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Abstract 

Abstract 

Mercury (Hg) is a toxic, persistent and globally distributed pollutant. Since the industrial revolution, 

human activities have augmented the global Hg cycle at the Earth’s surface by a factor of three. Hg 

emissions from coal-fired power plants represent at present the largest single anthropogenic source. 

However, quantitative tracing of the fate of coal Hg emissions from different countries or regions is a 

challenging issue. The objective of this PhD dissertation was to use Hg stable isotope signatures to 

address this problem. Firstly, we developed a combustion-trapping protocol to extract, purify and 

pre-concentrate Hg from solid samples with low Hg levels such as coal and coal combustion 

products. Purified coal Hg was then measured for its isotope compositions by high-precision 

(~0.1‰, 2σ) multi-collector inductively coupled plasma mass spectrometry. 

In a 1st case study on two coal-bearing sequences in the Huainan Coalfield and the Jining Coalfield 

(China), we investigate in detail the Hg isotope variation in coal deposited during Permian.  We 

observed a 2‰ variation of the δ202Hg signature and a 0.3‰ variation of the Δ199Hg signature in both 

continuously deposited coal seams over a period of ~20 million years and within a single coal seam. 

Correlations between δ202Hg, Δ199Hg, Hg concentration, mineralogy, and other geochemical 

parameters are visible, but often contradictory and difficult to interpret in terms of Hg sources to coal 

or biogeochemical transformations of Hg in coal. In a 2nd case study we develop an international coal 

Hg isotope library, based on 108 new coal samples and 50 published coals that cover major coal-

producing basins in Africa, China, Europe, India, Indonesia, former USSR and the USA. We observe 

a 4.7‰ range for the δ202Hg signature (−3.9 to 0.8‰) and a 1.0‰ range in the Δ199Hg signature 

(−0.6 to 0.4‰). In total, 14 (p<0.05) and 17 (p<0.10) of the 28 pairwise comparisons between eight 

global regions are statistically distinguishable on the basis of δ202Hg, Δ199Hg or both. Finally, in a 3rd 

case study we address the question whether Hg emissions from coal-fired power plants preserve the 

Hg isotope signatures of feed coals. We compare the Hg isotope compositions of feed coal, bottom 

ash, fly ash and gypsum by-products in six utility boilers of two large Chinese coal-fired power 

plants. We find that fly ash and gypsum Hg capture by-products are systematically enriched in the 

lighter isotopes. A Hg isotope mass balance suggests that stack flue gas emissions are enriched in 

heavy isotopes by at most 0.3‰ for δ202Hg while Δ199Hg signatures remain unchanged. Coal fired 

power plants, therefore, do not dramatically change coal Hg isotope signatures. 

In summary we find that coals from different global coal basins are often isotopically distinguishable 

at the p=0.05 or 0.10 level, and that combustion and capture processes in coal-fired power plants do 
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Abstract 

not substantially change feed coal Hg isotope signatures. We consider these combined results to be 

sufficiently promising to recommend detailed atmospheric Hg isotope tracer studies of coal plant Hg 

emissions. However, we anticipate that the different gaseous and particulate forms of Hg in coal flue 

gas emissions may carry more contrasting Hg isotope signatures than we estimated for bulk 

emissions. Therefore, caution should be taken in near-field and far-field coal Hg emission tracing, 

and additional studies on the Hg isotope signatures of coal plant Hg emissions are necessary. 
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Abstract 

Résumé 

Le mercure (Hg) est un élément toxique et récalcitrant dans notre environnement. Depuis la 

révolution industrielle, les activités humains ont augmenté la quantité du Hg qui cycle à la surface de 

la Terre d’un facteur trois. Les émissions du Hg des centrales au charbon représentent à elles-seules 

la moitié de tous les émissions anthropiques du Hg. Désormais, le traçage quantitatif de ces 

émissions des différentes régions du globe n’est pas simple. L’objectif de cette thèse a été d’explorer 

les signatures isotopiques du Hg comme traceur potentiel des émissions du Hg des centrales au 

charbon. Dans un premier temps un protocole d’extraction, purification et de pré-concentration du 

Hg par voie de combustion et re-piégeage acide a été développé. Une fois purifie, le Hg a été analyse 

par spectrométrie de masse à haute précision (~0.1‰, 2σ). 

Dans une 1ier étude de cas, deux séquences géologiques de charbon du Carbonifère et Permien ont été 

examinées dans les bassins de charbon de Huainan et Jining en Chine. Une variation de 2‰ de la 

signature δ202Hg, et une variation de 0.3‰ de la signature Δ199Hg a été observé au sein d’une 

séquence de charbon encompassant 20 millions d’années, mais egalement au sein d’une seule couche 

de charbon. Ces variations isotopiques sont parfois corrélées entre eux, ou avec les teneurs en Hg ou 

encore avec des paramètres minéralogiques et/ou géochimiques. Cependant il a été difficile 

d’interpréter les tendences isotopiques de façon inéquivoque. Dans une 2ieme étude de cas, une 

compilation isotopique du Hg dans les charbons a été établie par l’analyse de 108 nouveaux 

échantillons de charbon, augmenté par les 50 valeurs déjà publiés. La compilation inclut des charbon 

provenant de l’Afrique, Europe, Inde, Indonesie, l’ancien USSR et les USA. Une variation 

isotopique de 4.7‰ de la signature δ202Hg, et une variation de 1.0‰ de la signature Δ199Hg est 

observeé dans l’ensemble des charbon. 14 (p<0.05) and 17 (p<0.10) des 28 comparaisons possibles 

entre les huit principales régions producteur du charbon du monde sont statistiquement différenciable 

selon leurs δ202Hg, Δ199Hg ou les deux. Enfin, dans une 3ieme étude de cas, nous nous intéressons à la 

question si les émissions du Hg à la cheminée d’un centrale au charbon préservent la signature 

isotopique du charbon combusté. Afin d’y répondre les charbons, cendres résiduels, cendres volants, 

et gypse de six chaudrons industriels de deux grand centrales de charbon chinoise ont été étudiés. 

Nous observons que les produits secondaires des centrales, i.e. cendres et gypse, sont 

systématiquement enrichis en isotopes légers par rapport au charbon combusté. Par conséquence, un 

bilan de masse isotopique suggère que les émissions du Hg par la cheminée doivent être légèrement 

enrichis en isotopes lourds, jusqu’à 0.3‰ (δ202Hg). En parallèle, les signatures Δ199Hg restent 
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inchangées et on estime qu’en fin de compte que les centrales au charbon ne modifient pas 

dramatiquement les signatures isotopiques caractéristiques des charbons combustés. 

En résumé, nous observons que les charbons provenant du globe entier sont isotopiquement 

discernable à un niveau de p de <0.05 ou <0.1. Les processus de combustion et de captage du Hg 

dans les centrales au charbon ne modifient que minimalement les signatures isotopiques du Hg. Nous 

considérons ces deux résultats suffisamment prometteur à fin de recommander des études plus 

élaborées au sujet du traçage des émissions du Hg des centrales au charbon dans l’environnement. Il 

sera important d’étudier les signatures isotopiques des formes gazeuses et particulaires du Hg dans 

les panaches des centrales au charbon, afin de vérifier leur variation et évolution. La difficulté de 

tracer les sources du Hg réside dans la modification de ses signatures isotopiques par les 

transformations biogéochimiques omniprésentes dans l’atmosphère. 
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Chapter 1. Introduction 

Chapter 1. Introduction 

Mercury (Hg) is a persistent toxic element. Following Hg emission into the atmosphere from natural 

and anthropogenic sources, atmospheric circulation can distribute Hg globally. Depending on its 

chemical form and on atmospheric oxidants, the atmospheric lifetime of Hg ranges from several days 

to more than one year. For millennia, and especially since the industrial revolution, human activities 

such as gold mining, coal combustion and non-ferrous metallurgy have augmented the amount of Hg 

in the Earth’s land-ocean-atmosphere system by a factor of three. Currently, anthropogenic Hg 

emissions (~2000 tons/year) far surpass those derived from natural processes (~500 tons/year) such 

as volcanic eruptions and soil degassing.  

Mercury is a chalcophile element, and its concentration in coal is determined by many factors such 

as coal rank, coal provenance, depositional environment of coal deposits and geological activities 

during and after coal deposition. Sulfide minerals and organic matter are the main Hg carriers in 

coal. In general, Hg is present at trace levels of 10-1000 ng/g in coal. However, the large volumes of 

coal used in industrial processes have made coal the dominant Hg emission source. Hg emission 

from stationary coal combustion, primarily coal-fired power plants, is the largest single source, 

accounting at present for approximately half of all anthropogenic Hg emissions (~700-900 tons/year) 

(Pacyna et al., 2010; Pirrone et al., 2010).  

Quantitative assessment of the impact of coal Hg emission on local, regional and global ecosystems 

is of substantial interest to environmental scientists and decision-makers. Moreover, with the 

implementation of the first global, legally-binding UNEP treaty aimed at reducing anthropogenic Hg 

emissions, the identification and traceability of coal Hg emissions from different countries or regions 

is critically important. Hg stable isotope signatures are promising tracers of Hg sources and 

biogeochemical transformations of Hg. Different Hg sources are characterized by distinct Hg isotope 

compositions that can be resolved within the analytical uncertainty of modern mass spectrometers. 

Biogeochemical processes have been shown to fractionate the seven stable Hg isotopes as a function 

of mass, nuclear volume or nuclear magnetic moment. Most natural samples, including the coals 

considered here, show Hg isotope variations that are controlled by mass dependent fractionation 

(MDF, denoted by δ202Hg) and mass independent fractionation related to the magnetic isotope effect 

(MIF, denoted by Δ199Hg and Δ201Hg). The objective of this PhD dissertation was to evaluate the 

usefulness of Hg stable isotope signatures to 1) understand the origin of Hg in coal, and 2) trace coal-

fired power plant emissions from different global regions. 
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Chapter 1. Introduction 

A 3‰ variation in δ202Hg and a 1‰ variation in Δ199Hg and Δ201Hg have been reported in worldwide 

coal deposits (Biswas et al., 2008; Lefticariu et al., 2011; Sherman et al., 2012; Sun et al., 2013). In 

addition, coals from different coal deposits are distinguishable by δ202Hg and Δ199Hg. This suggests 

that atmospheric Hg emissions from coal combustion in different regions can be distinguished. 

However, coal combustion processes, Hg inter-species transformations and Hg removal by air 

pollution control devices in coal-fired power plants potentially generate coal Hg emissions that are 

significantly different from coal in Hg isotope signatures. Therefore, for successful Hg emission 

tracing, we need to know at least the following information: 

1) Hg isotope signatures of major coal deposits and the ability to distinguish them from each other;  

2) The degree to which the Hg isotope compositions are shifted between the emitted bulk flue gases 

and feed coal; 

3) The isotope signatures of gaseous and particulate Hg forms in bulk flue gases at the coal plant 

smoke stack. This has important implications for near-field and far-field environmental Hg tracing as 

different Hg species have varying atmospheric reactivities and life-times.  

This PhD dissertation is divided into eight chapters to address the above outlined points. Chapters 2 

and 3 respectively give a brief review on Hg emissions and cycling, and on Hg isotope fractionation 

theory. Sampling protocols and Hg isotope measurement techniques are summarized in Chapter 4. 

Chapters 5-8 contain the main scientific findings, organized in four scientific papers of which two 

were published. Chapter 5 details a new analytical protocol for extracting Hg from solid samples of 

low-level Hg. The solid samples were combusted in a tube furnace and trapped into acid solution 

before measurement by multi-collector inductively coupled plasma mass spectrometry. In Chapter 6 

we examine in detail the Hg isotope variations of the Huainan and Jining coal basins in China. We 

find that natural processes caused a ~2‰ variation of δ202Hg and 0.35‰ of Δ199Hg among coal 

seams deposited at the same location over a period of 20 Ma. Yet, the same variation is found back 

within a single coal seam. Correlations between δ202Hg, Δ199Hg, Hg concentration, mineralogy, and 

other geochemical parameters are visible, but often contradictory and difficult to interpret. In 

Chapter 7, we develop a coal Hg isotope library by reporting the isotope compositions of 108 new 

coal samples from major coal-producing basins in Africa, China, Europe, India, Indonesia, former 

USSR and the USA, adding to the thusfar ~50 published coal samples. A 4.7‰ range in δ202Hg (−3.9 

to 0.8‰) and a 1‰ range in Δ199Hg (−0.6 to 0.4‰) are observed. 14 (p<0.05) to 17 (p<0.1) of the 28 

pairwise comparisons between eight global regions are statistically distinguishable on the basis of 
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δ202Hg, Δ199Hg or both. These findings justify the potential application of Hg isotope signatures to 

coal Hg emission tracing.  Chapter 8 addresses the question whether Hg emissions from coal-fired 

power plants preserve the Hg isotope signatures of feed coals. To do so, we examined the Hg isotope 

compositions of feed coals, bottom ash, fly ash and gypsum at six utility boilers of two modern 

Chinese power plants. Results suggest that stack Hg emissions are only slightly enriched by up to 

0.3‰ (δ202Hg) in the heavier Hg isotopes relative to feed coal. Moreover, we are able to develop a 

generalized Hg isotope fractionation model that relates stack emission δ202Hg to feed coal δ202Hg and 

Hg removal efficiencies of electrostatic precipitator and wet flue-gas desulfurization emission 

control technologies. 

We conclude in Chapter 9 by summarizing our main findings as follows. The Hg isotope 

compositions of coal are sufficiently different to distinguish Chinese coals from African, European, 

Indian and Mongolian coals at p<0.05, and from Indonesian, former USSR, and the USA coals at 

p<0.10. Overall, half of all global coal deposits are isotopically distinguishable (p<0.05). We 

evaluated whether coal combustion in coal-fired power plants changes Hg isotope signatures from 

feed coal to stack emissions, and find that the changes are minor (δ202Hg, <0.3‰) to negligible 

(Δ199Hg). We consider these combined results to be sufficiently promising to recommend detailed 

atmospheric Hg isotope tracer studies of coal plant Hg emissions. Nevertheless, as we note in 

Chapter 9, the different gaseous and particulate forms of Hg emitted from coal plants may carry 

contrasting Hg isotope signatures. Published work on Hg deposition near a coal plant also points at 

rapid post-emission changes in Hg isotope signatures (Sherman et al., 2012). More work is needed to 

address both of these uncertainties. An in-depth exploration of Hg isotope variations in individual 

coal mines and across a single coal seam point at a complex interplay between multiple factors, 

including the coal depositional environment, conditions of coalification and post-depositional Hg 

dynamics. No conclusive relationship between Hg isotope signatures and these factors could be 

made.    
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Chapitre 1. Introduction  

Le mercure (Hg) est un élément toxique et persistent dans notre environnement. Suite aux émissions 

naturels et anthropiques du Hg, les courant atmosphériques le distribuent a travers du globe. Selon la 

forme chimique du Hg et la présence des oxydants, le temps de résidence du Hg dans l’atmosphère 

varie de quelques jours a plus d’un an. Pendant des millénaires, et en particulier depuis la révolution 

industrielle, les activités humains tels que l’orpaillage, la combustion du charbon ou les activités 

métallurgiques ont augmente les teneurs en Hg à la surface de notre planète par un facteur trois. 

Aujourd’hui, les émissions anthropiques du Hg (~2000 tonnes/an) dépassent largement les émissions 

naturels (~500 tonnes/an) tels que les éruptions volcaniques et le dégazage des sols. 

Le Hg, élément chalcophile, est présent dans le charbon ou son concentration est détermine par le 

type et l’origine du charbon, l’environnement de déposition du charbon, et les conditions 

géologiques pendant et après la formation du charbon. Les minéraux soufrés et la matière organique 

sont les phases porteuses du Hg dans le charbon. Typiquement, les teneurs du Hg dans le charbon 

sont de l’ordre de 10-1000 ng/g. L les grandes quantités du charbon utilisé par les industries ont 

propulsé ce secteur comme émetteur du Hg numéro un. En particulier, l’émission du Hg par les 

centrales au charbon est la première source du Hg vers l’atmosphère et représente à elle seule la 

moitié des émissions anthropiques du Hg (~700-900 tonnes/an) (Pacyna et al., 2010; Pirrone et al., 

2010). 

L’évaluation quantitative de l’impact des émissions du Hg par les centrales au charbon sur 

l’environnement local, régional et globale est devenue une priorité pour les scientifiques et les 

décideurs en politique d’environnement. La mise en action de la première traité internationale, 

élaboré sous les auspices de l’UNEP en 2013, sur la réduction des émissions anthropiques du Hg 

demande des outils adaptés à l’identification et le traçage des différents émissions du Hg provenant 

des régions du monde. Depuis 2001, la recherche scientifique a montré que les signatures isotopiques 

du Hg sont des traceurs promettants des sources du Hg et des transformations biogéochimiques du 

Hg. Différentes sources naturels et anthropiques du Hg ont souvent des signatures isotopiques qui 

sont suffisamment différents pour être résolues par la spectrométrie de masse moderne. Des 

processus biogéochimiques ont été montrés de séparer les sept isotopes stable du Hg en fonction de 

leur masse, volume nucléaire, ou leur moment magnétique nucléaire lors des transformations 

partièlles. La majorité des échantillons naturels, les charbons étudiés ici inclus, montrent des 

fractionnements isotopiques soit dépendents de la masse (MDF, représenté par δ202Hg), ou 
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indépendants de la masse des isotopes (MIF, représenté par Δ199Hg and Δ201Hg). Les objectives 

principales de ces travaux de thèse ont été d’évaluer l’applicabilité des signatures isotopiques du Hg 

à 1) comprendre l’origine du Hg dans les charbons, et 2) tracer les émissions du Hg des centrales au 

charbon de différentes régions du monde. 

Deux études précédentes ont montrés des variations isotopiques de 3‰ du δ202Hg et de 1‰ du 

Δ199Hg et Δ201Hg dans des charbons d’origines différentes (Biswas et al., 2008; Lefticariu et al., 

2011; Sherman et al., 2012; Sun et al., 2013). Ces résultats suggérèrent que les émissions du Hg des 

centrales au charbon de différentes régions du monde sont potentiellement traçable. Cependant la 

combustion du charbon comprend des transformations des formes physicochimiques du Hg et une 

dépollution partièlle des gaz de combustion qui peuvent dans son ensemble modifier les signatures 

isotopiques du charbon. Afin d’évaluer la traçabilité des émissions du Hg des centrales au charbon, il 

est désormais nécessaire de comprendre les aspects suivants : 

1) Les signatures isotopiques du Hg dans les charbons alimentant les centrales au charbon. 

2)  L’amplitude du fractionnement isotopique eventuelle entre le charbon et les emissions du charbon 

à la cheminee d’une centrale au charbon. 

3) Les signatures isotopiques des formes gazeuses et particulaires du Hg émis par les centrales au 

charbon. Ceci a un impact sur le traçage de ces émissions vers l’environnement locale (formes 

particulaires) et globale (formes gazeuses), car les différentes formes du Hg ont des demi-vies 

atmosphériques très contrastés. 

Cette thèse a été organisé en huit Chapitres afin de traiter les objectifs établies ci-dessus. Chapitres 2 

et 3 dressent l’état de l’art sur les émissions et cycle biogéochimique du Hg, et sur la théorie du 

fractionnement isotopique du Hg respectivement. Chapitre 4 résume les protocoles de mesure des 

rapports isotopiques par spectrométrie de masse. Les Chapitres 5-8 résument les principaux résultats 

scientifiques organises sous quatre publications scientifiques de rang A (dont 2 publies). Chapitre 5 

détaille un nouveau protocole d’extraction du Hg par méthode de combustion et piégeage acide, 

adapté aux charbons et d’autres échantillons solides de faible teneurs en Hg. Le Chaptire 6 explore 

les variations isotopiques du mercure au sein d’une seule mine de charbon, et au sein d’une seule 

couche de charbon dans le bassin d’Huainan et d’Jining en Chine. Nous observons une variation de 

~2‰ en δ202Hg et de 0.35‰ en Δ199Hg tout au long des couches de charbon déposés pendant 20  

millions d’années. Des corrélations entre δ202Hg, Δ199Hg, concentrations en Hg, minéralogie, et 
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autres paramètres géochimiques sont observés, mais parfois contradictoires et difficile à interpréter. 

Le Chapitre 7 présente une libraire de signatures isotopiques du Hg dans les charbons basé sur ~50 

données publies auparavant, et 108 nouvelles mésures de nombreuses basins de charbon mondiales, 

incluant, l’Afrique, la Chine, l’Europe, l’Inde, l’Indonésie, la Mongolie, l’ancient USSR et les Etats-

Unis. Nous observons une variation isotopique de 4.7‰ en δ202Hg (−3.9 a 0.8‰) et de 1‰ en 

Δ199Hg (−0.6 a 0.4‰). 14 (p<0.05) à 28 (p<0.1) des 28 comparaisons possibles entre les huit 

principales régions producteur du charbon du monde sont statistiquement différenciable selon leurs 

δ202Hg, Δ199Hg ou les deux. Cette observation justifie pleinement l’application potentiel de tracer les 

émissions du Hg provenant des centrales au charbon du monde. Le Chapitre 8 examine la question si 

les émissions du Hg des centrales au charbon préservent les signatures isotopiques des charbons 

combustés. Nous avons étudiés les compositions isotopiques du Hg dans les charbons, les cendres 

résiduels, les cendres volants et le gypse de six chaudrons de deux grands centrales de charbon 

Chinoises. Les résultats montrent que les émissions du Hg par la cheminée sont enrichis au 

maximum de 0.3‰ en δ202Hg par rapport au Hg dans le charbon combusté. Nous avons également 

pu établir un modèle du fractionnement isotopique du Hg dans les centrales de charbon, lequel 

estime le δ202Hg des émissions en fonction du δ202Hg du charbon et les techniques de lavage de gaz 

comme la précipitation électrostatique et le désulfurisation. 

Le Chapitre 9 conclue la thèse en résumant les avancées et perspectives principales. Nous proposons 

que les signatures isotopiques du Hg dans les charbon du globe sont suffisamment différents qu’on 

peut distinguer par exemple le charbon Chinois des charbons Africains, Européens, Indiens et 

Mongoliens (avec une intervalle de confiance de 95%), et des charbons Indonésiens, Américains et 

Russes (avec une intervalle de confiance de 90%). Plus de la moitié de tous les charbons du globe, 

organises par régions, sont différenciable par leurs signature isotopiques du Hg. Notre évaluation du 

fractionnement isotopique du Hg dans les centrales de charbons mêmes montre que cet artefact est 

mineur (δ202Hg, <0.3‰) à négligeable (Δ199Hg). Nous considérons que l’ensemble de ces deux 

résultats est assez prometteur pour recommander des études plus approfondis sur le traçage des 

émissions du Hg des centrales au charbon à l’échelle de notre planète. Désormais, comme nous le 

soulignons dans le Chapitre 8, les différentes formes gazeuses et particulaires du Hg sortant des 

cheminées peuvent avoir des signatures isotopiques très contrastes. Une étude publiée récemment 

contraste les signatures isotopiques des dépôts du Hg par précipitation humide dans l’environnement 

locale d’un centrale à charbon avec les signatures du charbon combusté, et trouve qu’elles ne 

ressemblent pas. Des études supplémentaires sur les formes du Hg sortant de la cheminée et sur les 

transformations atmosphériques du Hg doivent être fait afin de comprendre ces observations. Notre 
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exploration des variations isotopiques du Hg au sein d’une seule mine et couche de charbon montre 

des interactions complexes entre l’environnement de déposition de charbon, la charbonification 

même, et les processus géologiques post-dépositionels. Des relations claires entre ces facteurs et les 

signatures isotopiques des charbons nous échappent pour l’instant. 
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Chapter 2. Mercury (Hg) emission from coal combustion and its role in 

the global biogeochemical Hg cycle 

2.1. Hg and its toxicology/epidemiology 

2.1.1. Hg and its physicochemical properties 

Mercury (Hg) is a naturally occurring d-block element with atomic number 80 and approximate 

atomic weight 200.59. It is the only metal that is in liquid state at standard temperature and pressure. 

Elemental Hg has a unique electronic configuration of [Xe] 4f14 5d10 6s2, in which electrons occupy 

all the available 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, 5s, 5p, 5d and 6s subshells. The presence of the 

filled 4f shell poorly screens the nuclear charge and thus enhances the attractive force between 6s 

shell electrons and the nucleus. Hg has three redox states in nature: 0, I and II. Different Hg forms 

can be transformed between each other. For example, Hg(0) can be oxidized into Hg(II) by 

atmospheric oxidants such as OH, halogen radicals and ozone. Aqueous forms of Hg(II) can be 

reduced into Hg(0) by specific ligands of organic matter, photochemistry and biotic reactions 

(Holmes et al., 2010; Selin, 2009; Zhang, 2006). Hg of zero valence state is in form of Hg(0) vapor 

or liquid metal, whereas Hg(I) and Hg(II) are in form of inorganic and organic complexes. Due to the 

filled electronic structure, gaseous Hg(0) is rather stable under natural condition and has an 

atmospheric lifetime ranging from several months to >1 year (Selin et al., 2008). The high volatility 

and mobility of atmospheric Hg(0) make it a globally transported pollutant (Mason et al., 1994). 

Hg(I) usually forms simple compounds by metal-metal bonds, such as Hg2(II), and has a high 

tendency to be further oxidized to Hg(II). Hg(II) is the most common oxidation state in nature and 

forms stable derivatives with the anions of chalcogens and halogens, such as HgS, HgSe, HgCl2 and 

HgI2.  Hg in most naturally occurring minerals (e.g. cinnabar, metacinnabar, HgS) is also in the form 

of Hg(II). In addition, Hg(II) forms organo-mercury complexes, in formulas of HgR2 or HgRX (R= 

aryl or alkyl; X=halide or acetate), observed in various environmental compartments. 

Monomethylmercury (CH3Hg, abbreviated as MMHg), produced from inorganic Hg(II) by biotic 

and/or abiotic processes, is a potent neurotoxin (Hsu-Kim et al., 2013).  

2.1.2. Hg toxicology/epidemiology 

Modern research interest in Hg toxicology and epidemiology dates back to the 1950s MMHg 

poisoning incident in Minamata Bay, Japan (Harada, 1995; McAlpine and Araki, 1958). The general 
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human population is commonly exposed to low or moderate doses of MMHg through consumption 

of fish (Sunderland, 2007). MMHg exposure can cause a variety of adverse effects on human health 

such as sensory disturbances, ataxia, dysarthria, constriction of the visual field, auditory disturbances 

and tremor as seen in Minamata disease (Harada, 1995). Moreover, MMHg can affect the 

neurological development of infants even when pregnant women are subjected to low-level MMHg 

exposure (Davidson et al., 2004). 

A reference dose for fetal MMHg neurotoxicity (defined as the estimate of daily MMHg exposure to 

a human population that is likely without appreciable risk of deleterious effects during a lifetime) has 

been reviewed and established by the National Research Council of the US National Academy of 

Sciences (NRC/NAS, 2000). The reference dose level for women of childbearing age and infants by 

the United States Environmental Protection Agency (US EPA) is 5.8 μg/l Hg in cord blood, which is 

translated to 0.1 μg Hg per kg bodyweight per day (μg/kg bw/day) or 1.4 μg/g Hg in human hair. 

Twenty percent of women in the United States surpass the US EPA guidelines. Public health 

institutions in developed countries commonly provide fish consumption advisories for citizens. The 

World Health Organization recommends a provisional tolerable MMHg intake of 3.3 μg/kg bw/week 

for adults, which corresponds to approximately 7 μg/g Hg in human hair. 

However, fish consumption has a variety of health benefits when dietary MMHg is present at low 

levels because of the nutrient components in fish (e.g. n-3 polyunsaturated fatty acids) (Daniels et al., 

2004). Therefore, it is important to balance the trade-offs between health benefits from fish 

consumption and potential MeHg exposure risks (Egeland and Middaugh, 1997). Nevertheless, 

limiting anthropogenic Hg emissions to our environment can only have beneficial effects on human 

(child neurodevelopment) and wildlife health. 

2.2. Hg geochemistry in coal and Hg emissions from coal combustion 

2.2.1. Coal formation and coalification 

Coal is a combustible, sedimentary and organic rock formed from prehistoric vegetation remains that 

accumulated in swamps and peat bogs. The build-up of sediments (silt, sand, mud) and multi-phases 

of tectonic movements buried these decayed vegetations at great depth where they were subjected to 

high temperature/pressure and subsequently evolved from peat to coal. According to the organic 

maturity of coal, it can be divided into two broad ranks: low-rank coal (i.e. brown coal including 

lignite and sub-bituminous coal) and high-rank coal (i.e. hard coal including bituminous coal and 
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anthracite) (Figure 1). Low-rank coal could be transformed to high-rank coal at appropriate 

geological conditions. As compared to high-rank coal, low-rank coal is characterized by higher 

moisture and lower calorific values. Low-rank coal is used for power generation and industrial 

manufacturing. Bituminous coal is widely used in the metallurgical industry (coking coal) and in 

electricity generation (thermal coal). Anthracite, which represents only 1% of all coal reserves, 

mainly serves as domestic fuel.  

 

Figure 1 Classification and evolution of coal (Source: ACARP) 

2.2.2. Coal as an energy base                                                                                                      

The estimated coal reserve that can be recovered in the world is ~86100 Mt (Million tons), which can 

last for more than 100 years, the longest lifetime among all fossil fuels, if coal production continues 

at present rate.  The USA (28%), Russia (18%), China (13%), Australia (9%) and India (7%) are the 

5 countries that hold ~75% of the world coal reserves (Table 1). As compared to 2010, the world coal 

production grew by 6.1% in 2011, reaching to 3955 Mtoq (oil equivalent). Meanwhile, coal 

consumption grew by 5.4%, reaching ~3724 Mtoq, the fastest growing energy among fossil fuels. 

Coal (3724 Mtoq) accounts for approximately 30% of world energy consumption (12275 Mtoq) in 

which 87% is contributed by fossil fuels (~10689 Mtoq) (BP, 2012). The proportion of coal in fossil 

fuel consumption is as high as 75% for China and South Africa, 60% in India, which are well above  

12 



Chapter 2. Mercury (Hg) emission from coal combustion and its role in the global biogeochemical 
Hg cycle 

Table 1. Summary of world coal reserve, production, consumption, export and import in 2011  

Reserve (Mt) Production (Mt oil equivalent) 

Counties Hard coala 

Brown 

coalb Total Share of Total R/P ratioc 

 

2011 growth rated share 

USA 108501 128794 237295 27.6% 239 China 1956.0 8.8% 49.5% 

Russia 49088 107922 157010 18.2% 471 USA 556.8 0.9% 14.1% 

China 62200 52300 114500 13.3% 33 Australia 230.8 -2.2% 5.8% 

Australia 37100 39300 76400 8.9% 184 India 222.4 2.3% 5.6% 

India 56100 4500 60600 7.0% 103 Indonesia 199.8 18.1% 5.1% 

Germany 99 40600 40699 4.7% 216 Russia 157.3 4.1% 4.0% 

Ukraine 15351 18522 33873 3.9% 390 South Africa 143.8 0.3% 3.6% 

Kazakhstan 21500 12100 33600 3.90% 290 Kazakhstan 58.8 4.5% 1.5% 

South Africa 30156 

 

30156 3.5% 118 Poland 56.6 2.0% 1.43% 

Colombia 6366 380 6746 0.78% 79 Colombia 55.8 15.4% 1.41% 

Total 10 countries 386461 404418 790879 92% 212 Total 10 countries 3638 5.4% 92% 

Total World 404762 456176 860938 100% 112 Total World 3956 6.1% 100% 

Consumption (Mt oil equivalent) Export (Mt) Import (Mt) 

 

2011 Growth rated Share 

 

2011 Share 

 

2011 Share 

China 1839.4 9.7% 49.4% Indonesia 309 29.7% China 177 17.7% 

USA 501.9 -4.6% 13.5% Australia 285 27.4% Japan 175 17.5% 

India 295.6 9.2% 7.9% Russia 99 9.5% South Korea 129 12.9% 

Japan 117.7 -4.8% 3.2% USA 85 8.2% India 101 10.1% 

South Africa 92.9 1.7% 2.5% Colombia 76 7.3% Taiwan 66 6.6% 

Russia 90.9 0.8% 2.4% South Africa 70 6.7% Germany 41 4.1% 

South Korea 79.4 4.6% 2.13% Kazakhstan 34 3.3% UK 32 3.2% 

Germany 77.6 1.2% 2.1% Canada 24 2.3% Turkey 24 2.4% 

Poland 59.8 6.0% 1.6% Vietnam 23 2.2% Italy 23 2.3% 

Australia 49.8 13.6% 1.3% Mongolia 22 2.1% Malaysia 21 2.1% 

Total 10 countries 3205 3.7% 86% Total 10 countries 1027 98.7% Total 10 countries 798 79% 

Total World 3247 5.4% 100% 

 

1041 100% 

 

1002 100% 

Note: 1 t oil equivalent equals approximately 1.5 tons hard coal or 3 tons lignite; coal reserve, production, consumption 

data are cited from  BP (2012) and export and import data are cited from IEA (2012). abituminous coal and anthracite; 
blignite and sub-bituminous coal; c length of time (years) that the remaining coal reserves would last if production were to 

continue at 2011 rate; d change of production or consumption in 2011 over 2010 

the world average value of 35%. Most of the growth in coal production and consumption was 

contributed by non-OECD (Organization for Economic Co-operation and Development) countries. 

China, alone, overwhelmingly contributed to ~50% of world coal production and consumption in 

2011. Besides, China is also the largest coal importer. Although Indonesia only accounts for 0.6% of 

world coal reserves, its coal production had the highest growth rate of 18.1% and reached a 5.1% 
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share (~200 Mtoq) of world coal production (Table 1). While it only accounts for 1.2% (44 Mtoq) of 

world coal consumption, most of its coal production is exported to the Asia-Pacific region (primarily 

to Japan and Taiwan and lesser amounts to South Korea, the Philippines and China) (Belkin et al., 

2009). Indonesia has become the largest exporter of thermal (steam) coal and the second largest 

combined thermal and metallurgical (coking) coal exporter in the world market.  As Japan and South 

Korean have very small coal reserves and production shares (<0.05%), most of their coal 

consumption relies on imports. Coal plays an important role in worldwide energy production, 55% of 

the produced coal is used in electricity plants (IEA, 2012). More than 40% of electricity in the world 

is powered by coal. China, USA, India, South Africa and Australia use coal to generate 79%, 45%, 

68%, 93% and 78% of their respective national electricity needs. 

2.2.3. Hg geochemistry in coal  

Coal is mainly composed of C, H, O, N, S that are derived primarily from vegetation. Abundant 

inorganic elements can be carried into coal through overlying sediments, river inputs and geological 

activities. The elements in coal can be generally grouped by their abundances (Swaine, 1990). 

Elements with abundances ≥0.1% such as C, H, O, N, S, Si, Al, Fe, Ca, K, Na, Mg and Ti are 

defined as major elements, whereas the remaining elements with abundances <0.1% are trace 

elements.  

Hg is a chalcophile element and is present at trace levels in coal. The concentration of Hg in coal is 

determined by many factors such as coal rank and provenance, depositional environment, and 

geological activities (e.g. igneous intrusion and groundwater infiltration) during and after coal 

deposition (Dai et al., 2012).  Since the second half of the 20th century, coal geochemists have 

continued to investigate Hg geochemistry (e.g. concentrations, distributions, modes of occurrences 

and provenances) in worldwide coals (Bouška, 1981; Swaine, 1990; Swaine and Goodarzi, 1995; 

Valković, 1983). These studies conclude that Hg in coal mainly combines with S-containing 

functional groups of organic matter and sulfides. Generally, Hg in coal varies from 10 to 1000 ng/g, 

although extremely high coal Hg, up to several tens of µg/g, were found in geologically active areas 

(Dai et al., 2012; Dai et al., 2006b; Yudovich and Ketris, 2005). The newly updated average Hg 

abundance in world coals is 100 ng/g regardless of coal rank (Ketris and Yudovich, 2009), which is 

lower than Chinese (163 ng/g) (Dai et al., 2012) and US coals (170 ng/g) (Finkelman, 1993). Hg is 

classified as high coalphile element (i.e. how efficiently coal acted as a geochemical sink for 

elements, during all of its geologic history), with a coal affinity index (dividing the average 
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elemental abundance in coal on ash basis by that in sedimentary rocks) of more than 10 (Ketris and 

Yudovich, 2009). The higher the coal affinity index of a given element, the higher is the contribution 

of its authigenic fraction (organic matter or micro-minerals), and the lower is the contribution of its 

clastogenic fraction (macro-minerals in alumino- and silicatic-forms). Therefore, authigenic minerals 

(primary sulfides such as pyrite) and organic matter are the main Hg carriers in coal, and their 

contributions to whole coal Hg vary according to the coal-forming environment. In some coals 

extremely enriched in Hg, Hg can occur as cinnabar (HgS) and metallic Hg (Piedad-Sánchez et al., 

2004; Yudovich and Ketris, 2005). Other minerals such as marcasite (Hower et al., 2008), Au 

minerals (Seredin, 2004; Seredin and Finkelman, 2008), Pb, Zn and Se minerals (galena, sphalerite, 

clausthalite) (Dai et al., 2006b; Hower and Robertson, 2003), getchellite (Dai et al., 2006a), calcite 

and chlorite (Zhang et al., 2004) are also detected in coal with varying Hg levels.      

Low-temperature fluids such as deep-circulating meteoric waters are enriched in many kinds of 

transition metals (notably chalcophile elements As, Hg, Zn and Pb), and can penetrate coal seams 

along surrounding faults. As a rule of thumb, late-stage pyrite (or secondary pyrite, in cleat-, vein-, 

fracture-infilling and massive bedding forms, with Hg concentrations up to 100 μg/g) derived from 

mineralization of epigenetic low-temperature fluids is found to be the main Hg phase in high Hg 

coals (Diehl et al., 2004; Kolker, 2012). In contrast, pyrite in the from of framboidal aggregates, 

which are hollow nuclei and vesicles that formed during coal diagenesis, are commonly much less 

enriched in Hg, generally less than 1 μg/g. Hg in pyrite exists in the form of solid solutions 

(Finkelman, 1994). Hg containing pyrite distributed throughout the coal matrix is commonly rejected 

during pulverizing processes before coal combustion in power plants. In doing so, sulfur along with 

Hg in coal will be significantly reduced. In addition, coal beneficiation at coal clean plants before 

coal delivery to power plants also serves to reduce Hg in coal. 

2.2.4. Hg partitioning during coal combustion 

The behavior of elements during coal combustion in a coal-fired utility boiler (CFUB, i.e. boiler at a 

coal fired electricity plant) can be generally classified into three categories: non-volatile, semi-

volatile and volatile (Meij, 1994). Like Cl and F, Hg is classified as a volatile element. A large 

portion of Hg in CFUB exists as gaseous Hg(0) and is not readily concentrated in ash fractions 

(Hassett and Eylands, 1999). For the CFUBs installed with electrostatic precipitator (ESP) and wet 

flue-gas desulfurization (WFGD) systems, the Hg emission can be significantly reduced (Hower et 

al., 2010; Lee et al., 2006). Taking a >20 years case study in the Netherlands as an example, Hg is 
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partitioned  as follows:  <1% in the bottom ash, 49% in the fly ash collected in the ESP, 17% in the 

FGD gypsum, 9% in the sludge of the wastewater treatment plant, <1% in the effluent of the 

wastewater treatment plant, <1% in fly dust (leaving the stack), and 25% as gaseous Hg in the flue 

gases and emitted into the air (Meij and te Winkel, 2006; Meij et al., 2002). Thus, the total removal 

efficiency of CFUB with ESP+WFGD is ca. 75%. In addition, for CFUB with additional selective 

catalytic reduction (SCR for NOx reduction), the total Hg removal efficiency can reach up to 90%. 

The Hg partitioning in different coal combustion residuals is primarily determined by the Hg 

speciation in flue gas. Hg speciation in itself largely depends on feed coal ranks (in terms of elements 

such as Cl and S that dominate the conversion of Hg(0) to Hg(II)), combustion systems conditions 

(in terms of unburned carbon in fly ash) and operating condition of ESP and WFGD (in terms of 

temperature, the compositions of limestone slurry etc.) (Gale et al., 2008; Niksa et al., 2001; Zhang 

et al., 2012). In coal combustion flue gas, Hg exists in three operational forms: gaseous elemental 

Hg(0) (GEM), gaseous oxidized Hg(II) (GOM), and particulate-bound Hg(II) (PBM). The main 

physicochemical processes acting during the combustion assembly can be divided into four stages: 1) 

thermal reduction of matrix Hg(II) in feed coal and vaporization of generated GEM in the boiler at 

1200-1500 °C; 2) partial oxidation of GEM below 600 °C into GOM and PBM compounds, of which 

PBM is quantitatively removed with fly ash in the ESPs; 3) partial dissolution of residual GOM 

compounds into the limestone slurry and subsequent incorporation into WFGD products (mainly 

gypsum) and 4) the emission of remaining gaseous Hg (primarily GEM and GOM) contained in flue 

gas into the atmosphere.  

2.2.5. Atmospheric Hg emissions from coal combustion  

The combustion of fossil fuels (primarily coal) in stationary combustion facilities such as utility, 

industrial and residential boilers is the single largest anthropogenic Hg emission source globally. 

According to estimations of Pacyna and co-workers, coal atmospheric Hg emissions account for 60% 

of total anthropogenic Hg in 1990 (1295 out of 2140 t) (Pacyna and Pacyna, 1996), 77% in 1995 

(1475 out of 1910 t) (Pacyna and Pacyna, 2002) , and then 65% in 2000 (1422 out of 2190 t) (Pacyna 

et al., 2006) and 45% in 2005 (880 out of 1930 t) (Pacyna et al., 2010). The decreased trend of Hg 

emissions from fossil fuels relates to the expansion of air pollution control devices (ESP, FGD) 

which largely countered increasing Hg emissions due to the increasing coal consumption. As 

compared to other anthropogenic Hg sources, the Hg emission inventory from stationary fuel 

combustion is the most accurate with the lowest uncertainty of ±25%. Globally, China, India and the 
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USA have the largest Hg emission inventories from stationary fuel combustion besides other 

anthropogenic sources (Pacyna et al., 2010). On average, the major chemical forms of Hg species in 

coal combustion emissions are GEM (50%), followed by GOM (40%) and then PBM (10%). As coal 

Hg emissions dominate global Hg emissions, the same speciation is estimated for global 

anthropogenic Hg emissions (53%, 47% and 10%, respectively, for GEM, GOM and PBM, Pacyna 

et al., 2010).  

Nowadays, nearly half of the Hg emissions from anthropogenic sources in China (600-800 t/yr) 

derive from coal combustion (Pacyna et al., 2010; Pirrone et al., 2010; Streets et al., 2005; Wu et al., 

2006). Hg emissions from coal combustion were stable at 200-210 t during 1995-2001, but increased 

to 257 t in 2003 and 334 t in 2005, with an annual average growth rate of 5.1 % per year during a 

decade (1995-2005) (Wang et al., 2000; Wu et al., 2006). Correspondingly, coal consumption for 

coal-fired power plants was 446 Mt in 1995 (31% of total coal consumption of 1460 Mt) and 

doubled to 1050 Mt in 2005 (40% of total coal consumption of 2650 Mt), with an annual average 

growth rate of ~9%. Among various coal combustion facilities, Hg emissions from coal-fired power 

plants had the largest annual growth rate of 7% that increased from 63 Mt in 1995 to 125 Mt in 2005 

(Streets et al., 2009). The recent 2008 estimation of power plant Hg emissions, using a chlorine-

based probabilistic model, was 102.5 t (P50) within a confidence interval of 71.7 (P10) -183 t (P90) 

(Zhang et al., 2012). Different scenarios have been proposed for estimating the future power plant 

Hg emissions which will largely depend on the amount of fuel (mainly coal) consumption and the 

implementation and effectiveness of air pollution control devices.  

2.3. Global Hg emissions and biogeochemical cycling 

Hg emissions include contributions from natural and anthropogenic sources. Geological Hg 

emissions derived from volcanic and hydrothermal activity and Hg-enriched crusts are the primary 

natural sources, estimated to be between 90 and 700 t/yr (Bagnato et al., 2011; Nriagu and Becker, 

2003; Pyle and Mather, 2003; Varekamp and Buseck, 1986). For millennia, especially after the 

industrial revolution (1850 AD), human activities such as mining and fossil fuel combustion greatly 

augmented Hg emissions to the atmosphere. At present, anthropogenic Hg emissions far surpass 

natural Hg emissions. Earlier estimations of present-day primary anthropogenic Hg emissions vary 

between 1900 and 4000 t/yr (Lamborg et al., 2002; Mason et al., 1994; Mason and Sheu, 2002; 

Pacyna et al., 2010; Pirrone et al., 2010; Sunderland and Mason, 2007). Recent estimation of 

anthropogenic Hg emissions converge to 1930-2320 t/yr (Pacyna et al., 2010; Pirrone et al., 2010; 
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Streets et al., 2011). Besides Hg emissions from coal combustion, other dominant sources include 

artisanal small-scale gold mining, non-ferrous metals manufacturing, cement production, waste 

disposal and caustic soda production (Figure 2A). Geographically, anthropogenic Hg emissions in 

Europe and North America decreased significantly since the  1990s, accounting for <25% of total 

anthropogenic Hg emissions, whereas anthropogenic Hg emissions in Asia have increased 

substantially to 50-70% (Figure 2B), particularly in China and India.  

Following atmospheric deposition of primary natural and anthropogenic Hg to land and ocean 

surfaces, a portion of Hg termed secondary natural and anthropogenic Hg or ‘legacy Hg’, can be re-

emitted back into the atmosphere (Figure 3). Secondary Hg sources derive from re-emission of 

newly and historically deposited Hg on vegetation, land and water surfaces. A well-known Canadian 

enriched Hg isotope field experiment (METAALICUS) (Hintelmann et al., 2002) has shown that the 

newly deposited atmospheric Hg (II) to terrestrial surfaces is more available for Hg re-emission 

(termed as prompt recycling) on a timescale of days to months than the historical Hg stored in soil 

and vegetation on a timescale of centuries to millennia. It is estimated that prompt cycling Hg 

accounts for 5-60% of atmospherically deposited Hg. Selin et al. (2008) estimated a value of 600 t/yr 

for prompt recycling Hg. Hg incorporated into soils can be reduced to Hg(0) vapor by a series of 

abiotic and biotic processes and re-emitted into the atmosphere. Evapotranspiration and volatilization 

are the main processes to mobilize Hg in soil water and solid soil pools, which emit comparable Hg 

fluxes of ~550 t/yr. Large re-emissions of Hg, with a flux of ~5000 t/yr, occur from the oceans 

through Hg(0) evasion (Selin et al., 2008). By incorporating 4000 years of historic Hg emissions, a 

recent model study suggests that the contribution of re-emitted legacy Hg is much larger than thus far 

appreciated (Amos et al., 2013). The estimated legacy Hg contribution to modern atmospheric Hg 

deposition is as large as 60%, and the accumulated legacy Hg in the surface ocean contributed by 

North American and European (31%) outweighs Asian contributions (18%). 

Atmospheric Hg deposition to land and surface oceans will eventually be buried in deep ocean 

sediments at a time-scale of centuries to millennia. By parameterizing Hg inventory and Hg transfer 

rates, various global 3-D land-ocean-atmosphere Hg models have been developed to simulate the 

biogeochemical cycling of Hg (Figure 3) (Seigneur et al., 2001; Selin, 2009; Selin et al., 2008; 

Streets et al., 2011). These models fit well to the general observations on the distribution of Hg 

species on the earth, and are able to predict the response of atmosphere-ocean-terrestrial systems to 

future Hg emission fluctuations.  
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Figure 2 Trends in Hg emissions by (a) source types and (b) world regions (Source: Streets et al., 2011) 
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(A) 

 

(B) 

Figure 3 Global pre-industrial (a) and present-day biogeochemical cycle of mercury in GEOS-Chem. 

Inventories are in Mg, and rates are in Mg/yr (Source: Selin et al., 2008) 
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Chapter 3. Theory of Hg isotope fractionation 

Seven stable Hg isotopes (196Hg, 198Hg, 199Hg, 200Hg, 201Hg, 202Hg and 204Hg) occur in nature with a 

4 % relative mass difference (Table 2). Their relative abundances are approximately 0.15%, 9.97%, 

16.9%, 23.1%, 13.2%, 29.9% and 6.87%, respectively (Cohen et al., 2008; Nier, 1950). In addition to 

the 4% mass variation of Hg isotopes, the active oxidation–reduction chemistry, tendency to form 

covalent bonds, existence of volatile Hg0 and co-occurrence of inorganic and organic species of Hg 

induce small but significant Hg isotope fractionation in many physicochemical and biological 

reactions (Bergquist and Blum, 2009; Blum and Bergquist, 2007). As such, recent developments in 

Hg stable isotope biogeochemistry offer a new dimension to study Hg sources, transport, 

transformation and deposition in environmental and geological applications (Bergquist and Blum, 

2009; Blum 2012; Kritee et al., 2013; Sonke, 2011; Sonke and Blum, 2013; Yin et al., 2010). 

Table 2. Characteristics of stable Hg isotopes 

Isotope Atomic mass (ma/u) Natural abundance (atom %) Nuclear spin (I) Magnetic moment (μ/μN) 
196Hg 195.965833 (3) 0.15 (1) 0+ 0 
198Hg 197.9667690 (4) 9.97 (20) 0+ 0 
199Hg 198.9682799 (4) 16.87 (22) ½- +0.5058855(9) 
200Hg 199.9683260 (4) 23.10 (19) 0+ 0 
201Hg 200.9703023 (6) 13.18 (9) 3/2- -0.5602257(14) 
202Hg 201.9706430 (6) 29.86 (26) 0+ 0 
204Hg 203.9734939 (5) 6.87 (15) 0+ 0 

All data are cited from compilation of IUPAC Green Book (Cohen et al., 2008). Note: number in parentheses denotes 

uncertainty applicable to the last digit 

3.1. General concepts  

3.1.1. Isotope effect 

Differences in chemical and physical properties of a substance arising from variations in atomic mass 

of an element are called isotope effects (Hoefs, 2009). The small variation in physicochemical 

properties can affect chemical reaction rate, diffusion rate etc. This variation can be calculated by 

statistical mechanics methods and experimentally determined by measuring changes in isotope ratios 

(Criss, 1999).  
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3.1.2. Isotope fractionation factor 

The isotope fractionation factor is defined as the ratio of the abundances of two isotopes in substance 

A divided by the corresponding ratio in substance B. For Hg isotopes, the fractionation factor is 

expressed as: 

A

xxx/198 xxx 198
xxx/198 A

A-B xxx/198 xxx 198
B B

H ( Hg / Hg)
Hg ( Hg / Hg)

R g
R

α = =   [1] 

where XXX is a Hg isotope mass other than the reference isotope 198Hg. 

3.1.3. Delta value (δ) and conversion 

The measured isotope ratios of samples are commonly anchored to a common reference standard 

(e.g. NIST SRM 3133 for Hg isotopes) to facilitate data inter-comparison. Relative isotope ratio 

differences from the NIST 3133 standard on the per mil (‰) scale are defined by the delta (δ) 

notation as follows (Blum and Bergquist, 2007): 

( )
( )

XXX 198xxx/198
Sample SampleXXX

xxx/198 XXX 198
NIST 3133 NIST 3133

Hg HgR Hg
δ Hg ( ) 1 1000 1 1000

R Hg Hg Hg
− ×

    =        
= − ×‰  [2] 

For two substances, A and B, whose δ values are expressed as:  

xxx/198
xxx 3A

A xxx/198
standard

HgHg  ( 1) 10
Hg

R
R

δ = − ×   [3] 

/198
3B

B /198
standard

HgHg  ( 1) 10
Hg

xxx
xxx

xxx

R
R

δ = − ×    [4] 

Their δ values and fractionation factor α between A and B can be related by: 

/198 3
/198 A A

A-B /198 3
B A

R Hg 10 Hg 1Hg
R Hg 10 Hg 1

xxx xxx
xxx

xxx xxx

−

−

δ +
α = =

δ +
  [5] 

which can be approximated, for small  δ values (<10‰), to another form by taking the logarithm on 

both sides: 
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/198 3
A B A Bln Hg 10 ( Hg Hg ) xxx xxx xxx−
−α × δ − δ   [6] 

As most of fractionation factors α approach unity, another useful simplification can be obtained: 

/198 /198
A B A Bln Hg Hg 1xxx xxx
− −α α −    [7] 

Although not recommended by IPUAC (Coplen, 2011), in some publications, the epsilon notation (Ɛ) 

is used to represent fractionation factors on the ‰ scale: 

/198 /198
A-B A-BHg 1000 ( Hg 1)xxx xxx= × −ε α    [8] 

The following equations are used to convert δ value using 202Hg as reference isotope into δ value 

using 198Hg as reference isotope: 

xxx/202 xxx/198 202/198Hg Hg Hgδ δ − δ   [9] 

/202 /198Hg Hgxxx xxx∆ ∆   [10] 

The capital Delta notation (Δ) for MIF is explained in Section 3.3.2 

3.2. Literature review on Hg isotopes fractionation 

Mercury isotope fractionation was observed in laboratory-controlled experiments as early as one 

century ago. By evaporating liquid Hg onto a cooled surface positioned at low pressure conditions, 

Bronsted and von Hevesy (1920) precisely measured the density of residual and condensed Hg 

relative to original liquid Hg using a pycnometry (density) method with <1 ppm uncertainty.  In the 

first set of experiments with ~14% Hg evasion, they found a density depletion by a factor of 

0.999980 in the condensed vapor phase. In the second experiment with ~75% Hg evasion, a density 

depletion of 0.999990 (density in residual liquid was 1.000031) was observed. This indicates that 

lighter Hg isotopes with a higher evaporation rate escape faster than heavier ones and the degree to 

which evaporation fractionates Hg isotopes could be quantified. Shortly afterwards, more detail 

evaporation and condensation experiments were performed (Brönsted and von Hevesy, 1921; 

Mulliken and Harkins, 1922), in which one order of magnitude larger density fractionation was 

observed. Although several studies tried to measure Hg isotope compositions of natural systems in 

the following eight decades (Haeffner, 1953; Jackson, 2001; Koval et al., 1977; Kuznetsov and 

Obolenskii, 1980; Obolenskii and Doilnitsyn, 1976), their data are either questionable or subjected to 
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large uncertainty until the fist Hg isotopes study of Murchison and Allende meteorites by MC-

ICPMS  (Lauretta et al., 2001). 

Recent advances in high-precision inductively coupled plasma mass spectrometry (MC-ICPMS) and 

associated techniques have allowed high-precision determination of Hg stable isotope ratios in 

natural samples (Blum and Bergquist, 2007; Chen et al., 2012; Lauretta et al., 2001). Photochemical 

and microbial reduction of Hg(II) (Bergquist and Blum, 2007; Kritee et al., 2007, 2008; Zheng et al., 

2009), demethlyation of methylmercury (Bergquist and Blum, 2007; Kritee et al., 2009), methylation 

of Hg(II) (Jiménez-Moreno et al., 2013), evaporation of liquid Hg(0) (Estrade et al., 2009; Ghosh et 

al., 2013), and volatilization of aqueous Hg(0) vapor (Zheng et al., 2007) could induce significant 

and measurable Hg isotope fractionation. Both mass-dependent Hg isotope fractionation (MDF, 

indicated by δ202Hg) and mass-independent Hg isotope fractionation (MIF, odd 199Hg and 201Hg 

isotopes mostly, indicated by Δ199Hg) vary more than a range of 10‰ in geological and 

environmental samples. A synthesis of these observations can be found in recently published reviews 

(Bergquist and Blum, 2009; Sonke, 2011; Sonke and Blum, 2013; Kritee et al., 2013; Yin et al., 

2010) 

3.3. Hg isotopes fractionation mechanisms 

The physicochemical reactions involving Hg not only depend on isotopic mass, but also on nuclear 

spin (magnetic moment) and nuclear structure (radius, volume) (Buchachenko, 2001, 2013; 

Schauble, 2007). The resulting isotope fractionation effects are termed respectively as mass 

dependent fractionation (MDF), magnetic isotope effect (MIE) and nuclear volume effect (NVE; also 

called nuclear field shift effect, NFS). In addition, the isotope fractionation of Hg also possibly 

depends on isotope abundances (Chen et al., 2012; Mead et al., 2013), via the isotope self-shielding 

effect as observed for C and O in solar nebula (Clayton, 2002; Lyons and Young, 2005).  

3.3.1. Mass dependent fractionation (MDF) 

MDF is the most common isotope fractionation mechanism for Hg and the majority of elements in 

the periodic system. MDF is a result of quantum mechanical effects (zero-point vibrational energy 

differences of different isotopes), which is governed by the chemical energy of starting and transition 

states of reactant molecules. The theoretical basis for MDF resulting from equilibrium and kinetic 

processes was established by Bigeleisen and Urey more than half a century ago (Bigeleisen, 1949; 
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Bigeleisen and Mayer, 1947; Urey, 1947). MDF factors for different Hg isotope ratios can be 

described by: 

xxx/198 202/198
A B A BHg ( g )H β
− −= αα    [11] 

Where the exponent β varies depending upon the process. For equilibrium isotope exchange: 

xxx 198

202 198

1 1
m Hg m Hg

mg H
1 1

m H g

 
− 

 β =
 

− 
 

   [12] 

For kinetic fractionation: 
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Eq. 11 can be rewritten in δ’ form: 

'xxx/198 '202/198Hg Hgδ = β×δ   [14] 

where δ’ and δ are related by: 
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  [15] 

Eq. 14 allows the construction of three-isotope plots with a reference MDF line (Figure 4). This 

curve is very important to identify the underlying MDF or MIF fractionation mechanism (Sonke, 

2011; Young et al., 2002). For MDF, the data set will be plotted against the reference MDF line with 

slopes varying as a function of δxxxHg. Significant departures (>0.1 ‰) from a reference MDF line 

imply a potential MIF. 

3.3.2. Mass independent fractionation (MIF) 
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In addition to MDF, Hg isotopes are affected by MIF in specific reactions, e.g. photochemical 

reduction, evaporation of liquid Hg (Bergquist and Blum, 2007; Estrade et al., 2009; Zheng and 

Hintelmann, 2009). MIF values are indicated by capital delta (Δ) notation in per mil, which is the 

difference between the measured values of δ199Hg, δ200Hg, δ201Hg and those predicted from δ202Hg 

using the kinetic MDF law (Blum and Bergquist, 2007):  

xxx xxx 202
xxxHg δ Hg δ Hg∆ = −β ×’ ’   [16] 

where the mass-dependence scaling factor βxxx is 0.252 for 199Hg, 0.502 for 200Hg and 0.752 for 
201Hg (Table 3).  

Two potential mechanisms have been postulated to explain MIF of Hg isotopes: MIE and NVE. MIE 

is a purely kinetic process and is caused by nuclear-spin coupling in radical-pair reactions 

(Buchachenko, 2001; Zheng and Hintelmann, 2010a). As only odd Hg isotopes 199Hg and 201Hg 

possess nuclear spin and associated magnetic moment (Table 2), MIE fractionate odd from the even 

Hg isotopes. MIE is mainly observed in photochemical reduction of Hg species, which could enrich 

reactant odd isotopes, i.e. (+)MIE, or even isotopes, i.e. (-)MIE, depending on the initial spin 

multiplicity of the paramagnetic intermediates during spin-selective reactions (Zheng and 

Hintelmann, 2010a). Photoreduction experiments showed that Hg(II) bound to O-ligands resulted in 

(+)MIE and bound to S-ligands resultrd in (-)MIE. Both (+)MIE and (-)MIE show that the ratios of 

Δ199Hg/Δ201Hg are in the range of 1.00-1.36 (Bergquist and Blum, 2007; Zheng and Hintelmann, 

2009, 2010a) (Figure 5). 

Table 3 ‘β’ scaling factors for isotope ratios relative to 202Hg/198Hg  

 
SE-MDF

* SK-MDF
** SNVE

***  

   
SNVE1 SNVE 2 SNVE 3 

196/198Hg -0.5151 -0.5074 -0.4660  -0.42 
199/198Hg 0.2539 0.2520 0.1076 0.0804 0.0525 
200/198Hg 0.5049 0.5024 0.4966 0.4712 0.4732 
201/198Hg 0.7539 0.7520 0.7003 0.6838 0.6312 
202/198Hg 1 1 1 1 1 
204/198Hg 1.4855 1.4928 1.6543 1.4994 1.5277 

* scaling factor of equilibrium MDF, **scaling factor of kinetic MDF, ***scaling factor of NVE. Scaling factors for 

NVE are based on <r2> from different sources: SNVE1 from (Angeli, 2004); SNVE2 from (Hahn et al., 1979); SNVE3 from 

(Landolt-Boernstein) 
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Figure 4 Three isotope plots of studied Chinese coals showing only MDF for the even isotope 200Hg, and both 

MDF and MIF (Δ199Hg and Δ201Hg) for the odd isotopes 199Hg and 201Hg 

 

Figure 5 Summary of Δ199Hg and Δ201Hg data (n =722) for biological samples containing predominantly 

MMHg (dark grey circles), and for geochemical samples containing predominantly inorganic Hg(II) (open 

circles). Experimentally observed Δ199/201Hg slopes for aquatic Hg(II) (1.0-1.3) (Bergquist and Blum, 2007; 

Zheng and Hintelmann, 2009) and MMHg photodegradation (Bergquist and Blum, 2007), and the 

experimental slope for NVE fractionation (Zheng and Hintelmann, 2009). (Source: Sonke, 2011) 
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NVE was firstly proposed by Bigeleisen (1996a,b) to explain isotope variations of elements with 

high atomic number, such as U. As equilibrium Hg MDF is expected to be relatively small, NVE has 

been suggested to explain large Hg isotope variation in natural samples (Schauble, 2007). NVE 

arises from the overlap between electronic and nuclear wave functions, and its magnitude is a 

measure of the depletion of 6s orbital electron density (King, 1984). The isotope variation driven by 

NVE is proportional to the variation of mean-squared nuclear charge radii <r2>, whereby nuclear 

radii are not in linear relationship with isotope mass, especially for odd isotopes. Therefore, isotope 

fractionation by NVE will not scale in proportion to the mass difference of the isotopes of interest. 

The relationship (scaling factors) between fractionation factors of two paired isotope ratios is 

expressed as (Schauble, 2007): 

xxx 2 198 23 xxx/198

3 202/198 202 2 198 2

r Hg r Hg10 lna Hg
10 lna Hg r Hg r Hg

< > − < >
=
< > − < >

  [17] 

Table 3 lists the scaling factors for different isotope ratios fractionated by NVE. Although NVE has 

the same isotope fractionation signs as MDF, they can be distinguished by different scaling factors, 

especially for odd isotopes 199Hg and 201Hg. NVE has been theoretically estimated (Schauble, 2007) 

(Figure 6) and observed during liquid Hg evaporation (Estrade et al., 2009; Ghosh et al., 2008) and 

abiotic (non-photochemical) reduction of Hg (Zheng and Hintelmann, 2009, 2010b), and equilibrium 

exchange of dissolved Hg(II) species and thiol-bound Hg(II) (Wiederhold et al., 2010). Theoretically 

predicted ratios of Δ199Hg/ Δ201Hg using different nuclear radii (Angeli, 2004; Hahn et al., 1979; 

Landolt-Boernstein, 2004; Nadjakov et al., 1994; Ulm et al., 1987) vary from 1.65 to 2.79 (Sonke, 

2011). Experimental NVE Δ199Hg/ Δ201Hg ratios appear to be approximately 1.6 ± 0.1 (Ghosh et al., 

2013; Zheng and Hintelmann, 2009). Δ199Hg/Δ201Hg ratio can therefore potentially distinguish 

between MIE and NVE mass independent fractionation effect. In addition to common MDF and MIF 

of odd Hg isotopes, MIF of even isotopes (Δ200Hg), more than 1‰ range, was observed in 

precipitation Hg(II) (rain, snow) in North America (Chen et al., 2012; Gratz et al., 2010; Sherman et 

al., 2012). MIF of 200Hg is suggested to be related to the photo-initiated oxidation of Hg (0) vapor on 

aerosol or solid surfaces in the tropopause (Chen et al., 2012). However, it is still unknown whether 

this process only causes MIF of 200Hg. The isotope analysis of trapped Hg in the glass wall of 

compact fluorescent lamps showed that unusual MIF occurred across multiple even mass and odd 

mass isotopes (Mead et al., 2013). The fractionated patterns of Hg isotopes in compact fluorescent 

lamps were thought to be partially caused by photochemical the self-shielding effect, an isotope 

fractionation mechanism that fractionates isotopes according to their abundances. 
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Figure 6 Fractionation factor (1000*ln β202-198Hg) for Hg-bearing molecules relative to Hg(0) vapor. The solid 

line denotes MDF and dotted line denotes NVE (Source: Schauble, 2007) 
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Chapter 4. Sample descriptions and Hg isotope measurements 

4.1. Sample descriptions  

In line with the objectives of this thesis, the collected samples are generally divided into three 

categories: coal from continuous coal-bearing sequences (Anhui, China); mined coal from worldwide 

coal deposits and; coal and coal combustion products (bottom ash, fly ash, gypsum) from typical 

Chinese power plants. 

4.1.1. Samples from continuous coal-bearing sequences 

In order to investigate the temporal variations of Hg isotope signatures with the evolution of coal 

deposits, coal samples from different coal seams in a complete coal-bearing sequence were sampled 

in the Huainan Coalfield, Anhui Province, China. Coal associated sandstone and mudstone were 

sampled to trace the detrital Hg source isotope composition in coal. We also sampled natural cokes 

metamorphosed by elevated heat and pressure derived from magmatic intrusions, with the aim to 

characterize the influence of geological processes on the fractionation of Hg isotopes in coal.  

4.1.1.1. Study area and geological settings 

The Permian coal-bearing sequences in the Zhuji Coal Mine (Huainan Coalfield, Anhui Province) 

and Daizhuang Coal Mine (Jining Coalfield, Shandong Province) were selected for this study (Figure 

7). Both coal mines produce low sulfur bituminous coals that are widely used in power plants of East 

China.  

The data from 88 boreholes drilled during the exploration period showed that there are 28 coal seams 

in the Permian strata, and 9 coal seams in the Carboniferous strata (Figure 8) (Sun et al., 2010a). The 

Taiyuan Formation (with a thickness ranging from 112.1 to 114.2 m; 113 m on average) in the upper 

part of the Carboniferous strata comprises 7–9 thin, unworkable coal seams. The Permian strata 

comprise the Shanxi Formation (with a thickness ranging from 52.6 to 82.3 m; 67.5 m on average), 

the Lower Shihezi Formation (with a thickness ranging from 480.6 to 554.7 m; 517.7 m on average), 

the Upper Shihezi Formation (with a thickness ranging from 116.7 to 162.1 m; 145.6 m on average) 

and the Shiqianfeng Formation (with a thickness ranging from 210.3 to 256.2 m; 233.6 m on 

average). The average total thickness of the Permian coal-bearing sequences is about 964.4 m. Coal 

seams of 17-1, 16-2 13-1, 11 (split into 11-2, 11-1) in the Upper Shihezi Formation, 8, 7-2, 6, 5 (split 

into 5-2, 5-1), 4 (split into 4-2, 4-1) in the Lower Shihezi Formaton and 3 in the Shanxi Formation 
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are economically minable. The total minable thickness is about 21.6 m. The major coal seams of the 

Jining Coalfield occur in the Upper Carboniferous Taiyuan Formation (mean thickness of 165.6 m in 

range of 148.2-193.4 m, comprising coal seams Nos. 18 to 4) and the Lower Permian Shanxi 

Formation (mean thickness of 75.6 m in range of 59.9-114.7 m, comprising coal seams Nos. 3 to 2) 

(Figure 8). Coal seams Nos. 17, 16, 15-2, 6, 3-2, 3-1 are economically minable. The total minable 

thickness is about 8.4 m. 

 

Figure 7 Geographical map showing the locations of studied coal mines. DZ: Daizhuang Coal Mine; ZJ: 

Zhuji Coal Mine; J-C: Jining Coalfield; H-C: Huainan Coalfied 
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Figure 8 Generalized stratigraphic column and lithological characteristics of coal-bearing sequences in Zhuji 

Coal Mine of Huainan Coalfield (A) and Daizhuang Coal Mine of Jining Coalfield (B) showing sampled 

benches in No. 3-1 coal seam (C). C2: Upper Carboniferous; P1: Lower Permian; P2: Upper Permian; Fm: 

Formation; TY: Taiyuan Formation; SX: Shanxi Formation; LS: Lower Shihezi Formation; US: Upper 

Shihezi Formation.  Note that the coal seams are numbered in ascending order in Zhuji Coal Mine, and in 

descending order in Daizhuang Coal Mine along coal seams  upward 
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4.1.1.2. Igneous activity 

Both Zhuji and Daizhuang coal mines were influenced by intense tectonic movements during the 

Late Jurassic to Early Cretaceous (Querol et al., 1999; Yang et al., 2012). This large-scale event (the 

Yanshan Movement in China) was characterized by intense lithospheric extension and widespread 

volcano-magmatic activity. Large areas of high volatile bituminous coal seams (mainly Nos. 3 and 4 

coal seams in the lower strata) in Zhuji Coal Mine were upgraded to high-rank bituminous coal and 

anthracite while others were transformed to natural coke due to igneous intrusions. The size of 

intrusive bodies in Zhuji Coal Mine decreases significantly upward along coal-bearing sequences. 

The igneous influence on Daizhuang coal was limited to lower coal-bearing sequences, and no 

obvious intrusive bodies were observed surrounding the studied No. 3-1 coal seam. 

4.1.1.3. Sampling protocol 

Bench coal samples and natural coke samples were taken from Nos. 1, 3, 4-1, 4-2, 5-1, 5-2, 6, 7-2, 8, 

11-1 and 11-2 coal seams in borehole cores of Zhuji coal mine (Figure 8 and Figure 9). As compared 

to the coal samples, the natural coke samples are significantly lower in bulk density. In addition, 

natural cokes are fragmental in structure with abundant fractures. Generally, three samples (each of 

~200 g) were collected from each coal seam, namely upper, middle and lower benches, in line with 

their relative locations in individual coal seams. Bench coal samples, siltstone and mudstone were 

sampled from No. 3-1 coal seam in Daizhuang coal mine. Bench coal samples of uniform sizes (20 

cm thickness × 5 cm depth) were cut upward from a 2 m fresh working face. All samples were 

immediately sealed in plastic bags to prevent contamination and weathering.  

4.1.2. World coal samples  

Coal samples were chosen from the world main coal-forming basins in primary coal 

production/consumption regions including South Africa, China, the USA, India, Indonesia, former 

USSR (Russia, Kazakhstan, Ukraine), Mongolia and some European counties (mainly Romania) 

(Figure 10). Coal samples from China and the USA are from the University of Science and 

Technology in China, and were homogenized before delivery. Indonesian (large-granular coal), 

Mongolian (large-granular coal) and Romanian (pulverized coal) coal samples are from the USGS 

WoCQI project (Tewalt et al., 2010). Bulk Indian coal samples are from the Dept. of Geology 

collection, Jadavpur University, India. Pulverized coal samples from South African power plants 

shared from a Hg speciation project (Lusilao-Makiese et al., 2012), coal from Former USSR came  

43 



Chapter 4. Sample descriptions and Hg isotope measurements 

 

(A) 

 

(B) 

Figure 9 Digital photographs of field drilling (A) and sampled coal and associated rocks (B) 

from the Moscow State University collection, and from other regions were supplied by C. Liousse 

(Laboratoire d’Aerologie, Toulouse, France). Bulk and large-granular coal samples were pulverized 

in a motorized agate grinder (Fritsch pulverizer 2) to <250 μm mesh particles before analysis. The 

agate mortar was cleaned with high purity ethanol and then Milli-Q water, and dried by compressed 
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air before processing each sample. In between samples, ~15 g Hg-clean quartz sand was processed in 

the same way as coal samples to monitor and minimize the possible cross-contamination. 

 

Figure 10 The geographical locations of world coal samples 

4.1.3. Coal and coal combustion products 

4.1.3.1. Site Description 

Huainan City is located in north Anhui Province, China. It is known as "Thermal Power Three 

Gorges", and is the energy base of Eastern China. The estimated total coal reserves of the Huainan 

coalfield are approximately 44,000 Mt and have recently transformed Huainan City from a coal 

supplier to an electricity producer (Sun et al., 2010a). At present there are three main power plants 

(others are under construction) with a total capacity of nearly 10,000 MW and an electric power 

output of > 80 billion KWh/yr. The increasing coal production (~100 Mt in the year 2010) in several 

dozens of coal mines and large coal consumption (~27 Mt in the year 2010) in Huainan coal-fired 

power plants have generated environmental challenges such as air pollution control and the disposal 

of coal combustion by-products. Emission data showed that SO2 and dust emission in Huainan city 

were 119 Mt and 33 Mt respectively in the year 2005, corresponding to an increase of 28% and 12% 

relative to the year 2000 (NAE&NAC, 2008). Moreover, the generated amount of coal waste (fly ash 
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and bottom ash) and desulfurization by-product gypsum have been estimated at 11.6 Mt and 0.4 Mt 

respectively in the year 2010 (NAE&NAC, 2008).  

4.1.3.2. Sample collection and preparation 

Huainan-1 (HPP-1) and Huainan-2 (HPP-2) power plants (Figure 11) had a similar installed capacity 

of 2400 MW in the year 2007. Solid samples consisting of feed coal (bulk and pulverized), fly ash, 

bottom ash and gypsum were collected from three boilers (H1-1, H1-2 and H1-3, all subcritical 

units) at Huainan HPP-1 and three boilers (H2-1 and H2-2 of subcritical, and H2-3 of supercritical 

units) at HPP-2, representing different combustion technologies and air pollution control devices 

(APCD) (Figure 12). All tested units were typical Chinese pulverized coal utility boilers. The 

supercritical boiler is operated at higher steam temperature and pressure conditions resulting in 10% 

higher thermal efficiency than the subcritical boilers. All six utility boilers were equipped with ESP 

for capturing particulate matter with a removal efficiency of >99%. Half of the utility boilers had wet 

FGD to sequester SO2 in flue gas, and the SO2 removal efficiency was always >90%. No NOx 

control devices were in place at the plants during the period. Combustion temperatures are in the 

range of 1200-1500 °C in the combustion zone of the boiler and decrease downstream to about 100-

200 °C at the ESPs, to 40–100 °C at the WFGD, and to >80 °C (re-heating) at the stack (Figure 12).  

 

(A) 
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(B) 

 

(C) 

Figure 11 Location of Huainan City (A) showing Huainan-1 (B) and Huain-2 Power Plants (C) 
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Figure 12 Configuration diagram of Huainan pulverized coal utility boiler at HPP-1 and HPP-2 showing the 

input and output materials, and temperature gradient. Note the different deployment of ESPs for these two 

power plants: in HPP-1, there are four hoppers (TSP 1-4) for each ESP, whereas in HPP-2, there are only two 

hoppers (hoppers A and B) for each ESP. Only boilers H1-3, H2-2 and H2-3 are equipped with WFGD. 

Abbreviation: TSP-Total particulate matter; ESP: electrostatic precipitator; WFGD: wet flue-gas 

desulfurization 

Feed coals of HPP-1 and HPP-2 were mainly provided by coal mines from the Huainan Coalfield. 

The main coal suppliers for HPP-1 and for HPP-2 were the Xinji and Panji Coal Mines, respectively 

(>90%). The feed coal for both plants was characterized by low sulfur contents (on average < 0.5 

wt.%), medium calorific value (on average of 19 – 23 MJ/Kg) and high ash yields (on average of 26 

– 41 wt.%) (Sun et al., 2010b; Tang et al., 2012). The bulk feed coal was collected at the coal bunker 

and the pulverized feed coal was sampled from pneumatic conveying ducts connected to the CFUBs. 

Bottom ash evacuated below the boilers, fly ash removed by ESPs and gypsum produced by the 

WFGD reaction of limestone slurry with SO2 were sampled during the active combustion process. 

Sample collection was conducted over a limited time period of 2 h for each boiler. Each time 3-4 

subsamples were taken at 30 min intervals and pooled. In addition, bottom ash, fly ash and gypsum 

were obtained 15 min after sampling the pulverized coal in order to assure representativeness of all 

samples. About 1 kg of various composite samples were collected and stored in sealed polyethylene 

bags. 

4.2. Hg stable isotope measurements 

Hg stable isotope ratios were determined by CV-MC-ICPMS with Hg(0) vapor introduction into the 

plasma (Figure 13). Faraday Cups of MC-ICPMS were configured to simultaneously collect the 

signals of the 198Hg, 199Hg, 200Hg, 201Hg and 202Hg isotopes. The least abundant 196Hg and 204Hg are 
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commonly excluded because of larger measurement uncertainty arising from their lower natural 

abundance, potential interference from other molecules and ions (known as isobar effect) and 

limitations of the MC-ICPMS cup configuration. 

For over a decade MC-ICPMS and associated techniques (e.g. sample preparation, purification and 

introduction) have become the standard in high-precision measurement of Hg stable isotope ratios. In 

order to facilitate comparison between laboratories and to evaluate uncertainty of reported Hg 

isotope values, Blum and Bergquist (2007) proposed a general analysis protocol, consistent 

nomenclatures and data-reporting conventions for the Hg isotope community. The biggest challenge 

of high-precision Hg isotope measurement is the correction of instrumental mass bias and matrix 

effects both on mass bias and on cold vapor generation which could shift significantly the isotope 

ratios of analytes from their real values. 

 

(A) 
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(B) 

Figure 13 Overview of MC-ICPMS (Thermo-Finnigan Neptune at the Midi-Pyrenees Observatory, Toulouse, 

France) (A) and introduction system for Hg isotope measurement (B). 

4.2.1. Instrumental mass bias  

Instrumental mass bias is an isotope fractionation process by which the isotopes of elements of 

interest are transmitted through a MS with efficiencies depending on mass of the isotopes (Albarède 

and Beard, 2004; Maréchal et al., 1999). Instrumental isotope fractionation during atomization and 

ionization of analyte isotopes in the plasma and transport of the ion beam through the MS interface 

and flight tube changes the measured isotope ratios from their true values. The measured Hg isotope 

ratios therefore have to be corrected. According to practices for other isotopic systems, several 

methods can be utilized to correct the measured Hg isotope ratios (Blum and Bergquist, 2007): 

1) Isotope double-spiking: two different enriched Hg isotopes are spiked to the sample; 

2) Internal correction (or external standardization): admixture of dry aerosols containing thallium 

with Hg vapor and; 
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3) Sample-standard bracketing (SSB): bracketing the sample with NIST 3133 during the 

measurement session. 

Most of the corrections for Hg isotope ratios are based on methods 2) and/or 3) (Blum and Bergquist, 

2007). Recently, the isotope double-spiking method has been used, which gave an even smaller 

uncertainty for isotope ratios (Bartov et al., 2012; Mead and Johnson, 2010). 

4.2.1.1. Internal standard correction 

The mass-dependent transmission of isotopes in MS can be depicted by a general phenomenological 

theory by assuming that transmission is a function of mass. Three mass-dependent fractionation laws 

have been proposed for internal correction: linear, power and exponential (Albarède and Beard, 

2004; Maréchal et al., 1999). Because a linear correction is inconsistent between the ratio of two 

isotope ratios, the latter two laws are usually applied for mass bias correction, which are two 

particular cases of the generalized power law (Albarède and Beard, 2004; Maréchal et al., 1999). 

Following Albarede and Beard (2004), assuming that the transmission T(iM) of isotope beams at 

mass iM is a function of the mass difference (ΔMn= iMn- r1Mn, n is an arbitrary number) between iMn 

and a reference mass r1Mn: 
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which represents the number of isotope ions (n) received by collectors relative to the number of 

isotope atoms (N) introduced into the MS. To the first order, the mass bias can be approximated as: 
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i/r1Rm and i/r1RT are the measured and true isotope ratios, respectively, and the parameter u stands for 

the derivative at M = r1M, and is a mass-independent coefficient. When n=1, Eq. 20 corresponds to 

power fractionation law: 

r ri i1 1
i /ri

u( M M) ( M M)m
i/ri

T

R e g
R

− −= = [21] 

Eq. 18 can be rewritten as: 

( ) ( ) ( )
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When n→0, Eq. 22 is approximated as: 
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By arranging Eq. 23, we can obtain: 
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which can be rewritten as: 
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where f =ur1M is the mass fractionation coefficient. To the first order, the mass fractionation per amu 

is:  

1 1

i /ri i /ri
m m

i/ri i /ri
uT T

r ri i

R R1 ln
R R lne ln g u

( M M) ( M M)

−
= = =

− −
 [26] 

for the power fractionation law and is 
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for the exponential fraction law.  

We can derive a second set of isotope ratio j/r2R, similar to Eqs. 21 and 25, using power and 

exponential law, respectively: 

2 j r2
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−=   [28] 
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For the power fractionation law, taking logarithm on both sides of Eqs. 21 and 28, and dividing Eq. 

22 by Eq. 29 gives the slope Si/ri
j/r2 of the lni/r1Rm vs. lnj/r2Rm array: 

1 1 1 1
1

22 2 2 2

i /r i /r i /r ri
i /rm T
j/rj/r j/r j/r rj

m T

ln R ln R lg g M M S
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  [30] 

Similarly, for exponential fractionation law, the slope Si/ri
j/r2 is 
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ln R ln R f ln M ln M

− −
= =

− −
  [31] 

During Hg isotope measurement, a dry Tl aerosol (NIST SRM 997; 205Tl/203Tl = 2.38714) generated 

by a desolvating nebulizer (e.g., Aridus II from Cetac in this work) is mixed with the sample Hg 

vapor in a gas-liquid separator, and then they are simultaneously introduced into the plasma (Blum 

and Bergquist, 2007). In this case, we can substitute the isotopes in Eqs. 30 and 31 using Hg and Tl 

isotopes: 

xxx/198

205/203

xxx/198 xxx/198 Hg xxx 198
xxx/198m T
205/203205/203 205/203 205 203Tl

m T

ln R Hg ln R Hg ln g M Hg M Hg S
ln R Tl ln R Tl M Tl M Tlln g

− −
= =

− −
  [32] 
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xxx/198

205/203

xxx/198 xxx/198 Hg xxx 198
xxx/198m T
205/203205/203 205/203 205 203Tl

m T

ln R Hg ln R Hg f ln M Hg ln M Hg S
ln R Tl ln R Tl ln M Tl ln M Tlf

− −
= =

− −
  [33] 

For MC-ICPMS, the fractionation factors, either g or f vary smoothly, even though both are 

dependent of the respective element. Thus, lngxxx/198Hg/lng 205/203Tl or fxxx/198Hg/ f205/203Tl is expected 

to be constant, and lnRxxx/198Hgm vs. lnR205/203Tlm still follows a linear array. The exponential law is 

found to be optimal to account for the fractionation of non-traditional isotopes including Hg on MC-

ICP-MS (Albarède and Beard, 2004; Blum and Bergquist, 2007). Eq. 33 can be rewritten as a linear 

equation: 

xxx/198 xxx/198 205/203 xxx/198 xxx/198 205/203
m 205/203 m T 205/203 Tln R Hg S ln R Tl ln R Hg S ln R Tl= + −   [34] 

in which the slope is: 

xxx/198

205/203

Hg xxx 198
xxx/198
205/203 205 203Tl

f ln M Hg ln M HgS
ln M Tl ln M Tlf

−
=

−
   [35] 

and intercept y0 is: 

xxx/198

205/203

Hg xxx 198
xxx/198 205/203

0 T T205 203Tl

f ln M Hg ln M Hgy ln R Hg ln R Tl
ln M Tl ln M Tlf

−
= −

−
  [36] 

For the case when gxxx/198Hg=g205/203Tl or fxxx/198Hg= f205/203Tl, i.e. fractionation factor is independent 

of the element, then slope and intercept would be fixed, and the slope could be estimated a priori 

(Table 4). Figure 14 shows a one-day analytical session for Hg isotope ratios on a Nu Plasma MC-

ICPMS. By plotting lnRxxx/198HgM vs. lnR205/203TlM, we can obtain a linear relationship with a slope 

of 2.03±0.16 (2σ) for 202/198Hg, which is indistinguishable from theoretical estimate (2.0 for power 

law and 2.04 for exponential law) assuming the same fractionation factor from Hg and Tl isotopes. 

Table 4 Slopes of linear array of lnRxxx/198Hgm vs. lnR205/203Tlm assuming fractionation factors are identical for 

Hg and Tl 

 
196/198Hg 199/198Hg 200/198Hg 201/198Hg 202/198Hg 204/198Hg 

Power -0.999428 0.500235 0.999738 1.500206 1.999856 3.000241 

Exponential -1.034983 0.514109 1.024891 1.534103 2.039958 3.045278 
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Figure 14 Plot of ln202/198Hg vs. ln205/203Tl of NIST 3133 Hg standard, secondary standard (UM-Almaden, 

BCR176R, NIST2685b) and samples (coal, coal combustion residuals) in a one-day analytical session on Nu 

plasma, Pau University, France. All the solutions were measured at ~1 ng/g. The dashed lines represent the 

δ202/198Hg values of samples and secondary standards relative to NIST 3133 Hg standard. 

4.2.1.2. Sample-standard bracketing  

In this method, the mass bias of an unknown sample is linearly interpolated between those of two 

NIST 3133 standards measured before and after the sample (Blum and Bergquist, 2007). This 

method is more precise when mass fractionation changes smoothly between standards and sample. 

The sample and standard should be purified and analyzed under similar conditions to exclude matrix 

effects which could shift the Hg mass bias fractionation factor irregularly (Albarède and Beard, 

2004). Detailed formula deviations can be found in the experimental section of Chapter 5. 

4.2.2. Matrix effect 

Sample matrix can shift Hg isotope ratios through spectral (isobaric effect) and non-spectral 

interferences.  

4.2.2.1. Isobaric effect 

55 



Chapter 4. Sample descriptions and Hg isotope measurements 

An isobar effect is caused by spectral overlapping of different species with unresolved mass 

differences. For Hg isotope measurement, the potential interferences can be classified into elemental 

isobar effects (e.g. 196Pt on 196Hg; 198Pt on 198Hg; 204Pb on 204Hg) and molecular isobar effect (e.g. 
118Sn40Ar40Ar on 198Hg and HgH+ interferences). Considering that Hg is introduced in a gas form 

after reduction by SnCl2 and separated by a gas-liquid separator, potentially interfering species 

should be and are in practice negligible. In addition, the Tl aerosol is desolvated before mixing with 

the Hg vapor, which eliminates the molecular HgH+ isobar effect (Belshaw et al., 2000; Roe et al., 

2003). During our measurement, the potential for 118Sn40Ar40Ar isobar formation is monitored on a 

daily basis by checking 118Sn blank levels, which are always <1mV. 

4.2.2.2. Non-spectral interferences 

One of the most important non-spectral matrix interferences is the space charge effect behind the 

skimmer cone where positive ions in the ion beam repulse each other (Praphairaksit and Houk, 

2000). Non-spectral matrix interferences can decrease the sensitivity of isotope signals and suppress 

or enhance instrumental mass bias. This commonly occurs when the matrix element concentration is 

significantly higher than the analyte of interest. In the case of Hg isotope analyses by cold vapor 

generation this effect is negligible because Hg is introduced as a vapor in the MC-ICPMS and no 

other elements are reduced into volatile form by SnCl2. However cold vapor generation is sensitive 

to matrix effects in itself, as a sample matrix may influence the reduction efficiency of SnCl2. A 

good example is the addition of dissolved organic matter (DOM) into a UM-Almaden Hg solution, 

which has been shown to shift the δ202Hg values of UM-Almaden from -0.5‰ at 1 mg/L DOM to -

0.18‰ at 15 mg/L DOM (Chen et al., 2010). The mechanism at work here is the presence of strong 

Hg-DOM complexes at functional thiol (sulfur) groups that inhibit complete reduction of sample 

Hg(II) to Hg(0) vapor. Matrix constituents also tend to stick to tubing and glass reactor surfaces, 

thereby complicating signal stabilization and wash-out times for CV-MC-ICPMS and inducing small 

amounts of imprecision into the final Hg isotope analyses. Thus, purification of Hg from its original 

sample matrix is ideal before Hg isotope measurement. For aqueous Hg solution, a chromatographic 

method was used to exclude matrix effects (Chen et al., 2010; Malinovsky et al., 2008). Combustion-

trapping procedures are widely used in Hg purification of solid samples (Figure 15) (Biswas et al., 

2008; Sun et al., 2013). Finally, a close match (within 10%) of the acid matrix component and Hg 

concentration between NIST 3133 bracketing standard and analyzed samples is essential to limit 

non-spectral matrix interferences (Blum and Bergquist, 2007; Sonke et al., 2008). 
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Figure 15 Overview of combustion-trapping system for Hg purification (for more detail, refer to Chapter 5) 
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Chapter 5. A double-stage tube furnace – acid trapping protocol for 

the pre-concentration of mercury from solid samples for isotopic 

analysis (Analytical and Bioanalytical Chemistry, in press) 

Résumé 

Ce Chapitre résume le protocole d’extraction, purification and pré-concentration du Hg pour 

l’analyse isotopique. La méthode a été développé pour des échantillons solides divers tel que le 

charbon, des roches, cendres, tourbes et schistes noirs ayant des teneurs en Hg de <5 ng/g à 10 μg/g. 

Suivant des optimisations du mélange acide (HNO3/HCl), flux et type de gaz vecteur, et rampe de 

température, nous recommandons l’utilisation de 40% (v/v) 2HNO3/1HCl dans le piège acide, 25 

ml/min O2 en gaz vecteur et un programme dynamique de rampe de température (15 °C/min for 25-

150 °C and 600-900 °C; 2.5 °C/min for 150-600 °C) pour le 1ier four de combustion. Le 2ieme four, le 

pyrolyseur, est maintenu à 1000 °C durant tous les extractions du Hg. Nous avons testé et effectué 

340 extractions de Hg durant 20 mois, montrant une efficacité d’extraction de 89% (médiane) pour 

les différents types d’échantillons. L’extraction des matériaux de référence montre une absence de 

biais isotopique pour des rendements entre 81-102%. Ce protocole a l’avantage d’être rapide (3.5h), 

d’éviter le transfert de la matrice vers le piège acide, et permets une analyse directe des compositions 

isotopiques par spectrométrie de masse après dilution à 20% (v/v) acide. Cependant, nous avons 

remarqué des transferts rares de l’iode de la matrice du charbon vers le piège acide, posant des 

problèmes de réduction du Hg dans le générateur à vapeur froide du spectromètre de masse. 
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Chapter 6. Hg stable isotope variations in coal-bearing sequences 

and its implication for Hg sources and geochemistry in coal (article 

in preparation) 

Résumé 

Ce Chapitre fait l’objet d’une étude de cas sur le fractionnement isotopique du Hg au sein d’une 

séquence de charbons déposé au même endroit géographique. Le but était d’explorer les signatures 

isotopiques du Hg comme traceurs des sources ou processus du Hg dans le charbon. Nous observons 

une variation ~2‰ en δ202Hg (−1.62 to 0.44±0.12‰, 2SD, n=18) et de 0.35‰ en Δ199Hg (−0.12 to 

0.22±0.08‰, 2SD, n=18) au sein des couches de charbons déposées pendant 20 Ma (Mine de Zhuji, 

basin de Huainan, province d’Anhui, Chine). Une même variation est observée au sein d’une seule 

couche de charbon (mine de Daizhuang, basin de Jining, province de Shandong, Chine). Une 

corrélation entre le δ202Hg et 1/Hg a Zhuji suggère une mélange binaire entre deux sources de Hg, 

témoignant d’un décalage dans la source dominante du Hg dans le bassin de Huainan. Dans la 

couche de charbon de Daizhuang aucune relation claire ne parait entre δ202Hg vs. 1/Hg. Enfin, des 

cokes naturels, une forme métamorphosé du charbon au contact avec des intrusions magmatiques, 

montre un fort fractionnement isotopique dépendent de la masse, avec δ202Hg élevé (0.70 to 

0.91±0.12‰, 2SD, n=2) ou plus bas (−4.00 to −3.47±0.12‰, 2SD, n=3). 
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Abstract 

The sources and geochemical processes that control mercury (Hg) occurrences in coal deposits are a 

topic of debate. Hg stable isotope signatures are a useful tool to trace Hg provenances and 

transformation mechanisms. Here, we explore the variations in Hg isotope compositions in coal 

benches of a single coal seam (Daizhuang Coal Mine, Jining Coalfield, Shandong Province), and 

coals seams of a 20 Ma spanning coal-bearing sequence (Zhuji Coal Mine, Huainan Coalfield, Anhui 

Province) to assess the potential of using Hg isotope ratios as the geochemical tracer in coal deposits. 

Coal benches of the Daizhuang No. 3-1 coal seam varied from −2.34 to −0.25±0.12‰ in δ202Hg 

(2SD, n=8), with no significant mass independent Hg isotope fractionation (MIF) in most samples 

(−0.04 to 0.12±0.08‰ for Δ199Hg, 2SD, n=8). In contrast, Zhuji coal seams were enriched in the 

heavier Hg isotopes (−1.62 to 0.44±0.12‰ for δ202Hg, 2SD, n=18), with significant MIF in the 

younger No’s 7-11 coal seams (from 0.06 to 0.22±0.08‰ for Δ199Hg, 2SD, n=7). Increasing trends 

were seen for both Hg concentrations and δ202Hg going from older to younger Zhuji coal seams. The 

significant (r2=0.77, p=0.002) correlation of δ202Hg vs. 1/Hg suggests that Hg in Zhuji coal possibly 

reflects the mixing of two end-members with distinct δ202Hg. Natural cokes, a metamorphosed form 

of coal, have either distinctly higher (0.7 to 0.91±0.12‰, 2SD, n=2) or lower δ202Hg (−4.00 to 

−3.47±0.12‰, 2SD, n=3) than coal samples, demonstrating that significant Hg isotope fractionation 

occurred when coals were subjected to the perturbation of magmatic intrusions.  

*Corresponding author: Ruoyu Sun, E-mail: roysun1986@gmail.com 
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6.1. Introduction  

Mercury (Hg) is a naturally occurring toxic element. As a geological sink for atmospheric, aquatic, 

sedimentary and hydrothermal Hg inputs, coal is commonly several folds enriched in Hg as 

compared to sedimentary host rocks (Dai et al., 2012a; Ketris and Yudovich, 2009) In some 

geological-active areas such as Southwest China and Eastern Russia, Hg can be locally enriched by 

several orders of magnitude through coal matrix sequestration of Hg-bearing hydrothermal fluids 

(Yudovich and Ketris, 2005). The utilization of coal for heat and electricity generation and for 

industrial production of raw materials has emitted large amounts of historically fixed Hg to the 

atmosphere (Pacyna et al., 2010) At present, coal combustion contributes to approximate half of 

anthropogenic Hg emissions into the atmosphere, with an annual emission flux of 700-900 tons 

(Pacyna et al., 2010; Pirrone et al., 2010; Streets et al., 2011). 

Extensive studies have been conducted on Hg abundances, affinities and geological provenances in 

coal and its associated rocks (i.e. coal roof, parting and floor) (e.g. Hower et al., 2005b; Quick et al., 

2003; Toole-O'Neil et al., 1999; Yudovich and Ketris, 2005; Zheng et al., 2007a, and references 

therein). Hg in coal varies significantly, up to several orders of magnitude, among different 

countries, coal basins, coal mines and even benches within individual coal seams. Although Hg 

affinities for coal also vary largely, the reduced-sulfur groups in plant-derived organic matter and 

inorganic sulfide minerals (primarily pyrite) are commonly identified as the main Hg carriers in coal 

(Diehl et al., 2004b; Hower et al., 2008; Yudovich and Ketris, 2005). The controlling factors that 

influence Hg accumulation and migration in coal-forming swamps are still a matter of debate, and 

quantitative tracing of primary Hg sources in coal seams is subject to large uncertainty (Toole-O'Neil 

et al., 1999; Yudovich and Ketris, 2005). Therefore, an appropriate and robust tracer is needed to 

help constrain the geochemical controls on Hg occurrences in coal.  

Recent advances in multiple collectors inductively coupled plasma mass spectrometry (MC-ICPMS) 

and associated techniques (e.g. sample preparation, purification and introduction) have allowed high-

precision determination of Hg stable isotope ratios in natural samples with Hg concentrations down 

to ultra-trace levels (Blum and Bergquist, 2007; Chen et al., 2010; Lauretta et al., 2001). Both mass-

dependent Hg isotope fractionation (MDF, indicated by δ202Hg) and mass-independent Hg isotope 

fractionation (MIF, odd 199Hg and 201Hg isotopes mostly, indicated by Δ199Hg) vary within a range of 

10‰ in geological and environmental samples (Bergquist and Blum, 2009; Sonke, 2011, Yin et al., 

2010). In addition, observations on atmospheric precipitations (snow and rain) also show up to 1‰ 
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variation of MIF of even Hg isotopes (indicated by Δ200Hg) (Chen et al., 2012; Gratz et al., 2010; 

Sherman et al., 2011). Measurable Hg MDF is caused by most biogeochemical processes that affect 

Hg, such as reduction (biotic and abiotic), oxidation, adsorption, condensation, evaporation, 

volatilization, methylation and demethylation (Bergquist and Blum, 2007; Estrade et al., 2009; Kritee 

et al., 2007; Zheng et al., 2007b; Zheng and Hintelmann, 2010). Previous work has shown that 

significant Hg isotope variation, as large as 3.5‰ for δ202Hg and 1‰ for Δ199Hg, occurs in coal 

deposits worldwide (Biswas et al., 2008; Lefticariu et al., 2011; Sherman et al., 2011; Sun et al., 

2013a). By using the combination of δ202Hg and Δ199Hg signatures, it has been demonstrated that 

coals from different countries, coal deposits and coal seams are broadly distinguishable (Biswas et 

al., 2008; Lefticariu et al., 2011). In addition, the main Hg carriers, i.e. hydrothermal pyrite and 

organic matter, may possess characteristic and distinguishable Hg isotope signatures (Lefticariu et 

al., 2011). These observations highlight the potential of Hg isotope signatures to trace Hg sources 

and occurrences in coal, and to understand the geochemical processes controlling Hg migration and 

accumulation in coal basins.  

Here, we systematically collected low-sulfur (<1 wt.%) coal samples, natural cokes, and coal 

associated rocks from 12 Permian coal seams in two well-documented coal-bearing strata of Huainan 

Coalfield and Jining Coalfield, North China (Figure 7). Our study focuses on: 1) Hg isotope 

characterization of coals deposited in different coalfields and coal-forming periods; 2) identification 

of Hg provenances and geochemical processes occurring during and after coal deposition and; 3) the 

impact of high-temperature magmatic intrusion events on Hg isotope fractionation in coal. 

6.2. Study area    

The Huainan Coalfield and Jining Coalfield, located respectively in northern Anhui and western 

Shandong provinces, are ones of the most active coal-producing districts in China (Figure 7). 

Abundant Permo-Carboniferous bituminous coal with middle-high volatile matters (35-40 wt.%, dry 

ash-free basis) and calorific values (20-30 kJ/kg, dry basis) occur underground in both coalfields 

(Liu et al., 2005; Sun et al., 2010a, b). The Zhuji Coal Mine (ZJ, covering an area of 45 Km2 with a 

coal reserve of 947 Mt) and Daizhuang Coal Mine (DZ, covering an area of 66 Km2 with a coal 

reserve 370 Mt) in these two coalfields were selected in the present study. The sampled coals 

generally have <1 wt.% total sulfur contents (average values is ~0.5% for No’s. 1 to 11-2 coal seams 

of ZJ and ~0.7% for No. 3-1 coal seam of DZ, Figure 8), classifying them as low-sulfur coal. Coal 

macerals are dominated by vitrinite (>50%) followed by inertinite (<30%) and liptinite (<10%). In 
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ZJ, abundant intrusive rocks in the forms of dikes and sills were observed at Shanxi Formation coals 

and decrease upward. The Rb/Sr isotope age for these intrusion bodies is ~110 Ma during the Late 

Cretaceous Period (Yang et al., 2012). The radiated heat during intrusion and crystallization 

processes of magma upgraded the surrounding coal to natural coke. 

6.2.1. Coal-forming environment 

In the Middle Carboniferous, the North China Platform subsided and formed the largest down-

warped coal basin, North China Coal Basin (NCCB), with an area of 1,200,000 km2, representing 

~60% of Chinese coal reserves (Dai et al., 2012b; Han et al., 1996; Han and Yang, 1980). The 

continuous uplift of northern Yinshan Oldland and subsidence of the NCCB during the Later 

Carboniferous (corresponding to the Taiyuan Formation, Figure 8) resulted in enhanced clastic 

sediment input to the NCCB. Thick coal seams developed along deltaic-littoral plains at the northern 

NCCB, while medium-thickness coal seams developed along complex sedimentary settings such as 

deltaic plains, lagoons and barrier islands at the centre NCCB (including Jining Coalfield, Figure 7). 

Only thin and unworkable coal seams developed within abundant limestone deposited in a shallow 

epicontinental sea at the southern NCCB (including Huainan Coalfield, Figure 7) (Han and Yang, 

1980; Wu et al., 1995). Following the last large-scale southeastern seawater transgression at the 

onset of the Permian, seawater completely retreated out of the NCCB at the Early Permian 

(corresponding to middle-upper sections of Shanxi Formation, Figure 8) and the coal accumulating 

belt began to shift southwards. Thick coal seams along the deltaic plain developed in the southern 

and center NCCB. Afterwards, minable coal seams were only deposited at the southern NCCB in 

LowerShihezi and Upper Shihezi formations (Figure 8). The studied coal seams in Huainan and 

Jining coalfields were both deposited along transitional deltaic plains after seawater regression (Han, 

1990; Querol et al., 1999; Sun et al., 2010a). These coal seams were formed in oxidizing terrestrial 

environments and contained significantly lower sulfur, boron, strontium and calcium contents, but 

higher inertinite components than Taiyuan Formation coals formed in marine-influenced reducing 

environments (Han, 1990; Liu et al., 2004; Querol et al., 1999). 

6.2.2. Coal-bearing sequences 

Upwards along the coal-bearing sequence, the coal seams are numbered in an ascending order from 

No’s. 1 to 25 in ZJ, Huainan Coalfield, and in a descending order from No’s. 18 to 1 in DZ, Jining 

Coalfield (Figure 8). Laterally, one seam may have 0-3 sub-seams due to splitting and pinch-out 
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effects. The Carboniferous coal seams in Huainan Coalfield are thin and unworkable. The Permian 

strata in ZJ comprise coal seams No’s. 1-3 in the Shanxi Formation (mean thickness of 67.5 m in 

range of 52.6-82.3 m), No’s. 4-9 in the Lower Shihezi Formaton (mean thickness of 517.7 m in range 

of 480.6-554.7 m) and No’s. 10-25 in the Upper Shihezi Formation (mean thickness of 145.6 m in 

range of 116.7-162.1 m).  Coal seams of No’s. 17-1, 16-2, 13-1, 11 (splitting into 11-2 and 11-1), 8, 

7-2, 6, 5 (splitting into 5-2 and 5-1), 4 (splitting into 4-2 and 4-1) and 3 are economically minable. 

The total minable thickness is about 21.6 m. The major coal seams of the Jining Coalfield occurred 

in the Upper Carboniferous Taiyuan Formation (mean thickness of 165.6 m in range of 148.2-193.4 

m, comprising coal seams No’s. 18 to 4) and the Lower Permian Shanxi Formation (mean thickness 

of 75.6 m in range of 59.9-114.7 m, comprising coal seams No’s. 3 to 2). Coal seams No’s. 17, 16, 

15-2, 6, 3-2, 3-1 are economically minable. The total minable thickness is about 8.4 m. A detailed 

description of stratigraphic and lithological characteristics of coal-bearing sequences in both coal 

mines can be found elsewhere (Liu et al., 2005; Sun et al., 2010a, b).  

6.3. Samples and analyses 

6.3.1. Sample collection 

Two sampling strategies were used for sample collection. In the first one, 43 bench coal samples and 

5 natural coke samples were taken from No’s. 1, 3, 4-1, 4-2, 5-1, 5-2, 6, 7-2, 8, 11-1 and 11-2 coal 

seams in borehole cores of ZJ (Table 5, Table 6 and Figure 8). Most of the samples were collected 

from coal seams in borehole #12-8 (the distribution of boreholes can be found in Figure 2 of Sun et 

al., 2010b).  

Table 5 Ash yield, sulfur and iron content, Hg concentration and δ13C values of coal and coke samples in the 

Zhuji Coal Mine, Huainan Coalfield 

Coal seam Sample ID Sample lithology Ash yield (%) S (%) Fe (%) Hg (ng/g) δ13C 2σ 

11-2 

ZJ-12-8-11-2U Coal 15.5 0.36 1.72 59 -24.2  ZJ-12-8-11-2M Coal 38.9 0.57 1.95 168 -24.5  ZJ-12-8-11-2D Coal 17.2 0.29 1.94 57 -24.3  ZJ-7-8-11-2U Coal 14.3 0.37 0.59 71 
-24.4  ZJ-7-8-11-2M Coal 33.3 0.63 2.01 357 

ZJ-7-8-11-2D Coal 13.2 0.31 1.15 51 

11-1 
ZJ-7-8-11-1U Coal 25.4 0.69 2.23 144 

-24.4 0.07 ZJ-7-8-11-1M Coal 26.5 0.53 2.92 93 
ZJ-7-8-11-1D Coal 22.9 0.59 0.85 228 

8 
ZJ-12-8-8U Coal 18.7 0.61 1.55 169 -23.1  ZJ-12-8-8M Coal 19.1 0.23 1.54 55 -24.2  ZJ-12-8-8D Coal 19.6 0.3 2.18 47 -24.0 1.1 

7-2 
ZJ-12-8-7-2U Coal 21.7 0.26 2.23 38 -24.0  ZJ-12-8-7-2M Coal 21.9 0.29 1.29 25 -26.0 0.2 
ZJ-12-8-7-2D Coal 18.5 0.24 1.83 42 -24.2  
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ZJ-20-4-7-2U Coal 24.3 0.19 1.95 149 
-23.8  ZJ-20-4-7-2M Coal 14.0 0.27 0.90 48 

ZJ-20-4-7-2D Coal 16.5 0.26 10.01 63 
ZJ-12-6-7-2-U-J Natural coke 18.0   52   

6 

ZJ-12-6-6U Coal 15.3 0.32 6.93 43 
-24.6  ZJ-12-6-6M Coal 22.3 0.3 3.30 75 

ZJ-12-6-6D Coal 27.4 0.25 6.62 36 
ZJ-12-8-6U Coal 21.2 0.41 1.68 150 -24.8  ZJ-12-8-6M Coal 27.6 0.82 4.25 125 -23.7  ZJ-12-8-6D Coal 24.6 0.43 2.89 52 -24.0  

5-2 
ZJ-12-8-5-2U Coal 17.1 0.55 2.88 54 -24.2  ZJ-12-8-5-2M Coal 21.5 0.37 2.06 51 -24.2  ZJ-12-8-5-2D Coal 16.7 0.5 1.48 27 -24.5  

5-1 
ZJ-12-8-5-1U Coal 26.7 0.9 4.17 163 -23.6  ZJ-12-8-5-1M Coal 21.1 0.37 1.92 44 -26.1  ZJ-12-8-5-1D Coal 21.6 0.54 2.87 52 -26.0  

4-2 

ZJ-12-8-4-2U Coal 28.8 0.1 4.49 22 -24.2  ZJ-12-8-4-2M Coal 19.0 0.2 1.48 55 -24.1  ZJ-12-8-4-2D Coal 13.9 0.56 0.41 23 -24.9  ZJ-14-5-4-2-D-J Natural coke 10.8 0.43 0.86 23   

4-1 
ZJ-12-8-4-1U Coal 15.0 0.45 1.15 36 -24.4  ZJ-12-8-4-1M Coal 18.8 0.41 2.05 31 -24.5  ZJ-12-8-4-1D Coal 21.2 0.37 1.99 37 -23.9  

3 

ZJ-12-6-3U Coal 26.6 0.64 3.89 98   ZJ-12-6-3M Coal 17.8 0.31 3.14 21   ZJ-12-6-3D Coal 11.1 0.29 1.91 17 -24.6  ZJ-E4-3U Coal  0.29 0.45 39   ZJ-8+1-3U-J Natural coke 54.8 0.11 1.99 75   ZJ-8-5-3U-J Natural coke 17.5 0.27 0.32 445   ZJ-8-5-3D-J Natural coke 37.5 0.27 0.69 103   

1 
ZJ-9+1-1U Coal 47.3 0.32 2 95   ZJ-9+1-1M Coal 74.7 0.14 5.69 104   ZJ-9+1-1D Coal 65.6 0.32 4.56 113   

Note: sample ID indicates the name of the coal mine followed by borehole number, coal seam number and relative location of 

bench (and sample lithology). ZJ: Zhuji Coal Mine; U, M and D: the upper, middle and lower benches of each coal seam; J: 

natural coke; n1: sample replicates for Hg concentration determination; n2-replicate analyses of the sample for δ13C 

Additional samples from other boreholes were sampled to complement the unavailable coal seams in 

borehole #12-8 due to undesirable coal-forming environments, and to increase the representativeness 

of coal seams. Generally, three samples (each of ~200 g) were collected from each coal seam, 

namely upper, middle and lower benches, in line with their relative locations in individual coal 

seams. As compared to the coal samples, the natural coke samples are significantly lower in bulk 

density. In addition, natural cokes are fragmental in structure with abundant fracture development. 

Intrusive dikes of granite porphyry and gabbro can be found in contact with cokes or as interlayer 

between coal associated rocks. In the second sampling, 8 bench coal samples (DZ-3-1-C3 to DZ-3-1-

C10), 1 siltstone (DZ-3-1-R1) and 1 mudstone (DZ-3-1-R2) that underlie coal benches were sampled 

from No. 3-1 coal seam in DZ (Table 7 and Figure 8). An interlayer of mudstone and carbonaceous 

mudstone parting (~20 cm) occurred between coal benches DZ-3-1-C5 and DZ-3-1-C6. Bench 

coalsamples of uniform sizes (20 cm thickness × 5 cm depth) were cut upward from a 2 m fresh 

working face. All samples were immediately sealed in plastic bags to prevent contamination and 
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weathering. Upon transport to the laboratory, bulk samples were air-dried, crushed and sieved to 

<120 μm particles for subsequent analyses.  
Table 6 Hg isotope compositions of coal and coke samples in Zhuji Coal Mine, Huainan Coalfield 

Sample ID Hg 
(ng/g) 

δ199Hg 
(‰) 

2σ 
(‰) 

δ200Hg 
(‰) 

2σ 
(‰) 

δ201Hg 
(‰) 

2σ 
(‰) 

δ202Hg 
(‰) 

2σ 
(‰) 

Δ199Hg 
(‰) 

2σ 
(‰) 

Δ200Hg 
(‰) 

2σ 
(‰) 

Δ201Hg 
(‰) 

2σ 
(‰) 

ZJ-12-8-11-2 95 0.19  0.27  0.39  0.44 0.31 0.08  0.05  0.06  
ZJ-7-8-11-2 160 -0.06  -0.20  -0.31  -0.49  0.06  0.05  0.06  

ZJ-7-8-11-1U 144 -0.01 0.09 -0.14 0.09 -0.10 0.12 -0.31 0.15 0.07 0.05 0.02 0.02 0.14 0.01 
ZJ-7-8-11-1M 93 -0.08  -0.38  -0.54  -0.93  0.16  0.09  0.16  

ZJ-12-8-8 90 0.04  -0.06  -0.01  -0.19  0.09  0.03  0.13  
ZJ-12-8-7-2 35 0.04 0.02 -0.02 0.03 -0.08 0.06 -0.21 0.08 0.09 0.04 0.08 0.01 0.07 0.00 
ZJ-20-4-7-2 87 0.06 0.03 -0.25 0.03 -0.27 0.01 -0.66 0.01 0.22 0.03 0.08 0.04 0.23 0.02 
ZJ-12-6-6 51 -0.06 0.03 -0.06 0.02 -0.09 0.01 -0.19 0.04 -0.01 0.04 0.04 0.04 0.05 0.04 
ZJ-12-8-6 109 -0.20  -0.33  -0.52  -0.71  -0.03  0.02  0.02  

ZJ-12-8-5-2 44 -0.18 0.04 -0.40 0.04 -0.63 0.09 -0.91 0.15 0.05 0.00 0.06 0.03 0.06 0.02 
ZJ-12-8-5-1 86 -0.07 0.04 -0.13 0.02 -0.23 0.05 -0.30 0.03 0.00 0.03 0.02 0.01 0.00 0.07 
ZJ-12-8-4-2 33 0.06 0.09 0.10 0.05 0.19 0.13 0.15 0.04 0.02 0.08 0.03 0.03 0.08 0.11 
ZJ-12-8-4-1 35 -0.27 0.03 -0.59 0.00 -0.85 0.01 -1.27 0.01 0.05 0.02 0.05 0.01 0.10 0.02 
ZJ-12-6-3 45 -0.21  -0.36  -0.61  -0.78  -0.02  0.02  -0.02  
ZJ-E4-3U 39 -0.28 0.07 -0.33 0.05 -0.69 0.12 -0.63 0.03 -0.12 0.07 -0.01 0.04 -0.21 0.09 
ZJ-9+1-1U 95 -0.29 0.11 -0.85 0.06 -1.25 0.21 -1.62 0.10 0.11 0.08 -0.04 0.01 -0.03 0.14 
ZJ-9+1-1M 104 -0.12 0.02 -0.35 0.06 -0.57 0.01 -0.68 0.06 0.05 0.00 -0.01 0.03 -0.06 0.06 
ZJ-9+1-1D 113 -0.21 0.05 -0.36 0.00 -0.68 0.02 -0.75 0.01 -0.02 0.04 0.01 0.01 -0.12 0.01 
ZJ-8-5-3U-J 445 0.17 0.04 0.39 0.07 0.49 0.19 0.91 0.05 -0.06 0.02 -0.07 0.04 -0.20 0.15 
ZJ-8-5-3D-J 103 -0.90 0.07 -2.03 0.08 -3.09 0.12 -4.00 0.07 0.11 0.05 -0.02 0.04 -0.09 0.07 
ZJ-8+1-3U-J 75 -0.72 0.10 -1.74 0.12 -2.53 0.21 -3.47 0.10 0.15 0.08 0.00 0.07 0.08 0.13 

ZJ-14-5-4-2-D-J 23 -0.80 0.04 -1.99 0.01 -2.87 0.12 -3.93 0.06 0.19 0.02 -0.01 0.02 0.09 0.07 
ZJ-12-6-7-2-U-J 52 0.17 0.03 0.35 0.08 0.52 0.15 0.70 0.05 -0.01 0.02 0.00 0.05 0.00 0.11 

Table 7 Hg concentrations and isotope compositions of coal and rock samples in Daizhuang Coal Mine, 

Jining Coalfield 

Sample ID Hg 
(ng/g) 

Sample 
Lithology 

δ199Hg 
(‰) 

2σ 
(‰) 

δ200Hg 
(‰) 

2σ 
(‰) 

δ201Hg 
(‰) 

2σ 
(‰) 

δ202Hg 
(‰) 

2σ 
(‰) 

Δ199Hg 
(‰) 

2σ 
(‰) 

Δ200Hg 
(‰) 

2σ 
(‰) 

Δ201Hg 
(‰) 

2σ 
(‰) 

DZ-3-1-R1 39 Sandstone -0.19 0.04 -0.34 0.03 -0.51 0.02 -0.70 0.03 -0.01 0.04 0.01 0.01 0.02 0.04 
DZ-3-1-R2 205 Mudstone -0.24 0.03 -0.37 0.07 -0.58 0.03 -0.79 0.05 -0.04 0.04 0.02 0.10 0.01 0.01 
DZ-3-1-C3 104 Coal -0.48 0.01 -1.16 0.02 -1.62 0.04 -2.34 0.05 0.11 0.02 0.02 0.05 0.14 0.01 
DZ-3-1-C4 139 Coal -0.34 0.05 -0.85 0.01 -1.29 0.02 -1.82 0.03 0.12 0.06 0.07 0.02 0.09 0.01 
DZ-3-1-C5 754 Coal -0.22 0.02 -0.45 0.03 -0.77 0.01 -1.05 0.03 0.05 0.02 0.08 0.05 0.03 0.03 
DZ-3-1-C6 86 Coal -0.02 0.02 -0.01 0.06 -0.11 0.05 -0.12 0.08 0.01 0.00 0.05 0.02 -0.02 0.02 
DZ-3-1-C7 114 Coal -0.10 0.08 -0.16 0.14 -0.38 0.11 -0.50 0.10 0.02 0.05 0.09 0.08 0.00 0.03 
DZ-3-1-C8 85 Coal -0.01 0.08 -0.07 0.00 -0.16 0.03 -0.25 0.00 0.05 0.08 0.05 0.00 0.03 0.03 
DZ-3-1-C9 578 Coal -0.35 0.01 -0.78 0.02 -1.13 0.04 -1.65 0.01 0.07 0.02 0.05 0.02 0.11 0.04 

DZ-3-1-C10 522 Coal -0.31 0.04 -0.67 0.03 -1.03 0.07 -1.43 0.12 0.05 0.07 0.05 0.09 0.05 0.02 

DZ-3-1-C5-F 630 Coal float 
fraction -0.32 0.04 -0.69 0.02 -1.03 0.07 -1.45 0.05 0.04 0.03 0.03 0.00 0.06 0.04 

DZ-3-1-C9-F 500 Coal float 
fraction -0.47 0.01 -0.85 0.04 -1.31 0.03 -1.69 0.04 -0.04 0.00 0.00 0.01 -0.03 0.02 

DZ-3-1-C10-F 500 Coal float 
fraction -0.40 0.01 -0.69 0.02 -1.10 0.00 -1.43 0.01 -0.04 0.01 0.03 0.02 -0.02 0.00 

Note: referring to Figure 8 (c) for sample locations 
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6.3.2. Analyses 

6.3.2.1. Mineralogical analysis and float-sink experiments  

Mineralogical analysis of the raw coal samples and rocks was performed on a Inel CPS120 X-ray 

powder diffractometer (XRD) with a Co-Kα radiation, 40 kV Voltage and 25 mA current. The XRD 

pattern was recorded over a 2θ interval of 2-120°, with a step size of 0.03. Two samples with the 

highest Hg concentrations in coal benches in DZ (DZ-3-1-C5, DZ-3-1-C9, Table 7) were found to 

contain pyritic phases. In order to test whether pyrite and organic matter of coal have different Hg 

isotope compositions, float-sink experiments were conducted on both coal benches and on a third 

high Hg coal bench DZ-3-1-C10. About 0.5 g of each coal sample was well mixed with reagent-

grade diiodomethane (CH2I2) solvent with a density of 3.3 g/ml and densimetrically separated 24 

hours before collecting the float and sink fractions onto two separate filter papers. The float and sink 

fractions were then air-dried in a fume hood.   

6.3.2.2. Hg concentrations  

A direct combustion mercury analyzer (Milestone DMA-80) consisting of a decomposition furnace, 

catalyst tube, amalgamator and atomic absorption spectrometer was used to analyze Hg 

concentrations in solid samples. Hg concentrations of periodically analyzed bituminous coal 

standards NIST 2685b and NIST 1632d had mean Hg values of 156±10 ng/g (2SD, n = 34) and 

90±10 ng/g (2SD, n = 20), respectively, in excellent agreement with certified values. Relative 

standard deviations of Hg concentrations for replicated samples were within 10% 2RSD.  

6.3.2.3. Hg isotope determination 

Hg in solid samples was pre-concentrated into acidic aqueous solution, according to the combustion-

trapping method described in Sun et al. (2013a). Briefly, Hg in solid samples was thermally 

volatilized in a pure oxygen stream using a temperature-programmed combustion furnace (25-900 

°C). A second furnace, kept at 1000 °C, decomposes combustion products before collecting Hg into 

a 30 ml 40% (v/v) acid-filled impinger (2HNO3/1HCl, double distilled). Hg in float fractions of 

float-sink experiments was pre-concentrated by a modified combustion-trapping method that uses a 

DMA-80 catalyst tube in the second furnace (kept at 680 °C) to absorb iodine from the 

diiodomethane treatment. We didn’t concentrate sufficient Hg from the sink minerals for Hg isotope 

analysis. Procedural blanks and bituminous coal standards NIST 1632d and NIST 2685b were 

periodically processed with the solid samples. Some coal benches in the same coal seam of ZJ were 
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combined for pre-concentrating sufficient Hg for isotope analysis. All the trapping solutions were 

analyzed for Hg concentrations by cold vapor atomic fluorescence spectrometry (CV-AFS, Brooks 

Rand Model III) before Hg isotope analysis to evaluate Hg pre-concentration recovery and match Hg 

concentrations of standards for sample-standard bracketing on CV-MC-ICPMS. The trapping 

solutions of samples and standards were adjusted to a Hg concentration of 1-2 ng/g in 20% (v/v 

2HNO3/1HCl) acidic solutions. Recoveries for all the samples and procedural standards were in the 

range of 80-120% and procedural blanks had negligible Hg concentrations (<0.03 ng/g) relative to 

samples and procedural standards. 

A CV-MC-ICPMS (Cetac HGX-200 coupled to a Thermo-Finnigan Neptune) at the  Observatoire 

Midi-Pyrenees (France) was used to determine Hg isotope ratios in sample trapping solutions. The 

detailed analytic protocol can be found in Sun et al. (2013a). Hg isotope composition is expressed in 

delta notation referenced to the bracketed NIST 3133 Hg standard (Blum and Bergquist, 2007)： 

( ) ( )( )198 198

Sample NIST 3133
δ Hg ( ) Hg Hg Hg Hg 1 1000XXX XXX XXX= − ×‰  

Where XXX is Hg isotope mass between 199 and 202, (XXXHg/198Hg)sample is the measured isotope 

ratio of the sample, and (XXXHg/198Hg)NIST 3133 is the average isotope ratio of the bracketing Hg 

standard solutions measured before and after each sample. In the following, only δ202Hg values are 

discussed to represent MDF. MIF values are indicated by capital delta (Δ) notation in permil, which 

is the difference between the measured values of δ199Hg, δ200Hg, δ201Hg and those predicted from 

δ202Hg using the kinetic MDF law (Blum and Bergquist, 2007) : 

202Hg δ Hg δ Hgxxx xxx
xxx∆ = −β ×  

Where the mass-dependence scaling factor βxxx is 0.252 for 199Hg, 0.502 for 200Hg and 0.752 for 
201Hg.  

The long-term external uncertainty of the method was determined by repeated analyses of the in-

house UM-Almaden standard, which yielded an average δ202Hg value of −0.53±0.12‰ (2SD, n=33) 

for δ202Hg and −0.02±0.05‰ (2SD, n=33) for Δ199Hg, in agreement with published values (Blum 

and Bergquist, 2007). The measured δ202Hg and Δ199Hg of four independent combustions of 

procedural bituminous coal standard NIST 1632d were −1.74 ± 0.12‰ (2SD, n=4) and −0.08 ± 

0.08‰ (2SD, n=4), respectively, which were similar to our previous reported values (Sun et al., 
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2013b) and its predecessor NIST 1632c as analyzed by others (Lefticariu et al., 2011; Sherman et al., 

2011). The largest of either the 2SD (i.e. δ202Hg uncertainty=0.12‰, Δ199Hg uncertainty=0.08‰) of 

the isotope compositions for the procedural standards NIST 1632d and UM-Almaden or the 2SD on 

sample replicates (n=2) was taken as the analytical uncertainty of sample isotope compositions. 

6.3.2.4. Other analyses 

The carbon isotope compositions in coals were determined by a MAT-251 gas source mass 

spectrometer with dual inlet system at the State Key Laboratory of Loess and Quaternary Geology, 

CAS (Xian, China).  The coal samples were treated to remove carbonates by 2M HCl and then were 

combusted in a sealed quartz tube in the presence of silver foil and cupric oxide to produce CO2 for 

carbon isotope analyses. Carbon isotope ratios are expressed in delta notation (δ13C) in permil 

deviation relative to the PDB standard (Table 5). The uncertainty of δ13C values is <0.2‰ (2SD). 

Ash yield, total sulfur and iron contents of samples (Table 5) were determined using methods 

described in Sun et al., (2010b), with 2SD uncertainties <10%.   

6.4. Results  

6.4.1. Hg concentrations  

Total Hg concentrations in ZJ coals range from 17 to 357 ng/g with an average value of 79± 66 ng/g 

(1SD, n=43) (Table 5), which is comparable to averaged world coals of 100 ng/g Hg (Ketris and 

Yudovich, 2009) but is only half of the average Hg content of Chinese coals of 163 ng/g Hg (Dai et 

al., 2012a). Broadly, there is an increasing trend in Hg concentrations in minable coal seams from 

No’s. 3 to 11-2 in ZJ (Figure 16). The No. 3-1 coals of Shanxi Formation in DZ have an average Hg 

concentration of 298±256 ng/g (1SD, n=8, in a range of 85-754 ng/g), which is approximately 4 

times that of ZJ coals (Table 7). However, excluding the three highest Hg containing coal benches 

(i.e. DZ-3-1-C5, DZ-3-1-C9 and DZ-3-1-C10), Hg concentrations in the remaining benches are 

rather homogeneous (85-139 ng/g). Coal benches DZ-3-1-C5 and DZ-3-1-C9 are the only samples 

that were identified with pyrite phases. Therefore, the significant enrichment of Hg in these three 

benches likely suggests pyrite to be the host phase (Diehl et al., 2004b; Hower et al., 2005a; 

Yudovich and Ketris, 2005). Only one coke sample (ZJ-8-5-3U-J, Table 5) was found to have 

significant Hg enrichment (445 ng/g) as compared to coal.  
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(A) 

 

(B) 

Figure 16 Inter-seam variation of δ13C, Hg concentration, δ202Hg and Δ199Hg values in the Zhuji Coal Mine 

(A) and intra-seam variation of Hg concentration, δ202Hg and Δ199Hg values in No. 3-1 coal seam of 

Daizhuang Coal Mine (B). The shaded areas for Hg concentrations of Zhuji coals depict the overall increasing 

trend; the vertical dashed line shows the zero value for Δ199Hg; for individual Zhuji coal seams with multiple 

samples, 1SD  uncertainty of multiple samples is used if this value is larger than 2SD analytical uncertianty; 

the error bars in Hg concentrations of Daizhuang samples are covered by symbols. 
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Coal beneficiation experiments show no difference in S content for ZJ between raw coal and its 

cleaned equivalent (AICE, 2007). As organic associated S is not amenable to removal by cleaning 

procedures, most sulfur in ZJ coals is therefore probably present in organic forms. A significantly 

positive correlation is observed for Hg vs. S (R2=0.30, n=43, p<0.05) in ZJ coals. However, no 

correlations are observed for Hg vs. Fe or S vs. Fe. This suggests that Hg in ZJ coals mainly 

associates with reduced S groups (e.g. thiols) in organic macerals rather than Fe-sulfide minerals like 

pyrite (Diehl et al., 2004a; Skyllberg et al., 2006). Sequential leaching experiments conducted on low 

sulfur coals from Huaibei Coalfield (bordering Huainan Coalfield) also suggested a dominant 

organically-bound Hg form (Zheng et al., 2008). In contrast, XRD mineral analysis in DZ suggests 

that pyritic Hg is a dominant Hg occurrence at least for the high Hg coal benches. This is coherent 

with a ~10% reduction in S content that was observed for DZ No. 3 coal seam after the raw coal 

underwent cleaning procedures (SICE, 2010). 

6.4.2 Hg isotope compositions 

An approximate 2.8‰ range in δ202Hg (−2.34 to 0.44‰) and 0.35‰ range in Δ199Hg (−0.12 to 

0.22‰) is observed in the investigated coal deposits (Table 6 and Figure 17). The δ202Hg and Δ199Hg 

values in ZJ and DZ coals overlap those of selected world coals (−2.98 to 0.45‰ for δ202Hg and 

−0.63 to 0.34‰ for Δ199Hg, including China, USA and Russia-Kazakhstan) (Biswas, 2008; Sherman 

et al., 2012; Sun et al., 2013a) (Figure 18). Our data on ZJ coals δ202Hg (−1.62 to 0.44±0.12‰, 2SD) 

and Δ199Hg (−0.12 to 0.22±0.08‰, 2SD) expands the ranges previously reported for Huainan coals 

(−0.89 to −0.18‰ for δ202Hg and −0.03 to 0.10‰ for Δ199Hg) (Figure 18) (Biswas et al., 2008; Sun 

et al., 2013a). A fluctuating but upwards increasing trend of δ202Hg values in coal seams along the 

coal-bearing sequence in ZJ is observed (Figure 16A).  

Statistically, Shanxi Formation coals (i.e. No’s. 1 and 3 coal seams) in ZJ (mean δ202Hg = 

−0.89±0.37, 1SD, n=5) cannot be distinguished from coevally deposited No. 3-1 coal seam of DZ 

(man δ202Hg =−1.15±0.75‰, 1SD, n=8) (t-test, p=0.23) based on δ202Hg values. However, on a 

whole coal mine basis, coals from ZJ (mean δ202Hg=−0.56±0.47, 1SD, n=18) can be distinguished 

from DZ (t-test, p=0.04). Up to ~5‰ variation in δ202Hg values (from −4.00 to 0.91±0.12 ‰, 2SD, 

n=5) is seen for natural coke samples, and these values are significantly separated from those of coal 

samples (Figure 17). The δ202Hg values of both rock benches (0.70 and 0.79±0.12‰, 2SD) are 

within the range for typical sedimentary rocks (mean δ202Hg of −0.6‰ with a range of −0.9 to 
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−0.2‰, n=15) (Smith et al., 2008), possibly representing the isotope compositions of primary 

weathering  

 

Figure 17 δ202Hg vs. Δ199Hg diagram for coal and natural coke samples in  the Zhuji Coal Mine, and for coal, coal 

floatfraction and rock samples in Daizhuang Coal Mine. The horizontal dashed line shows zero value for Δ199Hg 

 

Figure 18 Comparison of δ202Hg and Δ199Hg values between studied coals and coals form other areas. Russia-

Kazakhstan coal data are from Biswas et al, (2008); the USA coal data are from Biswas et al. (2008),  

Lefticariu et al. (2011) and Sherman et al. (2012); Chinnese coal data are from Biswas et al. (2008) and Sun, 

et al. ( 2013b). The filled black circles in categories of China and “This study” indicate Huainan coals.  
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products of source rocks. Only organic float fraction DZ-3-1-C5-F (δ202Hg=−1.45±0.12, 2SD) shows 

significant depletion in the heavier Hg isotopes relative to the corresponding raw coal 

(δ202Hg=−1.05±0.12, 2SD) (Table 7), which implies that the separated heavy mineral fraction is 

enriched in the heavier Hg isotopes relative to coal. A similar observation was made on hand-picked 

pyrite minerals from the Illinois coal basin, USA (Lefticariu et al., 2011). 

Most of the ZJ and DZ samples show insignificant MIF (Δ199Hg and Δ201Hg) (Figure 16). Significant 

MIF is observed only in coals from upper coal-bearing sequences of ZJ (i.e. No’s. 7-2 to 11-2 coal 

seams) with Δ199Hg values up to 0.22‰ (Figure 16A). Only the two lowest coal benches (DZ-3-1-C3 

and DZ-3-1-C4) in DZ show small but significant MIF (Δ199Hg = 0.11 and 0.12±0.08‰, 2SD). 

Similar to crustal and mantle derived Hg reported elsewhere (Sherman et al., 2009; Smith et al., 

2008; Smith et al., 2005; Zambardi et al., 2009), no significant MIF values were observed in the 

underlying rock benches. All Δ201Hg and Δ199Hg data define a Δ199Hg/ Δ201Hg slope of 0.87±0.23 

(2SE) (Figure 19), which is not significantly different from the slope observed during photo-

reduction of dissolved organic matter-bound inorganic Hg (II) in aqueous environments (Bergquist 

and Blum, 2007; Zheng and Hintelmann, 2009).  

 

Figure 19 Δ199Hg vs. Δ201Hg values in coal and natural coke samples in Zhuji Coal Mine, and in coal, coal 

float fraction and rock samples in Daizhuang Coal Mine. Error bar represents measurement uncertainty of 

samples. The slope and intercept of samples regression line are calculated by the York regression method 

(York, 1968) that takes into account uncertainties in both Δ199Hg  and Δ201Hg. The vertical and horizontal 

dashed lines show the zero values for Δ199Hg and Δ201Hg. 
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6.5. Discussion 

Hg isotope compositions in coal are a combined result of different Hg sources and biogeochemical 

processes that occurred during and after coal deposition (Biswas et al., 2008; Lefticariu et al., 2011). 

Coal-forming plants, sediments sources, depositional environments, coalification degrees, and 

hydrothermal alteration control the concentration and distribution of Hg in coal (Dai et al., 2012a; 

Ren et al., 1999). Therefore, these factors also likely determine the Hg isotope compositions of coal. 

6.5.1. ZJ coals 

A 3‰ variation in δ13C values, from −26.1 to −23.1‰, is observed in ZJ coals with no systematic 

trend along coal-bearing sequences (Table 5 and Figure 16A). Most of the  δ13C values in coals (25 

out of 29) vary between −25 and −23.5‰. The small variation in δ13C values indicates a limited 

fluctuation of coal-forming plant species (primary C3 plants such as Cordaitopsida, Lepidode-ndron, 

Pteridosperm, Ginkgopsida and Filicinae between 250-300 Ma), a contemporaneous climate, and a 

similar degree of coalification (Bechtel et al., 2002; Holdgate et al., 2009). No correlation is 

observed between Hg concentrations and δ13C values for ZJ coals, which indicates that the coal Hg 

levels were not primarily controlled by plant species. Terrestrial plants, which were brought by 

floods or lived within the coal-forming basin, were the major materials to form coal deposits. It is 

difficult to estimate Hg concentration and Hg isotope compositions of ancient plants living during 

the Late Paleozoic Period (~300 Ma). Terrestrial plants mainly sequester atmospheric Hg through 

dry/wet Hg deposition (Graydon et al., 2009; Yudovich and Ketris, 2005). Hg isotope compositions 

of plants were probably inherited by coals during coal formation.  

No obvious relationship exists between Hg concentrations and δ202Hg values in all ZJ coal samples. 

However, when the coal samples from an individual coal seam are averaged, a significant negative 

correlation is observed for δ202Hg vs. 1/Hg (R2 = 0.77, n = 9, p=0.002, excluding coal seams No’s. 1 

and 4-2) (see explanation in legend of Figure 20). Considering the differences in depositional 

environments and source rocks for ZJ coal deposit, spanning ~20 Ma, this correlation is quite 

remarkable. This correlation can potentially be explained by mixing of two Hg end-members, i.e. a 

Hg depleted end-member with lower δ202Hg (<−1.3‰) and a Hg enriched end-member with higher 

δ202Hg exceeding zero. Along coal seams from Shanxi Formation (No’s. 1-3) to Lower Shihezi 

Formation (No’s. 4 to 8) in ZJ, the depositional environments evolved from a subaqueous deltaic 

plain environment to a lower deltaic plain environment (Sun et al., 2010a, b). The coal seam No. 11 
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in the Upper Shihezi Formation of ZJ was developed in a transitional environment between an 

abandoned lower deltaic plain with well-developed channels and an upper deltaic plain. The 

difference in coal depositional environment indicates possible variations of Hg inputs from rivers, 

atmospheric deposition and rock weathering to the coal swamps. In parallel, the pH, Eh and redox 

environment of the swamp water column also varied (Dai et al., 2012a). Together, these factors 

determine the Hg isotope compositions in coal. The epiclastic fragments of source rocks are the main 

contributors of mineral elements, which could be introduced into the coal basin by rivers, flooding 

events and airborne dust deposition.  Immobile Al and coal ash content show an increasing trend 

along coal seams No. 3 to 11-2, whereas other Al-normalized major elements (Na/Al, Mg/Al, K/Al, 

Fe/Al, Mn/Al) show decreasing trends (Sun et al., 2010b). This suggests that the chemical 

compositions of source rocks were altered during long-term denudation and coal seams deposited 

during the late-stage received more intensively weathered minerals. Yinshan Oldland made up of 

Archean and Proterozoic metamorphic rocks and middle Proterozoic-Ordovician sedimentary rocks 

was the primary sediment source to NCCB (Dai et al., 2012a). The only Hg isotope compositions in 

crustal rocks were reported for the California Coast Range, USA (Smith et al., 2008). Only 

metamorphic rocks were identified with positive δ202Hg up to 1.6‰. As compared to δ202Hg of 

sedimentary rocks (mean = −0.63‰, from −1 to −0.2 ‰), metamorphic rocks are on average 

enriched in heavy isotopes (mean=−0.41‰, from −1.7 to 1.6‰). The increasing trend of δ202Hg 

towards upper coal seams probably reflects the shift of source rocks from sedimentary rocks to 

metamorphic rocks. 

6.5.2. DZ coals 

Three distinct groups can be identified in DZ No. 3-1 coal seam: the lower benches DZ-3-1-C3 and 

DZ-3-1-C4 of normal Hg concentrations (104-139 ng/g) and lowest δ202Hg values (−2.34 to 

−1.82±0.12‰, 2SD), the upper benches DZ-3-1-C6, DZ-3-1-C7 and DZ-3-1-C8 of normal Hg 

concentrations (85-114 ng/g) and highest δ202Hg values (−0.50 to −0.12±0.12‰, 2SD), and the 

parting-, roof-contacted benches DZ-3-1-C5, DZ-3-1-C9 and DZ-3-1-C10 of highest Hg enrichment 

(522-754 ng/g) and intermediate δ202Hg values (−1.65 to −1.05±0.12‰, 2SD) (Table 7). No clear 

relationship is seen in the plot of δ202Hg vs. 1/Hg (Figure 20). However, a significantly negative 

correlation of δ202Hg vs. Δ199Hg (r2=0.75, p=0.005) (Figure 17) suggests that the Hg isotope 

compositions in DZ coals were possibly dictated by two end-members. The first one is thought to be 

organically-bound Hg with extremely negative δ202Hg (<−2.5‰) and slightly positive Δ199Hg 

(>0.1‰), while the other is inorganically-bound Hg with circum-zero δ202Hg and Δ199Hg. Controlled 
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experiments show that under equilibrium conditions thiol-bound Hg is enriched in the lighter Hg 

isotopes by ~0.6‰ (δ202Hg) relative to dissolved Hg(II) species (Wiederhold et al., 2010). Therefore, 

it is possible that the lighter Hg isotopes in coal swamp water were preferentially removed by the 

decayed organic matters. Photo-reduction of in-situ organic-bound Hg(II) or incorporation of 

recycled atmospheric and fluvial Hg with positive Δ199Hg into decayed organic matters might 

explain the supposed >0.1‰ Δ199Hg of organically-bound Hg. 

 

Figure 20 Plot of δ202Hg vs. 1/Hg in Zhuji and Daizhuang coals. Coal samples ZJ-12-8-4-2 and ZJ-9+1-1 in 

circles are treated as the outliers. ZJ-12-8-4-2 has positive δ202Hg and is possibly affected by magmatic 

intrusion (see Section 4.3 in text); ZJ+9+1-1 is an unworkable coal seam and has an extremely high ash yield 

(Table 5).  

Float fractions for upper two coal benches (DZ-3-1-C9-F and DZ-3-1-C10-F) have the same Hg 

isotope compositions as raw coals (Table 7), indicating Hg input from extraneous sources probably 

occurred at early-stages of coal formation, and the late-stage diagenesis and metamorphic processes 

homogenized Hg isotope compositions in both coal benches. In contrast, another float fraction from 

the highest Hg containing bench DZ-3-1-C6 had 0.4‰ lower δ202Hg than raw coal (Table 7). This 

implies that the mineral fraction (primary pyrite as indicated by XRD) has a higher δ202Hg value than 

raw coal, which is similar to Illinois coals where epigenetic pyrite samples of circum-zero δ202Hg 
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values are 0.9-1.3‰ higher than their corresponding organic matter rich coal fractions (Lefticariu et 

al., 2011). 

6.5.3. Hg isotope compositions in natural cokes 

Natural coke samples in ZJ have either distinctly higher (0.7 to 0.91±0.12‰, 2SD) or lower δ202Hg 

(−4.00 to −3.47±0.12‰, 2SD) than coal samples (-1.62 to 0.44±0.12‰, 2SD) (Figure 17), which 

suggests that significant Hg isotope fractionation probably happened during the coal to coke 

transformation processes. The intensive magmatic intrusion occurred during the Late Cretaceous at 

ZJ and upgraded a large area of coal seams (primarily at lower No’s. 3 and 4 coal seams) into natural 

coke (Yang et al., 2012). When the Permian coal seams were subjected to thermal perturbations from 

magmatic intrusion, a part, even all of the Hg in coal would be lost (Finkelman et al., 1998). The 

volatilized Hg was supposed to enrich lighter Hg isotopes and the complementary heavier isotopes 

were enriched in Hg-depleted coke. However, our coke samples are on average enriched ~2 times in 

Hg (140 ng/g) compared to coal, which implies that secondary Hg enrichment processes possibly 

occurred to cokes following Hg volatilization from intruded coal (Finkelman et al., 1998). The 

hydrothermal system derived from magmatic intrusions is a common factor to contribute to Hg 

enrichment in coal (Dai et al., 2012a; Diehl et al., 2004b). In coal seam No. 3 of borehole 8-5, the 

upward lithologies are coke (DZ-8-5-3U-J and DZ-8-5-3D-J, Table 7), gabbro dike and sandstone. 

Although pyrite phases were not identified in neither ZJ-8-5-3u-J nor ZJ-8-5-3D-J by XRD, 

postdating cross-cutting pyrite veins were observed in overlying sandstone, indicating a local 

hydrothermal system development. The extremely high Hg concentration in ZJ-8-5-3u-J (445 ng/g) 

possibly reflects a hydrothermal Hg delivery. Some cokes (e.g. ZJ-8-5-3D-J, ZJ-8+1-3U-J and ZJ-

14-5-4-2D-J, Table 7) of lowest δ202Hg values probably captured large proportions of Hg vapor 

volatilized from intruded coal. The well-developed porous structure of cokes could enhance their 

adsorption ability to Hg vapor after ambient temperatures decreased.  

6.6. Implications 

This study explored Hg isotope ratios to understand the possible mechanisms that control Hg 

occurrences in coal. The results have potential applications for geochemical and environmental 

tracing. The increasing δ202Hg values from older to younger coal seams of ZJ suggests a progressive 

shift of the coal swamp source rocks from sedimentary to metamorphic rocks. The negative 

correlation of δ202Hg vs. Δ199Hg in DZ coals suggests that the Hg isotope variation in a single coal 
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seam were possibly controlled by the proportion of organic and inorganic-bound Hg. The prominent 

MIF values observed in certain coal seams may find application in the identification and stratigraphic 

inter-correlation of coal seams (traditionally using chemical characteristics and bio- or geo-markers), 

especially of splitting coal seams (e.g. No. 11-1 vs. 11-2), during coal exploration and exploitation 

(Dai et al., 2011; Kosanke, 1947; Ward, 2002). The significant Hg isotope fractionation between 

cokes and coal will be useful to distinguish Hg emissions from coal and coke combustion.  
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Chapter 7. Hg stable isotope compositions of selected world coals 

(article in preparation for Environmental Science and Technology) 

Résumé 

Ce Chapitre résume une compilation isotopique du Hg dans des charbons, basé sur 108 nouveaux 

échantillons de charbon provenant des basins importants en Afrique, Chine, Europe, Inde, Indonésie, 

l’ancien Russie et les USA et ~50 charbons déjà publiés. Nous observons une variation isotopique de 

4.7‰ en δ202Hg (−3.9 a 0.8‰) et de 1‰ en Δ199Hg (−0.6 a 0.4‰). La moitié des 28 comparaisons 

possibles entre les huit principales régions producteur du charbon du monde sont statistiquement 

différenciable selon leurs δ202Hg, Δ199Hg ou les deux (p<0.05). Nous y en déduisons l’application 

potentiel des signatures isotopiques du Hg en tant que traceurs des émissions du Hg des centrales au 

charbon. Dans un deuxième temps, il parait que la signature Δ199Hg augmente avec la 

charbonification (du lignite au sous-bitumineux au bitumineux à l’anthracite) et avec l’âge de 

déposition (du Cénozoïque au Mésozoïque au Paléozoïque)  
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Abstract  

Hg emissions from coal combustion contribute approximately half (~700-900 tons/year) of all 

anthropogenic Hg emissions to the atmosphere. With the implementation of the first global, legally-

binding UNEP treaty aimed at reducing anthropogenic Hg emissions, the identification and 

traceability of coal Hg emissions from different countries or regions is critically important. Here, we 

present a coal Hg isotope library by reporting the isotope composition of 108 new coal samples from 

major coal-producing basins in Africa, China, Europe, India, Indonesia, former USSR and the USA, 

adding to the thus far ~50 published coal samples. A 4.7‰ range in δ202Hg (−3.9 to 0.8‰) and a 1‰ 

range in Δ199Hg (−0.6 to 0.4‰) are observed. 14 (p<0.05) to 17 (p<0.1) of the 28 pairwise 

comparisons between eight global regions are statistically distinguishable on the basis of δ202Hg, 

Δ199Hg or both. This highlights the potential application of Hg isotope signatures to coal Hg 

emission tracing. Significant correlations were observed between Hg isotope compositions (δ202Hg 

or Δ199Hg) and Hg concentration, coal rank or coal-forming ages, suggesting geochemical and 

source-related controls. Industrial processes (e.g. coal washing and combustion) may shift the 

isotope compositions of coal Hg.  

*Corresponding author: Ruoyu Sun, E-mail: roysun1986@gmail.com 
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7.1. Introduction 

Mercury (Hg) is a persistent toxic element. Once released from natural and anthropogenic sources, it 

can be transported globally by atmospheric circulation before being deposited. Following deposition, 

a portion of Hg will be transformed into neurotoxic methylmercury (MeHg). Methylmercury can be 

bioaccumulated and biomagnified stepwise along food chains and poses a great threat to the health of 

humans and wild life. Mercury is commonly present at trace levels of 10-1000 ng/g in coal (Dai et 

al., 2012; Ketris and Yudovich, 2009). However, the large volumes of coal used in industrial 

processes have made coal become the dominant Hg emission source. On a global scale, coal 

contributed more than a quarter of the cumulative anthropogenic Hg emissions (21500 tons) between 

1850 and 2008 (Streets et al., 2011). Mercury emissions from stationary coal combustion facilities, 

primarily coal-fired utility boilers (CFUBs), have soared over the recent two decades, especially in 

developing countries (e.g. China, India South Africa), and have reached 700-900 tons/yr at present, 

representing approximately half of the anthropogenic Hg emissions into the atmosphere (Pacyna et 

al., 2006b; Pacyna et al., 2010; Pirrone et al., 2010; Streets et al., 2011). In addition, considerable 

amounts of Hg are removed from CFUB flue gases into fly ash, gypsum and waste water, and may 

potentially contaminate the local environment (Yang et al., 2012)  

Quantitative assessment of the impact of coal Hg emission on local, regional and global ecosystems 

is of substantial interest to environmental scientists and decision-makers. Moreover, with the 

implementation of the first global, legally-binding treaty aiming at reducing anthropogenic Hg 

emissions, a distinction of coal Hg emissions from different countries or regions is critically 

important. Global Hg chemistry and transport models have been used to estimate the trans-boundary 

impact of Hg emissions (Seigneur et al., 2004; Selin et al., 2008). Measured Hg/CO ratios have been 

used as tracers for long-range Asian Hg emissions (Weiss-Penzias et al., 2007). However, a widely 

applicable chemical source tracing signature for coal Hg emissions has not been developed thus far. 

Over one decade of Hg stable isotope research has shown that the various Hg isotope signatures 

carry information on Hg sources and environmental transformations (Sonke and Blum, 2013). 

Incomplete Hg transformations in natural and man-made environments separate the seven stable Hg 

isotopes as a function of isotope mass, nuclear volume or nuclear magnetic moment (Bergquist and 

Blum, 2007; Estrade et al., 2009). Additional isotope fractionation mechanisms, including nuclear 

self-shielding, are suspected to exist (Mead and Johnson, 2010). Most natural samples, including the 

coals considered here, show Hg isotope variations that are controlled by mass dependent 
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fractionation (MDF, denoted by δ202Hg) and mass independent fractionation (MIF, denoted by 

Δ199Hg or Δ201Hg) related to the magnetic isotope effect.  

Published Hg isotope signatures in coals have revealed a 3‰ variation in δ202Hg and a 1‰ variation 

in Δ199Hg (Biswas et al., 2008; Lefticariu et al., 2011; Sun et al., 2013a). Two important observations 

have strengthened the potential application of Hg isotope signatures as CFUB Hg emission tracers. 

Firstly, different coal basins can be distinguished using the combined δ202Hg and Δ199Hg isotope 

signatures (Biswas et al., 2008; Lefticariu et al., 2011). Secondly, the Hg isotopic shift between Hg 

in feed coal and CFUB flue gas Hg emissions are small (<0.3‰) and predictable for δ202Hg, and 

absent for Δ199Hg (Sun et al., 2013a). We did point out in the latter study that the various gaseous 

elemental Hg (GEM), gaseous oxidized Hg (GOM) and particle bound Hg (PBM) species in flue gas 

may carry different δ202Hg signatures. GEM is enriched in the heavier Hg isotopes, whereas GOM 

and PBM are in the lighter Hg isotopes. Hg isotope evidences show that precipitation (snow and rain 

water), soils and lichens were possibly contaminated by local and regional coal combustion Hg 

emissions (Biswas et al., 2008; Chen et al., 2012; Estrade et al., 2010, 2011; Sherman et al., 2012). In 

addition, the environmental compartments in the vicinity of coal-fired power plants showed 

contrasting Hg isotope signatures as compared to those far away from coal combustion emissions 

(Estrade et al., 2010, 2011; Sherman et al., 2011). However, our current tracing to coal Hg is still 

based on speculations and limited Hg isotope data of world selected coal specimens.  

In this study, we develop a coal Hg isotope library by analyzing 108 new coal samples, adding to 

~50 published coal samples (Biswas et al., 2008; Lefticariu et al., 2011; Sun et al., 2013a). The coal 

samples cover the main coal-producing basins in ten countries and coals formed from the 

Carboniferous to the Tertiary. We group the Hg isotope signatures (δ202Hg and Δ199Hg) in coals of 

different regions. The natural (hydrothermal fluids, magmatic intrusion events) and artificial 

processes (coal washing, pyrite rejection, combustion, combustion products removal) that potentially 

shift the Hg isotope signatures in original coals are discussed. 

7.2. Samples and analysis 

7.2.1. Samples collection and processing 

Coal samples were chosen from the world main coal-forming basins in primary coal 

production/consumption regions including South Africa, China, the USA, India, Indonesia, Former 

USSR (Russia, Kazakhstan, Ukraine), Mongolia and some European counties (mainly Romania) 
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(Figure 10). Coal samples from China and the USA are from the University of Science and 

Technology in China, and were homogenized before delivery. Indonesian (large-granular coal), 

Mongolian (large-granular coal) and Romanian (pulverized coal) coal samples are from the USGS 

WoCQI project (Tewalt et al., 2010). Bulk Indian coal samples are from the Dept. of Geology 

collection, Jadavpur University, India. Pulverized coal samples from South African power plants are 

from the Witwatersrand University collection (Lusilao-Makiese et al., 2012), coals from former 

USSR are from the Moscow State University collection, and from other regions were supplied by C. 

Liousse (Laboratoire d’Aerologie, Toulouse, France). Bulk and large-granular coal samples were 

pulverized in a motorized agate grinder (Fritsch pulverizer 2) to <150 μm particles before analysis. 

The agate mortar was cleaned with high purity ethanol and then Milli-Q water, and dried by 

compressed air before processing each sample. In between samples, ~15 g Hg-clean quartz sand was 

processed in the same way as coal samples to monitor and minimize the possible cross-

contamination.  

7.2.2. Hg and Hg isotope determinations 

Hg concentrations in solid samples were determined by a combustion atomic absorption technique 

(Milestone DMA-80). Hg extraction and purification for isotope analyses were performed following 

a double-stage tube furnace combustion and acid trapping protocol. Trapping solutions were 

analyzed by cold vapor atomic fluorescence spectrometry (CV-AFS, Brooks Rand Model III) 

following EPA protocols (EPA-1631E, 2002). Hg isotope ratios in trapping solutions of CRMs and 

samples (diluted to 20% (v/v) acid with a Hg concentration range of 1-2.5 ng/g) were determined by 

cold vapor multi-collector inductively coupled plasma mass spectrometry (Thermo-Finnigan 

Neptune) at the Midi-Pyrenees Observatory, Toulouse, France. The detailed protocols for Hg 

concentration, extraction and isotope analysis can be found in Sun et al. (2013b). 

7.2.3. Blank, recovery and uncertainty 

The cross-contamination of Hg during sample pulverization and homogeneity was <1% of processed 

samples (typically >200 ng Hg), as evaluated by clean quartz sand crushed in-between samples. 

Besides, Hg concentrations in acid blanks and procedural blanks prepared along with samples were 

consistently <0.03 ng/g, which is insignificant (<5%) as compared to trapping solutions of 

combusted certified reference materials (CRM, NIST SRM 2685b and 1632d) and samples. All 

analyzed CRMs and samples have Hg extraction recoveries between 80% and 120%, reflecting 

quantitative Hg transfer from solid samples to trapping solutions in the limits of DMA-80 and AFS 
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measurement uncertainties (±10%, 2RSD). The long-term external uncertainty of the method was 

determined by repeated analyses of the UM-Almaden standard at various Hg concentrations (1-2.5 

ng/g in 20% of 2HNO3/1HCl, v/v,) during different analysis sessions over 2011 and 2012. The 

average value is −0.57±0.11‰ (2SD, n=53) for δ202Hg and −0.02±0.06‰ (2SD, n=53) for Δ199Hg 

(Table A1 in Appendix A). The measured δ202Hg and Δ199Hg for long-term combusted procedural 

NIST 1632d are −1.79±0.17‰ (2SD, n=10) and −0.04±0.05‰ (2SD, n=10), and for NIST 2685b are 

−2.75±0.18‰ (2SD, n=11) and 0.01±0.05‰ (2SD, n=10) (Table A1 in Appendix A). The largest 

values of the 2SD (e.g. δ202Hg uncertainty = 0.18‰, Δ199Hg uncertainty = 0.06‰ and Δ201Hg 

uncertainty = 0.08‰) of the Hg isotope compositions for the procedural CRMs and UM-Almaden 

were taken as the analytical uncertainties of sample Hg isotope compositions. If uncertainties of 

replicate sample Hg isotope compositions were higher than these uncertainties, then the sample 

replicates uncertainties applied. 

7.3. Results and discussions 

Background information, Hg concentrations and Hg isotope compositions in the studied 115 samples 

(108 coal, 3 natural coke, 2 fly ash, 1 sapropel, 1 shungite) are summarized in Table A1 in Appendix 

A, along with coal samples reported elsewhere.  

7.3.1. Mercury isotope compositions  

A 4.7‰ variation in δ202Hg values (−3.90 to 0.77±0.18‰, 2SD) is observed in the studied world 

coals, which significantly expands the previously reported δ202Hg range of 3.4% (−2.98 to 0.45‰) 

(Figure B1 in Appendix B). The MIF variation, both Δ199Hg (−0.55 to 0.33±0.06‰, 2SD) and 

Δ201Hg (−0.48 to 0.25±0.08‰, 2SD) are similar to the previously reported 1% range (−0.63 to 

0.34‰ for Δ199Hg and −0.53 to 0.29‰ for Δ201Hg). The Δ199Hg and Δ201Hg data set in our studied 

coals define a Δ199Hg/Δ201Hg slope of 1.10±0.03 (2SE, n=108, P<0.001) (Figure 21A). By 

incorporating previously reported coals, we obtain a Δ199Hg/Δ201Hg slope of 1.09±0.02 (2SE, n=155, 

P<0.001) (Figure 21B). The Δ199Hg/Δ201Hg slope of world coals is within those (1.0-1.3) produced 

during photo-reduction of Hg(II)-organic matter species in aqueous environments (Bergquist and 

Blum, 2007; Zheng and Hintelmann, 2009).  
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(A) 

 
(B) 

Figure 21 Δ201Hg vs. Δ199Hg in studied world coals (n=108) (A) and all world coals (n=155) (B). The centre, 

horizontal and vertical axis of ellipse denotes respectively means of Δ199Hg and Δ201Hg, 1SD on Δ199Hg and 

1SD on Δ201Hg. 
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On average, δ202Hg is highest for Indonesia (−0.55±0.53‰, 1SD, n=8), followed by Africa (mainly 

South Africa, −0.93±0.43‰, 1SD, n=10), Mongolia (−1.02±0.90‰, 1SD, n=15), China 

(−1.04±0.84‰, 1SD, n=49, including 16 previously reported samples by Biswas et al., 2008 and Sun 

et al., 2013a), Europe (mainly Romania, −1.17±0.68‰, 1SD, n=13), the USA (−1.45±0.64‰, 1SD, 

n=27, including 23 previous reported samples by Biswas et al., 2008) and Lefticariu et al., 2011), 

former USSR (Russia, Ukraine and Kazakhstan, −1.69±1.13‰, 1SD, n=21, including 8 previously 

reported  samples by Biswas et al., 2008) and India (−1.87±0.54‰, n=12) (Figure 22A and Table 8). 

Most of Chinese and Indian coals show little to no MIF (Figure 22B and Table 8). The positive 

Δ199Hg in selcted Indian and Chinese coals are countered by negative Δ199Hg in other areas, which 

results in mean Δ199Hg for both countries of 0.00±0.14‰ (1SD, n=49) and 0.04±0.09‰ (1SD, n=12) 

respectively. In contrast, most of the coals from USA and former USSR are characterized by 

negative Δ199Hg, with mean values of −0.10±0.13‰ (1SD, n=27) and −0.19±0.23‰ (1SD, n=21), 

respectively. The Δ199Hg in coals from Indonesia, Mongolia, Africa and Europe are exclusively 

negative, with mean values of −0.20 ±0.13‰ (1SD, n=8), −0.26±0.18‰ (1SD, n=15), −0.29±0.07 ‰ 

(1SD, n=10) and −0.36 ±0.11‰ (1SD, n=13), respectively.  

 
(A) 
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(B) 

Figure 22 Box plots showing δ202Hg (A) and Δ199Hg (B) in all world coals (n=155). The horizontal lines at 

the bottom, middle and top of each boxplot are the lower quartile (below which 25% lowest values are found), 

median and upper quartile (above which 25% highest values are found), respectively. The box height (the 

difference between lower quartile and upper quartile) is defined as interquartile range (IQR). The data points 

either greater than the upper quartile+1.5 IQR or less than the lower quartile-1.5 IQR are considered to be 

extreme values. Square symbol denotes mean 

Table 8 Summary of the means of δ202Hg, Δ199Hg and Δ201Hg in world coals 

 δ202Hg 1SD Δ199Hg 1SD Δ201Hg 1SD 

Africa (South Africa) 
-0.93 0.43 -0.29 0.07 -0.32 0.08 

China 
-1.04 0.84 0.00 0.14 -0.01 0.12 

Euro (Romania) 
-1.17 0.68 -0.36 0.11 -0.35 0.11 

India 
-1.87 0.54 0.04 0.09 0.00 0.09 

Indonesia 
-0.55 0.49 -0.20 0.13 -0.19 0.11 

Mongolia 
-1.02 0.90 -0.26 0.18 -0.27 0.13 

Former USSR 
-1.69 1.13 -0.19 0.23 -0.19 0.19 

USA 
-1.45 0.64 -0.10 0.13 -0.10 0.11 

The δ202Hg and Δ199Hg values for different regions are grouped in a δ202Hg vs. Δ199Hg plot (Figure 

23). To test whether the means of δ202Hg and Δ199Hg values in studied regions are statistically 

different, we performed pairwise post-hoc multiple comparisons by One-Way ANOVA analysis 
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(IBM SPSS Statistics 20) (Table A2 in Appendix A). On the basis of δ202Hg, Indonesian coals of 

highest mean value can be distinguished from those of USA (p=0.03), former USSR (p=0.03) and 

India (p<0.01). In addition, Indian coals of lowest mean δ202Hg can be distinguished from those of 

China (p=0.01) and Africa (p=0.01). As compared to δ202Hg, Δ199Hg of coal is a more robust 

indicator to discriminate coals from different regions. Eleven pairwise comparisons between regions 

can be distinguished from each other using mean Δ199Hg at significance levels α of 0.05 and 0.01 

(Table A2 in Appendix A). For example, average Indian coals of circum-zero Δ199Hg can be 

distinguished from those of the rest of regions except China; coals from USA can be distinguished 

from those of India, Europe and Africa. In total, 14 (p<0.05) or 17 (p<0.1) of the 28 pairwise 

comparisons between countries (regions) are statistically distinguishable on the basis of δ202Hg, 

Δ199Hg or both (Figure 24).  

 

Figure 23 δ202Hg vs. Δ199Hg in all world coals (n=155). The centre, horizontal and vertical axis of ellipse 

denotes respectively means of δ202Hg and Δ199Hg, 1SD on δ202Hg and 1SD on Δ199Hg. 
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Figure 24 Matrix representation of statistical pairwise comparisons between regions (α=0.05 or 0.01, by IBM 

SPSS Statistics 20). The compared regions can be distinguished by δ202Hg (red square), Δ199Hg (blue square) 

or both (1/2 blue +1/2 red square) 

7.3.1.1. South African coal  

Stationary coal combustion in power generation sectors and gold mining in Africa are the leading 

anthropogenic Hg contributors to atmosphere (Pacyna et al., 2010; Pirrone et al., 2010). Nearly all 

African coal production is from South Africa. South Africa produced ~255 Mt (million metric tons) 

of coal (mainly bituminous coal) in 2011 and is the world’s 7th largest coal producer (~3.5% world 

share) (BP, 2012). More than 90% of the nation's electricity demand is provided by dozens of coal-

fired power plants which commonly utilize low-rank bituminous coals (Cairncross et al., 1990; 

DME, 2010). Coal combustion releases 10-50 t/yr Hg to atmosphere and is considered to be the 

largest Hg pollution source in South Africa and an important contributor to the global atmospheric 

Hg inventory (Dabrowski et al., 2008; Leaner et al., 2009; Pacyna et al., 2006b; Pacyna et al., 2010). 
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In addition to domestic coal consumption, ~30% of South African coal (~70 Mt) is exported to 

European countries (>75% share, mainly Germany and Spain) and East Asian countries (mainly 

Japan), ranking South Africa as the world’s 6th largest net exporter (AEO, 2011; DME, 2010). 

Of the ten South African coal samples, six were taken from six power stations (Duvha, Kriel, 

Lethabo, Majuba, Camden, Tutuka) located in the Mpumalanga Province (Highveld Region) and 

their Hg concentrations and speciation have been reported elsewhere (Lusilao-Makiese et al., 2012). 

There is a ~1.6‰ variation in δ202Hg (−1.62 to −0.03‰, n=10) and ~0.2‰ variation in Δ199Hg 

(−0.38 to −0.17‰, n=10) (Figure 22). Statistically, African coals with mean δ202Hg of −0.93 ±0.43‰ 

and Δ199Hg of −0.29 ±0.07‰ (1SD, n=10) can be significantly distinguished from Chinese and USA 

coals by Δ199Hg (p<0.001), and from Indian coals by both δ202Hg (P<0.001) and Δ199Hg (p=0.01) 

(Figure 24).  

7.3.1.2. Chinese coal 

China is the largest coal producing (~50% world share), consuming (~50% world share) and coal 

importing (~18% world share) country in the world (BP, 2012; IEA, 2012). China contributes nearly 

half (~400 t/yr) of all Hg emissions from stationary coal combustion worldwide (Pacyna et al., 

2010). Consequently, Hg istope compositions of worldwide coal emissions in atmosphere are 

dominated by those of Chinese coals. More than 90% of Chinese coals were formed at Late 

Carboniferous and Early Permian (~38%, occurring mainly in northern China), Early and Middle 

Jurassic (~40%, occurring mainly in northwestern China), and Late Jurassic and Early Cretaceous 

(~12%, occurring mainly in northeastern China) (Dai et al., 2012). Previously published Hg isotope 

compositions of Chinese coals were exclusively sampled from Permian formations (Biswas et al., 

2008; Sun et al., 2013a). In the present study, we include coals sampled from Mesozoic (Jurassic and 

Early Cretaceous, in Shanxi, Inner Mongolia, Xinjing and Liaoning Province), Cenozoic (Tertiary, 

sampling from Yunnan Province) and Paleozoic (Late Carboniferous and Permian) coals (Table A1 

in Appendix A). Geographically, our samples cover 11 provinces and ~75% of Chinese coal 

producing basins (NBSC, 2012). 

Figure B2 in Appendix B summarizes δ202Hg and Δ199Hg variability of Chinese coals in 12 provinces 

by incorporating coal samples previously reported (Biswas et al., 2008; Sun et al., 2013a). A ~3.8‰ 

variation in δ202Hg (−3.07 to 0.77‰) and a ~0.7‰ variation in Δ199Hg (−0.40 to 0.34‰) are 

observed. Statistically, Chinese coals can be significantly distinguished from Indian coals by δ202Hg 

(p=0.01), and African (p<0.001), European (p<0.001) and Mongolian (p<0.001), the USA (p=0.07), 
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former USSR (p=0.06) and Indonesian (p=0.09) coals by Δ199Hg (Table A2 in Appendix A and 

Figure 24). A few of the coal deposits in China are characterized by significantly positive and 

negative MIF. For example, coals from Inner Mongolia have positive Δ199Hg of 0.20±0.02‰ (1SD, 

n=2), whereas coals from Henan and Shanxi Provinces are dominated by negative Δ199Hg with 

values of −0.28±0.12‰ (1SD, n=2) and −0.10±0.19‰ (1SD, n=7), respectively.  

Being able to distinguish coal Hg emissions from different provinces has important implication for 

local and regional Hg tracing in China. Figure 25 shows the variations of δ202Hg and Δ199Hg in 

different provinces. Based on the combined signatures of δ202Hg and Δ199Hg, we can distinguish 

coals from the main coal-producing provinces, i.e. Inner Mongolia (26% national share), Shanxi 

(23% share), Henan (5% share), Guizhou (4% share), Anhui (3% share).  

 

Figure 25 δ202Hg vs. Δ199Hg in all Chinese coals (n=49). 

7.3.1.3. European (Romania) coal  

Anthropogenic Hg emissions in Europe (excluding former USSR) have decreased significantly since 

the 1990s and stabilized at ~120 t/yr of which coal combustion in power plants and residential 

boilers is still the largest contributor (Pacyna et al., 2006a; Streets et al., 2011). The top 

anthropogenic Hg emitting countries are Poland, Yugoslavia and Romania in Eastern Europe, and 

Germany, Spain, France, Italy and the United Kingdom in Western Europe (Pacyna et al., 2006a). 

Our European coal samples were mainly from Romania. Only one coal sample was obtained from 

France and Germany. Coal deposits in Germany and Romania were mainly formed in the Cenozoic 
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and in ranks of subbituminous coal and lignite. Germany, which has an estimated coal reserve of 

~40000 Mt (4.7% world share) is a moderate coal producing (1.1% world share) and consuming 

(~2.1% world share) country. Romania also has abundant coal deposits (~290 Mt) and 30-40% of its 

electricity relies on coal. France produces and consumes little coal as 80% of its electricity 

production is from nuclear plants. Most of consumed coal in Eastern Europe is imported from South 

Africa, South America, Australia, former USSR and the USA (Figure B3 in Appendix B). Coal 

samples from Romania were collected in 2001 under the USGS WoCQI project (Tewalt et al., 2010), 

and included 10 active mines (Valea de Brazi, Uricani, Barbateni, Lupeni, Paroseni, Vulcan, 

Aninoasa, Livezeni, Lonea, and Petrila) in the Jiu Valley. The geochemistry, mineralogy and organic 

petrography of these Oligocene bituminous coals can be found in Belkin et al., (2010).  

There is a ~3.8‰ variation in δ202Hg (−2.08 to 0.70‰) and ~0.5‰ variation in Δ199Hg (−0.52 to 

0.02‰) in European coals. By looking at box plots of European coals in Figure 22, one Romanian 

coal (R11) has very abnormally positive δ202Hg (0.70±0.18‰, 2SD), and one French coal formed in 

Carboniferous has typical Δ199Hg (−0.02±0.06‰, 2SD). Coals from Europe have the lowest Δ199Hg 

values (mean=−0.36±0.11‰, 1SD, n=13) and can be statistically distinguished from China 

(P<0.001), India (P<0.001) and USA (P<0.001). However, European coals cannot be distinguished 

from other regions by δ202Hg (mean=−1.17±0.68‰, 1SD, n=13). 

7.3.1.4. Indian coal 

India is the world’s 4th coal producing (5.6% world share) and 3rd
 coal consuming country (7.9% 

world share). The discrepancy between coal production and consumption implies that India has to 

import a large amount of coal (~100 Mt/yr) from other coal exporters (e.g. Indonesia and Australia) 

to satisfy its domestic need (Figure B3 in Appendix B). Coal combustion in thermal power plants is 

also the most dominant anthropogenic Hg source to the atmosphere (Mukherjee et al., 2009; Pacyna 

et al., 2010). 

Indian coals show a ~2‰ variation in δ202Hg (−2.86 to −0.89‰) and ~0.4‰ variation in Δ199Hg 

(−0.15 to 0.28‰). Indian coals were characterized by the lowest δ202Hg (−1.87±0.54‰, n=12), and 

are distinguishable from coals of Indonesia (p<0.001), Africa (p<0.001) and China (p=0.01) with the 

highest mean δ202Hg. In addition, MIF (−0.02 to 0.10‰ for Δ199Hg) is not significant in Indian coals 

except for two samples from the Jharia coal basin (i.e. JB-3 and JR-3 with Δ199Hg of 0.28‰ and 

−0.15%, respectively) (Figure 22B). On average, Δ199Hg in Indian coals is the highest (0.04±0.09‰, 
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1SD, n=12). Except Chinese coals, Indian coals can be distinguished from all other coal producing 

regions by Δ199Hg (Figure 24).  

7.3.1.5. Indonesian coal 

With ~0.6% world coal reserve, Indonesia has become the world’s 5th largest coal producing country 

(5.1% world share) and the largest coal exporting country (~30% world share) (IEA, 2012). 

Approximate 70-90% of the mined coal (~250-300 Mt) in Indonesia is exported primarily to Asia-

Pacific region (Japan, China and South Korea) (AEO, 2011; EIA, 2012; IEA, 2012) (Figure 5). Most 

of Indonesian coals were formed during the Cenozoic (Paleogene and Neogene) and are of low to 

moderate ranks (Belkin et al., 2009). The eight coal samples from Indonesia, sampled during the 

USGS WoCQI project, were taken from the main coal-producing areas (Sumatra, Kalimantan, 

Sulawesi and Papua) with ranks of sub-bituminous and high volatile bituminous coal. A detailed 

description of the geochemistry and petrology of these coal samples was reported elsewhere (Belkin 

et al., 2009). 

In Indonesian coals, ~1.3‰ range in δ202Hg (−1.29 to 0.01‰) and ~0.4‰ in Δ199Hg (−0.42 to -

0.04‰) are observed (Figure 22). The δ202Hg in Indonesian coals is highest (−0.55±0.49‰, 1SD, 

n=8) as compared to other regions, and is distinguishable from Indian (p<0.001), the USA (p=0.03) 

and former USSR coals (p=0.03). On the basis of Δ199Hg (mean=−0.20±0.14‰, 1SD, n=8), 

Indonesian coals can only be distinguished from Indian coal (p=0.03)  

7.3.1.6. Mongolian coal 

The International Energy Statistics 2008 of the EIA reported ~2500 Mt of total recoverable coals in 

Mongolia (EIA, 2012). Recent coal survey reports estimated that the potential coal reserve in 

Mongolia is >100 billion tons, accounting for ~10% of world coal reserves (M.L., 2013). Due to 

poor infrastructure, coal production was only 30 Mt in 2011 of which >60% was exported primarily 

to China. Coal production and export are expected to increase significantly in the near future because 

of electricity demands in China. Mongolian coals were deposited in freshwater environments with 

relatively low sulfur contents and were mainly hosted in Permian (low-rank bituminous coal) and 

Cretaceous fomations (lignite) (Erdenetsogt et al., 2009). The 15 analyzed Mongolian samples were 

selected from the 37 coals of the USGS WoCQI (Tewalt et al., 2010). 

Mogolian coals show a ~3‰ variation in δ202Hg (−2.59 to 0.39‰) and ~0.8‰ variation in Δ199Hg 

(−0.55 to 0.22‰) (Figure 22). Due to the predominantly negative Δ199Hg (−0.26±0.18‰, 1SD, 
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n=15), Mongolian coals can be statistically distinguished from Indian (p<0.001) and Chinese coals 

(p<0.001). 

7.3.1.7. Former USSR coal (Russia, Kazakhstan, Ukraine) 

The former USSR has large coal reserves within the Russia Federation, Kazakhstan and Ukraine 

accounting for 18%, 4% and 4% of world coal reserve, respectively (BP, 2012). Correspondingly, 

they are also the among the primary coal producing, consuming and exporting countries (BP, 2012; 

EIA, 2012; IEA, 2012). Similar to other developed nations, anthropogenic Hg emissions in the 

former USSR have declined considerably since the 1990s (Streets et al., 2011). At present, total 

anthropogenic Hg emission to atmosphere are estimated around 150 t/yr, to which coal combustion is 

the main contributor (Streets et al., 2011).  

Our coal samples in the former USSR include the main coal basins in Russia (n=8), Kazakhstan 

(n=1) and Ukraine (n=4), which are supplemented by eight coal samples previously reported (Biswas 

et al., 2008). Former USSR are characterized by the largest variations in δ202Hg (~4‰, −3.90‰ to 

0.14‰) and Δ199Hg (~0.8‰, from −0.63 to 0.20‰). Due to the relatively lower δ202Hg (mean=−1.69 

±1.13, 1SD, n=21) and Δ199Hg (mean=−0.19±0.23, n=21), former USSR coals are distinguishable 

from Indonesian coals by δ202Hg (p=0.03) and Indian coals by Δ199Hg (p=0.02). 

7.3.1.8. USA coal  

The USA are the third largest anthropogenic Hg emitting country (Pacyna et al., 2010). More than 

80% of anthropogenic Hg emissions in North and Central America are from the USA (Pacyna et al., 

2010; Pirrone et al., 2009). Like other main anthropogenic Hg emitting countries, coal combustion in 

the USA accounts for half of total Hg emission to the atmosphere (Streets et al., 2011). With the 

largest share of world coal reserves, the USA produces nearly 1000 Mt/yr coal, which is 14% of 

world coal production (BP, 2012). Most of the produced coal is self-consumed by power plants, and 

< 100 Mt of coal is exported (EIA, 2012) (Figure B3 in Appendix B). The main coal producing states 

include Wyoming and Montana in the Western USA, and West Virginia, Kentucky, Pennsylvania, 

Illinois and Virginia in the Eastern USA. As Hg isotope compositions of coal samples in 12 states of 

the USA have been reported (Biswas et al., 2008; Lefticariu et al., 2011), only four coal samples 

(three from Illinois and one from Pennsylvania) were analyzed in the present study.  

The Hg isotope values of our samples are within those previously reported (Figure B2 in Appendix 

B). USA coals have a ~3.4‰ variation in δ202Hg (−2.98 to 0.45‰) and ~0.4‰ variation in Δ199Hg 
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(−0.34 to 0.10‰). By excluding the three extreme values, the USA coals only have ~1.5‰ variation 

in δ202Hg (−2.21 to −0.75‰). Statistically, coals from the USA can be distinguished from Indonesian 

coals by δ202Hg (p=0.03), and Indian (p=0.03) and European coals by Δ199Hg (p<0.001). 

7.3.2. Biogeochemical factors influencing Hg isotope compositions in coals 

Hg isotope compositions in global coal deposits are a combined result of different Hg sources (e.g. 

coal-forming vegetation, source rocks, hydrothermal fluids, volcanic emissions) and biogeochemical 

processes (e.g. bacterial degradation, peatification, diagenesis, coalification) that occurred during and 

after coal deposition (Biswas et al., 2008; Lefticariu et al., 2011).  

Assuming that Hg in coal is present in two distinct forms, organic and inorganic, with contrasting Hg 

isotope compositions, we can test a binary mixing model to identify their possible Hg isotope 

compositions. This is done by plotting a linear regression between δ202Hg or Δ199Hg and the 

reciprocal of Hg concentration (1/Hg). However, no relationships were found for δ202Hg vs. 1/Hg 

and Δ199Hg vs. 1/Hg in all the world coal samples (n=120). This is not a surprise as coals were 

collected from different coal producing regions with contrasting coal forming environments and 

coalification processes. For some specific countries (i.e. China, Romania, Mongolia and the USA), 

we observed significant relationships in δ202Hg vs. 1/Hg or Δ199Hg vs. 1/Hg (Figure 26). Lefticariu et 

al., (2011) interpreted the observed negative correlation of Δ199Hg vs. 1/Hg in the Illinois coal basin, 

USA (Figure 26A) as the mixing of hydrothermally derived Hg with coal organic Hg. The 

hydrothermal Hg of circum-zero Δ199Hg was admixed to the organic matrix of negative Δ199Hg 

during multi-stage hydrothermal intrusion events. Low-temperature hydrothermal fluids are a well 

known factor to increase Hg concentration in coals (Dai et al., 2012; Diehl et al., 2012). The Chinese 

samples from Anhui, Guizhou and Inner Mongolia with high Hg concentrations in this study were 

sampled from coal deposits with hydrothermal influences (Dai et al., 2012; Yan et al., 2013). The 

comparable negative correlation of Δ199Hg vs. 1/Hg in Chinese coals (Figure 26B) implies a similar 

hydrothermal mixing process. However, hydrothermal end-members in Chinese coals were higher in 

Δ199Hg (ca. 0.15‰, n=8, by averaging Δ199Hg of samples with Hg concentration >380 ng/g) as 

compared to the USA coals, but comparable to hydrothermal fluids (mean=0.13‰) from 

Yellowstone Plateau Volcanic field, USA (Sherman et al., 2009). Although a linear negative 

relationship of Δ199Hg vs. 1/Hg is also observed in Romanian coals, the suggested end-members are 

very different from both Chinese and the USA coals and this correlation would be invalid if the 

sample (R11) with the lowest Hg concentration and Δ199Hg is excluded (Figure 26C).  
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(E) 

Figure 26 Linear relationship of δ202Hg vs. 1/Hg or Δ199Hg vs. 1/Hg in coals from the USA (A), China (B), 

Romania (C, D) and Mongolia (E). The coal samples in the USA are from the Illinois coal basin reported 

elsewhere (Lefticariu et al., 2011), and are averaged on a coal mine basis; the significant relationship of 

δ202Hg vs. 1/Hg and Δ199Hg vs. 1/Hg in Romanian coals would disappear when the lowest Hg sample (R11) is 

excluded.  

In contrast to the negative correlation of Δ199Hg vs. 1/Hg, δ202Hg vs. 1/Hg shows a positive 

correlation as seen for Romanian and Mongolian coals (Figure 26D,E). This suggests that the 

variation of Δ199Hg in coals is opposite to that of δ202Hg. Significant negative correlation of δ202Hg 

vs. Δ199Hg is shown in Romanian coals (R2=0.83) (Figure 27). Although the positive correlation of 

δ202Hg vs. 1/Hg in Romanian and Mongolian coals can be explained by binary mixing of end-

members, they likely reflect the evolution of δ202Hg of coals with diagenesis and coalification. After 

the accumulation of sediments on peat deposits, the increased temperature and pressure due to 

sedimentary burial and magmatic intrusion may reduce the weakly-bound Hg(II) into Hg(0) vapor 

(Yudovich and Ketris, 2005). The volatilization of Hg(0) from coals could induce MDF of Hg 

isotopes and enrich the remaining Hg in coal in the heavier Hg isotopes. Therefore, our observations 

of increasing δ202Hg with decreasing Hg concentrations in Romanian and Mongolian coals may 
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reflect diagenesis and coalification. Significant MIF of Hg isotopes is only invoked by 

photochemical reactions (Bergquist and Blum, 2007), we therefore do not expect MIF of 199Hg and 
201Hg in coals during diagenesis and coalification.  

 

Figure 27 Linear relationship of δ202Hg vs. Δ199Hg in Romanian coals 

With the increase of pressure and temperature, the buried peat evolved to lignite, then to 

subbituminous coal, to bituminous coal, to anthracite and finally to natural cokes. Therefore, the 

relationship of coal rank vs. δ202Hg or Δ199Hg can be used to explore the effect of coalification 

processes on Hg isotope fractionation in coals. No clear relationship is observed in coal rank vs. 

δ202Hg in world coal samples (Figure 28A). However, an increase of Δ199Hg with increasing coal 

ranks is visible Figure 28B. This may suggest that hydrothermal fluids are a major factor to upgrade 

coal ranks during coalification and the hydrothermally derived Hg of circum-zero to slightly positive 

Δ199Hg was sequestered into high-rank coals. Coal rank is closely related to coal-forming periods. 

Coals formed in the Paleozoic were usually deeply buried and subjected to multi-stage tectonic 

activity, and thus are commonly anthracite or bituminous coal in rank. Cenozoic coals are less 

evolved and commonly in ranks of sub-bituminous coal and lignite. By plotting coal-forming periods 

vs. δ202Hg or Δ199Hg (Figure 29), we can observe similar trends as coal ranks vs. δ202Hg or Δ199Hg. 
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(B) 

Figure 28 Box plots showing variations of δ202Hg (‰, A) and Δ199Hg (‰, B) in world coals of different ranks 
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(A) 

 

(B) 

Figure 29 Box plots showing variations of δ202Hg (‰, A) and Δ199Hg (‰, B) in world coals of different coal-

forming periods 
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7.3.3. Industrial processes influencing Hg isotope compositions of coal Hg emissions 

Before application of Hg isotope signatures to trace Hg emission from coals, it should be noted that a 

number of industrial processes during coal preparation and utilization potentially fractionate Hg 

isotopes in coal, and thus generate coal related products (e.g. stack flue gas in coal-fired power 

plants) with Hg isotope compositions that are significantly different from raw coals. As most of the 

produced coals are combusted in CFUB of power plants for electricity generation, we will discuss 

below the Hg isotope fractionation caused by coal preparation and combustion  

7.3.3.1 Coal preparation 

Coal cleaning before combustion in CFUB is a low-cost, common practice for power plants to 

remove pyritic sulfur and ash along with their associated hazardous air pollutants including Hg 

(Akers, 1996). Due to the high affinity of Hg with pyrite, 10-70% of coal Hg can be removed, 

depending on different coal cleaning techniques and physicochemical characteristics of coal (Pavlish 

et al., 2003). Different Hg-binding components in coal were shown to carry different Hg isotope 

compositions (Lefticariu et al., 2011). These authors found that pyrite has circum-zero δ202Hg and 

Δ199Hg which is enriched by 0.9-1.3‰ and 0.04-0.15‰, respectively, relative to their corresponding 

organic Hg components in coal. This suggests that the removal of pyrite fractions during coal 

preparation would possibly decrease δ202Hg and Δ199Hg of coal. The degree to which δ202Hg and 

Δ199Hg in cleaned coal are fractionated from raw coal is determined by the Hg removal efficiency, 

and the differences of δ202Hg and Δ199Hg between raw coal and coal rejections (primarily pyrite). 

δ202Hg and Δ199Hg in clean coal can be estimated by Hg isotope mass balance for δ202Hg and Δ199Hg: 

202 199 202 199 202 199
RC RC CC CC CC PY CR CRHg  ( Hg )= Hg  ( Hg ) Hg  ( Hg )δ δ ϕ δ ϕ∆ ∆ × + ∆ ×   

CC CR 1ϕ ϕ+ =   

where subscript RC, CC and CR stand for raw coal, clean coal and coal rejections, respectively.  

Given Hg removal fraction in coal rejections (φCR), δ202Hg and Δ199Hg in coal rejections (assuming 

to be zero, identical to those of pyrite), δ202Hg and Δ199Hg in clean coal can be expressed as: 

 

 

7.3.3.2. Coal combustion in CFUBs  

202 199
202 199 RC RC

CC CC
CR

Hg  ( Hg )Hg  ( Hg )=
(1 )

δδ
ϕ
∆

∆
−
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By measuring the Hg isotope compositions of feed coal, bottom ash, fly ash, and desulfurization by-

product gypsum, Sun et al., (2013a) used a Hg isotope mass balance equation to infer that coal 

combustion flue gases emitted at the stack are enriched by at most 0.3‰ in δ202Hg relative to feed 

coal. No obvious MIF of Hg isotopes was observed during coal combustion and downstream 

transport of combusted flue gases through air pollution control devices (APCD, i.e. electrostatic 

precipitators, ESP; Wet flue gas desulphurization systems, WFGD). Significant Hg isotope 

fractionation probably occurs during coal combustion in CFUBs, i.e.GEM transformation into GOM 

and PBM during downstream transport of flue gases. Depending on the types of combustion boilers, 

varying proportions of feed coal Hg can be retained in the boiler or bottom ash. Previous studies 

(Pavlish et al., 2003; Streets et al., 2009) concluded that Hg retention is negligible (1-2%) for 

pulverized boilers, which are the dominant boiler type. However, other boiler types such as stoker 

boilers and fluidized-bed boilers can have >7% Hg retention. A 7% retention would be too low to 

shift the Hg isotope compositions of the generated GEM from those of feed coal given the high 

temperatures (>500 °C) (Schauble, 2007).  

Another important Hg isotope fractionation processes happens between the outlet of boiler and the 

inlet of APCDs where a fraction of GEM is oxidized into GOM and PBM. For CFUBs equipped with 

ESP and WFGD, the produced PBM and GOM will be sequentially removed with fly ash in the ESP 

and with gypsum in WFGD. Emitted flue gases are in such case primarily composed of GEM. Our 

observations on PBM (fly ash) and GOM (gypsum) show that they are significantly enriched in the 

lighter Hg isotopes relative to feed coals, suggesting the emitted GEM to be enriched in the heavier 

Hg isotopes by up to 0.3‰ (Sun et al., 2013a). Preliminary direct species-specific Hg isotope 

measurement on stack emission components let to an identical conclusion (Khawaja et al., 2010). 

However, the fractionation mechanisms, extent, and signs among GEM, GOM and PBM species in 

emitted flue gas should be further explored, as they are critical in near-field and far-field coal Hg 

emission tracing. 

7.3.4. Coal import-export flow control on a regional/national coal Hg isotope emission 

inventory 

In order to distinguish coal Hg emissions from different regions, it is necessary to develop a Hg 

isotope emission inventory of combusted coals on a regional/national basis. Specific countries that 

rely on coal import from other regions (Figure B3 in Appendix B) can be expected to have different 

Hg isotope compositions of coal emissions than those based on use of indigenous coals only. This 

depends on the ratio of exported and indigenous coal consumption and their differences in Hg 
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isotope compositions. For the regions that are indistinguishable based on δ202Hg and Δ199Hg (Figure 

24), Hg isotope change in consumed coals due to coal import-export trades is thought to be small, 

whereas significant Hg isotope change can be seen among distinguishable regions when imported 

coal becomes comparable to or exceeds indigenous coal consumption. For example, the import of 

South African coals to Europe does not seem to significantly shift the Hg isotope compositions of 

European coals due to similar Hg isotope compositions. Although export of South African coals to 

India has increased recently, its share relative to the large coal production in India is very small and 

can’t significantly change the Hg isotope compositions of Indian coal Hg emissions.  

7.4. Implications 

The coal Hg isotope library we created has been an important first step in tracing coal Hg emissions. 

The significant differences in δ202Hg and Δ199Hg between regions allow us to distinguish coal Hg 

emissions from different regions. Combing historical coal production statistics, coal import-export 

statistics, and Hg removal efficiencies by APCDs during coal combustion, we can reconstruct an all-

time historical evolution of the Hg isotope compositions of atmospheric coal Hg emissions. Where 

we have enough information, such a Hg isotope emission inventory can be made on a 

regional/national basis. We can then start to understand and explain the Hg isotope information in 

natural archives such as peat, sediment and ice cores or soils and biomonitors. A preliminary Hg 

isotope evolution model of world coals from 1815-2010 is shown in Figure B4 of Appendix B. 

δ202Hg in world coals progressively decreases from ~−1.2‰ at the dawn of the industrial revolution 

to ~−1.35‰ during the world war II, and then returned back to ~−1.2‰ in the new millennium. In 

contrast, Δ199Hg and Δ201Hg in world coal emissions progressively increased from ~−0.3 to ~−0.1 ‰. 

We expect that Δ199Hg and Δ201Hg of world coal Hg emissions have similar values and trends of 

world coals, as pre- and post-combustion processes do not shift Δ199Hg and Δ201Hg of coal Hg 

emissions relative to raw coals. However, δ202Hg in world coal emissions is difficult to estimate 

without the information on Hg removal efficiencies of pre- and post-combustion processes. Pyrite Hg 

removal before coal combustion enriches combusted coals in the lighter Hg isotopes relative to raw 

coals, whereas Hg removal by APCDs enriches coal Hg emissions in the heavier Hg isotopes.  
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Chapter 8. Mercury stable isotope fractionation in six utility boilers of 

two large coal-fired power plants (published article in Chemical 

Geology) 

Résumé 

Ce Chapitre adresse la question si la combustion du charbon dans les centrales au charbon modifie 

oui ou non la composition isotopique de ses émissions du Hg. Nous avons mesuré la composition 

isotopique du Hg dans les charbons, les cendres résiduels et volants, et le gypse produit par la 

désulfurisation des gaz. Par rapport au charbon combusté, les cendres et gypse sont tous enrichis en 

isotopes légers du Hg. Par conséquence la signature isotopique des émissions du Hg par la cheminée, 

calculeé par bilan de masse, est légèrement enrichi en isotopes lourds (δ202Hg <0.3‰), mais reste 

inchangé pour la signature Δ199Hg. 
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The goal of this PhD dissertation was to assess the use of Hg stable isotope signatures to trace the 

largest anthropogenic Hg emission source, coal fired power plants. We first developed an in-house 

customized Hg purification and preconcentration (combustion-trapping) method to subsequently 

analyze Hg isotope compositions by MC-ICPMS. Coals from worldwide coal basins and coal 

combustion residuals (i.e. bottom ash, fly ash and desulfurization gypsum) from coal-fired power 

plants were studied. A global coal Hg isotope library with wide spatial and temporal coverage was 

developed, and included more than 150 coal samples. In-situ sampling in coal-fired power plants 

allowed us to evaluate whether coal combustion shifts the Hg isotope compositions in emitted flue 

gases relative to original coals. Finally, a case study on the Hg isotope variation in a single coal mine 

and coal bench were done to assess the origin of Hg in coal. In this chapter we summarize our main 

findings, and indicate the perspectives that follow from our conclusions. 

9.1. Conclusions 

1. In Chapter 5, we detailed an in-house modified combustion-trapping protocol to extract, purify and 

pre-concentrate Hg for isotope analysis from various kinds of solid samples (coal, coal associated 

rocks, fly ash, bottom ash, peat and black shale) with Hg levels varying from <5 ng/g to 10 μg/g. 

Following controlled experiments on the optimum HNO3/HCl acid ratio, carrier gas type and its flow 

rate, and temperature ramp, we recommend to use a 40% (v/v) 2HNO3/1HCl as acid trapping 

solution, 25 ml/min O2 flow rate as carrier gas and a dynamic temperature program (15 °C/min for 

25-150 °C and 600-900 °C; 2.5 °C/min for 150-600 °C) for the first combustion furnace. The second 

decomposition furnace is held at 1000 °C at all times. Our tested 340 samples over 20 months 

demonstrate that this method can achieve a median 89% extraction recovery of Hg for sample types 

as diverse as coals, peat or marine sedimentary rocks. No significant Hg isotope fractionation was 

observed for CRMs within the Hg recovery range of 81-102%. This protocol has the advantages of a 

short sample processing time (~3.5 hours), limited transfer of residual sample matrix into the Hg 

trapping solution and direct measurement by CV-MC-ICPMS after diluting the trapping solution to 

20% (v/v) acid. However, special attention should be paid to iodine-rich samples that possibly 

suppress cold vapor generation of Hg for isotope determination. 

2. In Chapter 6, we investigated the fractionation extent of Hg isotopes in coals deposited at the same 

geographical location at different coal-forming periods. The objective was to test the potential of 

using Hg isotope signatures to trace the sources and geochemical processes of Hg in coal deposits. 
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We found that natural processes caused a ~2‰ variation of δ202Hg (−1.62 to 0.44±0.12‰, 2SD, 

n=18) and 0.35‰ of Δ199Hg (−0.12 to 0.22±0.08‰, 2SD, n=18) among coal seams deposited at the 

same location over a period of ~20 Ma (Zhuji Coal Mine, Huainan Coalfield, Anhui Province). A 

similar range of variation was observed within a single coal seam (Daizhuang Coal Mine, Jining 

Coalfield, Shandong Province). Correlation between δ202Hg and 1/Hg in Zhuji coals suggests a 

binary mixing of Hg end-members, suggesting that over 20 Ma of coal deposition the dominant Hg 

source shifted. However, no definitive conclusions are obtained for δ202Hg vs. 1/Hg in Daizhuang 

coals. The distinctly higher (0.70 to 0.91±0.12‰, 2SD, n=2) and lower δ202Hg (−4.00 to 

−3.47±0.12‰, 2SD, n=3) in natural cokes, a metamorphosed form of coal, suggests that significant 

Hg MDF occurred when coals were subjected to the perturbation of magmatic intrusion.  

3. We developed a global coal Hg isotope library in Chapter 7. We measured Hg isotope 

compositions in 108 new coal samples from major coal-producing basins in Africa, China, Europe, 

India, Indonesia, Former USSR and the USA, adding to ~50 published coal samples. We observed a 

4.7‰ range in δ202Hg (−3.9 to 0.8‰) and a 1‰ range in Δ199Hg (−0.6 to 0.4‰). Half of the 28 

pairwise comparisons between eight coal-producing regions are statistically distinguishable on the 

basis of δ202Hg, Δ199Hg or both (p<0.05). This underlines the potential application of Hg isotope 

signatures to coal Hg emission tracing. In addition, we observe that with the increase of coal rank 

(from lignite to subbituminous to bituminous to anthracite) and with decreasing coal deposition ages 

(from Cenozoic to Mesozoic to Paleozoic), the Δ199Hg signature increases stepwise, suggesting 

source-ralted controls on Hg isotope compositons in coals. 

4. In Chapter 8 we investigate whether coal combustion processes in CFUB shift Hg isotope 

signatures from feed coal to stack Hg emissions. We measured the Hg isotope compositions in feed 

coals, bottom ash, fly ash and desulfurization by-product gypsum. Relative to feed coal with δ202Hg 

ranging from −0.67 to −0.18‰, oxidized Hg species in bottom ash and fly ash are enriched in lighter 

isotopes with δ202Hg from −1.96 to −0.82‰. Flue gas desulphurization by-product gypsum shows 

δ202Hg from −0.99 to −0.47‰.  The calculated isotopic shift of stack Hg emissions relative to feed 

coals is minor for δ202Hg (<0.3‰) and negligible for Δ199Hg.  

9.2 Perspectives 

Apart from the method development and exploration of the origin of Hg in coal, the most important 

outcome of this PhD research project is in the field of environmental tracing of coal Hg emissions. 

Our observations that numerous global coal producing regions can be distinguished based on their 
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coal Hg isotope signatures, and that those signatures are largely preserved into coal plant Hg 

emissions hold promise for quantitative tracing of coal Hg emissions. Here we address in detail the 

opportunities and caveats of ‘what should be investigated next’. 

9.2.1. Species-specific Hg isotope compositions of coal Hg emissions 

Hg emissions from coal plant stacks consist of three operationally defined forms: gaseous elemental 

Hg, GEM; gaseous oxidized Hg, GOM, and particle bound Hg, PBM (i.e. residual fly ash). Due to 

varying atmospheric reactivity and life-time of Hg species, species-specific Hg isotopic information 

has important implications for near-field (PBM and GOM) and far-field (GEM) coal Hg emission 

tracing. In chapter 8, we speculated that the GEM, GOM and PBM in coal flue gas emission may 

carry contrasting Hg isotope signatures. Based on our analysis of fly ash and gypsum, we suggested 

that PBM and GOM are possibly enriched in the lighter Hg isotopes relative to feed coals, and 

consequently GEM must be enriched in the heavier Hg isotopes. However, we did not make direct 

species-specific Hg isotope measurements on stack emission components. The only pre-liminary 

species-specific Hg isotope measurement on flue gas of a CFUB indicates ~3.5‰ variation of MDF 

in δ202Hg and negligible MIF (Khawaja et al., 2010). Relative to bulk Hg flue gas, these authors 

found indeed that GOM is enriched in the lighter Hg isotopes and GEM is enriched in heavier Hg 

isotopes. These observations are in agreement with our speculation. We suggest that more in-situ 

measurements on stack emissions are needed to better constrain the fractionation signs and extent in 

different Hg species of coal combustion flue gases. 

9.2.2. Post-emission Hg isotope fractionation in coal flue gases  

A field study by Sherman et al. (2012) showed that δ202Hg and Δ199Hg signatures in wet precipitation 

downwind from a CFUB in Florida (USA) were substantially different from those of regional 

background Hg and the combusted feed coals. On average, wet precipitation δ202Hg was shifted by 

−1.8‰ and Δ199Hg by +0.6‰ as compared to feed coal. Hg isotope fractionation within CFUB and 

in-cloud Hg transformations following flue gases emission were suggested to be the underlying 

reasons.  In Chapter 8, we suggested that GOM and PBM in emitted flue gases have respectively the 

δ202Hg of fly ash and gypsum, and thus explain part of the observed δ202Hg in their wet precipitation 

samples. Due to the absence of photochemical Hg MIF during coal combustion and downstream 

transport of flue gases through APCDs, the inherited Δ199Hg of flue gases from feed coals is 

significantly lower than observed Δ199Hg in precipitation samples. Therefore, additional in-plume 

and in-cloud Hg isotope fractionation is still needed to explain the precipitation Hg MIF. One 
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possible pathway to imprint precipitation Hg(II) with significantly positive Δ199Hg is photochemical 

reduction of aqueous Hg(II)-DOM (dissolved organic matter) complexes in cloud droplets. This 

plausible explanation requires further field and experimental study. 

9.2.3. Geological controls on Hg isotope fractionation in coal deposits 

In Chapter 6, we tested the potential of using Hg isotope compositions to trace Hg sources and 

geochemical processes involving Hg during and after coal deposition. We observed that thermal 

perturbations derived from magmatic intrusion events could significantly fractionate Hg isotopes 

between coal and natural coke. However, it is difficult to identify whether/which sources or 

geochemical processes generated the ~2‰ δ202Hg variation in either a single seam or continuously 

deposited seams. In Chapter 7, we also observed some interesting relationships between δ202Hg or 

Δ199Hg vs. Hg concentrations, coal ranks and coal-forming ages in specific world regions. Due to 

complex Hg occurrences in coals and an unknown interplay between multiple factors including coal 

depositional environment, post-depositional Hg dynamics and coalification pathways, we are 

currently unable to meaningfully interpret our observations. Other elemental, isotope or 

mineralogical parameters could be used to help constrain the Hg isotope biogeochemistry of coal 

deposits.  

9.2.4. Reconstructing the historical evolution of anthropogenic Hg isotope emission 

signatures 

The coal Hg isotope library we created has been an important first step in tracing coal Hg emissions. 

With a few exceptions (German, UK and Australian coal) the library covers over 70% of past and 

future coal basins. Combining historical coal production statistics, coal import-export statistics, Hg 

removal efficiencies by APCDs during coal combustion, we can now start to reconstruct an all-time 

historical evolution of the Hg isotope compositions of atmospheric coal Hg emissions. Where we 

have enough information, such an isotope emission inventory can be made on a regional/national 

basis. We suggest that a similar ‘library’ type approach should be taken for other anthropogenic Hg 

emission sectors, such as non-ferrous metal smelting, cement production, chlor-alkali industries, and 

gold and silver mining. Once we know the historical geographical patterns of anthropogenic and 

natural Hg isotope emissions, we can then confront and better understand the Hg isotope information 

from natural archives such as peat, sediment and ice cores or soils and biomonitors.  
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Chapitre 9. Conclusions et perspectives 

Le but principal de ces travaux de thèse a été l’exploration des signatures isotopiques du Hg en tant 

que traceur des émissions du Hg par les centrales au charbon. Nous avons d’abord développé une 

méthode d’extraction, de purification et de pré-concentration adapté au charbon, afin d’analyser sa 

composition isotopique par spectrométrie de masse. Ensuite nous avons exploré les variations 

isotopiques des charbons globaux et les produits de combustion (i.e. cendres résiduels et volants, 

gypse) des centrales au charbon. Une compilation isotopique du Hg dans des charbons, incluant plus 

de 150 charbons et une grande variation spatiotemporelle, a été établie. L’échantillonnage in-situ des 

centrales au charbon a permis d’étudier les éventuelles modifications des signatures isotopiques du 

Hg des émissions par rapport au charbon combusté. Enfin, une étude cas sur la variation isotopique 

de Hg de 20 millions d’années de dépôts de charbon au même endroit géographique a permis 

d’explorer l’isotopie du Hg comme traceur des sources et des processus du Hg dans le charbon. Dans 

ce Chapitre nous résumons nos observations et interprétations, et nous discutons les perspectives 

pour la suite. 

9.1. Conclusions 

1. Le Chapitre 5 résume le protocole d’extraction, purification and pré-concentration du Hg pour 

l’analyse isotopique. La méthode a été développée pour des échantillons solides divers tel que le 

charbon, des roches, cendres, tourbes et schistes noirs ayant des teneurs en Hg de <5 ng/g à 10 μg/g. 

Suivant des optimisations du mélange acide (HNO3/HCl), flux et type de gaz vecteur, et rampe de 

température, nous recommandons l’utilisation de 40% (v/v) 2HNO3/1HCl dans le piège acide, 25 

ml/min O2 en gaz vecteur et un programme dynamique de rampe de température (15 °C/min for 25-

150 °C and 600-900 °C; 2.5 °C/min for 150-600 °C) pour le 1ier four de combustion. Le 2ieme four, le 

pyrolyseur, est maintenu à 1000 °C durant toutes les extractions du Hg. Nous avons testé et effectué 

340 extractions de Hg durant 20 mois, montrant une efficacité d’extraction de 89% (médiane) pour 

les différents types d’échantillons. L’extraction des matériaux de référence montre une absence de 

biais isotopique pour des rendements entre 81-102%. Ce protocole a l’avantage d’être rapide (3.5h), 

d’éviter le transfert de la matrice vers le piège acide, et permet une analyse directe des compositions 

isotopiques par spectrométrie de masse après dilution à 20% (v/v) acide. Cependant, nous avons 

remarqué des transferts de l’iode de la matrice du charbon vers le piège acide, posant des problèmes 

de réduction du Hg dans le générateur à vapeur froide du spectromètre de masse. 
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2. Le Chapitre 6 fait l’objet d’une étude de cas sur le fractionnement isotopique du Hg au sein d’une 

séquence de charbons déposé au même endroit géographique. Le but était d’explorer les signatures 

isotopiques du Hg comme traceurs des sources ou processus du Hg dans le charbon. Nous observons 

une variation ~2‰ en δ202Hg (−1.62 to 0.44±0.12‰, 2SD, n=18) et de 0.35‰ en Δ199Hg (−0.12 to 

0.22±0.08‰, 2SD, n=18) au sein des couches de charbons déposées pendant 20 Ma (Mine de Zhuji, 

basin de Huainan, province d’Anhui, Chine). Une même variation est observée au sein d’une seule 

couche de charbon (mine de Daizhuang, basin de Jining, province de Shandong, Chine). Une 

corrélation entre le δ202Hg et 1/Hg à Zhuji suggère une mélange binaire entre deux sources de Hg, 

témoignant d’un décalage dans la source dominante du Hg dans le bassin de Huainan. Dans la 

couche de charbon de Daizhuang aucune relation claire né parait entre δ202Hg vs. 1/Hg. Enfin, des 

cokes naturels, une forme métamorphosée du charbon au contact avec des intrusions magmatiques, 

montre un fort fractionnement isotopique dépendent de la masse, avec δ202Hg élevé (0.70 to 

0.91±0.12‰, 2SD, n=2) ou plus bas (−4.00 to −3.47±0.12‰, 2SD, n=3). 

3. Le Chapitre 6 résume la compilation isotopique du Hg dans des charbons, basé sur 108 nouveaux 

échantillons de charbon provenant des basins importants en Afrique, Chine, Europe, Inde, Indonésie, 

l’ancienne USSR et les USA et ~50 charbons déjà publiés. Nous observons une variation isotopique 

de 4.7‰ en δ202Hg (−3.9 a 0.8‰) et de 1‰ en Δ199Hg (−0.6 a 0.4‰). La moitié des 28 comparaisons 

possibles entre les huit principales régions productrices du charbon du monde sont statistiquement 

différenciable selon leurs δ202Hg, Δ199Hg ou les deux (p<0.05). Nous y en déduisons l’application 

potentielle des signatures isotopiques du Hg en tant que traceurs des émissions du Hg des centrales 

au charbon. Dans un deuxième temps, il parait que la signature Δ199Hg augmente avec la 

charbonification (du lignite au sous-bitumineux au bitumineux à l’anthracite) et avec l’âge de dépôt 

(du Cénozoïque au Mésozoïque au Paléozoïque). 

4. Le Chapitre 8 adresse question si la combustion du charbon dans les centrales au charbon modifie 

oui ou non la composition isotopique de ses émissions du Hg. Nous avons mesuré la composition 

isotopique du Hg dans les charbons, les cendres résiduels et volants, et le gypse produit par la 

désulfurisation des gaz. Par rapport au charbon combusté, les cendres et gypse sont tous enrichis en 

isotopes légers du Hg. Par conséquence la signature isotopique des émissions du Hg par la cheminée, 

calcule par bilan de masse, est légèrement enrichi en isotopes lourds (δ202Hg <0.3‰), mais reste 

inchangé pour la signature Δ199Hg. 
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9.2 Perspectives 

Le résultat le plus important de ces travaux porte sur la possibilité de traçage des émissions du Hg 

des centrales au charbon vers l’atmosphère de notre planète. Nos observations que la plupart de 

charbons du monde se distinguent par leurs compositions isotopiques de Hg, et que ces signatures 

sont peu modifiées pendant la combustion, ouvrent le possibilité en traçage quantitative des 

émissions du Hg. Dans cette section nous parlons des opportunités et dangers de ces applications de 

traçage. 

9.2.1. Les signatures isotopiques de formes spécifiques des émissions du Hg 

Les émissions du Hg à la cheminée d’une centrale au charbon consiste de plusieurs formes 

chimiques, définies de façon opérationnelle : le Hg gazeux élémentaire (GEM), le Hg gazeux oxydé 

(GOM), et le Hg particulaire (PBM). Ces formes ont des réactivités et demi-vies différentes dans 

l’atmosphère, ce qui a des ramifications importantes pour le traçage des émissions du Hg a proximité 

(GOM, PBM) ou à longue distance (GEM) de la source. Dans le Chapitre 8 nous avons indiqués que 

les formes GEM, GOM et PBM dans les émissions des centrales au charbon peuvent avoir des 

signatures isotopiques contrastés. C’est-à-dire, nos analyses des cendres volants (PBM) et gypse 

(GOM) montrent que le PBM et GOM sont probablement enrichis en isotopes légers, et par 

conséquence le GEM est enrichi en isotopes lourds. Cependant nous n’avons pas effectué des 

analyses isotopiques à la sortie de la cheminée ou dans le panache d’une centrale au charbon. Une 

étude préliminaire aux USA sur la composition isotopique du GOM et GEM d’une centrale au 

charbon suggère qu’effectivement le GOM est enrichi en isotopes légers et le GEM en isotopes 

lourds (Khawaja et al., 2010). Ces observations sont donc en accord avec notre proposition. Nous 

proposons que plus de mesures isotopiques sur les émissions doivent être effectues afin de mieux 

cerner cet aspect important.  

9.2.2. Post-emission Hg isotope fractionation in coal flue gases  

Une étude par Sherman et al. (2012) a montré que les signatures δ202Hg et Δ199Hg dans les 

précipitations humide en aval d’une centrale au charbon en Florida (USA) étaient très différents des 

signatures des charbons combustés. En moyenne, les δ202Hg et Δ199Hg du Hg de la pluie ont été 

décalé de −1.8‰ en δ202Hg et de  +0.6‰ en Δ199Hg par rapport au charbon combusté. Les auteurs 

ont suggéré que des fractionnements isotopiques du Hg durant la combustion et post-émission dans 

les nuages sont à l’origine de ces décalages (Sherman et al., 2012). Dans le Chapitre 8 nous avons 

155 



Chapter 9. Conclusions and perspectives 

suggéré que les émissions du PBM et GOM, fractions dominantes vis-à-vis les dépôts du Hg à 

proximité de la centrale au charbon, sont enrichis en isotopes légers, permettant d’expliquer le 

décalage de −1.8‰ en δ202Hg. Les mesures préliminaires de Khawaja et al. (2010) sur le GOM emit 

par une centrale au charbon confirme cette interprétation. Cependant le décalage de la signature 

Δ199Hg de +0.6‰ entre le GOM/PBM émits et la pluie demande l’intervention d’un processus 

photochimique lequel ne peut pas avoir lieu dans la centrale au charbon même. Par conséquence une 

étape, post-émission, de photoreduction partielle du GOM doit intervenir afin d’expliquer ce 

décalage en MIF. L’endroit le plus probable de cette étape de photochimie est dans les gouttelettes de 

nuages. Vue la rapidité, en moins d’une heure, de la modification de la signature Δ199Hg entre  

cheminée et pluie tombé, ce processus de photochimie atmosphérique peut sérieusement compliquer 

le traçage des émissions du Hg des centrales au charbon. Plus d’études sont souhaitables dans ce 

domaine. 

9.2.3. L’origine des variations isotopiques du Hg d’un bassin de charbon. 

Le Chapitre 6 documente en détail les variations isotopiques du Hg au sein d’un bassin de charbon, 

et au sein d’une seule couche de charbon. Nous avons remarqué que la perturbation thermique 

provenant des intrusions magmatiques fractionne significativement les isotopes du Hg entre charbon 

et coke. Cependant, il a été difficile d’identifier si l’origine des 2‰ de variation en δ202Hg a travers 

du bassin mais également au sein de la couche de charbon unique est dû au changement de sources 

du Hg ou des transformations spécifiques du Hg. Dans la compilation des signatures isotopiques du 

charbon du Chapitre 7 nous avons noté des relations intéressants entre δ202Hg ou Δ199Hg et les 

teneurs en Hg, type de charbon, et âge de dépôt. Malheureusement à ce stade d’exploration nous ne 

sommes pas capable d’identifier les causes et effets de ces variations isotopiques, autre que les 

observations faits. Des études plus approfondies peuvent être souhaitable afin de mieux comprendre 

ces variations. 

9.2.4. L’evolution historique des emissions isotopiques du Hg 

La compilation isotopique du Hg dans des charbons constitue une 1iere étape dans le traçage des 

émissions du Hg des centrales au charbon. Sauf quelques exceptions (charbon Allemands, Anglais et 

Australien), la compilation couvre 70% des bassins de charbon globaux. En considérant la 

production historique du charbon par pays, les statistiques sur les imports/exports du charbon, les 

mesures de captage du Hg dans les centrales au charbon, nous pouvons commencer à reconstruire 

l’évolution historique des signatures isotopiques du Hg des émissions liées au secteur du charbon. Si 
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nécessaire cette reconstruction peut être faite pour des régions ou nations. Nous proposons qu’une 

compilation similaire soit établie pour d’autres secteurs industrielles, tel que la métallurgie, le 

ciment, l’industrie chlore-alkali, et l’orpaillage. Une fois l’évolution isotopique de tous ces secteurs 

reconstruit, nous pouvons mieux comprendre les signatures isotopiques observes dans les archives 

naturels tel que les tourbières, les sédiments, la glace, ou les sols ou encore les biomoniteurs. 
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Appendix  

Appendix A: supplementary data for Chapter 7 

Table Al. Summary of Hg isotope compositons in world coals of this study and previously reported 

Country ID Lithology Source 

Hg in 
ppb (as 
received 

basis) 

δ199Hg 2SD δ200Hg 2SD δ201Hg 2SD δ202Hg 2SD Δ199Hg 2SD Δ200Hg 2SD Δ201Hg 2SD 

Benin Coal 1 charcoal 
This 
study 3 -0.80  -1.54  -2.40  -3.19  0.01  0.08  0.01  

South 
Africa 

Coal 2 west 
B5 Coal 

This 
study 127 -0.54 0.17 -0.45 0.11 -1.06 0.13 -0.96 0.06 -0.30 0.15 0.03 0.07 -0.34 0.08 

South 
Africa 

Coal 3 Coal This 
study 114 -0.57 0.01 -0.45 0.20 -1.02 0.09 -0.90 0.11 -0.35 0.02 0.00 0.14 -0.34 0.01 

South 
Africa 

S-Africa Coal 
This 
study 621 -0.67 0.03 -0.86 0.03 -1.65 0.05 -1.62 0.03 -0.27 0.04 -0.05 0.01 -0.43 0.07 

South 
Africa 

SARM-20 Coal 
This 
study 236 -0.65 0.08 -0.55 0.07 -1.25 0.00 -1.09 0.00 -0.38 0.08 0.00 0.07 -0.43 0.01 

South 
Africa 

Duvha Coal 
This 
study 226 -0.65 0.10 -0.63 0.16 -1.27 0.14 -1.25 0.13 -0.34 0.06 0.00 0.09 -0.33 0.04 

South 
Africa 

Kriel Coal This 
study 167 -0.60 0.08 -0.63 0.04 -1.24 0.09 -1.25 0.10 -0.28 0.05 0.00 0.01 -0.30 0.01 

South 
Africa 

Lethabo Coal 
This 
study 186 -0.32 0.03 -0.17 0.04 -0.55 0.02 -0.42 0.04 -0.21 0.02 0.05 0.01 -0.23 0.01 

South 
Africa 

Majuba Coal 
This 
study 275 -0.18 0.10 -0.02 0.11 -0.19 0.12 -0.03 0.15 -0.17 0.06 -0.01 0.04 -0.17 0.01 

South 
Africa 

Camden Coal 
This 
study 145 -0.41 0.03 -0.38 0.02 -0.80 0.06 -0.73 0.00 -0.22 0.03 -0.01 0.01 -0.25 0.06 

South 
Africa 

Tutuka Coal This 
study 262 -0.62 0.01 -0.54 0.04 -1.16 0.03 -1.04 0.02 -0.36 0.01 -0.02 0.03 -0.38 0.04 

South 
Africa 

Tutuka fresh 
ash 

Coal fly 
ash 

This 
study 166 -0.65 0.17 -0.91 0.21 -1.56 0.26 -1.82 0.22 -0.19 0.12 0.00 0.10 -0.19 0.10 

South 
Africa 

Tutuka old ash 
Coal fly 

ash 
This 
study 123 -0.81 0.02 -0.85 0.12 -1.68 0.17 -1.68 0.04 -0.39 0.01 -0.01 0.10 -0.42 0.14 

Mean 
(n=10) 

   
 -0.52 0.16 -0.47 0.23 -1.02 0.39 -0.93 0.43 -0.29 0.07 0.00 0.03 -0.32 0.08 

China Anhui-1 Coal 
This 
study 850 0.13  0.37  0.53  0.77  -0.08  -0.02  -0.06  

China Anhui-2 Coal 
This 
study 4102 -0.20  -0.59  -0.83  -1.28  0.12  0.06  0.14  

China Anhui-3 Coal 
This 
study 660 -0.29  -1.23  -1.59  -2.42  0.33  0.00  0.23  

China 
Anhui-Huaian-

4 
Coal 

This 
study 99 -0.20  -0.28  -0.51  -0.61  -0.04  0.03  -0.05  

China 
Anhui-Huaian-

5 Coal 
This 
study 79 -0.09  -0.25  -0.38  -0.56  0.05  0.03  0.04  

China Guiizhou-1 Coal 
This 
study 234 -0.33  -0.71  -1.10  -1.44  0.03  0.02  -0.01  

China Guizhou-2 Coal 
This 
study 229 -0.33  -0.67  -1.05  -1.37  0.02  0.02  -0.02  
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Country ID Lithology Source 

Hg in 
ppb (as 
received 

basis) 

δ199Hg 2SD δ200Hg 2SD δ201Hg 2SD δ202Hg 2SD Δ199Hg 2SD Δ200Hg 2SD Δ201Hg 2SD 

China Guizhou-3 Coal 
This 
study 355 -0.26  -0.60  -0.91  -1.16  0.05  -0.01  -0.03  

China Guizhou-4 Coal 
This 
study 210 -0.50 0.06 -1.34 0.04 -1.93 0.07 -2.47 0.11 0.13 0.03 -0.09 0.10 -0.06 0.02 

China Guizhou-5 Coal 
This 
study 380 -0.56 0.03 -1.45 0.08 -2.16 0.17 -2.93 0.22 0.18 0.03 0.04 0.03 0.05 0.00 

China Guizhou-6 Coal 
This 
study 12500 0.01  -0.39  -0.49  -0.89  0.23  0.06  0.18  

China Hebei-1 Coal This 
study 64 -0.47 0.02 -0.89 0.01 -1.47 0.05 -1.93 0.03 0.02 0.01 0.08 0.03 -0.02 0.02 

China Hebei-2 Coal 
This 
study 27 -0.74 0.17 -1.29 0.26 -2.03 0.34 -2.64 0.16 -0.08 0.13 0.03 0.17 -0.05 0.22 

China Hebei-3 Coal 
This 
study 48 -0.04 0.03 -0.09 0.04 -0.16 0.00 -0.20 0.03 0.02 0.02 0.01 0.02 -0.01 0.02 

China Henan-1 Coal 
This 
study 208 -0.60 0.03 -0.90 0.08 -1.48 0.15 -1.68 0.15 -0.17 0.00 -0.05 0.01 -0.21 0.03 

China Hubei-1 Stone 
coal 

This 
study 191 0.05 0.04 -0.13 0.04 -0.17 0.02 -0.40 0.01 0.15 0.03 0.07 0.03 0.13 0.03 

China Hubei-2 
Stone 
coal 

This 
study 108 0.02 0.01 0.09 0.02 0.02 0.06 0.09 0.02 0.00 0.01 0.05 0.01 -0.05 0.05 

China Hubei-3 
Stone 
coal 

This 
study 1146 -0.01 0.05 -0.06 0.08 -0.17 0.03 -0.22 0.02 0.04 0.05 0.05 0.07 -0.01 0.03 

China Hubei-4 Coal 
This 
study 160 -0.21 0.09 -0.35 0.06 -0.58 0.16 -0.78 0.12 -0.01 0.07 0.04 0.00 0.01 0.07 

China Hubei-5 Coal This 
study 141 -0.35 0.12 -0.65 0.08 -1.08 0.08 -1.33 0.06 -0.01 0.11 0.02 0.05 -0.08 0.04 

China IM-WL-33 Coal 
This 
study 990 -0.56 0.10 -1.56 0.10 -2.19 0.24 -3.07 0.12 0.21 0.05 0.00 0.08 0.13 0.10 

China IM-WL-1 Coal 
This 
study 90236 -0.01  -0.37  -0.43  -0.75  0.18  0.01  0.13 -0.05 

China Liaoning-1 Coal 
This 
study 67 -0.21 0.04 -0.34 0.04 -0.53 0.07 -0.60 0.02 -0.06 0.05 -0.03 0.05 -0.08 0.06 

China Shandong-1 Coal This 
study 85 -0.49  -0.92  -1.49  -1.92  -0.01  0.05  -0.05  

China Shandong-2 Coal 
This 
study 298 -0.23  -0.52  -0.81  -1.15  0.06  0.06  0.05  

China Shanxi-1 Coal 
This 
study 100 -0.38 0.01 -0.42 0.07 -0.80 0.02 -0.91 0.03 -0.15 0.00 0.04 0.06 -0.12 0.04 

China Shanxi-2 Coal 
This 
study 54 -0.35 0.07 -0.47 0.03 -0.83 0.00 -1.01 0.03 -0.09 0.08 0.04 0.01 -0.08 0.02 

China Shanxi-3 Coal This 
study 54 -0.62 0.01 -0.64 0.01 -1.18 0.02 -1.30 0.02 -0.30 0.02 0.01 0.02 -0.20 0.03 

China Shanxi-4 Coal 
This 
study 23 -0.03 0.07 0.30 0.04 0.28 0.13 0.49 0.10 -0.16 0.05 0.06 0.01 -0.09 0.05 

China Shanxi-5 Coal 
This 
study 213 -0.29 0.00 -0.23 0.05 -0.50 0.05 -0.54 0.04 -0.16 0.01 0.04 0.03 -0.10 0.02 

China Shanxi-6 Coal 
This 
study 192 -0.28 0.02 -0.10 0.01 -0.38 0.00 -0.29 0.02 -0.21 0.01 0.05 0.02 -0.17 0.01 
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Country ID Lithology Source 

Hg in 
ppb (as 
received 

basis) 

δ199Hg 2SD δ200Hg 2SD δ201Hg 2SD δ202Hg 2SD Δ199Hg 2SD Δ200Hg 2SD Δ201Hg 2SD 

China Xinjiang-1 Coal 
This 
study 24 -0.40  -0.17  -0.51  -0.32  -0.30  0.00  -0.25  

China Yunnan-1 Coal 
This 
study 34 -0.54  -0.71  -1.24  -1.46  -0.16  0.02  -0.14  

China 
SH-1 

(triplicate) 
Coal 

Biswas et 
al., 2008 

       -2.32 0.40 0.34 0.06   0.29 0.05 

China AN-1 Coal 
Biswas et 
al., 2008 

       -0.64 0.06 0.10 0.01   0.14 0.06 

China AN-2 
(duplicate) 

Coal Biswas et 
al., 2008 

       -0.89 0.35 0.08 0.01   0.13 0.04 

China An-3 Coal 
Biswas et 
al., 2008 

       -0.43 0.21 0.02 0.05   0.04 0.05 

China An-4 Coal 
Biswas et 
al., 2008 

       -0.43 0.09 0.06 0.02   0.09 0.02 

China An-5 Coal 
Biswas et 
al., 2008 

       -0.28 0.07 0.08 0.04   0.11 0.04 

China HE-1 
(triplicate) 

Coal Biswas et 
al., 2008 

       -2.28 0.61 -0.40 0.03   -0.35 0.01 

China JI-1 Coal 
Biswas et 
al., 2008 

       -0.85 0.15 -0.04 0.03   -0.05 0.06 

China GU-1 Coal 
Biswas et 
al., 2008 

       -1.37 0.01 -0.02 0.02   0.00 0.04 

China GU-2 Coal 
Biswas et 
al., 2008 

       -1.22 0.22 0.04 0.06   0.04 0.08 

China HB-1 Coal Biswas et 
al., 2008 

       -1.41 0.14 -0.03 0.06   0.00 0.06 

China H1-C Coal 
Sun et 

al., 2013 346 -0.03 0.14 -0.04 0.01 -0.09 0.02 -0.18 0.14 0.01 0.10 0.06 0.06 0.05 0.09 

China H1−1-C Coal 
Sun et 

al., 2013 320 -0.10 0.04 -0.18 0.01 -0.31 0.01 -0.48 0.05 0.02 0.06 0.06 0.02 0.05 0.02 

China H1-2-C Coal 
Sun et 

al., 2013 327 -0.11  -0.19  -0.33  -0.42  0.00  0.02  -0.02  

China H1-3-C Coal Sun et 
al., 2013 369 -0.13 0.01 -0.30 0.07 -0.47 0.03 -0.66 0.01 0.03 0.01 0.03 0.07 0.02 0.01 

China H2-C Coal 
Sun et 

al., 2013 389 -0.18 0.05 -0.32 0.10 -0.42 0.03 -0.61 0.04 -0.03 0.06 -0.02 0.11 0.03 0.04 

Mean 
(n=49, 

including 
16 

previously 
reported 
samples) 

   
 -0.26 0.21 -0.49 0.45 -0.78 0.65 -1.04 0.84 0.00 0.14 0.02 0.03 -0.01 0.12 

France 
Cokes 

Carmeaux 
Natrue 
Coke 

This 
study 5 -0.67 0.14 -1.53 0.28 -2.25 0.25 -3.06 0.25 0.10 0.07 0.00 0.16 0.05 0.06 

France Decazeville Coal 
This 
study 29 -0.25 0.07 -0.47 0.14 -0.70 0.11 -0.91 0.11 -0.02 0.05 -0.01 0.09 -0.01 0.03 

Germany Lignite 
allemande 

Coal This 
study 70 -0.85 0.05 -0.81 0.01 -1.64 0.05 -1.55 0.08 -0.46 0.03 -0.03 0.03 -0.48 0.01 
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Country ID Lithology Source 

Hg in 
ppb (as 
received 

basis) 

δ199Hg 2SD δ200Hg 2SD δ201Hg 2SD δ202Hg 2SD Δ199Hg 2SD Δ200Hg 2SD Δ201Hg 2SD 

Romania 
Romania-1   

Valea de Brazi 
coal 

This 
study 150 -0.84  -1.05  -1.86  -2.08  -0.30  0.01  -0.28  

Romania 
Romania-2   

Uricani 
coal 

This 
study 130 -0.62  -0.38  -0.93  -0.73  -0.44  -0.02  -0.38  

Romania 
Romania-3   
Barbateni 

coal 
This 
study 460 -0.68  -0.63  -1.25  -1.12  -0.40  -0.07  -0.40  

Romania 
Romania-4   
Barbateni coal 

This 
study 140 -0.72  -0.71  -1.40  -1.35  -0.37  -0.03  -0.38  

Romania Romania-5   
Lupeni 

coal This 
study 130 -0.63  -0.59  -1.18  -1.15  -0.34  -0.02  -0.31  

Romania 
Romania-6   
Paroseni 

coal 
This 
study 136 -0.75  -0.85  -1.62  -1.67  -0.33  -0.01  -0.37  

Romania 
Romania-7   

Vulcan 
coal 

This 
study 240 -0.83  -0.97  -1.75  -1.85  -0.36  -0.04  -0.36  

Romania 
Romania-8   
Aninoasa coal 

This 
study 380 -0.72  -0.72  -1.40  -1.45  -0.35  0.01  -0.30  

Romania Romania-9   
Livezeni 

coal This 
study 130 -0.57  -0.35  -0.87  -0.60  -0.41  -0.05  -0.43  

Romania 
Romania-10   

Lonea 
coal 

This 
study 240 -0.78  -0.78  -1.46  -1.44  -0.41  -0.05  -0.37  

Romania 
Romania-11   

Petrila 
coal 

This 
study 70 -0.35  0.40  0.11  0.70  -0.52  0.05  -0.42  

Mean 
(n=13)    

 -0.66 0.18 -0.61 0.35 -1.23 0.51 -1.17 0.68 -0.36 0.11 -0.02 0.03 -0.35 0.11 

Inida JB-1 Coal This 
study 127 -0.21 0.06 -0.34 0.06 -0.72 0.02 -0.89 0.05 0.01 0.08 0.11 0.04 -0.05 0.06 

Inida JB-2 Coal 
This 
study 34 -0.39 0.02 -0.91 0.10 -1.34 0.14 -1.85 0.02 0.07 0.01 0.02 0.09 0.05 0.15 

Inida JB-3 Coal 
This 
study 52 -0.35 0.03 -1.22 0.07 -1.63 0.03 -2.47 0.09 0.28 0.06 0.03 0.10 0.25 0.10 

Inida JB-4 Coal 
This 
study 48 -0.50 0.05 -0.96 0.09 -1.49 0.08 -1.94 0.12 0.00 0.03 0.01 0.02 -0.03 0.01 

Inida JR-1 Coal This 
study 29 -0.56 0.10 -1.20 0.03 -1.85 0.01 -2.42 0.02 0.04 0.12 0.01 0.04 -0.05 0.02 

Inida JR-2 Coal 
This 
study 40 -0.36 0.08 -0.71 0.02 -1.05 0.08 -1.40 0.00 -0.01 0.08 -0.01 0.02 0.00 0.09 

Inida JR-3 Coal 
This 
study 75 -0.51 0.00 -0.70 0.05 -1.22 0.05 -1.47 0.02 -0.15 0.01 0.05 0.04 -0.11 0.06 

Inida JR-4 Coal 
This 
study 38 -0.27 0.01 -0.60 0.00 -0.94 0.14 -1.28 0.12 0.06 0.02 0.05 0.06 0.03 0.05 

Inida RB-1 Coal This 
study 4 -0.62 0.19 -1.36 0.00 -2.13 0.00 -2.86 0.01 0.10 0.18 0.09 0.01 0.00 0.00 

Inida RB-2 Coal 
This 
study 39 -0.43 0.02 -0.85 0.06 -1.29 0.04 -1.60 0.00 -0.02 0.02 -0.04 0.05 -0.09 0.03 

Inida RB-3 Coal 
This 
study 289 -0.50 0.03 -0.98 0.02 -1.56 0.12 -2.02 0.05 0.01 0.02 0.03 0.00 -0.05 0.08 

Inida WM-1 Coal 
This 
study 38 -0.51 0.04 -1.08 0.06 -1.67 0.05 -2.23 0.01 0.05 0.03 0.04 0.05 0.01 0.04 

165 



Appendix 

Country ID Lithology Source 

Hg in 
ppb (as 
received 

basis) 

δ199Hg 2SD δ200Hg 2SD δ201Hg 2SD δ202Hg 2SD Δ199Hg 2SD Δ200Hg 2SD Δ201Hg 2SD 

Mean 
(n=12) 

   
 -0.43 0.12 -0.91 0.28 -1.41 0.38 -1.87 0.54 0.04 0.09 0.03 0.04 0.00 0.09 

Indonesia CQ01 coal 
This 
study 9 -0.13 0.00 -0.13 0.03 -0.37 0.01 -0.40 0.09 -0.04 0.00 0.09 0.03 -0.06 0.07 

Indonesia CQ02 coal 
This 
study 43 -0.39 0.05 -0.06 0.07 -0.41 0.10 -0.04 0.09 -0.38 0.04 -0.05 0.03 -0.37 0.04 

Indonesia CQ03 coal 
This 
study 106 -0.41 0.04 -0.48 0.01 -0.89 0.01 -0.97 0.04 -0.17 0.03 0.02 0.00 -0.17 0.01 

Indonesia CQ04 coal This 
study 70 -0.54 0.02 -0.60 0.10 -1.15 0.14 -1.29 0.09 -0.22 0.01 0.05 0.05 -0.19 0.07 

Indonesia CQ05 coal 
This 
study 51 -0.45 0.06 -0.57 0.09 -1.05 0.18 -1.18 0.10 -0.15 0.04 0.02 0.04 -0.17 0.11 

Indonesia CQ06 coal 
This 
study 260 -0.19 0.01 -0.04 0.06 -0.24 0.00 -0.09 0.11 -0.17 0.04 0.00 0.02 -0.17 0.08 

Indonesia CQ07 coal 
This 
study 193 -0.52 0.05 -0.27 0.05 -0.66 0.10 -0.42 0.05 -0.42 0.04 -0.06 0.01 -0.35 0.06 

Indonesia CQ08 coal This 
study 78 -0.06 0.04 0.02 0.05 -0.06 0.05 0.01 0.00 -0.06 0.04 0.02 0.04 -0.06 0.04 

Mean 
(n=8) 

   
 -0.34 0.17 -0.27 0.24 -0.60 0.37 -0.55 0.49 -0.20 0.13 0.01 0.05 -0.19 0.11 

Mongolia Hov-I-1-11/02 coal 
This 
study 35 -0.60  -0.47  -0.99  -0.89  -0.39  -0.02  -0.33  

Mongolia 
Chdg-2-B-

10/02 coal 
This 
study 153 -0.73  -0.63  -1.28  -1.21  -0.42  -0.02  -0.36  

Mongolia Nal-5-B-1-
7/02 

coal This 
study 47 -0.32  0.25  -0.07  0.37  -0.42  0.07  -0.35  

Mongolia Sivo-II-1-8/02 coal 
This 
study 64 -0.44  0.21  -0.08  0.39  -0.55  0.02  -0.38  

Mongolia 
Adnh-710-1-

10/02 
coal 

This 
study 75 -0.51  -0.42  -0.92  -0.75  -0.31  -0.04  -0.36  

Mongolia 
Byne-28-1-

8/02 coal 
This 
study 300 -0.77  -0.88  -1.68  -1.77  -0.32  0.02  -0.35  

Mongolia Byne-39-1-
8/02 

coal This 
study 357 -0.86  -1.01  -1.91  -2.05  -0.33  0.03  -0.37  

Mongolia 
Mogn-1-A-

10/02 
coal 

This 
study 91 -0.78  -1.23  -2.15  -2.59  -0.12  0.07  -0.20  

Mongolia 
Saio-6A-1-

8/02 
coal 

This 
study 31 -0.28  0.06  -0.25  0.10  -0.31  0.00  -0.32  

Mongolia 
Shar-Vln-1-

9/02 
coal 

This 
study 54 -0.21  -0.03  -0.26  -0.08  -0.18  0.02  -0.20  

Mongolia Nar-63-1-9/02 coal This 
study 130 -0.54  -0.51  -1.04  -0.95  -0.30  -0.03  -0.33  

Mongolia Tav-4-1-6/02 coal 
This 
study 117 -0.33 0.04 -1.06 0.06 -1.54 0.01 -2.13 0.04 0.22 0.03 0.02 0.04 0.07 0.01 

Mongolia Tav-8-1-6/02 coal 
This 
study 91 -0.15  -0.27  -0.49  -0.62  0.01  0.04  -0.02  

Mongolia Talb-I-1-2/03 coal 
This 
study 88 -0.64  -0.80  -1.46  -1.50  -0.25  -0.04  -0.32  
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Hg in 
ppb (as 
received 

basis) 

δ199Hg 2SD δ200Hg 2SD δ201Hg 2SD δ202Hg 2SD Δ199Hg 2SD Δ200Hg 2SD Δ201Hg 2SD 

Mongolia Talb-I-2-2/03 coal 
This 
study 86 -0.62  -0.81  -1.44  -1.55  -0.22  -0.04  -0.27  

Mean 
(n=15) 

   
 -0.52 0.21 -0.51 0.45 -1.04 0.66 -1.02 0.90 -0.26 0.18 0.01 0.03 -0.27 0.13 

 R8 (catalyst) Sapropel 
This 
study 101 -0.39  -0.67  -1.14  -1.36  -0.05  0.01  -0.11  

Ukraine 
R11-natural 

coke 
Natural 
Cokes 

This 
study 507 -0.32 0.03 -0.62 0.03 -0.94 0.06 -1.20 0.04 -0.02 0.02 -0.01 0.05 -0.04 0.03 

Russia R16-1-
Shungite 

Shungite This 
study 101 -0.37 0.02 -0.67 0.01 -1.09 0.03 -1.36 0.03 -0.02 0.01 0.02 0.00 -0.07 0.01 

Ukraine R1-1 Coal 
This 
study 161 -0.81 0.12 -1.18 0.14 -2.09 0.08 -2.52 0.10 -0.17 0.10 0.08 0.09 -0.20 0.01 

Ukraine R1-2 Coal 
This 
study 161 -0.74 0.16 -1.28 0.09 -2.01 0.14 -2.50 0.13 -0.11 0.13 -0.02 0.03 -0.13 0.05 

Russia R3-1 Coal 
This 
study 60 -0.84 0.15 -1.37 0.13 -2.25 0.13 -2.77 0.19 -0.14 0.11 0.02 0.03 -0.17 0.01 

Russia R4 Coal This 
study 262 -1.11 0.06 -1.19 0.10 -2.22 0.02 -2.33 0.03 -0.53 0.05 -0.02 0.08 -0.47 0.00 

Russia R5 Coal 
This 
study 27 -0.52 0.08 -0.86 0.01 -1.44 0.10 -1.75 0.01 -0.08 0.08 0.02 0.01 -0.12 0.10 

Russia R6 Coal 
This 
study 260 0.12 0.03 0.10 0.02 0.11 0.09 0.14 0.09 0.09 0.06 0.03 0.02 0.00 0.02 

Russia R7 Coal 
This 
study 36 -0.37 0.10 -0.28 0.01 -0.64 0.05 -0.55 0.00 -0.23 0.10 0.00 0.01 -0.23 0.05 

Russia R9 Coal This 
study 1000 -0.45 0.11 -0.65 0.17 -1.14 0.05 -1.48 0.13 -0.07 0.07 0.09 0.10 -0.03 0.05 

Ukraine R10 Coal 
This 
study 35 -0.72 0.06 -1.75 0.02 -2.54 0.01 -3.46 0.01 0.15 0.06 -0.01 0.02 0.06 0.02 

Russia R12 Coal 
This 
study 38 -0.83 0.05 -1.73 0.07 -2.58 0.13 -3.42 0.04 0.03 0.05 -0.01 0.09 -0.01 0.10 

Ukraine R13 Coal 
This 
study 234 -0.32 0.02 -0.60 0.03 -1.02 0.09 -1.36 0.10 0.02 0.00 0.08 0.03 0.00 0.02 

Kazakhstan R14 Coal This 
study 20 -1.29 0.01 -1.94 0.07 -3.26 0.06 -3.90 0.03 -0.31 0.02 0.02 0.06 -0.33 0.04 

Russia R15 Coal 
This 
study 144 -0.42 0.04 -1.21 0.03 -1.68 0.01 -2.47 0.01 0.20 0.04 0.03 0.03 0.17 0.01 

Kazakhstan 
PO-1 

(duplicate) 
Coal 

Biswas et 
al., 2008 

       -1.48 0.01 -0.51 0.02   -0.45 0.02 

Kazakhstan PO-2 Coal 
Biswas et 
al., 2008 

       -0.25 0.17 -0.52 0.06   -0.49 0.06 

Kazakhstan PO-3 Coal Biswas et 
al., 2008 

       -0.59 0.18 -0.40 0.69   -0.35 0.61 

Russia 
RO-1 

(triplicate) 
Coal 

Biswas et 
al., 2008 

       -0.26 0.07 0.00 0.04   -0.06 0.04 

Russia 
KK-1 

(triplicate) 
Coal 

Biswas et 
al., 2008 

       -0.50 0.46 -0.63 0.03   -0.53 0.03 

Russia 
MIX 

(duplicate) 
Coal 

Biswas et 
al., 2008 

       -1.36 0.25 -0.23 0.05   -0.21 0.01 
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Country ID Lithology Source 

Hg in 
ppb (as 
received 

basis) 

δ199Hg 2SD δ200Hg 2SD δ201Hg 2SD δ202Hg 2SD Δ199Hg 2SD Δ200Hg 2SD Δ201Hg 2SD 

Russia 
CH-1 

(duplicate) 
Coal 

Biswas et 
al., 2008 

       -1.01 0.02 -0.23 0.01   -0.22 0.00 

Russia 
KR-1 

(duplicate) 
Coal 

Biswas et 
al., 2008 

       -1.71 0.14 -0.25 0.05   -0.27 0.08 

Mean 
(n=21, 

including 
8 

previously 
reported 
samples) 

   
 -0.64 0.35 -1.07 0.57 -1.75 0.87 -1.69 1.13 -0.19 0.23 0.02 0.04 -0.19 0.19 

USA LMHS-1 Coal 
This 
study 9 -0.33 0.00 -0.74 0.00 -1.13 0.05 -1.54 0.12 0.06 0.03 0.04 0.06 0.03 0.04 

USA LLH-1 Coal This 
study 7 -0.52 0.02 -1.07 0.01 -1.67 0.04 -2.21 0.08 0.04 0.00 0.04 0.03 -0.01 0.10 

USA LMA-1 Coal 
This 
study 11 -0.30  -0.72  -1.03  -1.44  0.06  0.00  0.05  

USA BV Coal 
This 
study 918 -0.43 0.05 -0.77 0.07 -1.20 0.08 -1.34 0.07 -0.03 0.03 0.02 0.04 -0.03 0.13 

USA 
AL-1  

(triplicate) 
Coal 

Biswas et 
al., 2008 

       -0.99 0.04 -0.14 0.02   -0.14 0.02 

USA PN-1 
(triplicate) 

Coal Biswas et 
al., 2008 

       -1.47 0.17 -0.12 0.04   -0.14 0.03 

USA 
TX-1 

(triplicate) 
Coal 

Biswas et 
al., 2008 

       -1.68 0.09 -0.10 0.05   -0.11 0.04 

USA AR-1 Coal 
Biswas et 
al., 2008 

       -2.98 0.13 0.08 0.10   0.05 0.04 

USA 
CO-1 

(duplicate) 
Coal 

Biswas et 
al., 2008 

       -1.65 0.04 -0.19 0.03   -0.19 0.01 

USA 
CO-2 

(triplicate) Coal 
Biswas et 
al., 2008 

       -2.76 0.04 0.10 0.01   0.03 0.03 

USA WA-1 Coal 
Biswas et 
al., 2008 

       -0.88 0.15 -0.34 0.04   -0.35 0.07 

USA 
UT-1 

(quadruplicate) 
Coal 

Biswas et 
al., 2008 

       -2.08 0.15 -0.08 0.01   -0.11 0.01 

USA 
AK-1 

(duplicate) 
Coal 

Biswas et 
al., 2008 

       -1.32 0.07 -0.24 0.01   -0.23 0.01 

USA 
AR-2 

(duplicate) Coal 
Biswas et 
al., 2008 

       -1.49 0.16 -0.10 0.01   -0.10 0.01 

USA OK-1 
(triplicate) 

Coal Biswas et 
al., 2008 

       -1.22 0.06 0.08 0.07   0.04 0.02 

USA 
Wildcat Hills, 
herrin (n=3) 

Coal 
Lefticariu 

et al., 
2011 72       -1.39  -0.17    -0.17  

USA 
Lively Grove, 
herrin (n=1) 

Coal 
Lefticariu 

et al., 
2011 52       -1.15 0.02 -0.11 0.01   -0.13 0.01 

USA 
Galitia Herrin 

coal (n=6) Coal 
Lefticariu 

et al., 
2011 147       -1.67  -0.08    -0.09  
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Country ID Lithology Source 

Hg in 
ppb (as 
received 

basis) 

δ199Hg 2SD δ200Hg 2SD δ201Hg 2SD δ202Hg 2SD Δ199Hg 2SD Δ200Hg 2SD Δ201Hg 2SD 

USA 
Crown III, 
herrin coal 

(n=3) 
Coal 

Lefticariu 
et al., 
2011 49       -1.69  -0.20    -0.18  

USA 
Willow Lake, 
Springfield 

(n=2) 
Coal 

Lefticariu 
et al., 
2011 165       -1.71  0.02    0.00  

USA 
Viper, 

Springfield 
(n=3) 

Coal 
Lefticariu 

et al., 
2011 103       -0.97  0.00    0.00  

USA 

Crown Paum, 
Murphysboro, 

Mt Rorah 
(n=7) 

Coal 
Lefticariu 

et al., 
2011 131       -2.04  -0.06    -0.04  

USA 

Upper 
Kittanning 

seam; Barbour, 
WV 

Coal 
Sherman 

et al., 
2012  -0.44 0.03 -0.65 0.06 -0.99 0.09 -1.31 0.10 -0.11 0.01 0.01 0.01 -0.01 0.02 

USA 
Elkhorn #3 

seam; Floyd, 
KY 

Coal 
Sherman 

et al., 
2012  -0.51 0.00 -0.42 0.02 -0.82 0.02 -0.79 0.02 -0.31 0.00 -0.03 0.03 -0.23 0.03 

USA 
Pond Creek 
seam; Pike, 

KY 
Coal 

Sherman 
et al., 
2012  -0.23  0.16  0.03  0.45  -0.34  -0.06  -0.30  

USA 

Stockton-
Lewiston 

seam; 
Kanawha, WV 

Coal 
Sherman 

et al., 
2012  -0.42 0.02 -0.38 0.02 -0.74 0.02 -0.75 0.02 -0.23 0.01 -0.01 0.01 -0.17 0.01 

USA 
Blend 4 seams; 
Raleigh, WV 

Coal 
Sherman 

et al., 
2012  -0.52 0.07 -0.61 0.02 -1.15 0.00 -1.22 0.00 -0.21 0.08 0.01 0.03 -0.24 0.01 

USA SF-V2m pyrite pyrite 
Lefticariu 

et al., 
2011 7601       -0.05 0.02 0.04 0.02   0.01 0.04 

USA 
H6-WH1t 

pyrite 
(duplicate) 

pyrite 
Lefticariu 

et al., 
2011 3255       -0.14 0.00 -0.03 0.03   -0.03 0.01 

Mean 
(n=27 

including 
23 

previously 
reported 
samples) 

   
 -0.41 0.10 -0.58 0.32 -0.97 0.43 -1.45 0.64 -0.10 0.13 0.00 0.03 -0.10 0.11 

USA 
NIST SRM 
1632c (n=6) 

Coal 
Lefticariu 

et al., 
2011 93       -1.86 0.11 -0.04 0.02   -0.03 0.04 

USA 
NIST SRM 
1632c (n=7) Coal 

Sherman 
et al., 
2012 93 -0.49 0.04 -0.93 0.07 -1.44 0.10 -1.86 0.13 -0.02 0.04 0.01 0.03 -0.04 0.03 

USA 

NIST SRM 
1632d (n=10 
except 204Hg 
for which n=2) 

 
This 
study 93 -0.49 0.06 -0.89 0.09 -1.37 0.18 -1.79 0.17 -0.04 0.05 0.01 0.06 -0.03 0.08 

USA 

NIST SRM 
2685b (n=11 
except 204Hg 
for which n=3) 

 
This 
study 146 -0.69 0.07 -1.38 0.10 -2.08 0.17 -2.75 0.18 0.01 0.05 0.00 0.02 -0.02 0.08 
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Country ID Lithology Source 

Hg in 
ppb (as 
received 

basis) 

δ199Hg 2SD δ200Hg 2SD δ201Hg 2SD δ202Hg 2SD Δ199Hg 2SD Δ200Hg 2SD Δ201Hg 2SD 

USA 
USGS CLB-1 

(n=2) 
 

This 
study 200 -0.38 0.01 -0.64 0.08 -1.05 0.02 -1.29 0.06 -0.04 0.01 0.01 0.06 -0.07 0.01 

USA 
UM-Almaden 

(n=53) 
 

This 
study 

 -0.16 0.08 -0.27 0.10 -0.47 0.15 -0.57 0.11 -0.02 0.06 0.01 0.05 -0.05 0.07 
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Table A2. Multiple pairewise comparisions of δ202Hg Δ199Hg between world coals (Post Hoc Test, 

Tamhane’s T2, equal variations not assumed) 

Dependent 
Variable 

Countries 
(I) 

Countries 
(J) 

Mean 
Difference 

(I-J) 

Std. 
Error Sig. 

95% Confidence 
Interval Dependent 

Variable 
Countries 

(I) 
Countries 

(J) 

Mean 
Difference 

(I-J) 

Std. 
Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

δ202Hg 

USA 

Former 
USSR 0.24 0.28 1.00 -0.73 1.20 

Δ199Hg 

USA 

Former 
USSR 0.09 0.06 0.99 -0.11 0.28 

Mongolia -0.44 0.27 0.97 -1.40 0.52 Mongolia 0.16 0.05 0.19 -0.03 0.35 

Indonesia -0.91* 0.22 0.03 -1.77 -0.05 Indonesia 0.10 0.05 0.93 -0.12 0.32 

India 0.41 0.21 0.80 -0.31 1.14 India -0.14* 0.04 0.03 -0.27 -0.01 

Europe -0.29 0.23 1.00 -1.11 0.54 Europe 0.26** 0.04 0.00 0.12 0.41 

China -0.42 0.17 0.42 -0.99 0.15 China -0.10 0.03 0.07 -0.21 0.00 

Africa -0.53 0.19 0.27 -1.20 0.14 Africa 0.19** 0.03 0.00 0.07 0.30 

Former 
USSR 

USA -0.24 0.28 1.00 -1.20 0.73 

Former 
USSR 

USA -0.09 0.06 0.99 -0.28 0.11 

Mongolia -0.68 0.35 0.83 -1.86 0.50 Mongolia 0.07 0.07 1.00 -0.16 0.31 

Indonesia -1.14* 0.31 0.03 -2.23 -0.06 Indonesia 0.01 0.07 1.00 -0.23 0.26 

India 0.18 0.30 1.00 -0.85 1.20 India -0.22** 0.06 0.02 -0.42 -0.02 

Europe -0.52 0.32 0.96 -1.61 0.56 Europe 0.18 0.06 0.16 -0.03 0.38 

China -0.66 0.28 0.52 -1.61 0.30 China -0.19 0.06 0.06 -0.38 0.00 

Africa -0.76 0.29 0.32 -1.76 0.23 Africa 0.10 0.06 0.91 -0.09 0.29 

Mongolia 

USA 0.44 0.27 0.97 -0.52 1.40 

Mongolia 

USA -0.16 0.05 0.19 -0.35 0.03 

Former 
USSR 0.68 0.35 0.83 -0.50 1.86 Former 

USSR -0.07 0.07 1.00 -0.31 0.16 

Indonesia -0.47 0.30 0.98 -1.55 0.62 Indonesia -0.06 0.07 1.00 -0.31 0.19 

India 0.85 0.29 0.19 -0.17 1.88 India -0.30** 0.06 0.00 -0.50 -0.10 

Europe 0.15 0.31 1.00 -0.92 1.23 Europe 0.10 0.06 0.93 -0.10 0.31 

China 0.02 0.27 1.00 -0.94 0.98 China -0.26** 0.05 0.00 -0.45 -0.07 

Africa -0.09 0.28 1.00 -1.08 0.91 Africa 0.03 0.05 1.00 -0.17 0.22 

Indonesia 

USA 0.91* 0.22 0.03334 0.05 1.77 

Indonesia 

USA -0.10 0.05 0.93 -0.32 0.12 

Former 
USSR 1.14* 0.31 0.0320 0.06 2.23 Former 

USSR -0.01 0.07 1.00 -0.26 0.23 

Mongolia 0.47 0.30 0.98 -0.62 1.55 Mongolia 0.06 0.07 1.00 -0.19 0.31 

India 1.32** 0.25 0.0019 0.40 2.25 India -0.23* 0.06 0.03 -0.46 -0.01 

Europe 0.62 0.27 0.61 -0.36 1.61 Europe 0.16 0.06 0.33 -0.06 0.39 

China 0.49 0.22 0.73 -0.37 1.34 China -0.20 0.05 0.09 -0.42 0.02 

Africa 0.38 0.23 0.98 -0.52 1.28 Africa 0.09 0.05 0.98 -0.13 0.31 

India 

USA -0.41 0.21 0.80 -1.14 0.31 

India 

USA 0.14* 0.04 0.03 0.01 0.27 

Former 
USSR -0.18 0.30 1.00 -1.20 0.85 Former 

USSR 0.22** 0.06 0.02 0.02 0.42 

Mongolia -0.85 0.29 0.19 -1.88 0.17 Mongolia 0.30** 0.06 0.00 0.10 0.50 

Indonesia -1.32** 0.25 0.00 -2.25 -0.40 Indonesia 0.24* 0.06 0.03 0.01 0.46 

Europe -0.70 0.25 0.28 -1.60 0.20 Europe 0.40 ** 0.04 0.00 0.25 0.55 

China -0.83* 0.20 0.011 -1.55 -0.12 China 0.03 0.04 1.00 -0.09 0.16 

Africa -0.94** 0.22 0.009 -1.72 -0.16 Africa 0.32** 0.04 0.00 0.19 0.45 
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Dependent 
Variable 

Countries 
(I) 

Countries 
(J) 

Mean 
Difference 

(I-J) 

Std. 
Error Sig. 

95% Confidence 
Interval Dependent 

Variable 
Countries 

(I) 
Countries 

(J) 

Mean 
Difference 

(I-J) 

Std. 
Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

Europe 

USA 0.29 0.23 1.00 -0.54 1.11 

Europe 

USA -0.26** 0.04 0.00 -0.41 -0.12 

Former 
USSR 0.52 0.32 0.96 -0.56 1.61 Former 

USSR -0.18 0.06 0.16 -0.38 0.03 

Mongolia -0.15 0.31 1.00 -1.23 0.92 Mongolia -0.10 0.06 0.93 -0.31 0.10 

Indonesia -0.62 0.27 0.61 -1.61 0.36 Indonesia -0.16 0.06 0.33 -0.39 0.06 

India 0.70 0.25 0.28 -0.20 1.60 India -0.40** 0.04 0.00 -0.55 -0.25 

China -0.13 0.23 1.00 -0.95 0.68 China -0.37** 0.04 0.00 -0.50 -0.23 

Africa -0.24 0.24 1.00 -1.11 0.62 Africa -0.08 0.04 0.86 -0.22 0.07 

China 

USA 0.42 0.17 0.42 -0.15 0.99 

China 

USA 0.10 0.03 0.07 0.00 0.21 

Former 
USSR 0.66 0.28 0.52 -0.30 1.61 Former 

USSR 0.19 0.06 0.06 0.00 0.38 

Mongolia -0.02 0.27 1.00 -0.98 0.94 Mongolia 0.26** 0.05 0.00 0.07 0.45 

Indonesia -0.49 0.22 0.73 -1.34 0.37 Indonesia 0.20 0.05 0.09 -0.02 0.42 

India 0.83** 0.20 0.01 0.12 1.55 India -0.03 0.04 1.00 -0.16 0.09 

Europe 0.13 0.23 1.00 -0.68 0.95 Europe 0.37** 0.04 0.00 0.23 0.50 

Africa -0.11 0.19 1.00 -0.76 0.55 Africa 0.29** 0.03 0.00 0.18 0.39 

Africa 

USA 0.53 0.19 0.27 -0.14 1.20 

Africa 

USA -.187** 0.03 0.00 -0.30 -0.07 

Former 
USSR 0.76 0.29 0.32 -0.23 1.76 Former 

USSR -0.10 0.06 0.91 -0.29 0.09 

Mongolia 0.09 0.28 1.00 -0.91 1.08 Mongolia -0.03 0.05 1.00 -0.22 0.17 

Indonesia -0.38 0.23 0.98 -1.28 0.52 Indonesia -0.09 0.05 0.98 -0.31 0.13 

India 0.94** 0.22 0.01 0.16 1.72 India -0.32** 0.04 0.00 -0.45 -0.19 

Europe 0.24 0.24 1.00 -0.62 1.11 Europe 0.08 0.04 0.86 -0.07 0.22 

China 0.11 0.19 1.00 -0.55 0.76 China -0.29** 0.03 0.00 -0.39 -0.18 

* mean difference is significant at the 0.05 level.; ** mean difference is significant at the 0.01 level 
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Appendix B: supplementary data for Chapter 7 

 

Figure B1. Comparison of δ202Hg and Δ199Hg in studied coal samples (n=108, black unfilled square and circle) 
with those (n=47, red filled square and circle) previously reported (Biswas et al., 2008; Lefticariu et al., 2011; Sun 
et al., 2013) 
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Figure B2. Comparison of δ202Hg and Δ199Hg in studied coal samples from China (n=33, black square and circle) 
with those (n=16, red square and circle) previously reported (Biswas et al., 2008; Sun et al., 2013) 

 

Figure B3. World coal import-export flow (short Million tons/yr) 
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Figure B4. A preliminary Hg isotope evolution model of world coals from 1815-2010  
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Résumé 
 
Le mercure (Hg) est un élément toxique et récalcitrant dans notre environnement. Depuis la 
révolution industrielle, les activités humains ont augmenté la quantité du Hg qui cycle à la 
surface de la Terre d’un facteur trois. Les émissions du Hg des centrales au charbon 
représentent à elles-seules la moitié de tous les émissions anthropiques du Hg. Désormais, le 
traçage quantitatif de ces émissions des différentes régions du globe n’est pas simple. 
L’objectif de cette thèse a été d’explorer les signatures isotopiques du Hg comme traceur 
potentiel des émissions du Hg des centrales au charbon. Dans un premier temps un protocole 
d’extraction, purification et de pré-concentration du Hg par voie de combustion et re-piégeage 
acide a été développé. Une fois purifie, le Hg a été analyse par spectrométrie de masse à haute 
précision (~0.1‰, 2σ). En résumé, nous observons que les charbons provenant du globe entier 
sont isotopiquement discernable à un niveau de p de <0.05 ou <0.1. Les processus de 
combustion et de captage du Hg dans les centrales au charbon ne modifient que 
minimalement les signatures isotopiques du Hg. Nous considérons ces deux résultats 
suffisamment prometteur à fin de recommander des études plus élaborées au sujet du traçage 
des émissions du Hg des centrales au charbon dans l’environnement. Il sera important 
d’étudier les signatures isotopiques des formes gazeuses et particulaires du Hg dans les 
panaches des centrales au charbon, afin de vérifier leur variation et évolution. La difficulté de 
tracer les sources du Hg réside dans la modification de ses signatures isotopiques par les 
transformations biogéochimiques omniprésentes dans l’atmosphère. 
 
 
 
Abstract 
 
Mercury (Hg) is a toxic, persistent and globally distributed pollutant. Since the industrial 
revolution, human activities have augmented the global Hg cycle at the Earth’s surface by a 
factor of three. Hg emissions from coal-fired power plants represent at present the largest 
single anthropogenic source. However, quantitative tracing of the fate of coal Hg emissions 
from different countries or regions is a challenging issue. The objective of this PhD 
dissertation was to use Hg stable isotope signatures to address this problem. Firstly, we 
developed a combustion-trapping protocol to extract, purify and pre-concentrate Hg from 
solid samples with low Hg levels such as coal and coal combustion products. Purified coal 
Hg was then measured for its isotope compositions by high-precision (~0.1‰, 2σ) multi-
collector inductively coupled plasma mass spectrometry. In summary we find that coals from 
different global coal basins are often isotopically distinguishable at the p=0.05 or 0.10 level, 
and that combustion and capture processes in coal-fired power plants do not substantially 
change feed coal Hg isotope signatures. We consider these combined results to be 
sufficiently promising to recommend detailed atmospheric Hg isotope tracer studies of coal 
plant Hg emissions. However, we anticipate that the different gaseous and particulate forms 
of Hg in coal flue gas emissions may carry more contrasting Hg isotope signatures than we 
estimated for bulk emissions. Therefore, caution should be taken in near-field and far-field 
coal Hg emission tracing, and additional studies on the Hg isotope signatures of coal plant 
Hg emissions are necessary. 
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