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The number of conjugacy classes in pattern
groups is not a polynomial function

Zoltán Halasi and Péter P. Pálfy
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Abstract. A famous open problem due to Graham Higman asks if the number of conjugacy
classes in the group of n� n unipotent upper triangular matrices over the q-element field can
be expressed as a polynomial function of q for every fixed n. We consider the generalization of
the problem for pattern groups and prove that for some pattern groups of nilpotency class two
the number of conjugacy classes is not a polynomial function of q.

1 Introduction

In 1960 Graham Higman [3, p. 29] asked if the number of conjugacy classes in the
group UnðqÞ of n� n upper unitriangular matrices over the q-element field Fq is a
polynomial function of q for every fixed n. This has been verified for nc 13 with
polynomials of degree ½nðnþ 6Þ=12� (see Vera-Lopez and Arregi [10]) However, in
full generality the problem is wide open, despite various attempts to solve it (see, for
example, Thompson [9]).

We follow here the advice of George Pólya [7, p. 9]: ‘‘If you cannot solve the
proposed problem try to solve first some related problem.’’ We will consider a gener-
alization of the problem and in this paper we give a negative answer for a particular
case of the generalized problem. Although the case we solve is quite diametrical to
the one that corresponds to the original question, nevertheless, we hope our result
will shed some light on the problem.

We will deal with pattern groups as defined in Isaacs [5]. (See Section 4 below.) We
note that pattern groups already appeared in the 1955 paper of Weir [11] under the
name ‘‘partition subgroups’’.

We will prove (Corollary 4.5) that there exists a pattern P such that the number
of conjugacy classes in the corresponding pattern group GPðqÞ over Fq is not a poly-
nomial function of q. This result might raise some doubt about the validity of the
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conjecture on the number of conjugacy classes in UnðqÞ. We will only consider pat-
tern groups of nilpotency class two. In Section 3 we derive a general formula for the
class number of algebra groups of nilpotency class two.

The main technique of our study is to count those matrices in which the rank of
several submatrices is prescribed. We introduce the concept of a system of rank con-
straints in Section 2. In Section 2.1 we present two examples where the number of
matrices over Fq satisfying the given system of rank constraints is not a polynomial
function of q. In Section 2.2 we show that for every finite set of polynomial equations
and inequalities it is possible to construct an appropriate system of rank constraints
such that the number of matrices satisfying these constraints is equal to the number
of solutions of the given system of polynomial equations and inequalities, multiplied
by a suitable power of q� 1. (The results of this section are not used later in the
paper.) In Section 2.3 we show that for a special type of a system of rank constraints,
namely, when each submatrix with prescribed rank is at the top right corner, the
number of solutions is a polynomial function of q. This result is used in Section 5 to
show that the number of conjugacy classes in normal pattern subgroups of UnðqÞ is a
polynomial function of q.

Our notation is mainly standard. We denote by kðGÞ the number of conjugacy
classes in the finite group G, and by rkðX Þ the rank of the matrix X .

2 Matrices with rank constraints

First we will consider an auxiliary problem. Let k;md 1 be integers, and let us
denote by Mk�mðFqÞ the set of all k �m matrices over the q-element field. We will
put restrictions on the rank of some submatrices and we will be interested in the
number of matrices satisfying these constraints. We formalize our setting in the fol-
lowing way.

Definition 2.1.

(i) By a system of rank constraints for k �m matrices we mean a set

R ¼ fðKn;Mn; rnÞ j n A f1; . . . ;Ngg;

where for each n A f1; . . . ;Ng we have subsets Kn J f1; . . . ; kg, Mn J f1; . . . ;mg
and an integer 0c rn cminðjKnj; jMnjÞ. For any prime power q we denote
by RðFqÞ the set of those matrices from Mk�mðFqÞ such that for each
n A f1; . . . ;Ng the rank of the submatrix corresponding to the rows with indices
in Kn and columns with indices in Mn is the prescribed number rn.

(ii) If all pairs of subsets of f1; . . . ; kg and f1; . . . ;mg appear among the constraints
then we say that R is a complete system of rank constraints.

(iii) If the index sets in each constraint have the form Kn ¼ f1; 2; . . . ; kng and
Mn ¼ fmn;mn þ 1; . . . ;mg with some

1c kn c k and 1cmn cm ðn A f1; . . . ;NgÞ;

then we call R a system of corner rank constraints.
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(iv) If all pairs of initial segments of f1; . . . ; kg and terminal segments of f1; . . . ;mg
appear in a system of corner rank constraints then we say that R is a complete

system of corner rank constraints.

Note that the set of constraints R is independent of the field Fq. For the applications
in mind we have to allow trivial constraints ðq;Mn; 0Þ, ðKn;q; 0Þ as well (but not in
systems of corner rank constraints). Then the number of rank constraints in a com-
plete system is 2kþm, while in a complete system of corner rank constraints it is km.

2.1 Examples. In our first simple example the number of matrices satisfying the
rank constraints is given by one polynomial for q even and by another polynomial
for q odd. In the second example there is not even a finite set of polynomials
f1; . . . ; fN A Q½x� such that jRðqÞj A f f1ðqÞ; . . . ; fnðqÞg for every prime power q.

Proposition 2.2. Let R be the following system of rank constraints for 3 � 4 matrices:

ðf1g; f1g; 1Þ; ðf1g; f2g; 1Þ; ðf1g; f3g; 1Þ; ðf1g; f4g; 1Þ; ðf2g; f1g; 1Þ; ðf3g; f1g; 1Þ;

ðf1; 2g; f1; 4g; 1Þ; ðf1; 2g; f2; 3g; 1Þ; ðf2; 3g; f1; 2g; 1Þ;

ðf1; 3g; f1; 3g; 1Þ; ðf1; 3g; f2; 4g; 1Þ; ðf2; 3g; f3; 4g; 1Þ:

Then jRðFqÞj ¼ ðq� 1Þ6
for q even, whereas jRðFqÞj ¼ 2ðq� 1Þ6

for q odd.

Proof. The first six constraints mean that all entries in the first row and in the first
column are non-zero. Multiplying a row or a column by a non-zero number does
not a¤ect the rank of any submatrix. Considering two matrices equivalent if they
are obtained from one another by multiplying rows and columns by non-zero num-
bers, we see that each equivalence class contains now a unique matrix with all 1’s in
the first row and first column, and each equivalence class contains exactly ðq� 1Þ6

matrices. So we will count only matrices with 1’s in the first row and column, and in
the end we have to multiply by ðq� 1Þ6 the number of such matrices satisfying all
constraints.

Let us denote the ð2; 2Þ entry of the matrix by x. Now constraints of the form
ðf1; ig; f j; j 0g; 1Þ mean that the ði; jÞ entry of the matrix is the same as the ði; j 0Þ
entry (since the first row is filled with 1’s). Similarly, a constraint of the form
ðfi; i 0g; f1; jg; 1Þ means that the ði; jÞ entry and the ði 0; jÞ entry of the matrix are
equal. Hence any matrix with 1’s in the first row and first column satisfying the next
five constraints has the form

1 1 1 1

1 x x 1

1 x 1 x

2
64

3
75:

Finally, the last constraint is satisfied i¤ x2 � 1 ¼ 0, so for x ¼ 1 if q is even and for
x ¼G1 if q is odd. r
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Our second example is based on one of the most well known elliptic curves
y2 ¼ x3 � x. Below we give the number of pairs ðx; yÞ A F2

p satisfying y2 ¼ x3 � x,
see, e.g., the standard texts by Ireland and Rosen [4, p. 307] and by Silverman
[8, p. 142]. (For another use of this elliptic curve for counting problems in group
theory, see du Sautoy [2].)

Let p be an odd prime. If p1 1 ðmod 4Þ then the number of solutions is given by
p� 2a, where p ¼ a2 þ b2, a is odd and a� 11 b ðmod 4Þ. (Note that in contrast
to [4] we do not count the point at infinity.) By the Sato–Tate conjecture the term
2a is distributed in the interval ð�2

ffiffiffi
p

p
; 2

ffiffiffi
p

p Þ obeying the semicircle law, see [6]. If
p1 3 ðmod 4Þ then the number of pairs ðx; yÞ A F2

p on the curve is p. In this case let
a ¼ 0.

Let us now consider the curve over the field of q ¼ pn elements, where p is an odd
prime and nd 1. Let a and b be the complex conjugate solutions of the equation
z2 � 2azþ p ¼ 0, with a as above. Then the number of points on the curve over the
field of q ¼ pn elements is

pn � an � bn:

Finally, if q is a power of 2, then the number of points on the curve is obviously q.
Hence the number of solutions of y2 ¼ x3 � x in Fq is not a polynomial function of q,
and we cannot even partition the set of prime powers into finitely many subsets so
that for each subset there is a polynomial giving the number of solutions.

Now we will model this elliptic curve using rank constraints.

Proposition 2.3. There exists a system of rank constraints for 6 � 6 matrices such that

the number of matrices in M6�6ðFqÞ satisfying these constraints is

ðq� 1Þ11jfðx; yÞ A F2
q j y2 ¼ x3 � xgj;

hence it is not a polynomial function of q.

Proof. As in the previous construction we will require that all 1 � 1 submatrices in
the first row and in the first column should have rank 1. Then we count only those
matrices satisfying the constraints that have all 1’s in the first row and first column,
and in the end we multiply the number of these matrices by ðq� 1Þ11. We will also
use the ‘‘copying’’ technique without specific mention. (Actually, in our construction
below we will need it 18 times.) In addition, we will require that some 1 � 1 subma-
trices ought to have rank 0, that is, the corresponding entry of the matrix must be 0.

Apart from these, we take four further constraints:

ðf2; 3g; f2; 4g; 1Þ; ðf2; 3g; f2; 6g; 1Þ; ðf4; 6g; f2; 3g; 1Þ; ðf4; 5; 6g; f4; 5; 6g; 2Þ:

Denoting the ð2; 2Þ entry by x and the ð4; 2Þ entry by y, the reader can find the nec-
essary ‘‘copying’’ constraints (using 2 � 2 submatrices of rank 1) guaranteeing that
the matrices satisfying all but the last constraints have the form
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1 1 1 1 1 1

1 x x x2 x2 x3

1 1 x x x2 x2

1 y 1 1 0 1

1 y y 0 1 1

1 y2 y x y2 x3

2
666666664

3
777777775

Moreover, the last constraint is satisfied i¤ y2 ¼ x3 � x. r

2.2 General theory. Clearly any system R of rank constraints can be extended to a
complete system, and the number of matrices over Fq satisfying the given system of
rank constraints R can be obtained as the sum of jR�ðFqÞj taken over all complete
extensions R� KR. A complete system of rank constraints is obviously equivalent
to specifying which square submatrices have non-zero determinant. If we denote
the entries of the matrix by distinct indeterminates, this means that for a complete
system R� of rank constraints, jR�ðFqÞj is the same as the number of solutions of a
certain system of polynomial equations and inequalities over Fq.

In Section 2.1 we constructed examples where jRðFqÞj depended on the number of
solutions of a polynomial (e.g., x2 � 1 or y2 � x3 þ x). Now we are going to show
this behaviour in a general form. All the machinery of the proof has already been
used in the proof of Propositions 2.2 and 2.3.

Theorem 2.4. Let f0; f1; . . . ; fs A Z½x1; . . . ; xn� be polynomials in n indeterminates.

Then there exist an integer N and a system of rank constraints R for 4 �N matrices

such that the number of solutions ða1; . . . ; anÞ A Fn
q of

f0ðx1; . . . ; xnÞ0 0; f1ðx1; . . . ; xnÞ ¼ 0; . . . ; fsðx1; . . . ; xnÞ ¼ 0

is equal to

jRðFqÞj=ðq� 1ÞNþ3:

Proof. We will be considering 4 �N matrices where the number of columns
Nd nþ 1 will vary. First we take the constraints ðf1g; f jg; 1Þ ( j A f1; . . . ;Ng) and
ðfig; f1g; 1Þ (i A f2; 3; 4g) and count only matrices with all 1’s in the first row and first
column. Then jRðFqÞj will be obtained by multiplying by ðq� 1ÞNþ3 the number
of such matrices satisfying all constraints. We denote by xj the ð2; j þ 1Þ entry of
the matrix, and add the constraint ðf3; 4g; f2; . . . ; nþ 1g; 0Þ in order to fix the first
nþ 1 columns of the matrix to be

1 1 � � � 1 � � �
1 x1 � � � xn � � �
1 0 � � � 0 � � �
1 0 � � � 0 � � �

2
6664

3
7775:
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We will extend the matrix step by step, adding three new columns every time. At
every stage the entries of the matrix will be polynomials from Z½x1; . . . ; xn�.

Let a and b be two entries in the second row, say, in positions ð2; jaÞ and ð2; jbÞ.
First we show how to obtain a� b. We add the following constraints to the previous
ones:

ðf1g; fN þ 1g; 1Þ; ðf1g; fN þ 2g; 1Þ; ðf1g; fN þ 3g; 1Þ;

ðf1; 2g; f ja;N þ 1g; 1Þ; ðf1; 2g; f jb;N þ 2g; 1Þ;

ðf1; 3g; f1;N þ 1;N þ 2g; 1Þ; ðf3g; fN þ 3g; 0Þ;

ðf1; 4g; f1;N þ 1;N þ 3g; 1Þ; ðf4g; fN þ 2g; 0Þ;

ðf2; 3; 4g; fN þ 1;N þ 2;N þ 3g; 2Þ;

then we obtain that the extended matrix has the form

1 � � � 1 � � � 1 � � � 1 1 1

1 � � � a � � � b � � � a b a� b

1 � � � � � � � � � � � 1 1 0

1 � � � � � � � � � � � 1 0 1

2
6664

3
7775;

so we have given an extension of the system of rank constraints in such a way that
the matrices satisfying the extended system will contain the polynomial a� b in the
second row.

We can obtain ab in a similar fashion, by adding the constraints

ðf1g; fN þ 1g; 1Þ; ðf1g; fN þ 2g; 1Þ; ðf1g; fN þ 3g; 1Þ;

ðf1; 2g; f ja;N þ 1g; 1Þ; ðf1; 2g; f jb;N þ 2g; 1Þ;

ðf2; 3g; f1;N þ 1g; 1Þ; ðf1; 3g; f1;N þ 2g; 1Þ; ðf1; 3g; fN þ 1;N þ 3g; 1Þ;

ðf4g; fN þ 1;N þ 2;N þ 3g; 0Þ; ðf2; 3g; fN þ 2;N þ 3g; 1Þ;

which yield a matrix of the form

1 � � � 1 � � � 1 � � � 1 1 1

1 � � � a � � � b � � � a b ab

1 � � � � � � � � � � � a 1 a

1 � � � � � � � � � � � 0 0 0

2
6664

3
7775:

Thus the set of polynomials that can occur in the second row of some 4 �N

matrix (N varies) specified by an appropriate system of rank constraints is closed
under subtraction and multiplication and it contains all indeterminates x1; . . . ; xn,
as well as the constant 1; hence every polynomial can be obtained this way. In
particular, we can construct a system of rank constraints such that the matrices sat-
isfying this system (and having all 1’s in the first row and first column) have each ft
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(t ¼ 0; . . . ; s) at some position ð2; jtÞ. Then adding the constraints ðf2g; f j0g; 1Þ, and
ðf2g; f j1g; 0Þ; . . . ; ðf2g; f jsg; 0Þ we obtain our claim. r

2.3 Corner rank constraints. In contrast to the general problem, the number of
solutions of a system of corner rank constraints is always a polynomial function
of q. We will use this result in Section 5 for computing the number of conjugacy
classes in normal pattern subgroups of nilpotency class two.

Proposition 2.5. Let

R ¼ ðf1; . . . ; kng; fmn; . . . ;mg; rnÞ j n A f1; . . . ;Ngf g

with 1c kn c k, 1cmn cm be a system of corner rank constraints for k �m

matrices. Then jRðFqÞj is a polynomial function of q; in fact, it is a polynomial in

q� 1 with non-negative integer coe‰cients.

Proof. Clearly, it is enough to show the statement for complete systems of corner
rank constraints. We use induction on k. First consider the constraints of the form
ðf1g; f j; . . . ;mg; rjÞ with j A f1; . . . ;mg, where each 0c rj c 1. If there exist j < j 0

with rj ¼ 0, rj 0 ¼ 1, then there are no matrices satisfying all constraints simultane-
ously, hence jRðFqÞj ¼ 0. If r1 ¼ � � � ¼ rm ¼ 0, then the first row of any matrix satis-
fying the constraints should consist of 0’s, and we can obviously reduce our system of
rank constraints R to another system of corner rank constraints R 0 for ðk � 1Þ �m

matrices, provided k > 1. Namely, if kn > 1 then we remove the first row and decrease
the indices of the other rows by 1. Formally, we replace ðf1; . . . ; kng; fmn; . . . ;mg; rnÞ
by ðf1; . . . ; kn � 1g; fmn; . . . ;mg; rnÞ, and we omit the constraints with kn ¼ 1 (in
which cases rn ¼ 0 by our assumption). If k ¼ 1, then jRðFqÞj ¼ 1 in this case.

Otherwise, r1 ¼ � � � ¼ rj ¼ 1 and rjþ1 ¼ � � � ¼ rm ¼ 0 for some 1c jcm. Then the
ð1; jÞ entry of any matrix in RðFqÞ is non-zero, while the entries ð1; j 0Þ for j 0 > j are
zeros. Let us consider the following elementary transformations of matrices:

� multiplying the first row by a non-zero number;

� adding a multiple of the first row to the i-th row for 1 < ic k;

� adding a multiple of the j-th column to the j 0-th column for 1c j 0 < j.

None of these transformations changes the rank of any submatrix in the top-right
corner. Consider two matrices equivalent if they can be obtained from each other
by a finite sequence of the above elementary transformations. Clearly, every equi-
valence class of matrices in RðFqÞ consists of ðq� 1Þqk�1þ j�1 matrices and each
equivalence class contains a unique matrix of the form

0 � � � 0 1 0 � � � 0

� � � � � 0 � � � � �
..
. ..

. ..
. ..

. ..
.

� � � � � 0 � � � � �

2
66664

3
77775
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(with the 1 at the ð1; jÞ position). If we want to count these matrices, we can reduce
the original system of corner rank constraints R for k �m matrices to another system
of corner rank constraints R 0 for ðk � 1Þ � ðm� 1Þ matrices in the following way.
Take a constraint ðf1; . . . ; kng; fmn; . . . ;mg; rnÞ A R and

� omit it if kn ¼ 1;

� replace it by ðf1; . . . ; kn � 1g; fmn � 1; . . . ;m� 1g; rnÞ if kn > 1, mn > j;

� replace it by ðf1; . . . ; kn � 1g; fmn; . . . ;m� 1g; rn � 1Þ if kn > 1, mn c j.

It is straightforward to see that jRðFqÞj ¼ ðq� 1Þqk�1þ j�1jR 0ðFqÞj, so the result fol-
lows by induction. r

3 The number of conjugacy classes in algebra groups of nilpotency class two

Let A be a nilpotent algebra over Fq. The algebra group 1 þ A has the obvious mul-
tiplication: ð1 þ xÞð1 þ yÞ ¼ 1 þ ðxþ yþ xyÞ, and inverse

ð1 þ xÞ�1 ¼ 1 þ ð�xþ x2 � x3 þ � � �Þ

(where the sum is finite since A is nilpotent). We will consider algebras satisfying
A3 ¼ 0. Let B be a subspace containing A2 and satisfying AB ¼ BA ¼ 0. (Clearly,
B ¼ A2 would do, but we need this slightly more general formulation.) It is easy to
see that ð1 þ AÞ0 c 1 þ BcZð1 þ AÞ, so in our case the algebra group 1 þ A has
nilpotency class at most 2. Two group elements 1 þ x and 1 þ y commute if and only
if x and y commute in the algebra A, that is, the algebra commutator ½x; y� ¼ xy� yx

equals zero.
It is well known that the number of conjugacy classes in a finite group is equal

to the number of commuting pairs of elements divided by the order of the group.
We will use this fact to obtain a formula for the number of conjugacy classes of the
algebra group 1 þ A.

Let B� denote the dual space of B, and for any f A B� let ~ff be the symplectic
form on A defined by ~ff ðx; yÞ ¼ f ð½x; y�Þ. (Since B annihilates the whole of A, we
may consider ~ff as a symplectic form on A=B as well.) For 0c rc dimðA=BÞ let
Nr ¼ NrðA;BÞ denote the number of linear functions f A B� for which ~ff has rank r.
(Of course, the rank of a symplectic form is always even, so for r odd we have
Nr ¼ 0.) Furthermore, let d ¼ dimðA=BÞ.

Lemma 3.1. Let 1 þ A be an algebra group, where A is an Fq-algebra with A3 ¼ 0.
Using the above notation, the number of conjugacy classes of 1 þ A is

kð1 þ AÞ ¼
Xd

r¼0

Nrq
d�r:

Proof. Let us count in two di¤erent ways those triples ð f ; x; yÞ A B� � A� A for
which ~ff ðx; yÞ ¼ f ð½x; y�Þ0 0. If ~ff has rank r then the number of pairs ðx; yÞ A A2

8 Z. Halasi and P. P. Pálfy
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with ~ff ðx; yÞ0 0 is jAjð1 � q�rÞjAjð1 � q�1Þ. If x and y do not commute then the
number of linear functions f A B� not annihilating ½x; y� is jBjð1 � q�1Þ. Hence we
obtain

ðjAj2 � jAjkð1 þ AÞÞjBjð1 � q�1Þ ¼
Xd

r¼0

NrjAjð1 � q�rÞjAjð1 � q�1Þ:

Taking into account that
P

Nr ¼ jBj we obtain the result. r

4 Pattern groups of nilpotency class two

First we recall the definition of a pattern group (see [5, 1]). Let n > 1 and let
PJ fði; jÞ j 1c i < jc ng be a transitive relation, i.e., if ði; jÞ; ð j; kÞ A P then
ði; kÞ A P. Then the corresponding pattern algebra over Fq is the subalgebra of the
matrix algebra Mn�nðFqÞ spanned by the matrix units Eij with ði; jÞ A P. The pattern

group GPðqÞ determined by P over Fq is just the corresponding algebra group
obtained by adding the identity matrix to each element of the pattern algebra.

We will deal with very particular pattern groups.

Definition 4.1. Let kd 1, md 1, ld 0, n ¼ k þ lþm, and let us be given sequences
of subsets Kn J f1; . . . ; kg, Mn J f1; . . . ;mg for n A f1; . . . ; lg. The pattern of type

ðk;mÞ corresponding to ðKn;MnÞ (n A f1; . . . ; lg) consists of the following pairs:

ði; k þ nÞ for i A Kn; n A f1; . . . ; lg;

ðk þ n; k þ lþ jÞ for j A Mn; n A f1; . . . ; lg; and

ði; k þ lþ jÞ for all i A f1; . . . ; kg; j A f1; . . . ;mg:

We also say that the corresponding pattern algebra and pattern group have type

ðk;mÞ.
Note that for patterns of type ðk;mÞ both l and, consequently, n can be arbitrarily

large.
Let A be a pattern algebra over Fq of type ðk;mÞ as defined above, and let us denote

the subalgebra spanned by the matrix units Ei;kþlþ j (i A f1; . . . ; kg, j A f1; . . . ;mg)
by B. Then, clearly, BKA2, AB ¼ BA ¼ 0, so we can apply Lemma 3.1 to determine
the number of conjugacy classes of pattern groups of type ðk;mÞ.

In order to use that formula we have to calculate the rank of the symplectic
form ~ff for each f A B�. Let fij A B� (1c ic k; 1c jcm) denote the linear func-
tions forming the dual basis to Ei;kþlþ j, and take an arbitrary linear combination
f ¼

Pk
i¼1

Pm
j¼1 lij fij. Denote the k �m matrix formed by the coe‰cients lij by L,

and for any n A f1; . . . ; lg let Ln be the submatrix of L corresponding to the rows
belonging to Kn and columns belonging to Mn.
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Lemma 4.2. With the above notation we have

rkð ~ff Þ ¼ 2
Xl

n¼1

rkðLnÞ:

Proof. Note that

½Ei;kþn;Ekþm;kþlþ j� ¼ �½Ekþm;kþlþ j;Ei;kþn� ¼ dn;mEi;kþlþ j

and all other commutators of pairs of basis elements of A are 0.
Let us list the basis elements of A=B in the following order: Ei;kþn precedes Ei 0;kþn 0

if either n < n 0 or n ¼ n 0 and i < i 0, all these basis elements precede those of the form
Ekþn;kþlþ j, and among the basis elements of the latter type Ekþn;kþlþ j precedes
Ekþn 0;kþlþ j 0 if either n < n 0 or n ¼ n 0 and j < j 0. With respect to the basis ordered
this way the matrix of ~ff has the following block matrix form

0 � � � 0 L1 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � 0 0 � � � Ll

�L>
1 � � � 0 0 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � �L>
l 0 � � � 0

2
6666666664

3
7777777775

and the result follows. r

Corollary 4.3. If for every rank constraint problem for k �m matrices the number of

solutions is a polynomial function of the order q of the base field, then the number of

conjugacy classes of every pattern group of type ðk;mÞ is also a polynomial in q.

Proof. Let us fix a pattern P of type ðk;mÞ, that is, choose subsets Kn J f1; . . . ; kg,
Mn J f1; . . . ;mg for n A f1; . . . ; lg, and let us take an arbitrary finite field Fq. For
arbitrary r1; . . . ; rl let Rr1;...; rl denote the set of rank constraints

fðKn;Mn; rnÞ j n A f1; . . . ; lgg:

Combining Lemma 3.1 and Lemma 4.2 we obtain an expression of the number of
conjugacy classes of the pattern group GPðqÞ as the sum of finitely many polynomial
functions of q:

kðGPðqÞÞ ¼
X
r1

. . .
X
rl

jRr1;...; rlðFqÞjqd�2T rn ;

which proves the statement. r
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Our main result is the following converse of the previous corollary. For some
applications it is convenient to formulate the statement using any infinite set Q of
prime powers instead of all prime powers.

Theorem 4.4. Let Q be an infinite set of prime powers, and k;md 1. If for each pattern

P of type ðk;mÞ there is a polynomial cPðxÞ A Q½x� such that kðGPðqÞÞ ¼ cPðqÞ for

all q A Q, then for every system of rank constraints R for k �m matrices there is a

polynomial c�RðxÞ A Q½x� such that jRðFqÞj ¼ c�RðqÞ for all q A Q.

Proof. Let us take a system of rank constraints for k �m matrices

R ¼ fðKn;Mn; rnÞ j n A f1; . . . ; lgg;

where Kn J f1; . . . ; kg, Mn J f1; . . . ;mg, and 0c rn cminðjKnj; jMnjÞ. Choose a
number b > minðk;mÞ and define a pattern P of type ðk;mÞ by repeating Kn and Mn

bn�1 times, that is, P is determined by the sets K 0
m, M 0

m where K 0
m ¼ Kn, M 0

m ¼ Mn

for ðbn�1 � 1Þ=ðb� 1Þ < mc ðbn � 1Þ=ðb� 1Þ, n A f1; . . . ; lg. Let A be the pattern
algebra over Fq corresponding to P and let us use the same notation as before.
Then for f A B� Lemma 4.2 gives

rkð ~ff Þ ¼ 2
Xðbl�1Þ=ðb�1Þ

m¼1

rkðL 0
mÞ ¼ 2

Xl

n¼1

bn�1rkðLnÞ:

Let r 0 ¼ 2ðr1 þ br2 þ � � � þ bl�1rlÞ. Since each rkðLnÞcminðk;mÞ < b, it follows
that rkð ~ff Þ ¼ r 0 if and only if rkðLnÞ ¼ rn for each n A f1; . . . ; lg. Thus

jRðFqÞj ¼ Nr 0 ðA;BÞ ¼ Nr 0 ðqÞ;

the number of linear functions f A B� such that ~ff has rank r 0.
For td 1 we define the pattern tP of type ðk;mÞ by repeating t times each K 0

m and
M 0

m, that is, we take K 00
k ¼ K 0

m, M 00
k ¼ M 0

m for

tðm� 1Þ < kc tm; m A f1; . . . ; ðbl � 1Þ=ðb� 1Þg:

For any prime power q A Q we consider the pattern algebra AðtÞ over Fq correspond-
ing to the pattern tP. Note that (up to renumbering) the subalgebra B is the same for
all AðtÞ, while dimðAðtÞ=BÞ ¼ t dimðA=BÞ ¼ td, where d ¼ dimðA=BÞ. For f A B� let
~ff be the corresponding symplectic form on A=B and ~ff ðtÞ the corresponding symplec-

tic form on AðtÞ=B. By Lemma 4.2 we obtain that

rkð ~ff ðtÞÞ ¼ 2
Xtðbl�1Þ=ðb�1Þ

k¼1

rkðL 00
k Þ ¼ 2t

Xðb l�1Þ=ðb�1Þ

m¼1

rkðL 0
nÞ ¼ t � rkð ~ff Þ;
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and hence Lemma 3.1 yields

kðGtPðqÞÞ ¼
Xd
r¼0

NrðqÞqtðd�rÞ:

In addition, notice that
Pd

r¼0 NrðqÞ ¼ jBj ¼ qkm, which can be considered as the
number of conjugacy classes in the abelian pattern group G0PðqÞ ¼ 1 þ B. We can
express these equations in a matrix form as follows.

kðG0PðqÞÞ
kðG1PðqÞÞ

..

.

kðGdPðqÞÞ

2
66664

3
77775
¼

1 1 � � � 1

1 q � � � qd

..

. ..
. . .

. ..
.

1 qd � � � qd 2

2
66664

3
77775

NdðqÞ
Nd�1ðqÞ

..

.

N0ðqÞ

2
66664

3
77775

We make use of the assumption that kðGtPðqÞÞ ¼ ctPðqÞ for all q A Q with suitable
polynomials ctPðxÞ A Q½x�. By inverting the coe‰cient matrix of Vandermonde type,
we obtain that each NrðqÞ can be expressed as a rational function for q A Q. How-
ever, the values of Nr are integers, and Q is an infinite set, hence these rational func-
tions must be polynomials. So jRðFqÞj ¼ Nr 0 ðqÞ is a polynomial function of q A Q, as
we wanted to prove. r

From Theorem 4.4 and Proposition 2.2 we derive the result in the title of the
paper.

Corollary 4.5. There exists a pattern P such that the number of conjugacy classes in the

pattern group GPðqÞ is not a polynomial function of q.

If we use Proposition 2.3 instead of Proposition 2.2 we can even conclude that there
exists a pattern P such that there is no finite set of polynomials f1; . . . ; fN A Q½x� with
the property that kðGPðqÞÞ A f f1ðqÞ; . . . ; fNðqÞg for all prime powers q.

Unfortunately, our proof provides only a very large bound for n with the property
that there exists a pattern subgroup in GLnðqÞ for which the number of conjugacy
classes is not a polynomial in q. Even if we decrease the number of repetitions (by
taking into consideration that rkðLnÞcminðjKnj; jMnjÞ) our method yields only that
n < 2:2 � 109 will do.

In Proposition 2.2 two polynomials depending on the parity of q give the number
of solutions of the system of rank constraints. However, if we use the system of
rank constraints from Proposition 2.3, encoding the elliptic curve y2 ¼ x3 � x, we
see that there exists a pattern of type ð6; 6Þ such that the number of conjugacy classes
in the corresponding pattern groups cannot be given by finitely many polynomials.
The bound for the size of matrices in this case is even larger; our proof yields
n < 1029.
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5 Normal pattern subgroups of nilpotency class two

In this section we will consider pattern groups of nilpotency class two that are normal
in the group UnðqÞ of all n� n unipotent upper triangular matrices over Fq. By Weir
[11, Theorem 2] the pattern group GPðqÞ is normal in UnðqÞ i¤ ‘‘the boundary of P
should move monotonically downward and to the right’’, that is, if ði; jÞ A P and
i 0 c i; jc j 0 then ði 0; j 0Þ A P as well. Let us fix a pattern P such that GPðqÞ is normal
in UnðqÞ and the nilpotency class of GPðqÞ is two. Both properties are determined
only by P and do not depend on q. Let k þ 1 be the smallest number such that
ð1; k þ 1Þ A P, and let n�m be the largest number with ðn�m; nÞ A P. Then for any
ði; jÞ A P we have ic n�m and jd k þ 1. If k þmd n, then GPðqÞ is abelian, so we
have l :¼ n� k �m > 0. We cannot have any ði; jÞ A P with k þ 1c i < jc n�m,
since otherwise as ð1; iÞ A P, ð j; nÞ A P we could get a non-trivial commutator
½1 þ E1i; 1 þ Eij; 1 þ Ejn� ¼ 1 þ E1n, contrary to our assumption on the nilpotency
class of GPðqÞ. Let P0 ¼ fði; jÞ j ic k; jd n�mþ 1g; then GP0

ðqÞ is an abelian group
centralizing GPðqÞ. Hence

kðGPUP0
ðqÞÞ ¼ kðGPðqÞ � GP0

ðqÞÞ ¼ qjP0nPjkðGPðqÞÞ;

so it will su‰ce to consider patterns containing P0, that is, patterns of type ðk;mÞ as it
was defined in Section 4. In the present case GPðqÞpUnðqÞ implies that the sets
Kn J f1; . . . ; kg and Mn J f1; . . . ;mg (n A f1; . . . ; lg) have the form Kn ¼ f1; . . . ; kng
and Mn ¼ fmn; . . . ;mg with appropriate 1c kn c k, 1cmn cm for n A f1; . . . ; lg.
(We also have k1 c k2 c � � �c kl and m1 dm2 d � � �dml but we shall not make
use of it.) Hence Lemmas 3.1, 4.2 and Proposition 2.5 readily imply the following.

Proposition 5.1. Let P be a pattern such that the pattern group GPðqÞ is normal in

UnðqÞ and has nilpotency class two. Then kðGPðqÞÞ is a polynomial function of q; in
fact, it is a polynomial in q� 1 with non-negative integer coe‰cients.
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