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ABSTRACT 13 

Synsedimentary and early diagenetic oxygen levels are estimated by evaluating celadonite-14 

smectite formation in marine Jurassic black shale-hosted manganese-carbonates. Celadonite 15 

formed under suboxic-dysaerobic conditions, Al-rich Fe-smectite formed at suboxic-anaerobic 16 

conditions, and nontronite formed at anoxic-anaerobic conditions during sedimentary burial. A 17 

genetic pathway by direct precipitation from solution is proposed for the enormous mass of 18 

celadonite, based on mineral and textural evidence. Lamination of the manganese ore is 19 

independent of clay-mineral composition and was given by a series of mineralized microbial Fe-20 

rich biomats. 21 

Key words: Jurassic, Mn carbonate ore, celadonite, nontronite, microbial Fe oxidation 22 

1. Introduction 23 

Clay minerals are useful environmental indicators. For example, the occurrence of kaolinite 24 

indicates intense acidic chemical leaching, whereas montmorillonite indicates a slightly alkaline 25 
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environment, reflecting the redox conditions at the modern ocean floor (Hein et al., 1979) and in 26 

pore waters during alteration of volcanic rocks (Bustillo and Martínez-Frías, 2003). However, for 27 

black shale-hosted Mn-carbonate ore assemblages, clay minerals have not been used even though 28 

the laminated nature and color of the deposits (brown-green-grey) indicate a possible clay-29 

mineral utilization. 30 

Investigations on the clay mineralogical composition of the Jurassic (Lias-Toarcian) Úrkút Mn 31 

deposit started in the early 1980s (Fig. 1), when smectite and authigenic celadonite, as main 32 

components of the fine grained rhodochrosite ore, were identified by XRD (Kaeding et al., 33 

1983), suggesting clay minerals precipitated from porewater and/or seawater influenced by 34 

hydrothermal fluids. Varentsov et al. (1988) emphasized that these deposits resemble the 35 

nontronite-celadonite metalliferous sediments of marine hydrothermal areas (i.e. the Galapagos 36 

Rift Zone, southeast Pacific, Red Sea deeps), products of moderate to low-temperature 37 

hydrothermal systems formed in oxygen-deficient environments. 38 

Alteration of volcanic material did not result in clay mineral formation in the Úrkút deposit 39 

(Polgári et al., 2012a) and Weiszburg et al. (2004) suggested that celadonite formed by 40 

authigenic precipitation from pore fluids. The minute size of the crystallites of the ore deposit 41 

made characterization of the clay minerals difficult. For celadonite, the dominant crystallite size 42 

is several tens of nm in thickness and some 100 to 1000 nm in length (Cora, 2008). The silicate 43 

flakes are chemically heterogenous and have various Fe-Al-Mg-Si ratios and K contents that are 44 

typical of interlayer-deficient micas (0.7-0.8 atoms per formula unit-a.p.f.u.; Weiszburg et al., 45 

2004; Cora, 2008). 46 

Smectite crystallites are several 100 nm long and very thin, with the dominant cations being K-47 

Mg-Fe-Al. This silicate is also chemically heterogeneous and forms two subgroups, Al-rich Fe-48 
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smectite and Al-poor Fe-smectite (Cora, 2008). The Mg and Fe contents are higher in the clay 49 

minerals in laminae where Fe-rich minerals (pyrite, goethite) are abundant. The smectite is 50 

mainly nontronite (Cora, 2008; Tóth et al., 2010). 51 

The lamination of the ore is not mineralogically induced (Polgári et al., 2012b).  52 

This paper determines the mineralogy, microstructure, and distribution of clay minerals 53 

stratigraphically through the ore section; and the characterization of clay mineral genetic 54 

pathways, which reflect fluctuations in redox conditions during ore formation.  55 

2. Geological setting and ore description 56 

The Jurassic (Lias, Toarcian) Úrkút Mn deposit is located in the Transdanubian Range (Fig. 1, 57 

Fig. 2A). This black shale-hosted Mn-carbonate deposit is among the ten largest in the World. Its 58 

reserves are 80 million tonnes of Mn-carbonate ore averaging 20 wt.% Mn and 10 wt.% Fe, with 59 

an areal extent of tens of square kilometers. The ore deposit occurs within marine sedimentary 60 

rocks composed mainly of bioclastic limestone, radiolarian clay marlstone, and dark-gray to 61 

black shale. The Mn-carbonate ore beds comformably overlie middle Lias cherty limestone. The 62 

rhodochrosite ore is composed of laminated, alternating gray, green, brown, and black sections 63 

composed of mixtures of very fine-grained carbonate minerals and clay. Fine-grained (1–2 μm) 64 

rhodochrosite rock lacks coarse and fine detrital clastics (Polgári et al., 2012a). Ore accumulation 65 

took place in a structurally-controlled small marine basin in a low-energy, and low temperature 66 

depositional environment. The deposit is unmetamorphosed, and was not effected by diagenetic 67 

thermal overprint proved by stable O isotope data and interpretation (Polgári et al., 2012a). The 68 

ore depost consists of three ore beds (10-, 3-, and 1 m thick), separated by a 20- and 4 m-thick 69 

black shale (Fig. 2B). 70 
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A genetic model shows, that two cycles of bacterial activity triggered ore formation (Polgári et 71 

al., 2012a). Cycle 1 is a near-seabed aerobic chemolithoautotroph cycle which was essential in 72 

sequestering metal ions (Mn2+, Fe2+) from solution via enzymatic Mn(II) oxidation. Mn-oxide 73 

proto-ore was deposited in the sediment pile, serving as a paleoenvironmental indicator of oxic 74 

conditions. Cycle 2 represents an anaerobic/suboxic heterotrophic bacterial cycle in the frame of 75 

which early diagenetic bacterially mediated Mn(IV) and Mn(III) reduction processes took place 76 

via organic matter oxidation and Mn-carbonate mineralization (Polgári et al., 1991; Polgári et al., 77 

2012a). The ore sequence is laminated in the millimeter scale (Fig. 2C, Fig. 3) reflecting a series 78 

of Fe-rich biomats (Polgári et al., 2012b). On a meter scale, the deposit shows color variations, 79 

the lower and upper part of the main ore bed is green and the middle part is brown. Towards the 80 

middle black shale, the top of the main ore bed is grey. 81 

Fig. 1. 82 

Fig. 2. 83 

 84 

3. Samples and methods 85 

X-ray powder diffraction on 56 samples (252 subsamples) was performed using a Philips 86 

diffractometer (PW 1710) with carbon monochromator and Cu Kα radiation, accelerating voltage 87 

- 45 kV and current - 35 mA Mineral composition was determined on randomly powdered 88 

samples by semi-quantitative phase analysis according to the modified direct method 89 

of Bárdossy et al. (1980), using previously defined intensity factors. 90 

Oriented samples (112) were taken along a 917 cm complete section from the footwall to 91 

hanging wall from five sections dissecting the main ore bed and one section dissecting the upper 92 

ore beds (Fig. 2B). Bulk and separated lamina sub-samples were studied to determine 93 
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macroscopic features that cause color and grain-size variations. Ninety thin sections were studied 94 

by microscopy.  95 

4. Results 96 

The Mn-carbonate ore beds are composed of Ca-rhodochrosite, celadonite, smectite, goethite, 97 

and siderite. Moderate components are quartz, Mn-bearing calcite, apatite, pyrite, and barite; and 98 

minor components are manganite, kutnohorite, gypsum, and feldspar (Fig. 4; Polgári et al., 99 

2012ab). Discrete nontronite layers of variable thicknesses occur in the ore deposit. Sub-lamina 100 

XRD results show that celadonite and smectite occur separately in some laminae and in other 101 

laminae both celadonite and nontronite occur, in variable amounts, and without recognizable 102 

stratigraphic or spatial patterns. 103 

Thin sections show that the entire ore bed is composed of a millimeter or thinner series of woven 104 

structures, interpreted by Polgari et al. (2012b) as biomats (Fig. 3). The Fe-rich biomat structures 105 

are composed of goethite. The matrix consists of Ca rhodochrosite, celadonite, and nontronite as 106 

main components. 107 

Fig. 3. 108 

Fig. 4. 109 

5. Discussion 110 

5.1. Authigenic mineral formation 111 

Recognition that Fe-rich biomats created the mm-scale lamination in the ore deposit makes it 112 

possible to constrain the formation of authigenic clay minerals. The most probable microbial 113 

Fe(II) oxidizing microbe was a Gallionella-like (Mariprofundus ferrooxidans) form living in a 114 

neutrophylic, non-photosynthetic suboxic/dysaerobic environment (0.3 V Eh using recent 115 

analogs; Konhauser, 1998; Hallbeck and Pedersen, 1990; Emerson et al., 2010). Most of the 116 
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modern seabed shows neutral pH conditions. Mineralogical and textural investigations show that 117 

celadonite, goethite, and manganite formed at the sediment/water interface as synsedimentary 118 

authigenic minerals.  119 

5.2. Celadonite formation 120 

The formation of celadonite has particular importance for understanding the genesis of the Úrkút 121 

manganese ores. It is generally accepted that Fe-micas form preferentially (in limited quantities) 122 

in submarine hydrothermal environments such as amygaloidal infilling and veinlets in basalt 123 

(type 1, Pichler et al., 1991, Bustillo and Martínez-Frías, 2003), or during oxidic submarine 124 

alteration of volcanic rocks (type 2, basaltic rocks, alteration rinds, often replaced or overgrown 125 

by saponite; Butuzova et al., 1979, 1983; Varentsov et al., 1983). In addition, large 126 

accumulations of hydrothermal green clays occur in mounds of the Galapagos Rift Zone, in 127 

sediments of the East Pacific Rise and Bauer depression, in the spreading zones of the Gulf of 128 

California, in the TAG and the Famous areas along the Mid-Atlantic Ridge, in Red Sea deeps, 129 

and in the Gulf of Aden. Varentsov et al. (1988) interpreted the celadonitic phases in these green 130 

clays as products of post-sedimentary (mainly diagenetic) transformation of Fe-smectite, which 131 

in turn were formed in the initial crystallization stages of a siliceous-ferruginous gel under weak 132 

reducing conditions (type 3; Butuzova et al., 1979, 1983; Varentsov et al., 1983). 133 

These processes are highly unlikely at Úrkút because there are no volcanic rocks or substantial 134 

amounts of volcanic debris. Nevertheless, there is an enormous amount of very fine-grained 135 

celadonite, with an estimated mass of some tens to a hundred million tonnes based on ore reserve 136 

and composition calculations. Detailed mineralogical observations (Weiszburg et al., 2004; Cora, 137 

2008) indicate that celadonite directly precipitated from solution. Hence, celadonite is not a 138 

diagenetic product from a precursor mineral phase (type 4, Úrkút; marine basin with distal 139 
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hydrothermal discharge and primary celadonite formation). Regardless of the differences in 140 

precursor phases (rock, mineral, and solution), the formation of celadonite is similar. The 141 

composition of celadonites from different formation types are similar, but textures (vein fillings, 142 

alteration rinds), accompanying mineralogy (volcanic rock components), and chemical 143 

composition distinguishes the four types of celadonite. 144 

The Úrkút authigenic celadonite formed at low temperatures (17-23o C; Polgári et al., 2012a). 145 

Celadonite at Úrkút shows evidence for a slight variation in redox conditions (Fig. 5). It starts 146 

from an oxidizing water-dominated environment (microbial Mn(II) enzymatic oxidation, aerobic 147 

system with dissolved oxygen (DO) of more than 2 ml/l. That is followed by dysoxic conditions 148 

(DO: 0.2-2.0 ml/l of H2O) where microbial Fe(II) oxidation occurs (Fe-rich biomats, DO: 0.3 149 

ml/l of H2O), and then suboxic conditions (DO: 0-0.2 ml/l of H2O), where primary celadonite 150 

formation (DO: 0.1-0.2) occurs in a neutrophylic environment. DO values are based on Hallbeck 151 

and Pedersen (1990), Wignall (1994), Konhauser (1998), Emerson et al. (2010), and the results 152 

of nontronite synthesis laboratory experiments (Harder, 1976). 153 

Fig. 5. 154 

Conditions changed to a more reducing, sediment-dominated environment during burial, where 155 

first Al-rich Fe-smectite and later Al-poor Fe-smectite (nontronite), formed. During this latter 156 

stage, pyritization of goethite took place (Polgári et al., 2012b). Pyrite is always accompanied by 157 

smectite, indicating reducing, anoxic conditions. Celadonite did not form from Fe-smectite 158 

because the diagenetic process trends to oxygen depletion during increasing burial. 159 

5.3. Smectite formation 160 

The Úrkút smectites could have formed from (a) direct precipitation from hydrothermal fluids, as 161 

like as nontronites in the modern ocean basins, characterized by Fe-rich compositions, low Al 162 
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and Mg, the presence of Ba, and relatively warm temperatures (T) (Bischoff, 1972; Cole and 163 

Shaw, 1983; Cole, 1983; Iizasa et al., 1998), or Red Sea brine smectites (Butuzova et al., 1979, 164 

1983). However, relatively high temperatures (T) are not supported by O isotope results. A more 165 

probable mechanism is (b), low T reaction of Fe oxyhydroxide and silica, which is characterized 166 

by high Fe, low Al, and probably low Mg contents if formation took place with FeOOH 167 

formation; and moderate to high Fe, moderate Al, and low- to moderate Mg contents if the 168 

smectite formed at great distances from where FeOOH formed (Heath and Dymond, 1977; 169 

Polgári et al., 2012a).  170 

According to Hein et al. (1979), two more general mechanisms can be presumed for the 171 

formation of authigenic smectite in the deep sea: (c) precipitation from solutions at low 172 

temperature into vesicles and fractures of basalts (seawater or leached from basalt by seawater), 173 

which are common at oceanic spreading centres (Seyfried et al., 1978); and (d) alteration of 174 

volcanic rock fragments and glass in the marine environment, which is the most commonly 175 

reported mechanism (Hein and Scholl, 1978; Bustillo and Martínez-Frías, 2003). Such smectites 176 

are characterized by a range of compositions, from Fe- and Mg-rich and moderate Al contents, to 177 

moderate to high Fe and Mg and higher Al contents than in types (a) and (b). 178 

The composition of Úrkút smectites are Fe-Mg-rich with low Al and occasionally contain K 179 

(Polgári et al., 2012a), support formation by mechanisms (a) or (b). The (b) type smectite forms 180 

near the sediment-water interface where Mg is abundant and this may be the case for Úrkút, 181 

where the bottom waters were oxygenated (Polgári et al. 2012a), and consequently, smectite may 182 

not have formed until after some burial, perhaps 10-20 cm where conditions were more reducing 183 

(Hein et al., 1979). In this regard, smectite formed (Al-rich Fe-smectite) under more reduced 184 
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conditions than those under which celadonite formed, and nontronite formed in a fully reducing 185 

environment, probably from celadonite or Al-rich Fe-smectite. 186 

Another mechanism for nontronite and celadonite formation is through microbially mediated 187 

processes (Köhler et al., 1994; Iizasa et al., 1998; Tazaki, 1997; Bustillo and Martínez-Frías, 188 

2003). This mechanism cannot be excluded for the Úrkút, where a series of Fe-rich biomats 189 

occur; however, microbially mediated diagenetic overprints probably eliminated primary textural 190 

evidence for that process. 191 

5.4. Transformations of clay minerals and goethite 192 

On the basis of microscopy, the Fe-biomat texture is well preserved in most of the ore sections. 193 

Only at the top part of the main and second goethite was transformed to pyrite. The textural 194 

connection between well-preserved Fe-biomat goethite and the clay mineral matrix shows an 195 

oxygen decrease from suboxic conditions, which probably occurred during early diagenesis after 196 

some burial. Clay mineral-rich sediment accumulated prior to or at the same time as Fe-biomat 197 

growth. The source of Fe(II) was most probably low T geothermal fluids ascending and mixing 198 

with seawater (Polgári et al., 2012a). This is an aspect that needed clarification because the 199 

microbially mediated goethite (originally ferrihydrite) reacting with silica can form clay minerals 200 

as well, but textural observations do not support that sequence of events. Nontronite → goethite 201 

and celadonite → goethite transformations are not considered likely because of Eh constraints; 202 

the sediment pile did not become more oxic during diagenesis. 203 

6. Conclusion 204 

Clay minerals constrain the paleoenvironmental conditions during formation of the Úrkút Mn ore 205 

deposit. The clay minerals formed synchronously in different parts of the sediment column under 206 

different redox conditions, celadonite at the sediment/water interface or very close to it, and 207 
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smectite in the deeper, more reducing parts. A pathway of celadonite formation is proposed by 208 

direct precipitation from solution en masse. Nontronite formed in the reducing part of the 209 

sediment column. These results show that celadonite and nontronite indicate palaeo-oxygen level 210 

fluctuations in the environment. Biomats reflect suboxic conditions, which changed to anoxic 211 

with increasing burial. Color in the Úrkút deposit does not reflect oxygen conditions as 212 

commonly thought; for example, brown can be anoxic (nontronite) and green suboxic 213 

(celadonite), so color as a paleoproxy must be used with caution. 214 
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Figure captions 294 

Fig. 1. Geological sketch map of the Úrkút manganese deposit (after Szabó and Grasselly, 1980). 295 

The locality GPS data: 47°04′55″N; 17°38′40″E 296 
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Fig. 2. Locality map (A), Geological profile with sample locations of the Úrkút Mn-carbonate 297 

deposit (B). (Sampling 2009, Úrkút Mine, Shaft No. III, deep level, +180 m; total No. of 298 

samples 112 spanning 917 cm from the base to the top of the three ore layers and the 299 

intervening black shale). Key: fragm-fragmented sample; cont.-continuous sampling; not 300 

cont.-not continuous sampling; numbers on the stratigraphic columns are sample 301 

numbers; * indicates samples for XRD; 0 indicates samples for thin sections (in brackets 302 

the number of thin sections, total 90); Profiles 1, 3, 4, 5 are from main ore bed, Profile Za 303 

and Zb are from second ore bed. Patterns show only color varieties and not sedimentary 304 

structures; (C1) green (C2) brown Mn-carbonate ore. 305 

Fig. 3. Thin section photos showing Fe-rich biomat structures for different representative 306 

samples and magnifications. The thickness of the thin sections and the density of biomats 307 

are variable. Arrows show representative parts of mineralized filamentous structures. For 308 

sample locations see Fig. 1. 309 

Fig. 4. Mineral composition (XRD) of Mn-carbonate ore samples and macroscopically separated 310 

subsamples normalized to 100% (for sample locations see Fig. 1). The graph was made 311 

by coding the estimated quantity of selected minerals (graphics by Gergely Rózsás, 312 

Pázmány Péter University). Key: gry-grey; grn-green; brn-brown; blk-black; avg-average. 313 

Fig. 5. Estimated formation conditions of the clay minerals in the black shale-hosted Mn 314 

carbonate ore deposit (Úrkút), zone of microbial Fe(II) oxidation (+0.3 V Eh using recent 315 

analogs; Konhauser, 1998; Hallbeck and Pedersen, 1990; Emerson et al., 2010), and the 316 

results of nontronite synthesis laboratory experiments (by dashed lines, Harder, 1976, 317 

1978). Note: in general oxidizing conditions mean high oxygen concentration (high Eh 318 
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values up to +0.4V), while reduced conditions reveal a lack of oxygen (low Eh down to -319 

0.2V. Eh estimation is based on Wignall, 1994). 320 
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Fig. 1. 321 
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Fig. 2. 322 
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Fig. 3. 368 
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Fig. 4. 400 
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