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ABSTRACT: We introduce an indirect approach to estimate
the solvation contributions to the thermodynamics of non-
covalent complex formation through molecular dynamics
simulation. This estimation is demonstrated by potential of
mean force and entropy calculations on the binding process
between f-cyclodextrin (host) and four drug molecules puerarin,
daidzin, daidzein, and nabumetone (guest) in explicit water,
followed by a stepwise extraction of individual enthalpy (AH)
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and entropy (AS) terms from the total free energy. Detailed analysis on the energetics of the host—guest complexation
demonstrates that flexibility of the binding partners and solvation-related AH and AS need to be included explicitly for accurate
estimation of the binding thermodynamics. From this, and our previous work on the solvent dependency of binding energies
(Zhang et al. J. Phys. Chem. B 2012, 116, 12684—12693), it follows that calculations neglecting host or guest flexibility, or those
employing implicit solvent, will not be able to systematically predict binding free energies. The approach presented here can be
readily adopted for obtaining a deeper understanding of the mechanisms governing noncovalent associations in solution.

B INTRODUCTION

Correct estimation of thermodynamic parameters governing
supra-molecular complexation from empirical calculations is of
crucial importance for a better understanding of processes in
biomolecules and for virtual screening in structure—function
analysis and molecular design. For a host—guest complex both
enthalpic and entropic contributions from the binding partners
and their environment determine the overall binding free
energy. Solvent acts not solely as an inert, bulk medium but
also as an active partner during the noncovalent complexation.
Various methods have been published to evaluate binding free
energy profiles, such as molecular mechanics—Poisson—
Boltzmann surface area (MM—PBSA),' thermodynamic
integration (TI),” free energy perturbation (FEP),®> and
potential of mean force (PMF) calculations.* However,
evaluation of solvation enthalpy as well as configurational
entropy contributions still remains a challenge, in particular for
large biomolecules. Simplified treatments, such as using implicit
solvent models based on, for example, atomic fragmental
volumes and solvation parameters® or treating the receptor as a
rigid body in whole or in part, have been proposed to enable
high-throughput virtual screening with the aid of docking
techniques.”” Efforts to improve the accuracy of scoring
functions by including the effects of solvation and receptor
flexibility continue as well.®

Cyclodextrins (CDs) are ideal candidates for host (or target)
molecules, and they have attracted much attention over the

v ACS Publications  © Xxxx American Chemical Society

years, particularly because of their pharmaceutical applications
in drug delivery.” The lipophilic cavity and hydrophilic surface
of CDs also provide an enzyme-like environment allowing to
mimic protein—ligand interactions.'® Between natural CDs and
guest molecules van der Waals, hydrophobic, and hydrogen
bond interactions are major driving forces responsible for the
host—guest complexation.'" Release of strain energy in the CD
macrocycle and of “high-energy” (also known as enthalpy-rich)
water from the CD cavity upon complexation has been
suggested to contribute to the binding as well.">" Induced
conformational changes of CDs upon binding to a guest have
been proposed and detected by experimental and theoretical
studies."*™"” Inoue et al. reported a compensatory enthalpy—
entropy relationship in [CD:guest] complexes, based on
thermodynamic measurements of CDs with a series of guest
molecules via calorimetric titration.””*" They stated that steric
hindrance in the complex formation may lead to an entropy
loss and cancel out the enthalpy gain in part.”' These
observations indicate that solvation-related changes such as
desolvation and/or configurational fit play a role in [CD:guest]
associations and must be taken into account during calculation
of the complexation thermodynamics. Although a number of
studies involving free energy calculations of CD-containing
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complexes have been published,”* >’ few reports focus on the
solvation problem mentioned above.

Here, we introduce an indirect approach for quantification of
solvent contribution to the energetics of noncovalent complex-
ation by molecular dynamics (MD) simulation. This approach
is demonstrated on the complex formation between $-CD and
four drug molecules (puerarin, daidzin, daidzein, and
nabumetone) as host and guest molecules, respectively, using
water as explicit solvent. These four drug molecules have been
reported to possess potential medicinal values.”®™*° Steered
molecular dynamics (SMD)>' was used to generate a formation
process of the [CD:guest] complex, along which potentials of
mean force (PMFs, ie., free energy profiles) were computed
with umbrella sampling.*” More details on the SMD and PMF
techniques are given in refs 24, 31, and 33—37. On the basis of
PMF calculations, the total enthalpy and entropy change are
evaluated and further decomposed into individual items in
order to quantify the energetics of binding in detail. The results
assist in understanding thermodynamic properties of biological
processes such as drug encapsulation and release from CDs.
Implications for prediction of receptor—ligand binding affinities
in general are discussed at the end of this paper.

B METHODS

Simulation Setup. The initial coordinates of the S-CD
(host) were extracted from the RCSB protein data bank (PDB
code: 1DMB). Drug molecules of puerarin, daidzin, daidzein,
and nabumetone (guests) were constructed using the Chem3D
software. Structures of the host and guest molecules are shown
in Figure 1. The g4md-CD force field was used to model $-CD;
this force field has been validated for CD-based systems®® and
for use® in the GROMACS suite.*>*" The generalized Amber
force field (GAFF)* was chosen to parametrize the guest
molecules. Restrained electrostatic potential (RESP)* charges
of guest molecules were derived by fitting partial charges to
electrostatic potentials calculated using Gaussian 03** at the
HF/6-31G* level of theory. Puerarin, daidzin, and daidzein
complexes were simulated at 300 K and nabumetone at 293 K
to allow direct comparison with experimental data. Constraints
were applied for bond lengths of host and guest molecules with
the LINCS algorithm,45 and for bond lengths and angles of
water molecules with SETTLE,* allowing a time step of 2 fs.
All the simulations were performed with the TIP3P water
model,*” using the GROMACS package (version 4.5.5).*%*!
Long-range electrostatic interactions were treated using the
particle mesh Eward (PME) approach*** with a switching
distance of 1.0 nm. Further details of the simulation protocol
have been presented in ref 16.

Each system contained one host, one guest, and approx-
imately 3300 water molecules in a cubic box of § X § X 4 nm?.
The host molecule was centered in the box with the Z-
coordinate of its seven glycosidic oxygen atoms approximately
located at Z = 2 nm with the cavity axis of f-CD parallel to the
Z-axis. The distance between the center of mass (COM) of the
B-ring of the guest and that of the seven glycosidic oxygens of
B-CD along the Z-axis was defined as the reaction coordinate &
(Figure 2). The initial (i) and final (f) values of the reaction
coordinate were set to & = —2 nm and &; = 2 nm, respectively.
Prior to each production we performed an equilibration
simulation of 200 ps in which the pressure was maintained at
1 bar with the semi-isotropic Parrinello—Rahman barostat,>
scaling the box in the X—Y plane only but keeping the box size
in the Z-direction fixed. During production simulations the box
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Figure 1. (a) Stick model of f-CD. Hydrogen atoms are omitted for
clarity. Primary and secondary hydroxyls are situated at the primary
(P) and secondary (S) rim, respectively. (b) Molecular structure of
puerarin (R1 = H, R2 = Glucose), daidzin (Rl = Glucose, R2 = H),
daidzein (R1 = H, R2 = H), and nabumetone. A, B, and C denote
relevant ring groups. Four dihedral angles (y;, i = 1..4) involving non-
hydrogen atoms are defined here to describe guest rotations around
corresponding bonds. (c) Structural arrangement of the [f-CD:guest]
complex formation. BP indicates B-ring of guest inserting into S-CD
cavity from the P rim; BS from the S rim. BO means the B-ring
locating outside the cavity.

Figure 2. Definition of the reaction coordinate &.

size was kept unchanged with no pressure coupling. A periodic
pulling simulation was carried out in GROMACS,*" allowing
the distance to be larger than half the box size, to obtain a
formation event of 1:1 [f$-CD:guest] complexes. The seven
glycosidic oxygen atoms of $-CD were harmonically restrained
with an isotropic force constant of 1000 k] mol™' nm™ and
used as an immobile reference for pulling simulations. The B-
ring of the guest was pulled through S-CD cavity from the
primary or secondary rim, corresponding to the BP or BS
arrangement in Figure lc, respectively, along the Z-axis over
800 ps with a harmonic force constant of 2000 kJ mol™ nm™
and a pulling rate of 0.005 nm ps~". In some cases the guest did
not go inside but rather outside the cavity, giving a BO
arrangement (Figure 1c). The COM distance and reaction
coordinate as a function of the simulation time for these three
arrangements of [f-CD:puerarin] complexes are shown in
Figure S1 in the Supporting Information. Finally the guest
sampled 4 nm covering the entire [, &] interval. In the [£, &]
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reaction coordinate interval we selected 81 windows with a
distance of 0.05 nm between adjacent positions and these
windows were then used for umbrella sampling simulations.
Following the same scheme, we simulated four guest molecules
with three different arrangements and therefore obtained 12
potential of mean force (PMF) profiles in total. In order to
detect the ultimate entropy loss of a guest inside a rigid cavity,
one more PMF for the [f-CD:nabumetone] complex with the
BS arrangement was computed with position restraints of all
the non-hydrogen atoms of #-CD. The total simulation time for
a single PMF profile was 810 ns (10 ns for each window).

Thermodynamic Calculation. After removing the first 2
ns for equilibration, we constructed the PMFs with a periodic
version of the weighted histogram analysis method
(WHAM).>"** As noted by Kumar and co-workers,”' the
integrated autocorrelation times of the umbrella windows were
incorporated into the WHAM iteration procedure to yield a
more accurate estimate for the PMF, in particular for a periodic
PMF in nonhomogeneous systems.52 Statistical uncertainties of
the PMFs were estimated using the Bayesian bootstrap of
complete histograms.52 All the PMFs were defined to zero at ¢
and & where host—guest interactions vanish, and thus, we can
quantify the free energy difference (AG) with respect to the
separated state of the binding partners.

The simulated system was first equilibrated at 1 bar and then
the volume was kept constant, so the enthalpy of the system
roughly amounts to its internal energy. The temperature is
controlled throughout our simulations and thus the kinetic
energy has a constant contribution to the internal energy. The
enthalpy change (AH) therefore reasonably equals the
potential energy difference with respect to a completely
separated state between host and guest (eq 1).*” Note that all

AH(E) = V(§) - V(&) (1)

thermodynamic variables are functions of £. For simplicity, we
omit this functional dependence in the forthcoming text. The
entropy change (AS) of the system was then computed by
subtracting the AH part from AG (eq 2).

—TAS = AG — AH (2)
An enthalpic profile of the system was further decomposed
into eight terms (eq 3) where the

AH = AH, , + AH

guest + AHhost—host + AH,

guest —guest

+ AHsol—sol + AHhos'c—guest + AHhos'(—sol

+ Angest—sol (3)

first two terms contain bonded interactions (bond angle and
dihedral angle) and the rest are intra- and intermolecular
nonbonded interactions. The bond stretching terms of host and
guest molecules amount to zero since all the bond lengths were
constrained during the simulation. For the rigid water model
TIP3P,*” bond lengths and angles are fixed and there are no
bonded interactions. The nonbonded interaction energy is
defined as the sum of respective Lennard-Jones and Coulomb
interactions. Decomposition of electrostatic interactions in the
reciprocal space when using the PME approach®®* is given in
the Supporting Information. Error estimates of enthalpy were
calculated using a binning analysis.>*

The configurational entropies of host and guest molecules
were computed from the covariance matrices of their atomic
fluctuations using the quasiharmonic approximation.>* We first

calculated entropy changes of host and guest with respect to the
unbound state separately and then subtracted them from AS to
obtain the solvent entropy change involved with, for instance,
solvent rearrangements during desolvation of host and guest
molecules upon binding (eq 4).

ASsol =AS - Ashcvst - ASguest (4)

Since the error in AH would propagate to AS, all entropy terms
here were assumed to have the same errors as AH.

B RESULTS

Complex Arrangement. Potential of mean force (PMF)
profiles for the formation process of 1:1 [f-CD:puerarin]
complexes with BP, BS, and BO arrangements and
representative states (A..G) in the reaction coordinate & are
presented in Figure 3. The three structural arrangements refer

PMF (kJ/mol)
&

&
S

-45

&(nm)

Figure 3. Potential of mean force (PMF) profiles for the [f-
CD:puerarin] complex formation in three structural arrangements
(BP, BS, and BO). Representative configurations along & are shown
using line model. -CD is colored in black and puerarin in the same
color as the arrangement.

to Figure 1c. BP and BS in our simulations indicate that the B-
ring of guest inserts into CD cavity along the +& and —¢
direction, respectively.

As shown in Figure 3, periodic PMFs ensure equality of the
guest located at £ = —2 and 2 nm. All the PMFs approach to
zero and level off on both sides of the reaction coordinate
where there is no interaction between f-CD and puerarin. The
A- and D-states with B- and C-rings of puerarin inside the f-
CD cavity give the most stable inclusion configuration for BP
and BS, respectively. When the A-ring of puerarin approaches
the cavity, such as in the B- and E-states, an energy barrier is
observed and this barrier might prevent puerarin from further
penetrating into the CD cavity. The C- and F-states with the
glucose unit of puerarin inside the cavity form local minima in
the PMFs. As expected, there is no obvious barrier and a
weaker binding is observed for the BO arrangement, as in the
G-state, due to a less efficient contact of hydrophobic moieties
between host and guest, compared to the inclusion complexes
such as BP and BS. For the G-state, puerarin binds to the outer
surface of f-CD with its isoflavone skeleton (i.e., the A, B, and
C rings in Figure 1b) perpendicular to the glucopyranose
residue of -CDj this way the hydrophobic contact area appears
to be maximized. The D-state is more energetically favorable
than the A-state and therefore is the most probable
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configuration, in good agreement with the experiment where a
very similar [-CD:puerarin] inclusion complex (such as the D-
state) was detected in aqueous solution by NMR spectrosco-

Y.
PMF profiles (AG) for puerarin and daidzin are presented in
Figure 4. Daidzin behaves similar as puerarin, whereas it can

puerarin daidzin

30 (a) ——AG——AH -TAS (d)

Energy (kJ/mol)

30t (b) (e)

Energy (kJ/mol)

Energy (kJ/mol)

-20-15-10-05 00 0.5 1.0 15 20-20-15-1.0-05 0.0 0.5 1.0 1.5 2.0
& (nm) £(nm)

Figure 4. Thermodynamic profiles (AG, AH, and —TAS) of the
system for the complex formation of f-CD with puerarin and daidzin
in three patterns BP, BS, and BO.

insert into $-CD cavity more deeply than puerarin in the BS
arrangement (Figure 4, panels b and e). PMF profiles (AG) for
daidzein and nabumetone are given in Figure S2 in the
Supporting Information. For daidzein and nabumetone no
pronounced energy barriers are observed, and both BP and BS
are thermodynamically stable although BS is preferred slightly
over BP. NMR experiments have identified these two possible
[f-CD:nabumetone] inclusion complexes.56 When hydro-
phobic moieties of the guest (such as daidzin, daidzein, and
nabumetone) stay inside -CD cavity, the PMF profiles display
a flat landscape (Figure 4 and Supporting Information Figure
S2), implying that there is almost no energy barrier and the
guest can shuttle freely inside the cavity to some extent. A
shuttling motion of puerarin and daidzin inside $-CD cavity in
the BS pattern has indeed been detected by MD simulations.>”

System Thermodynamics. Thermodynamic profiles (AG,
AH, and AS) of the system along ¢ for the four guests with BP,
BS, and BO arrangements are shown in Figure 4 and
Supporting Information Figure S2. Here entropy is presented
as —TAS. From these profiles we can derive contributions of
enthalpy and entropy to AG. A reduced enthalpy (more
favorable) is observed for all the guests upon complexation,
while entropy increases in some cases and decreases in other.
The thermodynamic stability of these complexes can be
therefore attributed to a combination of both AH and AS.
As shown in Figure 44, for instance, both enthalpy and entropy
gains favor a stable complex (i.e., the A-state in Figure 3), which
corresponds to the global minimum of the PMF. When
puerarin enters the $-CD cavity more deeply with its glucose
unit inside the cavity (such as the C-state in Figure 3), AH

reaches a maximum, whereas an entropy loss cancels out this
enthalpy gain, giving a moderate AG (Figure 4a). Unlike the C-
state, the D-state in Figure 3 is a maximum of enthalpy gain and
has an entropy gain, forming a global minimum of AG (Figure
4b). The other three guest molecules display similar enthalpy—
entropy relationships to puerarin for BP and BS (Figure 4 and
Supporting Information Figure S2). For BO, enthalpy gain and
entropy loss are detected for puerarin and daidzin (Figure 4,
panels ¢ and f), whereas for daidzein and nabumetone the
complex stability seems to result exclusively from the enthalpy
(Supporting Information Figure S2, panels ¢ and f).
Interestingly, puerarin, daidzin, and daidzein share the same
isoflavone skeleton and have similar enthalpy gains upon
binding to the outer surface of $-CD, but an entropy loss
decreases the binding of puerarin and daidzin. This entropy loss
may be due to the limited movement of the glucose unit when
interacting with the $-CD surface. Daidzein does not have such
glucose group (Figure 1b), and there is no significant change in
entropy, leading to a relatively stronger binding (Supporting
Information Figure S2c).

Now, we turn to the standard thermodynamics of the entire
binding reactions for [$-CD:guest] associations. A cylinder
approximation®>**”% was used to evaluate the standard
binding free energies. When a guest enters the $-CD cavity,
the sampled volume for the guest is restrained to a small
cylinder defined by the area accessible for guest movement in
the X—Y plane. The average radius of that cylinder, r(£), was
obtained from COM positions of the guest at each window.
The association equilibrium constant K, is written as

K, = N, [r(&)" expl-AG()/RT]dE -

where N, is Avogadro constant and R the ideal gas
constant.”>*” The thermodynamics of binding can therefore
be calculated using

AG® = —RTIn(K,C") (6)
0 2 d 0
AH’ = RT*—In(K,C")
dT

[1(€)*AG(£) exp[—AG(&)/RT]dé
[7(&) exp[-AG(&)/RT]dE (7)

—TAS° = AG®° — AH® (8)

where C° is the standard concentration of 1 mol/L.*! Note that
AG® here is the standard free energy of the binding process,
while AG(&) denotes free energy profiles obtained from PMF
calculations. The integration is limited to the interval over
which host and guest molecules associate. As noted by Bonal
and co-workers,®’ the integration was computed from each side
of the PMF profile (where host and guest have no interaction)
to the central maximum and they averaged over these two
reaction pathways to obtain the thermodynamic parameters. A
similar treatment is adopted in our calculation to define the
integration interval in eqs 6 and 7. For the cases where there is
no obvious central maximum in the PMF, such as daidzein
(Supporting Information Figure S2a) and nabumetone (Figure
S2e), we perform the integral over the whole PMF.

Table 1 lists the calculated AG® for the four drugs studied.
For daidzein and nabumetone, AG® compares well with the
experiment, while the calculation overestimates the binding
strength between -CD and puerarin. The results depend on
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Table 1. Comparison of Calculated Binding Free Energy
(kJ/mol) with Experimental Determinations

-AG°,
guest T (K) —AG,, BP BS
puerarin 300 19.0¢ 26 32
daidzin 300 24 29
daidzein 300 16.6° 19 22
nabumetone 293 19.2¢ /19.7% /18.7¢ 18 21

“Taken from ref 55. "Ref 62. “Ref 56. “Ref 63. °Ref 64.

the interval used for integration for sure; a shorter interval gives
a weaker binding. If #-CD in the simulation is more rigid that in
the experiment, there would exist energy barriers preventing
the guest from further accessing some part of the binding site.
That is, a more rigid host would lead to a shorter integration
interval. If so, we can get much closer to the experiment by
adjusting the host flexibility artificially. Another factor
responsible for the source of error could probably be the
force field used. Data for AH® and AS°® are given in Tables S2
and S3 in the Supporting Information. For nabumetone, there
is some discrepancy between calculated and observed AH® and
AS° (in exp. 2 and 3, but not 1, Table S3).

Enthalpy Decomposition. For a better understanding of
the distinct shape of an enthalpic profile, we decomposed it
into eight terms including bonded and nonbonded interactions
(eq 3). Figure S shows the AH decomposition for the [f-
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Figure 5. Enthalpy decomposition for the complex formation of f-CD
with puerarin in three patterns BP, BS, and BO.

CD:puerarin] complex formation. For BP and BS, changes in

AHy and AHg upon binding are positive, which means that

the bonded term of binding partners tends to disfavor host—
guest inclusion complexations, indicated by black and red lines
(Figure S, panels a and b). For BO (Figure Sc), no significant
changes are observed for AH,, and Angest. AHy g _post and

AHgyeg—guest (green and blue lines, panels a and b in Figure S)

tend to favor host—guest complexations (negative values).
There are significant enthalpy changes in intramolecular

interactions of the host (AH, 4 po) for BP and BS; no
obvious changes for BO.

When a guest travels from the bulk into the CD cavity, the
solvent molecules entrapped inside the cavity will be expelled, a
process such as the release of “high-energy” water. Another
contribution to the energetics is due to release of water
molecules that participate in host and guest solvation. As a
result, the water—water enthalpy AH,_,; becomes more
negative (the cyan line in Figure S, panels d—f). Unsurprisingly,
the strength of the intermolecular interaction between host and
guest (AHjoq guesr) increases when forming a complex, as
indicated by the magenta line. Accompanied by desolvation, the
strength of the interaction between host (or guest) and solvents
decreases (positive AH, dark yellow and orange lines in Figure
5). When accommodating puerarin as a guest, /-CD reaches a
desolvation maximum (AH_ panels d and e in Figure S)
where the A- and C-rings of the guest are inserted into the
cavity and the glucose unit stays very close to the cavity, such as
in the B- and E-states in Figure 3. When the glucose unit of
puerarin goes further and stays inside the cavity (C- and F-
states in Figure 3), host desolvation gets weakened and guest
desolvation maximized (Figure S, panels d and e). The guest
bound to S-CD outer surface also affects (de)solvation of host
and guest molecules, but to a lesser degree (Figure S, panels d—
f). Similar observations are detected as well for S-CD
complexes with daidzin, daidzein, and nabumetone, as shown
in Figures S3—SS5, respectively, in the Supporting Information.
Since daidzein and nabumetone do not possess a glucose unit,
they give more symmetrical profiles of the AH decomposition
(Figures S4 and SS).

Entropy Decomposition. In order to distinguish individ-
ual entropy contributions clearly, the total entropy was
decomposed into three single terms corresponding to host,
guest, and solvent molecules (eq 4) and presented as —TAS.
Figure 6 shows the entropy decomposition for f-CD complexes
with puerarin and daidzin; data for daidzein and nabumetone
are given in Figure S6 in the Supporting Information. An

puerarin daidzin

1 — host
® (@ — guest
sol
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-50
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Figure 6. Entropy decomposition for the complex formation of #-CD
with puerarin and daidzin in three patterns BP, BS, and BO.
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Table 2. Individual Contribution (kJ/mol) of AH and AS Weighted by Boltzmann Factors for the Actual Binding Reactions
between f-CD and Guest Molecules with BP and BS Arrangements (Standard Deviations in Parentheses)

puerarin daidzin daidzein nabumetone

(AE) BP BS BP BP BS BP BS
AH, 2(1) 1(1) 1(1) -1(1) 1(1) 1(1) -1(1) o(1)
AHgeq 3(1) 1(1) 0(1) -1(1) 0(1) 0(1) 0(1) 0(1)
AH g host -17(3) -13(3) -9(2) -8(2) -9(2) —10(3) -12(3) -10(2)
AHgueq—guest -1(1) -1(1) -4(2) 0(1) 0(1) 1(1) -2(1) =3(1)
AH_ —136(8) —130(7) —123(7) —123(6) —98(7) —106(6) —96(7) —111(8)
AH 5 guest —176(8) —170(7) —163(4) —164(5) —129(9) —128(7) —123(8) —126(7)
AH g ol 168(9) 155(8) 142(6) 119(7) 119(8) 131(8) 132(8)
AHge—50l 127(7) 123(7) 119(5) 86(6) 85(6) 80(6) 85(6)
—TAS;0u 42(4) 24(3) 24(3) 14(3) 9(2) 21(3) 18(3)
—TASges 4(2) 7(2) 13(3) 23(4) o(1) o(1) 11(2) 14(2)
—TAS,, —55(4) —38(4) —-38(3) —41(4) -12(3) —14(3) -33(5) —33(4)

obvious entropy loss of the host and a slight loss of the guest
are observed for puerarin with BP and BS arrangements (Figure
6, panels a and b). For daidzin there are pronounced entropy
losses for both the host and guest (Figure 6, panels d and e),
due to loss of flexibility in host and guest molecules upon
complexation. For puerarin, daidzin, and nabumetone in BP
and BS patterns, the solvent in contrast tends to gain entropy
(positive AS), favoring the complexation. No obvious changes
in AS are detected for the [$-CD:daidzein] inclusion (Figure
S6, panels a and b). Binding of a guest to the outer surface of /-
CD may also result in an entropy change to a certain extent
(Figure 6 and Supporting Information Figure S6).

Figure S7 in the Supporting Information presents thermody-
namic profiles for the BS [-CD:nabumetone] inclusion with a
flexible or rigid host. Compared to the flexible host, the rigid
one gives more minima in the PMF and has a weaker binding
to nabumetone due to a less favorable enthalpy gain
(Supporting Information, Figure S7, panels a and b), as
indicated by the AH decomposition (Supporting Information,
Figure S7, panels c—f). As expected, the rigid host displays little
entropy loss upon binding to the guest since all the non-
hydrogen atoms are harmonically fixed. When entrapped inside
a rigid cavity, nabumetone shows larger entropy loss and
solvent molecules give a larger entropy gain (Supporting
Information, Figure S7, panels g and h).

For a quantitative determination of the energetics, individual
contributions of AH(&) and —TAS(E) are weighted by their
Boltzmann factors (eq 9)

_ [AE(&) exp[-AG(£)/RT]dé
[exp[—AG(&)/RT]dE ©)

where AE represents AH or —TAS. Weighted values for the
actual binding reactions are tabulated in Table 2, showing
similar observations to what was mentioned above.

Guest Rotation. The configurational entropy here was
determined from covariance matrices of atomic fluctuations.**
A guest entrapped inside the CD cavity probably cannot rotate
as freely as it is in the bulk, which may limit structural
fluctuations of the guest and hence cause an entropy loss. To
detect guest rotations in the free and complex state, four
dihedral angles were defined in Figure 1b. Dihedral potentials
of the four angles taken from the GAFF parameters*” are given
in Figure S8 in the Supporting Information. A large energy
barrier exists for y;, meaning that it is not easy for y; to rotate.
There are smaller barriers for y; and y;; no barrier for y,. It

(AE)

should be noted that Supporting Information Figure S8 shows
the intrinsic barrier only and dihedral rotations also depend on
the environment of the molecule.

Distributions of these dihedrals (y; i = 1..4) during the
formation process of f-CD with puerarin and daidzin in the BP
pattern are presented in Figure 7. Free states for puerarin and
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Figure 7. Distribution of dihedral angles for puerarin (; and y,) and
daidzin (yy, 3, and y,) with the BP arrangement along £. Dihedral
distribution for daidzein (y,) is similar to that for puerarin and
daidzin.

daidzin locate at £ = —2.0 nm. The B-ring of guest inserted into
P-CD cavity at £ = 0.5 nm; the glucose unit of guest stays inside
the cavity at £ = 1.0 nm. For puerarin and daidzin in the free
and complex state, there is no significant difference for y, and
the same goes for daidzein (not shown here). The glucose
rotation (y,) for puerarin is almost not affected when
entrapped inside the cavity, and it is similar to the free state,
which may explain the small entropy change of guest in Figure
6a. Hydrogen-bonding interactions between the hydroxyl group
connected to A-ring and the glucose unit of puerarin are
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observed in the simulation, which may limit the rotation of y,.
For daidzin, the glucose unit rotates freely in the free state (¢ =
—2.0 nm), as indicated by y; and y,, whereas their rotations are
evidently limited when the glucose unit stays inside the cavity at
£ = 1.0 nm (Figure 7). This finding explains the large entropy
loss of daidzin upon binding to $-CD in Figure 6d.

B DISCUSSION

When typical cyclodextrins (a-, -, and y-CD containing six,
seven, and eight glucopyranose residues in a ring, respectively)
form 1:1 complexes with asymmetrical guest molecules, three
possible arrangements (BP, BS, and BO in Figure 1c) may be
adopted and they are expected to be different in energy due to
the guest orientation. Much attention has been paid to BP and
BS inclusion patterns both in academic research and industrial
applications, since the CD cavity is a specific binding site and
the outer surface is not. The asymmetric free energy profiles for
the BP and BS arrangements in our simulations (Figures 3 and
4) indicate the difference in the specific binding and in two
types of inclusion complexes. Many compounds have been
reported to show two possible inclusion models with CDs, such
as surfactants with typical CDs'"®® and steroid drugs*
flavanols,°*®” and aziadamantane derivatives®® with f-CD.
Host—guest complexes are often used as models to gain
general insights on the thermodynamics of binding, due to their
small size and simplicity compared to protein—ligand systems.
Many projects have been devoted to studying the thermody-
namics of c7yclodextrin complexation using PMF calcula-
tions.>”*%~"> Cai and co-workers reported a decomposition
of the PMF profile into van der Waals (host—guest),
electrostatic (host—guest), and host—solvent interactions.”~"*
In addition, Kovalenko et al. proposed a spatial decomposition
analysis for the cyclodextrin complexation and decomposed the
thermodynamics into the excluded volume and solvation shell
terms.”> In a very recent study, Wickstrom et al. indicated that
the binding free energy can be decomposed into the
reorganization free energy and the average binding energy.”*
In this work, we introduce another decomposition to
characterize the total and individual contributions (AH and
AS) from the binding partners as well as their solvation
environment, as described in detail in the Methods section.
Thermodynamic profiles of the system (Figure 4 and
Supporting Information Figure S2) show that both enthalpy
and entropy contribute to the binding between the model host
p-CD and the guests studied. Such binding reactions are
predominantly enthalpy-driven and in some cases an entropy
loss weakens the binding. Decomposition of the total enthalpy
(AH) provides more information on individual contributions
from intra- and intermolecular interactions, as shown in Figure
S and Supporting Information Figures S3—S5. As expected,
desolvation of host and guest molecules gives an unfavorable
AH and the complex formation produces a favorable AH. The
solvent favors the complex stability as well with enthalpy gains.
Surprisingly, the numerical values of these four terms
(AHhost—sol) Angest—sob AI_Ihost—guest) and AI_Isol—sol) are an
order of magnitude larger than that for the thermodynamic
parameters of the entire binding reactions, as shown in Tables 1
and 2 and Supporting Information Tables S2—S3, which
implies that these contributions to the binding need to be
considered with care. Moreover, changes in intramolecular
energies of the binding partners (AH, AHgyeqy AHpogt—host
and Angest_guest), in particular for nonbonded interactions of
the host (AH}oq_post), indicate that host molecules adjust their

configurations to the binding environment, and so do guest
molecules. This adjustment (configurational fit) reflects
fluctuations in atomic positions, known as guest-induced
effects,* leading to changes in the potential energy and thus
to AH between 8 and 17 kJ/mol. Dolenc et al. investigated the
effect of receptor flexibility on the binding affinity and reported
that neglecting the receptor flexibility affected the model
structures of the complex and enthalpy contributions to the
binding, in particular for a flexible receptor such as DNA®
Since the contributions from conformational changes are on the
same order of magnitude as the standard thermodynamics of
binding (Tables 1 and 2 and Supporting Infomation Tables
S2—S3), these need to be considered explicitly when
computing binding energies.

For the entropy (AS) decomposition in Figure 6, most of
entropy changes take place when flexible moieties of the guest
are included inside the CD cavity or interact with the CD
surface. Both host and guest may lose entropy upon binding,
depending on the guest and orientation. The solvent, however,
tends to have an entropy gain, favoring the complex formation.
Desolvation of the binding partners liberates solvent molecules
participating in the solvation, allowing a greater degree of
freedom for motion of these water molecules and hence
increased entropy, in line with common perception of the
hydrophobic effect.”>’® Daidzein, the most hydrophobic and
rigid molecule among the tested guests, has weaker interactions
with water molecules and undergoes smaller fluctuations in
structure. Inclusion of daidzein to the CD cavity should perturb
the binding-site waters and displace them from the cavity. For
the solvent, this process ought to give favorable AS. However,
no significant AS for -CD, daidzein, and water molecules is
observed upon complexation in the simulation (Supporting
Information Figure S6). This finding could be ascribed to the
fact that rigidity of daidzein leads to a weaker (de)solvation and
does not affect the surrounding environment too much.

As ideal host—guest models, the [CD:drug] complexes
studied in this work hold valuable implications for the
receptor—ligand binding. It has been realized for a long time
that for truly predictive estimates of ligand—binding energies
free energy methods are crucial.”’ However the (high-
throughput) virtual screening concept has remained popular,
despite suggestions that it may not live up to the hype.”®
Docking and binding-site predictions can yield good candidates
for binding sites,”” but the built-in scoring functions are not
necessarily predictive of binding strength,* and docking codes
are therefore regarded with some skepticism.*’ For high-
throughput virtual screening to work, an accurate estimation of
the contribution from solvation and from conformational
changes would be needed, without the computational cost
associated with free energy calculations. Based on our
calculations, changes in intramolecular interactions due to
configurational fit contribute significantly to the complexation
thermodynamics (Figure S and Supporting Information Figures
$3—S5). Moreover, we observe a large enthalpy gain of the
solvent environment for both flexible and rigid hosts, and this
contribution most likely cannot be evaluated accurately when
neglecting the solvent or using implicit solvent.

Entropy estimation, especially for the solvent environment, is
another difficulty faced by high-throughput virtual screening. A
detailed review for theory of free energy and entropy in
noncovalent binding has been presented by Zhou and Gilson.**
In this work, we used a quasiharmonic approximation54 to
calculate the configurational entropy; the Schlitter formula was
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also tested.*> We note that the quasiharmonic method is an
approximation, which does not approach the true entropy even
in the limit of infinite sampling, but these two methods were
reported to be useful for AS estimation of ligands in binding
processes.** For our cases, the two methods yield very similar
results for the relative AS (which is very important in this
analysis presented), although the absolute values differ (not
shown here). The entropy of the host and guest can be
computed readily, and this has been incorporated in methods
for estimating the binding energy of complexes.””** In our
calculations, the solvent entropy is computed indirectly using
eq 4, and its accuracy depends on the estimation of AG and
AH and the values of —TAS depend heavily on the guest,
varying between —12 to —55 kJ/mol (Table 2). The results
show that the solvent tends to gain entropy and cancel out
most of the entropy losses of the binding partners. Neglecting
either of the flexibility or the entropy items would yield an error
with the same order of magnitude as the entire binding energy.
It is therefore difficult to imagine that the accuracy of scoring
functions for use in virtual screening (e.g, pharmaceutical
design and biotechnology projects) can be increased sufficiently
to systematically reach an accuracy comparable to free energy
calculations.””

H CONCLUSION

In this work, all possible complex arrangements between a
model host (#-CD) and four drug guests (puerarin, daidzin,
daidzein, and nabumetone) were evaluated through steered
molecular dynamics and potential of mean force calculations.
The total and individual contribution of enthalpy and entropy
to the stability of such noncovalent complexes were analyzed in
terms of binding mode, solvation, and structural flexibility. Our
results show that host flexibility, solvent enthalpy, and solvent
entropy play important roles in host—guest complexation, and
these items need to be included explicitly for accurate
calculation of the binding thermodynamics. We have previously
demonstrated that the binding energy of [host:guest]
complexes in different organic solvents is only weakly
correlated to solvent properties such as the dielectric constants
or Log P.*’ An implicit solvent model can provide a useful
estimate of solvation free energy only if used under the
conditions it was parametrized for (temperature, solvent) and if
there are no very specific hydrogen bonds. Implicit models are
not suitable to provide detailed information on how that free
energy is partitioned into enthalpy and entropy. Full molecular
dynamics (MD) simulations using explicit solvents are
therefore required for precise estimation of thermodynamic
parameters of molecular complexation.

B ASSOCIATED CONTENT
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Decomposition of reciprocal Ewald sum (Table S1), calculated
AH° and AS® (Tables S2 and S3), COM pulling for puerarin
(Figure S1), thermodynamic profiles of the system for daidzein
and nabumetone (Figure S2), AH decomposition for daidzin,
daidzein, and nabumetone (Figure S3—SS), AS decomposition
for daidzein and nabumetone (Figure S6), thermodynamic
profiles for nabumetone with a flexible or rigid host (Figure
S7), and dihedral potential (Figure S8). This material is
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