continuously on the parameters y',y* € H?, {e',e? e*} C T,nH3, and
{é!,é?,é3} C T,2H3. Hence, for any point y € H? the sequence {¥,,.y},en converges to the point
Yooy € H? as n — oo, which means that the convergence of the isometries {1, }nen in the sense
of Lemma 3.21 implies also the "weak" convergence of these isometries to ¥

Suppose now that 19, —— 1. Being a linear transformation of Minkowski space R3!,
n—oo

the hyperbolic isometries {1J,, € Z(H?3)}5°; are represented in the standard basis of R*! by the

4 x 4-real matrices M?» % (90, 0% 92, 93), where 95, k = 0,1,2,3, are the columns of M.

Let Py &' (1,0,0,0)T € I3 € R®!. The "weak" convergence of the isometries {1, }nen at the

point Py means that M. Py —— MY~ Py, i.e.

n—oo

90— Y. (3.11)
n—oo
Let Py def (ﬁ,l,O,O)T € I3 ¢ R%L. The "weak" convergence of the isometries {0, }nen at
the point P; means that M?».P; —— MV~ Py, ie. /209 + 9} —— /2099 + 9% . Taking
n—oo n—oo
into account (3.11), we obtain that ¥, —— 9L . Similarly we get that ¥2 —— 9% and
n—o0 n—o0
92— 93_. Thus, the "weak" convergence of the isometries {1, }nen to Yoo as n — oo implies
n—oo
also their convergence in the sense of Lemma 3.21. o

Lemma 3.23. For each n € N let a pair of surfaces S+ and S C M3 (which are the images

of developing maps f~ LSt SJr and f~ LS S, ) be invariant under the actions of a

quasi- Fuchsian group pn (71'1( )) of isometries of H3. Suppose in addition that the restrictions of
the developing maps {f§+ LAY H3}en and {f&:47— H3},en on the domains AT C ST

and 37 cS defined in Subsection 3.1.2 converge to continuous functions f§+ C AT o HB
and f~ : A= — H3. Then there is a sequence of positive integers ny ?———> oo such that the

— 00
morphzsms {p5 :m1(S) = Z(H?)}ken converge to a morphism pS : m1(S) — Z(H?) in the sense
of Lemma 8.21, i.e. for every v € w1 (S) there exists a hyperbolic isometry which we denote by
pS.(3) such that pS, (3) = pS,(7) as k — oc.

Proof. First, we prove that there is a sequence of positive integers ny, ;———) oo such that for any
— 00

generator ; of the group m1(S) together with its inverse element 7;1 e m(S),i=1,..,1, the
subsequences of isometries p3, (vi) = p3,(v:) and p3, (v; Y = pS (v, 1) converge as k — oo.
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Indeed, since for any i = 1,...,1 points 1, 7;.Z ", and 7; '.ZT lie inside A+ C S* by construc-
tion, and because of convergence of the developlng maps { S L AT H3},.en to a continuous
function fg; : AT — H3, we know that the sequences of points i} (= fgi (1)) — (=
Fo @), S 005 (= pS(00)-Fs (0) = Faa () —— . (30) 5 (= S () S () =
f§+ (3.1), and R ()] (= o (7 D fa (@) = f (07137) —— ()l 3k (=
S (v h). S+ (@%) = ~§; (v, *.#%)) converge in H?.

Also we know that for each n € N and for every ¢ = 1,...,l, the differential d;+ 05 (vi)
sends an orthonormal base {e]”", e5”", e3 } of the tangent space TizHg’ to an orthonormal base
{er’ ent e’y of Tpg(%).izH3 (recall that, by constructions all the points #}, n € N coin-

cide). Since the subsequences {e?’i}neN, {é;"i}neN, 4 =1,2,3, 7 =1,...,1, of unitary vectors
are bounded, there exists a sequence of positive integers ny -——+ oo such that the pairs of

subsequences of orthonormal bases {e]*"*, ef*", ef* "} oy and {e""” ég’“’ 6"} pen converge all
together (i = 1,...,1) ensemble to orthonormal bases (e e, es™") and {AOOZ et ey,

Hence, by Lemma 3.21, there exists a hyperbolic isometry that we denote by pS () which
sends the point % to the point pS (v;).#% defined above, and which differential dz+. 03 ()
sends an orthonormal base {7, e3>, e3>} of the tangent space T+ H? to an orthonormal base
{AOOZ A?légoZ}OfT S (i) 2

Secondly, we derive that for any element v € 71(S) the subsequences of isometries pﬁk (v) =
p3. () converges as k — oco. Indeed, every v € m(S) can be decomposed in a product of

generators of 71(S) together with their inverse elements, for which the demanded convergence
has already been shown. O

+ H? such that p5 (v:) = pS, (%) as k — oc.

Assumption 3.24. Further we assume that the sequence of holonomy representations {p5 :
71(S) = Z(H?)}nen (where the groups ps (m1(S)) of isometries of H? are quasi-Fuchsian) con-
verges to a holonomy representation p3 : m1(S) — Z(H?) (where pS (m1(S)) is a discrete group
of isometries of H3) in the sense of Lemma 3.21 as n — oo.

Let us now prove the following property of the functions f~§+ At - HB and f’g, CAT S HB
with respect to the group of isometries pS. (71 (S)) of space H?.

Remark 3.25. If for a pair of points j;, 5 € A there exists a transformation v € 1 (S) such
that 5 = yT.4;, then the following equality holds:

fg; (73) = Pfo(VJr)-fg; (77)- (3.12)

Similarly, if for a pair of points §; ,95 € A~ there exists a transformation v~ € m1(S) such that
Uy =7 .Yy, then } - s -
fo (@) = p ()-S5 (07)-
Proof. Tt suffices to prove the formula (3.12).
By Remark 3.14, the relation

fg; (g;) = Pf(fr)-fgi (ﬂf) (3.13)

is valid for all n € N. }
By Assumption 3.20, the sequence {fz (75) }nen C H? converges to the point f ( iy ) € H3.
(31

Hence, taking into account the formula (3.13) we see that in order to prove the equahty 2) we
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need to demonstrate the convergence of the sequence {pS (7). ~§+ (7 ) }nen C H? to the point

pfo(f).f:& (7)), i.e., fixing € > 0, we ought to find such ng € N that
Vn >ng the inequality dgs(pS(y7). ~$+( )03 ('Y+)'f§+ (7)) <& holds. (3.14)
First, by the above-mentioned Assumption 3.20, the sequence { f‘§+ (77) }nen C H? converges

to the point f§+ (g7) € H3. Therefore,

Ing € N:Vn>ny  the inequality dgs (fg, (57), f5: (57)) < 5 is valid. (3.15)

£
2

Also, by Assumption 3.24, pS(yt) = pS (yT) as n — oco. Hence, by Lemma 3.22, the

sequence of points {pS (y). ~§+ (7 ) }nen C H3 converges to the point pS (7). ~§+ (g7) € H3,
ie. ~ ~
. . 3 3 - g .
Jny € N:Vn >mny the inequality dgs (pS (vF). 5 @), pS ('er).fg; (7)) < 5 I true.

(3.16)
Applying the triangle inequality, we get:

dzza (o5 (V) F ), % ()T (57) <

dIHP(Pi( )f +(y1) ( )f +(y1 ))+dH3(Pn( )f +(y1) ('Y+)' g;(@?fr)) (3.17)

The fact that pS(yT) is an isometry of H? implies the equality:
dps (Pn( ). f +(91 )P ( ). f + (7)) = dH3(f§Tf(gfr)af§+ (7)) (3.18)

Therefore, substituting (3.18) in (3.17), we obtain:

dsze (i (V5)-Fr (), 9% (V) f (51)) <

dps (Jggi (77), fg;o (77)) + dus (Pf(Vﬂfg; (77), Pfo(7+)- ~§; (71))- (3.19)
Hence, by (3.19), (3.15), and (3.16), we conclude that it is sufficient to pose ng = max(ny, na)
to satisfy the condition (3.14). O

Now we are able to extend the functions f~ : At — HB and f~ : A= — H? to the whole

domains ST and S—. Let us do it as follows: for arbitrary points y €St and S S~ we find
such points £ and g in the fundamental domains AT C A+ CStand A~ C A~ C S~ of the
surface S and such elements v+, v~ € m1(8S) that g+ =~* yA and §~ = v~ .7, then we define

5o def - z oo\ def N F e :
5t 7)) = pS (vh). 5t (§£5) and f~; ) = pS.(y ).fg; (g5)- By construction, the surfaces

g;—o def f§+ (§+) and g‘ def fS ( ~) are invariant under the actions of the group pS (7 (S)) of
isometries of H?.

Repeating almost literally the demonstration of Remark 3.25, we can prove

Lemma 3.26. The sequences of developing maps {f§+ (ST > H3} hen and {fg, 'S — H3} en

converge to continuous functions f§+ : ST = H3? and fg, : ST — HA.

Finally, we show
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Remark 3.27. The boundaries at infinity (9005;"0 C OscH? and 8oo<§;o C O-oH? of the surfaces g’;"o
and 83, coincide with the limit set A s of the group p3,(m1(S)). Moreover, the group p3, (1 (S))
of isometries of H® from Lemma 3.23 is quasi-Fuchsian.

Proof. By Lemma 3.26, the sequences of surfaces {8 nen and {S; }nen bounding the convex
connected hyperbohc domains {/\/l }nen converge to the surfaces 8+ and S in H3. Hence,
the sets {./\/l tnen converge to a convex connected hyperbolic domain ./\/l Moreover, the
boundaries at infinity {800574{}”61\; and {80057; }nen converge to the curves 3005; C OsoH? and
8005; C OsoH?3. Indeed, our surfaces in the Poincaré disc model of H? considered as Euclidean
surfaces inside a unitary ball converge together with their boundaries.

Recall that, by the Labourie-Schlenker Theorem 3.8, for each n € N the curves aoogg and
GOO:S'V; coincide with the limit set A s of the quasi-Fuchsian holonomy representations PS5 (m1(S))
which is homotopic to a circle in O, H>. On the other hand, by Assumption 3.24, pS (71 (S)) =
p3 (m1(S)) as n — oo, which implies that the sequence of the limit sets {A,s fnen converges to
the limit set A s (see, for instance, [Mat04, p. 323]).

Thus, the boundaries at inﬁnity 00oST, and Dae Sy, of the surfaces ST and Sg, coincide with
the limit set A,s of the group pS (m1(S)). Furthermore, we conclude that the boundary OM

of the domain MOO consists of the surfaces S+ and S, and the boundary at infinity 8OOMOO

o0
of MOO also coincides with As

Since the surfaces g;‘o and §; are topological discs embedded in H3, their common boundary
at infinity is homotopic to a circle. Therefore, by definition, the group pS (71(S)) is quasi-
Fuchsian. O

Note that the domain ]\Zoo which appeared during the demonstration of Remark 3.27, is
invariant under the actions of the quasi-Fuchsian group p3.(m1(S)) of isometries of H?.

3.1.4 Adaptation of a classical theorem of A. D. Alexandrov to the hyper-
bolic case

Recall a classical result due to A. D. Alexandrov:

Theorem 3.28 (Theorem 1 in Sec. 1 of Chapter Il [Ale06], p. 91). If a sequence of closed convex
surfaces JF, converges to a closed conver surface F and if two sequences of points X, and Y,
on F, converge to two points X and Y of F, respectively, then the distances between the points

X, and Y, measured on the surfaces F,, converge to the distance between the points X and Y
measured on F, i.e., dr(X,Y) = limy oodr, (Xn, Yn).

A. D. Alexandrov demonstrated this theorem in Euclidean 3-space. Slightly modifying his
proof, here we show the validity of Theorem 3.28 in hyperbolic space H3. We will largely use
this result in Subsection 3.1.5.

First we remark that the proof of Theorem 3.28 in the Euclidean case is based on the two
following lemmas which hold true in all Hadamard spaces (i.e. in the hyperbolic space as well),
and it uses the mentioned below properties of the arc length in any complete metric space:

Lemma 3.29 (Lemma 2 in Sec. 1 of Chapter Il [Ale06], p. 93). If a curve L lies outside a closed
convex surface F, then the length of this curve is not less than the distance on F between the
projections of its endpoints to the surface F. In particular, if the ends A and B of the curve L
lie on F, then the length of the curve L is not less than the length of the shortest arc AB on the
surface F.
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Lemma 3.30 (Lemma 3 in Sec. 1 of Chapter Ill [Ale06], p. 93). If a sequence of closed con-
ver surfaces JF, converges to a nondegenerate surface F and if points X, and Y, converge
to the same point X on F, then the distance between X, and Y, on F, converges to zero:
lim,, odz, (Xn, Yn) = 0.

Property 3.31 (Theorem 3 in Sec. 2 of Chapter Il [Ale06], p. 66). There is a shortest arc of every
two points on a manifold with complete intrinsic metric.

Property 3.32 (Theorem 4 in Sec. 1 of Chapter Il [Ale06], p. 59). We can choose a convergent
subsequence from each infinite set of curves in a compact domain of length not exceeding a given
one.

Property 3.33 (Theorem 5 in Sec. 1 of Chapter Il [Ale06], p. 59). If curves L,, converge to a curve
L, then the length of L is not greater than the lower limit of the lengths of L.

However, there is a place in the proof of Theorem 3.28 which uses some particular properties
of Euclidean space, specifically, of the Euclidean homothety. In the following statement we
formulate what is shown there:

Lemma 3.34. If a sequence of closed convexr surfaces F,, converges to a nondegenerate closed
conver surface F and if two sequences of points X, and Y, on F, converge to two points X and
Y of F, respectively, then

limsup,,_,odr, (Xn,Yn) <dr(X,Y). (3.20)

Proof of Lemma 3.34 in the Euclidean case [Ale06, pp. 95-96]. Take a point O inside the
surface F and perform the homothety transform with the center at O of the surfaces F,, so that
all these surfaces turn out to be inside F. Note that if the initial surface F,, lies inside F then we
do not need to apply the homothety, so we pose the coefficient of homothety A,, = 1; otherwise
we perform the scaling back homothety transform with A, < 1. Since the surfaces F,, converge
to F, the coefficients A\, can be taken closer and closer to 1 as n increases and \,, — 1 as n — oo.
The surfaces and points, which are obtained from the surfaces F,, and the points X,, and Y,, as
a result of this transformation, will be denoted by A\, F,, \nX,, and \,Y,. Since A\, — 1 and
the points X,, and Y,, tend to X and Y, the points A\, X,, and \,Y,, also converge to X and Y,
respectively.

Let X, and Y, be the projections of the points X and Y to the surfaces A, F;,. By Lemma 3.29,

dx, 7, (X7, Y;) < dr(X,Y). (3.21)

Obviously, the points X/, converge to X as n — oo, and at the same time, the points A\, X,
also converge to X. Therefore, by Lemma 3.30,

da, 7, (A Xp, X)) — 0, (3.22)

and, by the same arguments,
dx, 7, (Y., A Ysn) — 0. (3.23)

By the "triangle inequality",
Ay, 7 (A Xn, M Yn) < du, 7, (A X, X)) +do, 7, (X0, Y +da, 7, (Yo, A Yo). (3.24)

Using the inequality (3.21) and the relations (3.22) and (3.23) and passing to the limit in (3.24)
as n — 00, we obtain

lim Sup’n‘)OOd)\n]:n ()\an, )\nYn) S d].‘(X, Y) (325)
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But under the homothety with coefficient A, , all distances change by A,, times, and, therefore,
d/\n]:n()‘ana)‘nYn) = )\nd]-‘n (XnaYn)§ (3.26)

since A, — 1, the formula (3.25) implies (3.20). O

Let us adapt the proof of Lemma 3.34 for hyperbolic 3-space.

Modification of the proof of Lemma 8.34 for the hyperbolic case. Further we will use the no-
tation developed in the proof of the Euclidean version of Lemma 3.34. Considering the surfaces
F C H3 and F,, C H? (n € N) in the projective model K3 of hyperbolic space H? as surfaces
of Euclidean space R? and supposing in addition that the center Ox of the Kleinian model K3
lies inside the surface F, as previously, let us perform the Euclidean homothety transforms with
the center at Ok of the surfaces F,, so that all resulting surfaces A\, F,, turn out to be inside F
(here A, are the Euclidean homothety coefficients, n € N). Below we will call Euclidean homo-
thety transform any transformation of hyperbolic space H? which corresponds to a homothety
transformation of Euclidean space R? when we identify R? with the projective model K3 of H?.
We already know that in the Euclidean case the distances between corresponding pairs of points
XY, € F, and A\, X,,, A\, Y, € A\, F, in the induced metrics of the surfaces F,, and \,F,
satisfy the relation (3.26). Let us now find a similar condition in the case when F,, and \,JF,
are regarded as surfaces of hyperbolic space H?.

All closed convex surfaces F, together with their limit surface F can be included into a
sufficiently large ball B C H? centered at Og. Let us put B into the Kleinian model K? of H?
and let ps < 1 stands for the Euclidean radius of B in K3.

An Euclidean homothety transform 7 centered at Ox € K? with a coefficient A < 1 sends any
point Z inside B to the point AZ. Denote by p(< pg) the length of the Euclidean radius-vector
connecting the points Ok and Z in the projective model K3 of H3. The differential dr of the
hyperbolic transformation 7 sends any vector vz € TzH? codirectional with the geodesic Lz
which contains the points Ok, Z, and AZ, to the vector vyz € ThzH? also codirectional with
Lz. A direct calculation shows that the norms of the vectors vz and vyz are related as follows:

AL - p?)
loazll = 7= 2, lvzl|. (3.27)
It is easy to verify that for A <1 the function fy(p) def Al(_l)}p: ) in p is monotonically decreasing
in the segment [0, pp]. Together with (3.27), this fact implies:
A(L - p5®)
loxzll = 7= st lvz]|. (3.28)

Similarly, the differential dr sends any vector vz € TzH? perpendicular to the geodesic Lz, to
the vector vj‘Z € ThzH? also perpendicular to Lz. A direct calculation shows that the norms of
the vectors U% and viZ are related as follows:

1l ANW1=p®
vazll = ﬁl\vzll- (3.29)
It is easy to verify that for A < 1 the function gy (p) def Qltvl;;i in p is monotonically decreasing
—A2p
in the segment [0, pp]. Together with (3.29), it implies:

M/1— pp?
1—A\pg?
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Any vector u € TzH? can be decomposed as the sum of two vectors u = v+v+, v, vt € T,H3,
such that the vector v is codirectional with the geodesic Lz, and the vector v is perpendicular to

Lz. Hence, (??) and (3.30) imply that the norms of the vectors u € TzH? and uy et dr(Z).u €
TyzH? satisfy the following inequality:
: )\ 1—p5°) )\\/ — pB> _ (
[[u]l = min 5 [ull = H I (3.31)
— App? \/ — A2pp?

as0< A< 1.

Recall that the length of a curve ¢ : [0,1] — H?® which is C'-smooth almost everywhere
is given by the formula I(c) % fol [¢/(t)||dt where ¢/(t) € ToyH? for almost all t € [0,1].
Suppose in addition that the curve c¢ lies in the interior of the ball B, apply the Euclidean
homothety transform 7 to ¢, and denote the resulting curve by c). Hence, taking into account
the inequality (3.1.4), we see that the lengths of the curves ¢ and ¢y are related as follows:

A1 = p5®)

l >
(C)\) — 1 _ )\2p82

I(c).

Thus, returning to the consideration of the distances between the pairs of points X,,,Y,, € F,
and A\, X, A\ Y, € A\ F,, in the induced metrics of the surfaces F,, and A\, F,, we conclude that
in the hyperbolic case the inequality

An(1 = pB?)

d AnXn, A Yn) > 7d Xn, Y, 3.32
An o ( ) T3 O ( ) (3.32)

holds. Substituting (3.32) in the formula (3.25) which is valid in both Euclidean and hyperbolic
situations, we get:

. An(1 = p5?)

hmsupnﬁooid]: (Xn,Yn) <dzs(X,Y). (3.33)

1= A2 pB?

An(1— ps)

=3z, tends to 1 as the numbers A, approach to 1, the formula (3.33)

Since the expression
implies (3.20). O

We have just adapted to the hyperbolic situation the only place in the proof of Theorem 3.28
largely depending on properties of Euclidean space. Therefore, Theorem 3.28 remains valid in
hyperbolic 3-space.

When the present work was already written, the author found that A. D. Alexandrov proved
the hyperbolic version of Theorem 3.28 using different methods long ago in 1945 (see his pa-
per [Ale45, Theorem 3] in Russian).

3.1.5 Induced metrics of the surfaces St and S

Return to consideration of the family of convex domains {Mn}zozl with the boundaries
OM,, = SF US, (see Subsections 3.1.2 and 3.1.3) in hyperbolic space H?. Assume in addition
that the marked points FF eS8 n=1,.., 00, are all identified with an arbitrary point Oy € K3.

Consider a ball B C H? centered at Oy of a sufficiently big hyperbolic radius p (it will be
enough to put p = 99s+0 ., where the constants ds and J o are defined in Lemmas 3.12 and 3.13).
Define the convex compact hyperbolic sets M5 M, N B, and denote by S;F et OMBNST and
S = dof OMB N S the intersections of the boundary M5 of the domain M5B with the surfaces
S+ and Sn, n = 1,...,00. By construction, the sets A* and A defined in Lemma 3.16 are
subsets of S and Sn correspondmgly, n=1,..,00.
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Remark 3.35. The ball B is takenAbig enough in order to pmm’fle the following property: for an
arbitrary pair of points AT, BT € A} there exists a path (* C A} connecting AT and BT which
is shorter than any path £t C MPB connecting AT and Bt and such that € N(OMPB\ST) # 0.
Similarly, for points A=, B~ € 3; there exists a path (~ C A; connecting A~ and B~ which is
shorter than any path €~ C ME connecting A~ and B~ and such that €~ N (AME\ S;) # 0.
For this purpose, radius p = 90s + S of the ball B is sufficient although not optimal.

Recall that, by Lemma 3.26, the sequences of developing maps { f~§+ R H3},en and
{f S }nen converge to continuous functions f§+ . ST — H3 and f’g, ST = HP,
and the images of the maps fgi and f§; are convex surfaces gj and gj[ respectively, n =

1,...,00. Therefore, by construction, the surfaces {A¥ }oen and {A- }en converge to At and
ﬁgo, and moreover, the sequence of closed convex nondegenerate surfaces {3./\/15 }nen converges
to the closed convex nondegenerate surface 8./\/150 in H3. Applying the hyperbolic version of
Theorem 3.28 to the family of surfaces {OM5},cn which converges to IME we conclude that
the sequence of induced metrics on MPE tends to the induced metric on IME as n — oo. In
particular, given any two sequences of points A} and B, in Ef{ C OMZB converging to two
points AT and BL in ﬁ* C OMB, respectively, the distances between the points A} and
B measured on the surfaces OM?B converge to the distance between the points A% and B
measured on OIME | i.e.

By Remark 3.35, the distance between the points A} and B, measured on OM?E is equal to the
distance between these points measured on S+, also, by construction, S; is a convex subset of

the surface S; with the induced metric i, therefore
dBMg (A:LF,B;{) = d}}i (A:zraB;zr)’ (335)
n =1,...,00. Substituting (3.35) in (3.34), we get:

dfz; (A:o’ B;_o) = llmnﬁoodﬁi (A;r, B;—)

Hence, the sequence of the induced metrics iﬁ of the surfaces §+ restricted on the sets 3"’
converges to the induced metric hJr of the surface 8+ restricted on A+ as n — oo. By analogy,
the sequence of the induced metrics {h;; X ,}neN converges to the induced metric A7 |~_ .

In Subsections 3.1.2 and 3.1.3 we constructed the surfaces SJr and S to be invariant under
the actions of the discrete group p$ (m1(S)) of isometries of H? for each n = 1, ..., 00. Hence, the
induced metrics th and h on the surfaces S, S+ and S , respectively, are per10d1c with respect to
the group pS (m (S)) n=1,...,00. We have just proved that the metrics h; and h;, converge to
ht and h correspondmgly, in the neighborhoods A* C S and A C 8, of the fundamental
domains A+ S+ and A, C S of the surfaces S and S, . Since, by Assumption 3.24
and Remark 3.27, the sequence of quasi-Fuchsian groups {p$ (7r1( ))}nEN converges to a quasi-
Fuchsian group pS (71 (S)) of isometries of H?, we now conclude that the metrics h+ and h_
converge to B:o and ﬁ everywhere on 8+ and S as n — 0o.

To complete the proof of Theorem 3.6 let us consider the convex compact hyperbolic domain

Mo def M Moo/ [pS,(71(S))] with the boundary

Moo = SLUSL S (S5/105(m (SN | (S2/10% (m(S))))
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polyhedral metric on the boundary

in the unbounded hyperbolic manifold M 4f s /[0S (71(S))]. The metric 1t on the universal
covering g;‘o of the boundary component S of the domain M, induces the metric 71:0 on the
compact surface 8. We have recently showed that the pull-backs fL:{ of the metrics hl (see
Subsection 3.1.2) converge to the pull-back B; of the metric ﬁjo Hence, the sequence of metrics
{h}}nen tends to the metric ng‘o as n — 00. But in the very beginning of Subsection 3.1.2 the
C*>-smooth metrics {h}},ecn were constructed in order to approximate the polyhedral metric
h. Therefore, the induced metric A%, on ST, coincides with the prescribed metric b . Similarly
we obtain that the metric on the surface S3 is exactly h_.

We sum up that the convex hyperbolic bounded domain M, with the boundary OM . =
St USL in the quasi-Fuchsian manifold M2, was constructed in such a way that the induced
metrics of the boundary components St and 87 coincide with the prescribed polyhedral metrics
h} and hZ . Theorem 3.6 is proved. [J
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Chapter 4

Distance between boundary components of a convex
compact domain in a quasi-Fuchsian manifold

Consider a sequence of convex bounded domains M,, with the upper boundaries S;" and the
lower boundaries S, in quasi-Fuchsian manifolds M5, such that for all n the convex regular

metric surfaces S and S, with the induced metrics kP and h;, respectively, are topologically

the same surface S.

Definition. The distance d(K, L) between subsets K and L of a set N is defined as follows:

d(K, L) &f inf{dn(u,v)|u € K,v € L}, where dar(u,v) stands for the distance between points u

and v in NV.
In this chapter, we prove the following result which is essentially used in the demonstration

of Theorem 3.6 from the previous chapter:

Theorem 4.1. Let the metrics b tend to some metric hT, (correspondingly, h, tend to h3,) as
n goes to oco. Then there is a common upper bound for the distances between S and S, in M2,
which does not depend on n.

The proof of Theorem 4.1 is essentially based on

Theorem 4.2. Given a conver bounded domain M with the upper boundary ST and the lower
boundary S~ in a quasi-Fuchsian manifold M°. If the metric surface ST possesses two homo-
topically different nontrivial closed simple intersecting curves cf and c§ of the lengths I and
l;, and S~ possesses two homotopically different nontrivial closed simple intersecting curves c;
and c; of the lengths 17 and 15 such that ¢f and ¢, as well as ¢ and c; , are homotopically
equivalent pairs of curves in M, then the distance d(S8*,S8™) between ST and S~ is bounded
from above by the constant

+ — + — 211"_ + — 2ll_ + — 21; + — 212_
d(S ,S ) < max ll +ll +1H? 5 ll +ll +1H ? 5 12 +12 +1HE y 12 +12 +1H E ,

eli (1f)? el (I7)?2
2 arcosh [cosh I cosh <lfr + arcosh 721” , 2arcosh {coshl1 cosh (ll + arcosh 721” ,
€3 €3
e (1f)? s (1 )?
2 arcosh [cosh 15 cosh (l;quarcosh 572)] , 2arcosh [costh cosh (12 +arcosh T)} },
3 3
where the symbol €3 stands for the Margulis constant of hyperbolic space H3 (this constant will

be defined shortly).
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quasi-Fuchsian manifold

This result is of independent interest as well. Note that we do not require the regularity of
surface metrics in Theorems 4.1 and 4.2.

Let us show how Theorem 4.2 implies Theorem 4.1.

Proof of Theorem 4.1.

Consider two homotopically different nontrivial closed curves ¢; and ¢, on the surface S such
that they intersect each other but do not intersect with the singular points of the metrics h
and h, on S. Since the sequence of metrics {h; },en converges to the metric At , the lengths
17" of the curve ¢; € S measured in the metrics b, n € N, tend to the length 1> > 0 of ¢;
measured in the metric h¥, as n — oco. The converging sequence of the positive real numbers
{lf"”}neN is bounded from below by a real number w;” > 0 and from above by a real number
QF > 0. Similarly, the lengths I;"" of the curve ¢; € S measured in the metrics h;,, n € N, are
bounded from below by some w; > 0 and from above by some Q; > 0; the lengths l;r ™ of the
curve cg € S measured in the metrics A7, n € N, are bounded from below by some w;r > 0 and
from above by some Q;’ > 0; and the lengths I;°" of the curve ¢a € S measured in the metrics
h,,, n € N, are bounded from below by some w; > 0 and from above by some 2; > 0.

By Theorem 4.2, the distance d(S;/,S, ) between the surfaces S;7 and S,; in the quasi-
Fuchsian manifold M is uniformly bounded from above for any n € N:

207 20 207
d(SF,S;) <max{(Qf+Ql‘ +1n—1), (Q{HLQ; +1n—+1), (Q§+Q2‘ +1n—2),
Wi Wi Wo

20 o (0f )2
(Q;r +Q; +1n —f) , 2arcosh [cosh QF cosh (Q;r + arcosh #)] ,
w3 €3

2

Q7 QO 2
2 arcosh [cosh Q7 cosh (Ql_ + arcosh w)} ’
€3

2

QF O+)2
2 arcosh [cosh Q3 cosh (Q;r + arcosh 62(72))] ,
€3

Q; (O—)2
2 arcosh [cosh Q5 cosh (QQ_ + arcosh e2lh) 282 ) )] }
3
O

Our aim now is to demonstrate Theorem 4.2. We will widely use the Margulis lemma to
prove this fact. In the most general case the Margulis lemma reads as follows [BP03, Theorem
D.1.1, p. 134]:

General Margulis Lemma. For every m € N there exists a constant €, > 0 such that
for any properly discontinuous subgroup T' of the group Z(H™) of isometries of H™ and for any
x € H™, the group T, (r) generated by the set F., (x) = {y € T : dum(x,v(z)) < epn} is
almost-nilpotent, where dym (-,-) stands for the distance in hyperbolic space H™.

If we restrict the General Margulis Lemma to the case of the quasifuchsian isometries of
hyperbolic 3-space H?® which is interesting to us, then the lemma can be rewritten in this way
[Ota03, Theorem B, p. 100]:

Margulis Lemma. There is a universal constant €3 > 0 such that for any properly dis-
continuous subgroup U of the group T(H3) of isometries of H? if two closed simple intersecting
curves 41 and 2 of the manifold H? /T have lengths less than €3, then 51 and 72 are homotopically
equivalent in H3/T.

Hence, the main idea of the proof of Theorem 4.2 is to find a pair of closed simple intersecting
curves inside M of lengths less than the Margulis constant €3 and such that they are not homo-
topically equivalent once the distance between ST and S~ is big enough. Then, by the Margulis
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4.1. Construction of the cylinders C'yl; and Cyls

lemma, the curves under consideration ought to be homotopically equivalent, which leads us to
a contradiction. Let us now give a more detailed plan of the proof of Theorem 4.2:

\ \ / /
\ 7 /
t T C J
N > ‘\Cy; 2 N
\ |

\ | l | S+

\ | , l /

\ \ /

Figure 4.1: The cylinders Cyl; and Cyls in the manifold M°.

e Suppose that the curves CIL and ch intersect at a point P* (this point is not necessarily
unique), and the curves ¢; and c; intersect at a point P~. We will construct cylinders
Cyly and Cyly in M that realize homotopies between ¢; and ¢; and between cj and c;
correspondingly. Then the intersection of Cyl; and Cyls contains a (curved) line with ends
Pt and P~. Denote the midpoint of this line by P™*.

e We will find a constant based on lf, I, l;r , I3, and €3, and we will construct curves on
Cyly and Cyly (see Fig. 4.1) passing through P™? such that if the distance between St
and S~ is greater than the constant mentioned above then both constructed curves are
shorter than e3.

4.1 Construction of the cylinders C'yl; and Cyl,
We consider a quasifuchsian manifold M°. By definition, it means that M° is a quotient

H3/T° where I'° is a quasifuchsian subgroup of the group Z(H?) of isometries of hyperbolic
3-space. Note that I'° is homomorphic to the fundamental group m (M°).
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quasi-Fuchsian manifold

Denote by 1 the closed geodesic of M° homotopically equivalent to cf and ¢ . Similarly,
denote by 7o the closed geodesic of M° homotopically equivalent to ¢§ and c;. By abuse of
notation, we denote by 1 and 72 the elements of 71 (M?®) corresponding to the closed geodesics
under consideration. The universal covering of the domain M C M? is a convex simply connected
subset M of H2. Denote by 41 and A the isometries of H® corresponding to the elements +; and
Y2 of 1 (MO).

Figure 4.2: Construction of fundamental domains of the cylinders Cyl; and Cyly in the Poincaré
model of H?3.

Let us now consider any single point PJr € H? serving as a pre-image of P+ ¢ c1 Necy in the
universal covering M. Among all the points in the pre-image of P~ € ¢ N¢; in M we choose

P € H? to be the closest to P+ (in case there are several points realizing the minimal distance

to P0 , we choose one of them arbitrarily). Denote PJr = 71 P(;L , P1_ def 1. f’o , P2 def 2. ﬁOJr ,

Py Lef 72.150 (recall that for every point T' € H? and for every 4 € Z(H?) the symbol 7.T stands
for the image of T' under the isometry ). Then we set the unions of flat hyperbolic triangles
Af’gL ]50715; U Aﬁfr ]Sf 1507 and Af’gL ﬁofﬁ; U Aﬁ; ]5{ 1507 in H® to be fundamental domains of
the cylinders C'yl; and Cyly (see Fig. 4.2).

The fundamental domain & C H? of the curve ¢f has the same length [ as ¢j. We
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4.2. Properties of the cylinders of the type Cyl

can choose & to connect PJr and P+. Hence, the length of the straight (hyperbolic) segment
Py P is less than or equal to [f. Similarly, dgs(P; ,Pl ) < Iy, dgs (PO+,P2+) < I, and
dps (P0 ,P ) <5 . Also, by construction, the midpoints Pom”l P{’”d and szd of the segments
PJFP0 , PJFP1 , and PJFP2 serve as pre-images of the midpoint P of the segment Pt P~ lying
in the intersection C'yly N Cyls.

Evidently, C'yl; and Cyl, can be prolonged to realize homotopies between the pairs of closed
curves (ci,¢7) and (cf , 5 ) as it was announced in our plan, but it will not be needed further.

Let us study properties of the cylinders constructed alike C'yl; and Cyls.

4.2 Properties of the cylinders of the type Cyl

Definition. A cylinder Cyly is said to be of the type Cyl if and only if C'yly possesses

1) a fundamental domain F'D(Cyly) = P ARTR- Qtu AQ*Q R~ constructed of two totally
geodesic triangles in H® such that dgs(Q, Q™) = ds (R, R~), and
2) the hyperbolic isometry ¥ € Z(H3) sending the geodesic segment RTR~ to the geodesic
segment QTQ~ and such that for every point Rﬁ e {%. R- |9 € (%)} the inequality
dgs (RT,R™) < dgs (RJF,R'i ) holds true (here and below the symbol () stands for the

group generated by the element ). Note that Q € {%.E_Hﬁ € (%)} by construction.

Figure 4.3: The quadrilaterals R*R~Q*Q~ in H3 and R* R~ Q*Q~ in H2.

Remark that the metric of C'yly induced from the ambient space is hyperbolic. Let us flatten
FD(Cyly) and obtain a hyperbolic quadrilateral RT R~QTQ~ C H? isometric to F'D(Cylp) such
that the vertices with tildes in H? correspond to the vertices of the same name but without tildes
in H? (see Fig. 4.3).

The quadrilateral RYTR~QTQ~ serves as a fundamental domain of Cyly in its universal
covering in H2. Denote by xr and x¢ the hyperbolic straight lines in H? containing the segments
R*tR~ and Q+tQ~ correspondingly. Remark that the connected domain of H? between xr and
Xq is actually a fundamental domain of the unbounded hyperbolic cylinder Cyl§ containing
Cylg. We will call it FD(C’ylS). Indeed, the fundamental group w1 (Cyl§) = Z. Hence, Cyl§
possesses a closed geodesic x° and there is a hyperbolic straight line y in H? serving as a lift of
x° and related to the isometry y of H? such that Cyl§ = H?/(). We show the existence of such
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geodesic x in the following

Lemma 4.3. Consider two nonintersecting geodesics xr and x¢q in H? which are not asymptotic,
with marked points R € xr and Q € xq. There is a unique hyperbolic straight line x in H? such
that the angles of intersection of x with xr and xg are equal, and moreover, if we denote

R xrNY and Q' def Xo N X, then dp2 (R, R') = dp2(Q, Q') and the points R and Q lie in the
same half-plane with respect to x.

Proof. Let us consider the Beltrami-Klein model K2 of the hyperbolic plane H?. Recall that K2
is a unit disc in the Euclidean plane R? and all geodesics of K2 are restrictions of Euclidean
straight lines on this disc. Without loss of generality the geodesics xg C K? and xo C K? can
be taken symmetric with respect to the axis Oz of the cartesian coordinate system on R2, both
at an arbitrary distance ¢ from Oz. Let yg lie in the upper half-space of R? with respect to
Oz and x( lie in the lower half-space of R? with respect to Ox. At last we fix arbitrary points
R € xr and Q € xoq.

By construction, every geodesic in K? passing through the origin O of the cartesian coordinate
system on R? either intersects xr and Xq at the same angle or does not intersect them. Let
us consider a family ®, of such geodesics R,Q, lying between the straight lines OR and OQ
where R, € xr, @+ € X, T stands for the hyperbolic distance between R and R,, and the line
0Q € @, corresponds to the value 7 of the parameter 7.

Note that

— R and @ lie in the same half-plane with respect to any R, Q. € ®..

— As 7 grows up monotonically from 0 to 7, the distance dgz(Q, Q) decreases monotonically

from dy2(Q,Q+) to 0. Hence, there exists a unique 79 € [0, 7] such that dyz(R, R,,) =
dp2 (Qa QT() )

We choose x to be R, ,Q,, € . x is unique since 7y is unique. o

Remark 4.4. Let Set(R™) &f {xg-R™|x¢ € (X)} (by construction, Q= € Set(R™)). Then for
every point Ry € Set(R™) the inequality dyz(R™, R™) < dg= (R, R;") holds true.

Proof. By construction, dpys (é"’, R™) = dye (R*,R7), and the surfaces (Y).RTR~-QTQ~ C H?
(which is the union U)Zﬁé()?) Xt-RTR™Q1Q™ of the quadrilaterals x3.RTR-Q1Q~ isometric to
RTR=QTQ7) and (X).FD(Cyly) C H? are isometric in their intrinsic metrics. Evidently, for
any points Ty and Ty in (X).FD(Cylo) it is true that dgs (11, 1) < dz;i.FD(Cylo)(Tth)’ where
dé%.FD(Cle)(, -) stands for the intrinsic metric of (x).FD(Cylp). At last, the part 2) of the
definition of a cylinder C'yly of the type C'yl allows us to conclude that Remark 4.4 is valid. O
Remark 4.5. Let R'Q’ be a segment of the geodesic x C H? between xr and x¢o serving as a
fundamental domain of x° C Cyl§ on x (here R’ € xr and Q' € xq). Then either R'Q’ C
RTR™QTQ™ or RQ'NRTR-QTQ™ =0.

Proof. Recall that the points Rt and QT are pre-images in H? of the same point on Cylg, and
one can be obtained from another by applying an isometry of H? which is an element of the
group (X) preserving the straight hyperbolic line . Hence, R* and Q7 lie in one half-plane of
H? with respect to x and, by consequence, the segment Rt QT does not intersect . Similarly,
R Q nx=0.

We conclude that if R*Q1 and R~Q~ lie in the same half-plane of H? with respect to x
then R'Q' N RTR~QTQ~ = 0. Otherwise, if R*Q" and R~ Q™ lie in different half-planes with
respect to x, then R'Q’' Cc RTR~Q+TQ~. O
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4.3 h-neighborhood of a geodesic in H?

In this section, we study hyperbolic quadrilaterals of one special type and half-neighborhoods
of geodesics containing one of the sides of our quadrilaterals which are inscribed in and circum-
scribed about these quadrilaterals. Properties of these objects will be largely used in obtaining
bounds on a possible size of cylinders of the type Cyl.

The object of our interest is a quadrilateral OO’ PP’ C H? with the sides dg=(O,0’) = I,
dgz(P,P') = I, and dg2(0O,P) = dg=(0’, P’) = R/, such that the edges OP and O'P’ are
perpendicular to OO’. Draw a curve -, at a distance h < h’ from the geodesic containing OO’
such that 7, intersects OP and O'P’ at points 7" and T" correspondingly. Denote a segment of

v, between OP and O'P’ by TT’, and the hyperbolic length of TT by .

A direct calculation shows that

Remark 4.6. The following relation holds true:
lp, = lcoshh.

Remark 4.7. If h =h' then T and T’ coincide with P and P’, TT' intersects OO' PP’ as a solid
body only at its ends P and P’, and, evidently, lp, > 1" (any path connecting two points can not
be shorter then a geodesic segment between them,).

Remark 4.8. Suppose that ' > 1. If h < — 1 then TT' C OO' PP’ and 1y < 1'.

Proof. Consider hyperbolic balls By (P) and By (P’) of the radius I’ with the centers P and P’.
These balls contain the segment PP’. Also, By (P) and By (P’) are perpendicular to OP and
O' P’ correspondingly. By construction, TT is perpendicular to OP and O’ P’ as well. Moreover,
TT’ is a convex curve. Hence, T'T” lies outside the interior of By (P) and By (P’) for h < h' —1".
It means that the geodesic segment PP’ does not intersect ff’, and TT' C OO'PP'.
Denote by OO'TT" the convex domain in H? bounded by the segments OT, OO’, O'T" and
the curve TT’. By construction, the orthogonal projection of PP’ onto OO'TT’ is TT’. Since
the orthogonal projection on the boundary of a convex hyperbolic domain is contracting [BGS85,
p. 9] (see also [CEGO06, 11.1.3.4, p. 124]), we get I, < I'. O

4.4 Fundamental domains of Cyl; and Cyl, in H?

Following the construction of a fundamental domain of a cylinder of the type Cyl in H? from
Section 4.2, we define for the cylinder Cyl; its fundamental domain Py" Py P P, C H2, where
H? is just a copy of the hyperbolic plane H2. We denote by xp, and xp, the hyperbolic straight
lines in H? containing the segments Py P, and P;" P, correspondingly. Following the content
of Section 4.3, we find the hyperbolic segment OgO; C H? corresponding to the element ~; of
the fundamental group m1(M?°) (see Section 4.1) with the points Og € xp, and O; € xp,.

Similarly, we define the quadrilateral Py" Py Pt P, C H3 to be a fundamental domain of the
cylinder Cyla, where H3 is another copy of H2. Denote by xp, and xp, the geodesics in H3
containing Py Py~ and Py P; correspondingly. We also find the hyperbolic segment OyOo C H3
corresponding to v € m1(M°) with the points Oy € xp, and O2 € xp,.

An attentive reader has already remarked the following abuse of notation: the geodesic x p,
with the points Py, P, , and Oy on it lie both in H? and H3 as if these copies H? and H3 of the
hyperbolic plane intersect at xp,. It is very logic since the segment PO+ Py C xp, corresponds
to the segment PT P~ in the intersection of the cylinders Cyl; and Cyls related to H? and H3.

We are now prepared to prove Theorem 4.2. In order to do this, according to Remark 4.5 we
must consider two separate situations.
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HQ

Figure 4.4: The quadrilateral Pyf Py PPP,  Figure 4.5: The quadrilateral Py Py PP,
1 =1,2, in Situation 1. i =1,2, in Situation 2.

Situation 1. If for both cylinders C'yly and Cyl, their fundamental domains POJr Py Pfr P C
H? and Py Py PPy C H? contain the segments OgO; and OgOs correspondingly (see
Fig. 4.4), then the distance between the surfaces ST and S~ from the statement of Theo-
rem 4.2 is bounded from above due to the Margulis lemma.

Indeed, recall that P™? is the midpoint of the segment PT P~ C Cyl;NCyls, then the mid-
points Pgrid, Pvid and Py of the segments Py™ Py C xpy,, Py Py C xp,, and Py Py C
Xp, are the pre-images of P™? in P" Py P"P; C H? or Py Py Py P, C H3. Following
the content of Section 4.3, we construct the paths PidpPmid ¢ H3 and Pnidpmid ¢ H3
connecting PF"*® with P{"*@ and Py*¢, and lying at the distance dgz (PF"'?, Op) from OpO;
and OgOz. We will demonstrate that, once the distance between ST and S~ (consequently,
the hyperbolic length of PTP~) is bigger then a constant depending on lf, I, l;r, and
l5 (see Section 4.1 for definitions), then two intersecting homotopically different curves in

M with fundamental domains P Pmid C H2 and PndPiid C HZ have the lengths less
than the Margulis constant 3, which is impossible.

Situation 2. If for at least one of the cylinders C'yl; or Cyls the corresponding segment
0001 or OgOz does not intersect Py” Py PiT Py or Py Py Py Py (see Fig. 4.5), then we will
prove that the hyperbolic length of the segment PP~ C Cyly N Cyly (and, hence, the
distance between ST and S™) is necessarily bounded by a constant depending on either I}
and [, or I and [, .

First, we will prove Theorem 4.2 supposing in addition that the segments OyO; and OyO4
are orthogonal to the pairs of geodesics (xp,, xp,) and (xp,, xp,) correspondingly. We will call
it the orthogonality condition. A reader may check that if the hyperbolic isometries 47 and A9
of H? (see the beginning of Section 4.1 for definitions) do not have rotational components then
the orthogonality condition is satisfied.
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4.5 Consideration of Situation 1 in case the orthogonality con-
dition holds true

Here we prove

Lemma 4.9. Let a cylinder of the type Cyl contain a closed geodesic and possess a fundamental
domain RYR=Q1TQ~ C H? satisfying the orthogonality condition. Define by ZEQ and l}_%Q the
lengths of the sides RYQT and R~Q~. There is a constant

Uho (1 )2 Lrg (1= )2
era(l erRQ(l
HY'P = 2 max { (Z};Q + arcosh %), <ll_2Q + arcosh %) }
3 3

such that if the length of the sides RYR™ and QT Q™ is greater than HC"! then there is a path

int

in RTR™QT Q™ connecting the midpoints of RTR™ and QT Q™ with the length which is smaller
than the Margulis constant €3.

Consider the cylinder Cyly of the type Cyl with a fundamental domain RTR~-QTQ~ c H2.
Here the orthogonality condition means that there are points O € RTR™ and Og € QTQ~
such that dy2(RT,0Rr) = dg2(Q1,00) (and dg2(R™,0r) = dp2(Q~,0g)), and the segment
OrOg C RYTR~Q*Q™ is orthogonal to RT R~ and QT Q™. Denote the midpoints of R R~ and
QTQ™ by R™ and Q™, the midpoints of OrRT and OgQ™ by T} and Tg, the midpoints
of OrR™ and OgQ~ by T and Ty the lengths of Or R™*? and ORrOqg by hmiq and lo, the
lengths of OgT}, OgR*, and R*Q* by hf, hJ}gQ, and Z;ELQ, the lengths of OrTy, OrR™, and
R™Q™ by hr, hpg, and lp,. By construction, R™id ¢ TgT;{, Q™ ¢ TQETJF7

ht h
hi=-L2 and h;= %Q.

Also, the length h of the segments R™R™ and QTQ~ can be expressed as follows:
h=hfo +hro- (4.1)
Since the orthogonal projection on a geodesic segment is contracting, we have
lo <lfy and lo <lgg.
Let us construct the paths RmidQmid TF Tg and T T at the distances hmq, hi and hi
from the segment OrOg as in Section 4.3. In case hEQ > hEQ we have that R™¢ ¢ ORTIJ{,

Q™ € OgTy, and
Bomia < hi-. (4.2)

According to Remark 4.6 and by (4.2), RmidQmid is shorter than T T(:?" and if we find a condition

on hEQ that guarantees the length of TIJ{ T$ to be less than the Margulis constant €3, then the

-

length of R@md is less than e3 as well. Similarly, R@md is shorter than T Ty, when

h;er < hI}Q and a condition on hEQ providing the length of TET& to be less than 3, guarantees

that the length of R@md is also less than e3.
We need the following
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Lemma 4.10. Let us consider o quadrilateral OrOqQRQ as in Section 4.3 with the fized length
lrq of the edge RQ). There is a constant

lr 2
elpg

2

hoTt = | RrQ + arcosh
€3

nt T

such that if the length hrg of the sides OrR and OqQ is greater than hi't then the length of

int
the path T/R?Q at the distance hp def hrg/2 from OrOq connecting the midpoints Tr and Ty of
OgrR and OqQQ is smaller than the Margulis constant 3.

Proof. Denote by lp the length of OrOg. Once lgrq is fixed, suppose that hrg can be arbitrarily
big, in particular, bigger than lrq.
There are points T, € OrR and Té € OgQ at the distance h/r from Og and O¢ correspond-

ingly, such that the length of the path @ as in Section 4.3 is equal to €3. By Remark 4.6,
lo cosh by = e3. (4.3)

Indeed, if T and T¢, do not exist then
lo > e3. (44)

By Remarks 4.6 and 4.8 applied to the quadrilateral OrOgRQ,
lo COSh(hRQ — ZRQ) < ZRQ. (4.5)
Mixing (4.4) and (4.5), we get

€3 COSh(hRQ — ZRQ) < ZRQ,

l
hrg < lrg + arcosh e
€3

which leads us to a contradiction with the unboundedness of hrg.
The length of TrTy, is less than the length e of T3 T, when the inequality

b > hT( - h%‘?) (4.6)

is satisfied, which is equivalent to the validity of
h
cosh /. > cosh %Q,

and, by (4.3), is also equivalent to
h
%3 5 cosh ~EQ. (4.7

Due to the following property of the hyperbolic cosine: cosh2zx = cosh’z + sinh’z, we see
that

h
cosh? (%Q) < cosh hprq.

Hence, the validity of the formula

&3

B (4.8)

coshhrg <
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implies the validity of (4.7).

Let us exclude lp from (4.8) with the help of (4.5).

At first, we perform a series of modifications of (4.5). By the formula for the hyperbolic
cosine of the sum of two angles, we get

l
cosh hrg coshlrg — sinh hrg sinhlrg < f—Q
o

Then, as sinhz > 0 for each x > 0, and because cosh z > sinhz and coshz > 0 for all x € R, we
obtain

l
cosh hpg(coshlrg — sinhlgg) < f—Q,
o
and the definitions of the hyperbolic sine and cosine,
sinthz = =5 and coshz = i, (4.9)
2 2
imply
ZRQZ
coshhprg < eJ.
lo

It means that the validity of the formula

lRQl 2
(& R 9
7(2 < 3

4.10
b 7 (4.10)
implies the validity of (4.8). We rewrite the condition (4.10) in a more convenient form:
2
€
lo < ——. 4.11
0 < Tralng (4.11)
By (4.5), we know that
l
< 1o .
cosh(hrq — lrQ)
Hence, the validity of
lrQ £
4.12
cosh(hrg — lrQ) < elralpo (4.12)
implies the validity of (4.10).
We can now conclude that the condition
hrq > hin;
obtained from (4.12) implies (4.6). O

Again, supposing hEQ > hpg we see that the condition

+ - + el (lio)?
implies
o+ 2
e'Rra (]
h;er > ZEQ + arcosh %
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—

and, by Lemma 4.10 applied to the quadrilateral OrOgR*Q™, the length of T} Tg is less than
€3. Similarly, if hEQ < hpq and

2
€3

lno (1— V2
e re(]
h > Q(ZRQ + arcosh M),

—

then the length of TR1Ty is less than e3.
Applying now the reasoning made just before the formulation of Lemma 4.10, we obtain
Lemma 4.9.

4.6 Consideration of Situation 2 in case the orthogonality con-
dition holds true

Lemma 4.11. Let a cylinder of the type Cyl do mot contain a closed geodesic and possess a
fundamental domain RTR-Q1TQ~ C H? satisfying the orthogonality condition. Define by ZEQ
and ZIT%Q the lengths of the sides RTQV and R=Q~, and by h the length of the sides RTR™ and

QTQ~. Then
207 205
h < max{(l;;Q +1HLQ), (ZRQ +1n %Q)}
ZRQ ZRQ

Proof. We will use notation developed in Section 4.5. In these terms, the fact that a cylinder of
the type C'yl does not contain a closed geodesic means that the segment OrOg lies outside the
fundamental domain Rt R-QTQ~ C H? of the cylinder.

First, we assume that hEQ > hI}Q, then

_ 5t -
h=hro —hro (4.13)
which distinguishes Situation 2 from Situation 1 when the orthogonality condition is satisfied
(compare (4.13) with (4.1)).
Given the quadrilateral OrOgR™Q~, Remarks 4.6 and 4.7 imply
lo cosh h;zQ > l;sz

then, by the definition of the hyperbolic cosine (4.9), we have

and, as el'ra > e "re for h}Q > 0, we obtain

I
ehra > B (4.14)
lo
If hEQ < ZEQ then, by (4.13),
h <lfo (4.15)

as well.
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Assume that hEQ > lIJgQ. By Remarks 4.6 and 4.8 applied to the quadrilateral OROgRTQT,
we get
lo cosh(h;gQ - ZEQ) < lIJgQ,

and, by (4.13),
lo cosh(hpg +h — ZEQ) < ZEQ

then, the definition of the hyperbolic cosine (4.9) gives us

_ 4 _ v 21}
eMraehe™lra 4 e Mraelelra < “RQ
lo
Let us weaken the obtained inequality:
- 20}
ehRthe_ng < LQ7
lo
and, together with (4.14), we get
= 20
RQ ho—lho L
lo lo
20%
el < _RQ el;Q,
RQ
+ 2lngQ
RQ

Note that the inequality (4.15) is stronger than (4.16).
Assuming hJISLQ < h;zQ’ we just need to interchange the upper indices + and — in the for-
mula (4.16):

~ 250
RQ
O
4.7 Proof of Theorem 4.2 in the general case
Let a quadrilateral R Ry Rf Ry C H2? with h % dme(R$,Ry) = dwe (R}, Ry), It %
dye (RS, R), and 1~ L Ao (Ry, Ry) be a fundamental domain in H? of a cylinder Cyly of

the type Cyl. Denote by xr, and Yr, the hyperbolic straight lines in H? containing the seg-
ments RS“ Ry and R Ry correspondingly. Then, by Lemma 4.3 applied to the points Ra' € XR,
and R € xg, there is a a unique hyperbolic straight line xo C H? intersecting yg, at a
point Op, xr, at a point O;, such that R(J{ and Rf lie in the same half-plane with respect

to xo, ht def dg2(R$,00) = dg2(R{,01), and the angles of intersection Z(xo,xr,) and
Z(xo,Xr,) are equal to some o € (0,7/2). Denote also h~ L (Ry,00) = dg2(Ry,01)

and lo % dyz (0, 01).
Let the hyperbolic isometry Yo of H? send Oq to O; leaving the geodesic yo invariant. Note

that xo sends also Rar to Rf and Ry to R} . We define points R;r def )?b.Rar, R def )Zb.Ra,
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and O; def Xb.0p for i € Z, where the symbol i, stands for the isometry o applied i times
when i is a positive integer, and for the inverse isometry )251 applied —¢ times when ¢ < 0.
Denote by x g, the hyperbolic straight line containing the segment RjR i € Z. Construct

the curves vy qef Usez R RS, and v qef UsezRi Ry, of the geodesic segments R R;,, and
R R;,,, i € Z. Remark that for each i € Z the quadrilateral R R; R, R;,, C H? serves
as a fundamental domain of the cylinder Cyly in H2, and the connected domain between the
curves vy and v_ of the hyperbolic plane is a universal covering of Cyly in H2. By construction,
de(R;r,R;) = h, de(Rj,Oi) =ht, dg(R;,0;) =h", de(R;r,R;;l) =1t de(R;,R;rl) =
1=, Z(xo,xXRr;) = @, i € Z.

Let us construct a family of hyperbolic straight lines Xj passing through R;” and orthogonal

to xo, @ € Z. Define the points of intersection OZT" def Xj Nxo, T;” def Xj Nv_, 1 € Z. Note
that, by construction, the connected sets E:r bounded by X:er vy, X;r, and v_ are fundamental

domains of the cylinder Cyly in H?, i € Z.

7 7

Remark 4.12. The geodesic segment R;fHR;rl lies inside the fundamental domain ZF C H? of
a cylinder Cyly of the type Cyl; on the other hand, the geodesic segment R;FTZ-_ lies inside the
fundamental domain R} R; Rf,,R;,, C H? of the same cylinder Cyly, i € Z.

Proof. Since for every integer ¢ the hyperbolic straight lines Xj are orthogonal to the geodesic
Xo corresponding to the closed geodesic x° of the unbounded cylinder Cyl§ = H?/(xo) which
contains Cyly (see also Section 4.2), the projection on Cyly of a path £ C E:r connecting any
point P* of the upper boundary 0= N v (= R;FR;TH) of Zf with any point P! of its lower
boundary 9= N v_ does not make a full turn around Cyly.

Let us fix i € Z. As Ej C H? is a fundamental domain of Cyly, the lower boundary
9= Nv_ of Zf must contain at least one and at most two points of the family { R} € H?[j € Z}
corresponding to one point on Cyly. Consider the point R, of this family. By Remark 4.4,
the length of the segment R;:_lRi__H is the smallest one among the lengths of all the segments
R;EHR;, j € Z. Hence, the projection on Cyly of R;CHR;H does not make a full turn around
Cylp (otherwise, there would be a path shorter than R;:_lRi__H among the segments R;fHRj_,
j € Z). Since a € (0,7/2), we conclude that R, R, C ZF. Similarly, R R; C Zf ;. Hence,
RfT7 C RfR;Rf |\ R;,,. O

Similarly, we construct a family of hyperbolic straight lines x; passing through R; and

orthogonal to xo, i € Z, and define the points of intersection O; def X; Nxo, T;r def X; Nvy,

i € Z. By construction, the connected sets =;” bounded by x;_ |, V4, X; , and v_ are fundamental
domains of the cylinder Cyly in H? and, by analogy with Remark 4.12, the following statement
holds true.

Remark 4.13. The geodesic segment R;"Ri_ lies inside the fundamental domain = C H? of a
cylinder Cyly of the type Cyl; on the other hand, the geodesic segment R;+1T;-r|-1 lies inside the

fundamental domain R;FR;R;_lR;H C H? of the same cylinder Cyly, i € Z.
Also, define hg def dge (RS, OF), ho def dg2(R; ,0; ), and note that dgz(0;,0;41) =

di2 (0, 0f,1) = dw2(0;,0;,,) = lo, i € Z.

4.7.1 Consideration of Situation 1 in the general case

In this section, we demonstrate
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Lemma 4.14. Let a cylinder of the type Cyl contain a closed geodesic and possess a fundamental
domain R Rf Ry Ry C H2. Define by IT and I~ the lengths of the sides R§ Ry and Ry Ry, and
by h the length of RS'RO_ and RT Ry . Then the condition

el (It)?
h > 2 max { arcosh [cosh I cosh (l+ + arcosh 672)] ,
3

el (l_ )2
arcosh | cosh!™ cosh | [ + arcosh ———5— . (4.17)
€3
guarantees that there is a path in R§ R} Ry Ry connecting the midpoints of R§ Ry and Rf Ry,
and such that its length is smaller than the Margulis constant €3.

As we consider Situation 1, we suppose that O; € R; R} for i € Z and, consequently,
h=h"+h". (4.18)

For all i € Z, let us denote the midpoint of the segment RjRi_ by R;md, the midpoints
of R70; and Ry O; by R™ and R™~ the midpoints of R O;” and R; O; by OM™“* and
O™~ Denote the distances from the points R™* to the straight hyperbolic line xo by d, from

(2 ) p (3 g yp X y )
R:-””H to xo by d*, from R;md* to xo by d~ and note that, by construction, the distances from
the points O;””H to xo are equal to hg/Q and from the points O;md* to xo are equal to h,/2,
i €Z.

Denote by ¥ a curve in H? at the distance d from xo and passing through the points R;"id
for all 4 integers; by )2;% a curve in H? at the distance d* from yo and passing through the points
R:-””H; by X a curve in H? at the distance d~ from yo and passing through the points R;mdf;
by )225 a curve in H? at the distance hJOr /2 from xo and passing through the points OZ’-"“H; by
Xo a curve in H? at the distance ho /2 from xo and passing through the points Of”d_, 1€ 7.

Remark 4.15. In the notation defined above, the inequalities

h$ hg
dt < 70 and d~ < 70 (4.19)

hold true.

Proof. Define by ﬁgm” the orthogonal projection of the point Rg”dJr on xo C H? and con-
sider the hyperbolic triangles AOyOF Ry and AORT RIF. Recall that dg= (R, 0f) =
he, dge (R, Ry = dF, dg=(RJ,00) = h*, du=(Ry™T,00) = ht/2, LRTO,OF =
ZRIMIT Oy RIMIT = o) and Z000F RY = Z0¢ R RVt = 1/2.
Applying Hyperbolic Law of Sines to AOoOf Ry and AOoﬁg”d*'R’Omd*', we obtain the for-
mulas
sin v sin 5

sinh A "~ ginh At

and
sin a sin %

sinh d+ o sinh % ’

or, after simplification,
sinh h; = sinasinh ™ (4.20)
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and
Kt
sinh d* = sin a:sinh -5 (4.21)
Note that when the formula N
sinh d™ < sinh hTO (4.22)
holds true, the first relation in (4.19) is satisfied.
By (4.21), (4.22) is equivalent to
ht h
sin asinh — < sinh 2. (4.23)
2 2

Due to the following property of the hyperbolic sine: sinh 2z = 2sinh z coshz, from (4.20) we

get
+

+ ht
2 sinh 70 cos

nlio o W cosh (4.24)
—= = 2sin asinh — cosh — .
2 2 2

As hg < h™ by construction and the function cosh z is monotonically increasing for z > 0, then
it is true that cosh(hg/2) < cosh(h™/2) and, by (4.20), we obtain

h ht ht ht
sinh — cosh — > sin a sinh — cosh —. (4.25)
2 2 2 2
Simplifying (4.25), we see that the condition (4.23) is satisfied. Hence, the first inequality in (4.19)
holds true.
The validity of the second relation in (4.19) we prove by the same method. O

Together with constructions made above, Remark 4.15 means geometrically that the curve
X lies inside the connected domain of the hyperbolic plane bounded by the curves )2}5 and Xp
which is embedded into the connected domain bounded by )25 and X, which is embedded, in its
turn, into the connected domain bounded by v4 and v_.

By Remark 4.6, the length of the path RmidR;’}jld connecting the points R and R;’}Fi{i on the

curve ¥ is | = lo cosh d, the length of the path R””CIJFR””CIJr C {% connecting the points R;”idJr

z+1
an is 0O COS e length of the pa C X7 connecting the points
d R is [}y = lo coshd*, the length of the path Rid= Ry R~ C %5 ting the point
R™? and Rmzd* lR = lp coshd™, the length of the path OderO;TfH C {5 connecting the

points O and Om”“r is i =1lo cosh(hg/2) and the length of the path O~ O:’ffli C Xo
connecting the points O;’”d and OV~ is I = lo cosh(hg /2), i € Z.

Assume that R™? € RO, i € Z. According to Remark 4.15, we have
i

lo <l

I/\
IN
IN
I/\

i It (4.26)
Otherwise R € R, O;, i € Z and

lo <<y

I/\
I/\

5 <1” (4.27)

remind that we consider Situation 1). Hence, if we prove that for h big enough [t < €3 and
) 1% g g O

lAg < 3, then | < 5 and the projection of the path RMidRmid C H? on the cylinder Cyly is
a closed curve which is shorter than the Margulis constant €3 and which passes through the
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midpoint R™* of the segment RT R~ C Cyly corresponding to R;FR; C H2, i € Z (compare it
with the reasoning made in the proof of Lemma 4.9).

First, fixing [T let us find a condition on A" which will guarantee ZE to be less than e3.

By Remark 4.12, the geodesic segment Rg T, lies inside the fundamental domain Rf Ry R Ry C

H2. Hence, the point Of of intersection of Ry T}, with Yo belongs to the geodesic segment OpO; .
Denote lOO* 0o def dg=(Of , Op) and consider the right-angled triangle AO,OF Ry . Hyperbolic
Pythagorean Theorem implies:

coshh™ = cosh b} cosh lOJOo' (4.28)
Since OgOf C OpO1, the inequality lojoo <o holds true and, together with (4.28) gives us

cosh h™ < cosh hg coshlp,

and, by (4.26),
coshh™ < cosh hg coshi™,

or, in other form,

cosh bt
coshhf, > oshI (4.29)
It means that, once we take h™ to satisfy the condition
et ( l+)2
cosh h™ > coshl™ cosh <ZJr + arcosh 72> , (4.30)
€3
then, according to (4.29),
el (1t)?
hg > [T + arcosh —,
€3
and, by Lemma 4.10 applied to the quadrilateral Oar OIFR(J{ Rf, we conclude that
I5 < es. (4.31)
Similarly, if we take A~ to verify the inequality
el’ (17 )2
cosh h™ > coshl™ cosh (l + arcosh 72) , (4.32)
€3
then .
I5 < es. (4.33)

—

Finally, let the condition (4.17) be satisfied. Supposing h™ > h~, we have Ry*IRd C
Of Of RE R and, by (4.18), the inequality (4.30) holds true, which implies (4.31) and, due
to (4.26), leads as to the validity of the condition

[ <es (4.34)

(compare this reasoning with the proof of Lemma 4.9). On the other hand, if h™ < h~ then

RyURPd © O5 OF Ry Ry and, by (4.18), the inequality (4.32) holds true, which implies (4.33)
and, due to (4.27), leads as to the validity of (4.34).
Lemma 4.14 is proved.
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4.7.2 Consideration of Situation 2 in the general case

Lemma 4.16. Let a cylinder of the type Cyl do mot contain a closed geodesic and possess a
fundamental domain RE)FRTRO_RO_ C H2. Define by It and I~ the lengths of the sides RE)FRT
and Ry Ry, and by h the length of RSFRJ and RIFR;. Then

20t 20~
h<maux{(l+—i—l_—i—lnl—)7 (l++l_+1nl—+)}.

Proof. We will use notation developed in Section 4.7. In these terms, the fact that a cylinder of
the type Cyl does not contain a closed geodesic means that the segment OyO; lies outside the
fundamental domain RJ R Ry Ry C H? of the cylinder.

First, we suppose that h™ > h™, then

h=ht—h", (4.35)
which distinguishes Situation 2 from Situation 1 (compare (4.35) with (4.18)).
Denote .
ho € hE —ng, (4.36)

construct a curve ¥~ C H? at the distance hg from xo and passing through the points R;, and

7 )
define the points of intersection K; et Xi NX~, i € Z. By construction, the lengths ZRT K- and
lojK; of the segments R} K; C RTO; and Of K;” C RO} are equal to

lprg-=ho and lo+x- =hg, (4.37)

—

i € Z. Define also the path R; K; connecting the points R; and K on the curve x 7, ¢ € Z.
By Remark 4.12, the geodesic segment R(T Ky C R(T T, lies inside the fundamental domain

R{ Ry Rf Ry C H2. Hence, the path R; K; is contained in the hyperbolic ball B (I7) (also,
0
we see that the segment R, R] is a radius of BRS (I7)), and the length ZR[7 K of the segment

Ry K, C Ry Ry satisfies the following inequality:
lpo g <17 (4.38)
Applying the triangle inequality to ARar Ry K , we get:
h<lpsiy e

and, by (4.37) and (4.38),
h<l™ +ho. (4.39)

Let us now estimate the parameter hp from above.
Given the quadrilateral Oy O Ry, R;, Remarks 4.6 and 4.7 imply

locoshhg > 17,
then, by the definition of the hyperbolic cosine (4.9), we have
eho +e ho 1~
2 > lo’
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and, as e?o > e~"o for ho > 0, we obtain

S
elo > —. (4.40)
lo
If b}, < 1T then, by (4.36),
ho <1t (4.41)

as well.
Assume that hg > [T. By Remarks 4.6 and 4.8 applied to the quadrilateral Oar OIFRSr Rf,
we get
lo cosh(hy — 1) <17,

and, by (4.36),
lo cosh(hg + ho — 1) < 1T,

then the definition of the hyperbolic cosine (4.9) gives us

N N +
ehoehoe_l+ + e_hoe_hoel+ &
lo
Let us weaken the obtained inequality:
_ +
ehoehoe=!" < i,
lo
and, together with (4.40), we get
l;eho -t £7
lo lo
eho < E l+,
17
" 20T
ho <1™ +1n e (4.42)

Note that the inequality (4.41) is stronger than (4.42). Mixing and (4.42) we get:

2]+

l
h<l~ +l++lnl— (4.43)

Supposing h™ < h™, we just need to interchange the upper indices + and — in the for-

mula (4.43):
20~

— Jr =
h<l”+I"+1In T

4.7.3 Finalizing the proof of Theorem 4.2

Consider some points Pt € ¢ Ncj and P~ € ¢] Necy. As in Section 4.1, construct the
cylinders Cyly and Cyls of the type Cyl homotopically equivalent to the pairs of curves (¢}, ¢])
and (cy,cy ), with the upper boundaries of the lengths I and I3, with the lower boundaries of
the lengths ] and 5, and such that the hyperbolic geodesic segment PTP~ C M?° lies in the
intersection C'yl; N Cyls.
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If Situation 2 is realized for at least one of the cylinders C'yl; and Cyls, than Lemma 4.16
implies that

+ o— + - 21 + 97— 2ly + 97— 21y + 97— 2ly
d(S ,S ) < max ll +ll +1H l__ 5 ll +ll +1I1 l_+ 5 12 +12 +1I1 l__ , 12 +12 +1I1 l_+ .
1 1 2 2
Otherwise, Situation 1 is realized for both cylinders C'yl; and Cyls and, once we suppose

)2
d(ST,87) < 2max { arcosh [coshli|r cosh (lf' + arcosh 612721))] ,
3

2 2

_ _ el (I )? ; ; el (15)?
arcosh | cosh!; cosh ( l; + arcosh ——5—— | |, arcosh | cosh (3 cosh | I3 + arcosh —5—— | |,
€3 €3

2

- - e’z (Iy)?
arcosh | coshl; cosh ( l; + arcosh —5— ,
€3

by Lemma 4.14, there are curves cur; C Cyly and cure C Cyls with the lengths less than the
Margulis constant €3, both passing through the midpoint of the segment PTP~. Thus, we come
to a contradiction with Margulis Lemma. Theorem 4.2 is proved. [
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