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ABSTRACT 
 

Treatment of infections caused by Staphylococcus aureus remains one of the biggest 

challenges owing to the versatility of the nosocomial pathogen continually 

developing increased resistance to the traditional as well the novel antibiotics.  This 

opportunistic pathogen is part of the human natural flora and resides in nasal 

passages and on skin.  In addition, S. aureus is one of the major contributors in 

community and hospital acquired infections due to development of resistance to 

multiple antibiotics, including vancomycin, a last resort antibiotic. It causes 

infections ranging from skin and soft tissue infections to invasive disease syndromes 

including pneumonia, septicaemia, endocarditis and osteomyelitis. 

A major reason for the difficulty encountered in winning the battle with S. aureus is 

its ability to adapt to the host environment and overcoming the host defenses by 

producing over 50+ virulence factors making it a truly versatile pathogen. Human S. 

aureus can express all or a mixture of these factors that may facilitate the 

bacterium’s ability to attach itself to a variety of cell surface structures, that in turn 

allow the bacteria to establish an infection. These include, but are not limited to, 

expression of exotoxins, extracellular capsular polysaccharide, surface poly-N-

acetyl-(1,6)- β-D-glucosamine (PNAG), teichoic acid and numerous surface-

associated protein adhesins collectively known as microbial surface component 

recognizing adhesive matrix molecules  or MSCRAMM.   A general feature of S. 

aureus, as with many other pathogens, is the formation of a self-produced matrix 

referred to as a biofilm, which protects the pathogen from host defenses and 

antimicrobial agents.   Given the importance of S. aureus as a nosocomial and 

community pathogen, and its ability to develop resistance to antimicrobials and 

antibiotics, exploration of strategies to prevent biofilm formation is of utmost 

importance. Definitive information on the nature of the virulence factors, known and 

unknown, participating in the formation of biofilm is sparse, hence the aim of this 

investigation. 
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In this thesis, results from this study are assembled in the form of a series of 

scientific publications which have either been published or submitted to scientific 

journals for peer review.  The potential roles of biofilm formation that may assist the 

S. aureus in the establishment infection in the host have been analyzed using novel in 

vitro approaches and the outcomes embodied this thesis listed below are presented.  

1. Biofilm formation by S. aureus was shown to be associated with development 

of persistent antibiotic resistance.   

2. The lack of association between capsular polysaccharide and biofilm 

formation was demonstrated.  

3. Substantial, albeit not absolute association of the possession of PNAG and 

biofilm formation was demonstrated.   

4. The presence of additional capsular types different from the currently 

accepted 4 types was demonstrated.  

5. The distribution of key virulence factors of S. aureus in Western Australian 

isolates was demonstrated to be diverse with respect to a wide array of 

virulence factors including MSCRAMM and exotoxins.  

6. A treatment strategy involving the use of biofilm degrading/dispersing 

enzymes, DNAse I and dispersin B, for infections caused by S. aureus in 

combination with a model antibiotic tobramycin, for enhancing the 

antimicrobial efficacy was evaluated in vitro. It was demonstrated for the first 

time that combination of 2 biofilm-degrading enzymes resulted in a 129-fold 

reduction in the efficacy of the model antibiotic, tobramycin. In contrast, the 

use of these enzymes as singular molecules was more effective in enhancing 

the efficacy of tobramycin. 

7. Preliminary immunoproteomic analysis of the biofilm of S. aureus grown 

under the stress of iron deprivation revealed the identification of a novel, 

previously unknown biofilm-associated antigen, Fructose 1,6-bisphosphate 

alsolase class 1 (FBA-1), a conserved enzyme with little homology with the 

human equivalent.  

8. FBA-1 was found to be involved in biofilm formation as determined by the 

novel peg-based antibody-mediated biofilm inhibition technique to the same 
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extent as the biofilm-associated immunogenic and protective manganese 

transporter protein C.  

9. Immunogenicity and protective potential of FBA-1, determined using the 

acute murine bacteraemia model but found to be significantly inferior to the 

standard MntC molecule.  

10. Future directions for the development of a biofilm-antigens based vaccine 

against infections caused by S. aureus, including strategies for the selection 

of vaccine candidates for the development of cocktail and/or conjugate 

vaccines. 

  

vi 
 



STATEMENT OF CONTRIBUTION 

I hereby declare that work published and presented in this thesis was designed, 
written, experimentally conducted and interpreted by myself, Charlene Waryah.  

Chapters 1, 2 and 10 – Associate Professor TK Mukkur reviewed these chapters and 
provided critical comments.  

Chapter 3 – Dr Jully Gogoi-Tiwari, Associate Professor TK Mukkur provided 
significant contribution to the design of the study.  Dr Paul Costantino, Dr Raju 
Sunagar, Dr Nag Hedge and Dr Shrikrishna Isloor provided critical revision and 
interpretation of data.  

Chapter 4 – A collaborative effort with Dr Jully Gogoi-Tiwari and Associate 
Professor TK Mukkur provided production of CP specific sera. Dr Paul Costantino, 
Dr Hani-Al Salami, Professor Peter Richmond, Dr Raju Sunagar, Dr Nag Hedge and 
Dr Shrikrishna Isloor provided critical revision and interpretation of data. 

Chapter 5 – Dr Jully Gogoi-Tiwari, Kelsi Wells and work experience students 
Karina Yui Eto and Elnaz Masoumi provided student technical assistance.  Professor 
Michael Kotiw helped in the interpretation of RAPD analysis.  Dr Paul Costantino 
and Associate Professor TK Mukkur provided guidance and critical revision of the 
manuscript. 

Chapter 6 – Dr Jochen Weisner, Dr Anke Gökçen and Andreas Vilcinskas provided 
plasmid vector containing recombinant dispersin B. Dr Jully Gogoi-Tiwari, Kelsi 
Wells and Dr Dulantha Ulluwishewa provided technical assistance in cloning and 
expression of protein.  Dr Nigel Chen and Joshua Ravensdale aided in the Scanning 
Electron Microscopy. Associate Professor TK Mukkur provided guidance and Dr 
Paul Costantino provided critical comments on the manuscript. 

Chapter 7 and 8 – Dr Raju Sunagar, Dr Shrikrishna Isloor and Dr Nagendra R 
Hegde provided recombinant MntC.  Dr Jully Gogoi-Tiwari and Associate Professor 
TK Mukkur provided assistance in animal handling and critical review of data.  

Chapter 9 – Dr Jully Gogoi-Tiwari, Kelsi Wells and Associate Professor TK 
Mukkur provided technical assistance, critical review and interpretation of data. 

vii 
 



TABLE OF CONTENTS 

 

CHAPTER 1 - Introduction and Overview 

1.1 Staphylococcus aureus – the pathogen      1 
1.1.1 Classification and Colony Morphology    1 
1.1.2 Diseases caused by S. aureus      1 
1.1.3 Burden of Infection and antibiotic treatment    2 

Emergence of Antibiotics resistance     3 
Current Antibiotic treatment      6 

1.2 Key Virulence Factors        7 
1.2.1 Toxins         10 
1.2.2 Biofilm formation       12 

Steps of biofilm formation      13 
1.2.3 Capsular Polysaccharide      14 
1.2.4 Surface Poly-N-acetyl-(1,6)- β-D-glucosamine   16 
1.2.5 Teichoic Acid        17 
1.2.6 Microbial Surface Component Recognizing    17 

Adhesive Matrix Molecules 
Protein A        18 
Fibronectin binding proteins A and B     19 
Clumping Factors A and B      20 
Collagen Binding Protein      20 
Manganese Transport Protein     21 
Other MSCRAMM       21 

1.3 Immune response to infection with S. aureus     22 
1.3.1 Innate Immunity       22 
1.3.2 Acquired Immunity       24 

1.4 Current approaches to S.  aureus therapeutics     28 
1.4.1 Active vs Passive immunisation     28 
1.4.2 Current Status of Vaccine Development    29 

Whole cell vaccine       29 
Capsular polysaccharide-based vaccine    29 
PNAG based vaccine       31 
Lipoteichoic acid based vaccine     31 
MSCRAMM        32 
Exotoxins        34 

1.4.3 Pre-requisites for a successful S. aureus vaccine   36 
1.4.4 Anti-biofilm treatment strategies     36 
1.4.5 Electrochemical and ultrasound treatment    37 

viii 
 



1.4.6 Silver anti-biofilm treatment      38 
1.4.7 Antimicrobial peptides      38 
1.4.8 Other         40 

1.5 Objectives of this Research Project      41 
1.6 Outline of thesis         42 
1.7 References          45 

 
 
CHAPTER 2 - Materials and Methods 
2.1 Bacterial strains and controls       62 
2.2 Basic Media and storage        65 

2.2.1 Nutrient broth and agar      65 
2.2.2 Brain Heart Infusion broth and agar     65 
2.2.3 Long-term storage of isolated cryobeads    65 

2.3 Biofilm formation         66 
2.4 Isolation of bacterial DNA       66 
2.5 Genotyping         66 

2.5.1 Preparation of primer and polymerase chain reaction  67 
2.6 Measurement of antibody response      68 

2.6.1 Indirect ELISA       68 
2.6.2 Materials used for ELISA      69 

2.7 Immunoproteomic analysis       70 
2.7.1 Protein quantification       70 

2.8 Separation of proteins on SDS PAGE      72 
2.8.1 Preparation of protein gels and SDS Buffers    72 
2.8.2 Gel compositions and PAGE method     73 
2.8.3 Staining solutions       74 
2.8.4 Western Blot        75 

2.9 Affinity Gel Chromatography       76 
2.10 Electro-transformation of pDispersin B into E.coli    77 
2.11 Plasmid isolation and size verification      77 
2.12 Determination of DNase concentration      78 
2.13 Determination of Dipsersin B activity against biofilm    78 
2.14 SDS Removal         78 
2.15 Establishment of a Growth Curve for S. aureus    79 
2.16 References         81 
 

CHAPTER 3 - Human methicillin-sensitive Staphylococcus   82  
aureus biofilms:  Potential associations with antibiotic resistance  
persistence and surface polysaccharide antigens 
 

ix 
 



1 Abstract          84 
2 Introduction         84 
3 Materials and Methods        86 
4 Results          89 
5 Discussion          94 
6 References          97 
 
 
CHAPTER 4 - Serological versus molecular typing of             101  
surface-associated immune evading polysaccharide  
antigens – based phenotypes of Staphylococcus aureus 
 
1 Abstract                   103 
2 Introduction                  103 
3 Materials and Methods                 105 
4 Results and Discussion                 107 
5 References                   115 
 
 
CHAPTER 5 - Diversity of virulence factors associated             118  
with Western Australia methicillin-sensitive Staphylococcus aureus  
isolates of human origin 
 
1 Abstract                   120 
2 Introduction                  120 
3 Materials and Methods                 122 
4 Results and Discussion                 128 
5 References                   136 
 
 
CHAPTER 6 - Combination of different biofilm-degrading             141 
enzymes may compromise enhancement of the antimicrobial  
efficacy of antibiotics against Staphylococcus aureus  
 
1 Abstract                   143 
2 Introduction                  143 
3 Materials and Methods                 145 
4 Results and Discussion                 149 
5 Conclusions                  154 
6 References                   155 

 

x 
 



CHAPTER 7 - Identification of a novel Staphylococcus aureus            158 
biofilm-associated antigen using proteomic analysis  
 
1 Abstract                              160 
2 Introduction                             160 
3 Materials and Methods                 161 
4 Results                   165 
5 Discussion                   173 
6 References                   174 
 
 
CHAPTER 8 - Comparative immunogenicity and protective             178 
potential fructose-bisphosphate aldolase Class 1 versus manganese  
transport protein C of Staphylococcus aureus in mice  

1 Abstract                              180 
2 Introduction                             180 
3 Materials and Methods                 181 
4 Results                   185 
5 Discussion                   191 
6 References                   193 
 
 
CHAPTER 9 - Development of a novel inhibition assay for             195 
identification of the most significant biofilm forming antigens  
of Staphylococcus aureus 

1 Abstract                              197 
2 Introduction                             197 
3 Materials and Methods                 199 
4 Results and Discussion                 202 
5 References                   208 
 
 
CHAPTER 10 - Conclusion                 212 
 
APPENDICES  
 
Appendix 1 – Raw data                 222 
Appendix 2 – Reprint of publication                252 
Appendix 3 – Written statement of co-authors               253 
 
 
REFERENCES                 254 
 

xi 
 



 Chapter 1 
Literature Review and Overview 

Chapter 1 - Literature Review 

1.1 Staphylococcus aureus – the pathogen 
1.1.1 Classification and Colony Morphology 

Staphylococcus was first discovered in 1880 by a Scottish surgeon named Sir 

Alexander Ogston from a pus abscess (1984).  It was later named Staphylococcus 

aureus (S. aureus) by Friedrich Julius Rosenbach who is credited for differentiating 

S. aureus from Staphylococcus epidermidis, formerly known as Staphylococcus 

albus (Licitra, 2013).  

Staphylococcus aureus is facultative anaerobic, gram-positive cocci that grow in 

large, golden-yellow colonies on blood agar, often observed with beta haemolysis 

(Cowan et al., 1993).  The Greek name is derived from its characteristic “grape-like” 

clusters (Staphyle) when viewed under the microscope and golden pigment (aureus) 

when grown on blood agar, which also gives rise to its commonly used name of 

“Golden Staph” (Cowan et al., 1993, Liu et al., 2005).  

 

 1.1.2 Diseases caused by Staphylococcus aureus 

Staphylococcus aureus is part of the normal flora and has the ability to 

asymptomatically colonize healthy individuals (O'Riordan and Lee, 2004).  It is 

estimated 20-30% of individuals carry this bacterium as a part of the normal 

microflora (Huda et al., 2011).  The presence of bacteria on the host skin does not 

indicate an infection but is a significant and common source of transfer to other 

subjects (Krismer et al., 2014). Subject to breaches in the integrity of physical and 

physiological barriers of the innate immune defences, S. aureus can become an 

opportunistic pathogen (O'Riordan and Lee, 2004). Diseases caused by S. aureus are 

alarmingly large and range from acute to chronic infections due to a variety of 

virulence factors (Kropec et al., 2005).  Infections cause by S. aureus can be 

classified into superficial infections, toxin mediated infections, and life threatening 

invasive infections such as sepsis (Blaiotta et al., 2006). 
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Superficial lesions range from mild boils and pimples, stys, abscesses, carbuncles, 

wound infections and the like.  Upon penetration of the skin barrier, the threat can 

increase to muscular and skeletal infections such as osteomyelitis and septic arthritis.  

These can further lead to the serious conditions of bacteraemia, pneumonia, 

endocarditis and septicaemia (Cramton et al., 1999, Ando et al., 2004, Anderson et 

al., 2012b, Dinges et al., 2000). 

Toxin mediated infections caused by S. aureus are due to its ability to produce a 

wide range of toxins including superantigens, exfoliative toxins and cytotoxic toxins 

(Blaiotta et al., 2006).  The toxin-associated diseases include food poisoning, toxic 

shock syndrome and scaled skin syndrome (Dinges et al., 2000).    

In a hospital setting, the infections range further to ventilator associated pneumonia, 

device related infections such as endotracheal tubes, intravascular and urinary 

catheters, prosthetic implants and arterial stents (Anderson et al., 2012b).  In a 

community setting, cases of infection are generally skin and soft-tissue related 

infections (Shukla et al., 2010).   

 

1.1.3 Burden of infection and antibiotic treatment  

Staphylococcus aureus cause an increased burden in post-surgery intensive care units 

(ICUs), especially in immune-compromised patients including neonates and elderly 

patients in Australia/New Zealand and USA (James et al., 2008, Turnidge et al., 

2009) .  In USA alone, mortality due to pure S. aureus infections exceeds patient 

mortality caused by the influenza, hepatitis virus and HIV/AIDS (Falugi et al., 2013).   

Staphylococcus aureus antibiotic resistance rates have steadily increase from 27% to 

54.1% between 1994 and 2004, p<.001 (Klevens et al., 2008).   In the USA alone, 

during a 4 yr period, deaths recorded from bloodstream S. aureus infections were 3 

fold higher than ceftazidime-resistant pneumonia related Pseudomonas aeruginosa 

infections and a staggering 9 folder higher than ciprofloxacin-resistant Escherichia 

coli (Klevens et al., 2008).  More recently, a study in 2009 in Australia and New 

Zealand found that out of 1994 episodes of bloodstream S. aureus infections had a 
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30-day all-cause mortality of 20.6% and infection-only mortality rate of 13% 

(Turnidge et al., 2009).   

 

1.1.3.1 Emergence of Antibiotic resistance 

Antibiotic resistance largely depends on bacterial environment influenced by 

nutrients available and the introduction of antibiotics (Schentag et al., 1998).  

Mortality rate of S. aureus infection in the pre-antibiotic era was over 80%. 

However, the introduction of penicillin in the early 1940 dramatically improved 

treatment of infection (Davies and Davies, 2010).  Penicillin resistance was first seen 

in early 1942 and by 1960s; more than 80% of nosocomial and community infections 

were resistant to the “wonder drug” penicillin.  Resistance to penicillin is mediated 

by the blaz gene encoding the production of the enzyme β-lactamase which cleaves 

the β-lactam ring rendering the penicillin molecule ineffective (Lowy, 2003).  

This prompted the development of semi-synthetic penicillins following the 

emergence of alarmingly large number of penicillinase producing bacteria in the 

1960s (Levy, 2002).   Currently in Australia, more than 80% of S. aureus strains 

produce penicillinase (Rayner and Munckhof, 2005).  Methicillin, developed in 

1961, was one of the first semisynthetic penicillinase-resistant antibiotics (Enright et 

al., 2002).  Similar to penicillin, methicillin resistance was soon reported following 

its introduction and remains a challenge in the treatment of human infections. 

Methicillin-resistant S. aureus, MRSA, strains all carry a mobile staphylococcal 

cassette chromosome that contains the mecA gene, the gene carrying methicillin 

resistance (Tsubakishita et al., 2010). This genetic element can be horizontally 

transferred from one strain to other strains of S. aureus and using data from epidemic 

MRSA outbreaks, only a limited number of clones are considered to be responsible 

(Lowy, 2003). The mecA gene encodes a penicillin-binding protein 2a, or PBP2a 

which is a membrane-bound transpeptidase that catalyses the cross-linkage of 

bacterial peptidoglycan (Hanssen and Ericson Sollid, 2006). The enzyme has a low 
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affinity for β-lactams therefore increases survival of bacteria during high 

concentrations of the antibiotic (Shukla et al., 2010).      

 A timeline outlining the development of resistance by S. aureus to important 

antibiotics illustrated in the following diagram. 

 

 

Timeline 1: Chronology of the development of antibiotic resistance in S. aureus 

(Lubelchek and Weinstein, 2008).         Denotes time break.   
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With the introduction of antibiotics for treatment, the emergence of antibiotic 

resistance soon followed.  Staphylococcus aureus is continuing to show a consistent 

and disturbingly high ability to develop resistance to antibiotics and antimicrobials, 

for example, MRSA (Hoen, 2004).  The spread of infection was predominant in 

hospitals during the 1960s until late 1980s (hospital acquired MRSA, or HA-MRSA) 

but was soon discovered to be spreading in the community (community acquired 

MRSA, or CA-MRSA) (Dukic et al., 2013).   The emergence and distribution of both 

HA-MRSA and CA-MRSA, has been documented worldwide in every continent now 

(von Eiff et al., 2007) including Western Australia (Fig 1).  

Emergence of CA-MRSA has been observed in households, athletic and sporting 

facilities, schools, jails and nursing homes and a national survey conducted in the US 

found that MRSA caused more than half of S. aureus infections in ICUs (Dukic et 

al., 2013).  

Improved hospital procedures such as hand washing, adequate sterilization and 

general awareness have started a decline in the incidence of infection.  However, this 

has not stopped the rise of antibiotic resistance (Collignon and Cruickshank, 2009).  

Due to the range of infections and frequency, the increase usage of antibiotics makes 

the treatment of S. aureus difficult and an uphill battle in eradicating infections 

caused by this pathogen (Schentag et al., 1998). 

 

  

5 
 



 Chapter 1 
Literature Review and Overview 

Fig 1: Increasing incidence of HA-MRSA and CA-MRSA in Western Australia 

 

Source: Disease Watch Vol 17, Issues 3, Department of Health, Government of 

Western Australia (WAtch, 2013). A steady increase over time can be observed in 

CA-MRSA either with or without expression of the Panton-Valentine leukocidin, a 

toxin produced by some S. aureus strains associated with CA-MRSA.  

 

1.1.3.2 Current Antibiotic Treatment for Staphylococcal Infections  

The first line of antibiotics for treatment of staphylococcal infections with 

methicillin-sensitive S. aureus (MSSA) still includes semi-synthetic penicillin such 

as oxacillin and oral dicloxacillin (Eliopoulos, 2004).   Should the patient be allergic 

to penicillin, treatment with of first generation cephalosporins is administered 

(Stryjewski et al., 2007).  For more serious infections with MRSA, treatment with the 

last resort antibiotic, Vancomycin which is non-selection, is delivered intravenously 

(Miller and Rudoy, 2000).  

  

6 
 



 Chapter 1 
Literature Review and Overview 

1.2 Key Virulence Factors 
The reason why S. aureus causes such a wide range of infection types is due to the 

number of virulence factors it produces, which vary in expression and production 

from strain to strain.  An impressive 50 plus virulence factors are produced by S. 

aureus isolates which include a variety of toxins, host cell adhesion factors, biofilm 

formation and a production of capsule (Broughan et al., 2011). A summary of the 

major virulence factors produced by S. aureus are summarized in Table 1. 
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Table 1: Summary of the major virulence factors, their activity and the corresponding genes encoding their production.  

Activity Virulence Factor Encoding 
genes 

Associated with and/or action References 

Immune 
evasion 

Staphylococcal protein A  
 
 
Production of capsule 
Types 1, 2, 5 and 8 
 

Spa 
 
 
cap1, cap2, 
cap5 and 
cap8 

Prevents phagocytosis and acts 
as an immunological disguise 
 
Renders bacteria resistant to 
phagocytosis 

(Stutz et al., 2011) 
 
 
(O'Riordan and 
Lee, 2004) 

Toxins Haemolytic toxins 
Alpha, Beta, Gamma, Delta 
 
 
Leukocidin  
Panton Valentine leucocidin 
two components LukS-PV and LukF-PV 
 
Pyrogenic toxin superantigens 
Staphylococcal enterotoxins (A-E, G-J) 
 
 
Toxic shock syndrome toxin-1 
 
Exfoliative toxins 
Exfoliative toxin A and B 

 
Hla, hlb, hlg, 
hld 
 
 
lukF, lukS 
 
 
 
sea-see, seg-
sej 
 
tst 
 
eta, etb 

 
Destruction of red blood cells, 
associated with invasive disease 
 
 
Destruction of leukocytes, 
associated with skin and soft-
tissue infection 
 
Food poisoning 
 
 
Toxic Shock Syndrome  
 
Staphylococcal scalded-skin 
syndrome 

 
(Wehrhahn et al., 
2012) 
 
 
(Daskalaki et al., 
2010) 
 
 
(Pinchuk et al., 
2010) 
 
(Hu et al., 2003) 
 
(Bukowski et al., 
2010) 
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Adhesins MSCRAMM* 
Fibronectin binding protein: FnBPa, FnBPb 
 
 
Clumping factor: ClfA, ClfB 
 
 
Collagen binding protein:  Cna  
 
 
Bone sialoprotein binding protein: Bbp 
 
 
Iron-regulated surface determinants: IsdA 
and IsdB 

 
Fnbpa, 
fnbpb,  
 
clfa, clfb 
 
 
cna 
 
 
bbp 
 
 
isdA, isdB 

 
Adhesion to fibronectin, 
intercellular adhesion 
 
Adhesion to fibrinogen, platelet 
aggregation 
 
Adhesion to collagen 
 
 
Bone and joint infections 
 
 
Acquisition of iron by bacteria 

 
(Brouillette et al., 
2003) 
 
(Walsh et al., 2008) 
 
 
(Svensson et al., 
2001) 
 
(Persson et al., 
2009) 
 
(Kim et al., 2010b) 
 

Biofilm 
formation 

PNAG 
Poly-N-acetyl-(1,6)-β-D-glucosamine 
 
Teichoic acid 
Wall teichoic acid (WTA) 
 
 
 
Lipoteichoic acid (LTA) 
 

 
icaA-D** 
 
 
wta 
 
 
 
lta 

 
Production of biofilm 
 
 
Linked to cell wall, provide 
negative charge to anchor 
positive charged PNAG 
 
Linked to cell membrane, 
provide negative charge to 
anchor positive charged PNAG 

 
(Maira-Litran et al., 
2005) 
 
(Vergara-Irigaray 
et al., 2008) 
 
 
(Vergara-Irigaray 
et al., 2008) 

* Microbial Surface Components Recognizing Adhesive Matrix Molecules 

** Intercellular adhesin genes encoding production of proteins IcaA, IcaB, IcaC and IcaD 
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1.2.1 Toxins 

Staphylococcus aureus has an alarming ability to produce variety of virulence factors 

which include the production of exotoxins including enterotoxins, most of which 

have a potential detrimental effect on host immune system (Dinges et al., 2000).    

Exotoxins, which are referred as superantigens, have the ability to induce an 

uncontrolled T-cell dependent immune response by binding to both T-cell receptors 

and major histocompatibility complex class II antigens which are expressed on 

antigen-presenting cells (Proft and Fraser, 2003).  This binding triggers a chain 

reaction that results in the production of inflammatory cytokines IL-1 and TNF-α 

leading to uncontrolled fever, toxin shock, multi-organ failure and death (Proft and 

Fraser, 2003, Moza et al., 2007).  Superantigens are large family of toxins produced 

by bacteria and pathogens including S. aureus (Proft and Fraser, 2003).  More than 

60% of isolated clinical samples contain genes encoding one or more superantigens 

(Lin and Peterson, 2010). 

The superantigenic toxins including highly virulent epidermolytic toxins, ETA and 

ETB, which cause staphylococcal scalded skin syndrome (SSSS) (James et al., 2008) 

and staphylococcal enterotoxins (SE), a major toxin group, are also classified as 

superantigens (Proft and Fraser, 2003, Dinges et al., 2000).   Based on the degree of 

sequence homology, over 20 enterotoxins (SEA to SEE and SEG to SEJ) (Pinchuk et 

al., 2010) designated according to serological specificity (Mehrotra et al., 2000, 

Sharma et al., 2000) have been recognised.  The potency of SEs is so high that less 

than 1µg of toxin is adequate to induce vomiting in humans (Proft and Fraser, 2003).  

The very first superantigen was isolated from S. aureus was in the late 1960s and 

later identified as SEA (Proft and Fraser, 2003). The SEs and Toxic shock syndrome 

toxin-1 (TSST-1) are commonly known as pyrogenic toxin superantigens (Schlievert 

et al., 2000, Blaiotta et al., 2006).   TSST-1, commonly associated with menstruating 

toxic shock syndrome (TSS), is responsible for 90% menstrual and about half of non-

menstrual associated TSS (Lin and Peterson, 2010).  
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Haemolyins are another important group of toxins categorized into alpha, beta, delta 

and gamma toxins (Blaiotta et al., 2006).  The α-toxin is a secreted water soluble 34-

kDa monomer protein encoded by the hla gene and carried by the majority of clinical 

isolates (Caiazza and O'Toole, 2003, Lin and Peterson, 2010, Bien et al., 2011, Wilke 

and Bubeck Wardenburg, 2010).  Staphylococcal α-toxin was the first bacterial 

exotoxin identified as a pore forming toxin that disrupts target cell membrane 

resulting in loss of membrane integrity, availability of nutrients and host cell death 

(Bien et al., 2011).  The toxin engages and targets with a variety of host cells 

including epithelial cells and important members of the immune system 

(erythrocytes, lymphocytes and macrophages).  Higher concentrations of α-toxin 

permits nonspecific absorption of the toxin into the lipid bilayer forming Ca2+ 

permissive channels (Bien et al., 2011).  This action not only disrupts cell integrity 

but permits an uncontrolled Ca2+ influx as well as massive necrosis (Bien et al., 

2011).  More recently, Wilke and Bubeck Wardenburg (2010) demonstrated an 

interaction of a disintegrin and metalloprotease 10 (ADAM10) and α-toxin allowing 

binding to eukaryotic cells.  The authors reported the ADAM10- α-toxin complex 

triggers a signalling cascade that mediates focal adhesion (Wilke and Bubeck 

Wardenburg, 2010).  

Staphylococcus aureus β toxin, approximately 35 kDa, is Mg2+ dependent toxin that 

is cell type specific and targets sphingomyelin, phospholipids present in host tissue 

membrane, hence acts as a hydrolase enzyme (Huseby et al., 2007).  Due to target 

specificity, the toxin does not lyse most cell types but renders host cell susceptible to 

other toxins such as α-toxin and Panton-Valentine leucocidin (PVL) (Bien et al., 

2011).    

The haemolysins are classed in the staphylococcal cytolytic toxin group which also 

includes PVL (Bocchini et al., 2006, Anderson et al., 2012b).  The PVL is more toxic 

to leucocytes whereas haemolysins are toxic to host red blood cells (Lin and 

Peterson, 2010). 
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1.2.2 Biofilm formation 

A pre-requisite for establishment of many bacterial infections, and S. aureus, is the 

ability for free floating bacteria to colonize and congregate on host surface and 

encase themselves in a slime layer known as biofilm.  This biofilm is made of a self-

secreted polymeric extracellular matrix (ECM) and consists of mainly polysaccharide 

and protein (Cramton et al., 1999, Smith et al., 2010, Anderson et al., 2012b, Stewart 

and Costerton, 2001).  The composition of ECM can vary depending from strain to 

strain and factors such as incorporation of external particles, blood components and 

minerals taken from the environment (Knetsch and Koole, 2011). 

A scanning electron microscopy (SEM) picture of initial attachment bacteria, to an 

aluminium stub, that are clumping together and secreting ECM indicated by red 

arrows shown in Fig 2.  

 

Figure 2: An SEM (x6000) of S. aureus cells forming a monolayer, with secretion of 

the protective slime layer indicated with the red arrows. Source: Image taken by 

Charlene Waryah, this study. 
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1.2.2.1 Steps of biofilm formation 

Figure 3 depicts the 3 developmental stages of biofilms of S. aureus; attachment, 

maturation and dispersion (Otto, 2009).  The aggregation of biofilm is significant 

feature as this ensures the bacteria survival and physical defence mechanism from 

host innate immune system defences and antibiotic therapy (Vasudevan et al., 2003, 

Stewart and Costerton, 2001).   This restriction of penetration is a physical barrier 

especially against larger molecules in addition to providing a negative charge thereby 

repelling positively charged antibiotics and molecules such as antimicrobial peptides 

and complement from binding (Lewis, 2001).   Biofilm also provide the bacteria with 

a steady yet slow growth rate, an important feature as some antibiotics are effective 

in killing rapidly growing bacterial cells (Lewis, 2001).   

 

Figure 3: Development of S. aureus biofilm: Planktonic cells attach to host and form 

a monolayer.   The attached monolayer secretes ECM (yellow) allowing a slime layer 

to develop providing an encased protection layer.  The ECM continues to grow as 

more bacterial cells proliferate forming a mature biofilm.  The final stage in biofilm 

development is dispersal of loose cells which become planktonic in solution and 

continue the cycle (Otto, 2009). Source: Image created by Charlene Waryah, this 

study. 

 

The developed biofilm is not a solid layer but maintains a porous morphology 

allowing nutrients and oxygen to travel through holes and tunnels (Knetsch and 

Koole, 2011).  Detachment of cells from biofilm is a crucial step for re-colonization 
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at a different site and can occur due to external forces such as blood flow or ECM 

degrading enzymes (Otto, 2008).   

Biofilms are of particular interest as approximately 80% of human infections are 

caused by biofilm bound bacteria which are not 50 to 1000 times more resistant to 

antibiotics and antimicrobials as compared to their free floating form, but also tend to 

acquire resistance to other antibiotics (Zakrewsky et al., 2014, Babra et al., 2013a, 

Babra et al., 2013b).  Biofilm infections caused by S. aureus in endocarditis results in 

growth on indwelling devices such as heart valves and catheters which are 

particularly hard to treat (Lewis, 2001, Otto, 2008). 

 

1.2.3 Capsular Polysaccharide 

Capsules are produced by several bacterial species and are composed of high 

molecular weight polysaccharides that attach to the cell surface (Chan et al., 2014).  

The polysaccharide consists of repeat units that vary from species to species and 

have unique structural diversity (Chan et al., 2014).  

Staphylococcus aureus produces a capsular polysaccharide (CP), a virulence factor in 

the form of an extracellular matrix that protects the bacterium from invading host 

innate immune defences including different types of phagocytes (O'Riordan and Lee, 

2004).   Capsule production was first described in 1931 by Isabelle Gilbert and the 

detection methods were regarded as inadequate, with many strains of S. aureus being 

typed a non-encapsulated (von Eiff et al., 2007, Gilbert, 1931).  

Based on serological specificity by immunodiffusion developed in 1982, by 

Karakawa and Vann (O'Riordan and Lee, 2004), 11 different capsular types were 

initially described for S. aureus (Sompolinsky et al., 1985). However, the capsular 

types were reduced to 4 capsular types based on gene sequencing (CP1, CP2, CP5 

and CP8) and one surface polysaccharide 336 antigen (t336) (O'Riordan and Lee, 

2004, Verdier et al., 2007).  The of CP types of S. aureus are encoded by a 17.5kb 

region with 97 to 99% identity between serotypes (Chan et al., 2014). This region 
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includes 16 highly conserved genes capABCDEFGHIJKLMNOP (Fig 2) which 

include the 4 genes that specify diversity seen between the serotypes, capHIJK (Chan 

et al., 2014).  The existence of CP types that were previously reported were 

considered to be mutants of one or more of the genes types encoding the 4 capsular 

types (O'Riordan and Lee, 2004, Fattom et al., 1998).  

All 4 of the S. aureus capsular types have been purified and characterized 

structurally yet CP5 and CP8 account for 25 to 50% of human isolates, respectively 

(O'Riordan and Lee, 2004).  The structure of CP5 and CP8 share same repeat units, 

ManNAcA, L-FucNAc, and D-FucNAc, and 12 of the 16 genes are nearly identical 

between the clusters (O'Riordan and Lee, 2004) as demonstrated in Fig 4.  

 

Figure 4: The cap5 and cap8 loci are allelic and share a high degree of similarity 

however in the capHIJK region; specificity is determined and distinguishes CP5 and 

CP8 with little homology in the regions.  The cap5 gene was derived from strains 

Newman and Reynolds and compared with the cap8 gene derived from strain Becker.  

Source: O'Riordan & Lee (2004), Clin Microb Reviews Vol 17:1 pp 229. 

 

The capsule has been found to be non-immunogenic in test trials in mice due to T-

cell independence but shown to induce IgG antibodies upon conjugation with a 

carrier protein due to its conversion to T-cell dependence (O'Riordan and Lee, 2004, 

Ohlsen and Lorenz, 2010, Fattom et al., 1996, von Eiff et al., 2007). 
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Strains that do not test positive CP1, CP2, CP5 or CP8 were labelled as nontypeable 

or t336.  Type336 strains do not express capsule but a variant of polyribitol 

phosphate N-acetylglucosamine, a surface polysaccharide (von Eiff et al., 2007).  

 

1.2.4 Surface Poly-N-acetyl-(1,6)- β-D-glucosamine 

Poly-N-acetyl-(1,6)-β-D-glucosamine, commonly known as PNAG, is a major 

contributor to the formation of biofilm.  It has been identified as a high molecular 

weight and highly acetylated polymer of the β-1-6-linked glucosamine (Maira-Litran 

et al., 2005).  PNAG is a key component in biofilm formation by S. aureus and is 

involved in host surface adhesion, the initial step for biofilm development (Otto, 

2009, Cramton et al., 1999, Ohlsen and Lorenz, 2010).  Studies have demonstrated 

the importance of PNAG for biofilm formation in vitro using various animal models 

(Otto, 2009). 

An attractive vaccine target, PNAG is not only present in S. aureus but is seen in 

majority of coagulase negative staphylococci also as polysaccharide intercellular 

adhesion or PIA (Maira-Litran et al., 2005).  Homologs of PNAG and PIA are also 

observed in a variety of other pathogens that form biofilm (Maira-Litran et al., 2005).  

Production of PNAG/PIA is regulated by the proteins IcaA, IcaD, IcaB and IcaC, 

products of the single icaABDC operon (Otto, 2009).  The membrane anchored N-

acetylglucosamine transferase IcaA and accessory IcaD genes encoding the synthesis 

of a partially deacetylated β 1-6 linked N-acetylglucosame polymer.  The PNAG/PIA 

polymer is exported through the membrane IcaC protein and de-acetylated by the 

surface located IcaB de-acetylase protein.  The deacetylation of the PNAG residues 

is of significant biological importance as it provides a cationic (positive) charge, 

essential for attachment to host surface (Otto, 2009, Vergara-Irigaray et al., 2008). 

Interestingly, there is limited distribution of the icaC encoding gene for IcaC in 

gram-positive bacteria, including S. aureus (Atkin et al., 2014).  The role this product 

has been identified as specific in a selected number of Staphylococcal species and is 
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not conserved with bacteria lacking icaC gene still able to produce PNAG (Atkin et 

al., 2014).  

 

1.2.5 Teichoic Acid 

Teichoic acids that are anchored to the cell wall are referred to as wall teichoic acids 

(WTA).  Teichoic that are linked to cell membrane via a lipid anchor are referred to 

as lipotechoic acid (LTA) (Vergara-Irigaray et al., 2008, Otto, 2008).   

Staphylococcus aureus teichoic acid, a negatively charged molecule, is composed of 

40 ribitol phosphate units resulting in a long chain that binds the positive charged 

amino groups on the PNAG covalently bind to the negative charge of teichoic acids 

(Fournier and Philpott, 2005). This anchoring PNAG to the cell wall of S. aureus 

hence increasing binding of bacteria to host cells (Vergara-Irigaray et al., 2008).  

 

1.2.6 Microbial Surface Component Recognizing Adhesive Matrix Molecules 

Microbial Surface Component Recognizing Adhesive Matrix Molecules, referred to 

as MSCRAMM are a family of surface-associated adhesion proteins of S. aureus 

(Ohlsen and Lorenz, 2010) that are expressed by S. aureus during exponential 

growth phase (Gordon and Lowy, 2008).   As the name suggests, a MSCRAMM is 

determined by their location on the bacterial cell surface, ability to interact with a 

host cell receptors and thus aiding in adhesion and colonization (Harris et al., 2002).  

A total of 24 surface proteins, either anchored covalently to the peptidoglycan or 

non-covalently associated with the cell wall, with many un- identified or 

characterized MSCRAMM (McCarthy and Lindsay, 2010, Walsh et al., 2008, Foster, 

2002).  MSCRAMM that are anchored to the cell wall are acknowledged by C-

terminus motif comprising of conserved LPXTG (Leu-Pro-X-Thr-Gly) sequence that 

recognized by an extracellular surface transpeptidase, Sortase A (Foster, 2002, 

Mazmanian et al., 1999).  Sortase A cleaves the Thr-Gly residue which results in 

linkage between the carboxyl group of Thr to the amino group of peptidoglycan and 

provides the important C-terminus for protein anchoring (Mazmanian et al., 1999).  
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1.2.6.1 Protein A (SpA) 

Protein A is a significant MSCRAMM anchored on the bacterial cell surface and its 

role has been analysed in great detail.  It can promote immune evasion as it is an 

immunoglobulin-binding protein secreted by S. aureus during growth to bind to the 

Fc region of most IgG isotypes protecting the bacteria from opsonophagocytic killing 

(Kobayashi and DeLeo, 2013, Falugi et al., 2013).   The S. aureus-bound IgG is 

unrecognizable by host polymorphonuclear leukocytes that renders the host immune 

system unable to clear infection (Foster, 2002).  Protein A also is thought to B-cell 

receptor Fab regions triggering rapid supraclonal expansion leading to B-cell 

apoptosis (Collignon and Cruickshank, 2009).  Figure 5 summarizes the ability of 

SpA to prevent opsonophagocytic killing and bacterial phagocytosis, which provides 

the bacteria with an immunological disguise 

 

 

Figure 5 illustrates SpA binding to Fc domain (top) decreasing opsonophagocytic 

killing by inactivation of antibody response.  SpA also binds to the Fab region on B 

cells creating a superantigen like toxin leading to B cell apoptosis hence decrease in 

S. aureus clearing (Kobayashi and DeLeo, 2013). Source: Kobayashi & DeLeo 

(2013) mBio Vol 4:5 pp2. 
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Although the protein is known primarily for binding to B cells and IgG, Spa has also 

been recently shown to adhere S. aureus to Von Willebrand factor, a blood 

glycoprotein important in maintaining haemostasis (Foster, 2002). 

 

1.2.6.2 Fibronectin-binding proteins  

Fibronectin binding proteins, FnBP, as the name suggests, bind to the large 

glycoprotein fibronectin located in soluble plasma and the insoluble extracellular 

matrix of eukaryotic tissue  (Brouillette et al., 2003, Jonsson et al., 1991) and has 

been demonstrated to have a role in in vivo infection models (Brouillette et al., 2003).   

Staphylococcus aureus strains can have one or the two forms of FnBP, FnBPA and 

FnBPb, both of which have similar structure and organization (Meenan et al., 2007).  

The FnBPs are anchored to the hydrophobic cell wall by a LPXTG motif that aids in 

the adhesion to fibronectin which indirectly binds bacteria to integrins in host tissue 

(Meenan et al., 2007, Matthews and Potts, 2013).  This is illustrated in Figure 6.  

 

Figure 6: S. aureus FnBP promotes attachment to fibronectin which binds to α5β1 

integrin, creating indirect bridge for bacteria and host cell interaction (Foster, 2002). 

Source: Image created by Charlene Waryah, this study. 
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Seven isotype variants (I – VII) of FnBPa have been identified based on differences 

in the amino acid sequences in their ligand binding sub domains resulting in variation 

of antigenicity (Loughman et al., 2008).  In addition to the differences in 

antigenicity, the domains exhibit limited immunocross-reactivity and are between 

66-76% identical in amino acid sequences (Loughman et al., 2008).  Seven different 

allelic variations of FnBPb have also been identified and are 61-85% identical based 

on their amino acid sequence (Burke et al., 2010). The isoforms of FnBPb display 

differences in antigenicity and are able to retain ligand binding capability (Burke et 

al., 2010).  

 

1.2.6.3 Clumping Factors A and B (ClfA and ClfB) 

Staphylococcus aureus can also express proteins that can specifically bind to 

fibrinogen, a plasma glycoprotein involved in haemostasis (formation of blood clots) 

(Walsh et al., 2008).  These include clumping factors A (ClfA) and B (ClfB) and 

have also been demonstrated to promote bacterial clumping in the presence of 

fibrinogen (Walsh et al., 2008, McDevitt et al., 1997). 

Fibrinogen is composed of three polypeptide chains – α, β and γ, ClfA binds to the γ 

chain whereas ClfB binds to the β chain (Ni Eidhin et al., 1998, McDevitt et al., 

1997).  The affinity of ClfA/ClfB to fibrinogen is high, resulting in clumping even at 

low concentrations of the plasma protein (Ni Eidhin et al., 1998). The presence of 

ClfA expression in infection has been identified as an important MSCRAMM for the 

development of septic arthritis (Foster, 2002). 

 

 1.2.6.4 Collagen Binding Protein (Cna) 

Collagen is an important and abundant protein that provides structure to connective 

tissue in animals (Svensson et al., 2001).  The collagen binding MSCRAMM or Cna 

is composed of two regions, one of which is a non-repetitive A region that contains a 

collagen binding site (Deivanayagam et al., 2000).    It binds to collagen with 
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moderate affinity however has been show to play an important role in S. aureus 

pathogenesis in septic arthritis and infective endocarditis (Deivanayagam et al., 2000, 

Hienz et al., 1996).  

 

1.2.6.5 Manganese Transport Protein (Mnt) 

One group of proteins that are gaining attention in their roles as MSCRAMM are a 

complex of proteins known as the manganese transport proteins (Mnt), ATP-binding 

cassette transporter complex (Anderson et al., 2012a).  The complex consists of three 

proteins: ATP-binding protein MntA, an integral membrane transporter MntB and 

manganese binding lipoprotein MntC (Anderson et al., 2012a).   During bacterial 

infection, host cells can deprive bacteria by restriction of important metal ions 

(Horsburgh et al., 2002).  The uptake of manganese for bacterial survival is essential 

as it is involved in catabolism and metabolism of S. aureus (Horsburgh et al., 2002). 

The MntC has drawn attention as it is highly conserved between S. aureus and its 

orthologous protein SitC in S. epidermidis, in addition to this protein’s early 

expression during infection (Anderson et al., 2012a). 

 

1.2.6.6 Other MSCRAMM 

Two iron-regulated surface determinants, IsdA and IsdB can also be expressed by S. 

aureus during infection ((Kim et al., 2010b, Mazmanian et al., 2002). The proteins 

are essential for S. aureus survival in blood and increases virulence in abscess 

formation (Kim et al., 2010b). The acquisition of iron by bacteria from the host 

environment is a key step in establishing infection with blood haemoglobin as a 

common source (Pishchany et al., 2009).  

The Sdr proteins, SdrC, SdrD and SdrE, are members of the S. aureus MSCRAMM 

family and contain repeating serine-aspartate dipeptide of an R region (McCrea et al., 

2000, Sabat et al., 2006).  The proteins are similar in structure to ClfA and ClfB, and 

have been shown to have high affinity for Ca2+ (Sabat et al., 2006)   There are 
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predictions that the SdrE promotes platelet aggregation and Bbp, a variant of SdrD, 

that can bind to the bone sialoprotein   (Foster, 2002).  

 

1.3 Immune response to infection with Staphylococcus 
aureus  

In order to develop strategies for the prevention of staphylococcal infections, it is 

important to understand the potential roles that innate and adaptive immune 

mechanisms, particularly against biofilm-embedded antigens, can play.  

 

1.3.1 Innate Immunity 

As S. aureus is part of the normal microflora of the skin, a compromise in the 

integrity of the tissues cause by abrasion or that associated with invasive medical 

devices (Krishna and Miller, 2012), may result in the onset of infection at the target 

site leading to the triggering of the onset of host inflammatory response with an 

escalated production and release of proinflammatory and immunoimodulating 

cytokines, chemokines and antimicrobial peptides (Krishna and Miller, 2012).  The 

production of cytokines is essential for initiation of innate immune response 

including attraction of neutrolphils, NK cells and dendritic cells to the sight of 

infection.  A list of the types of cytokines produced is shown in Table 2.   
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Table 2: A summary on the types of cytokines and their functions 

Family Cytokines Effect 

Interleukin IL-1α, IL-1β 
 
 
IL-6 
 
 
IL-10  
 
 
 
IL-12 

Activates TNF-α, important mediators of 
inflammation 
 
Pro and anti-inflammatory cytokine; 
enhanced activity of TNF and IL-1α 
 
Anti-inflammatory cytokine, suppresses 
activity of Th1 cells, NK cells and 
macrophages to prevent tissue damage  
 
Th1-skewing promoted  

Cytotoxic 
cytokines 

TNF-α, TNF-β Enhance proliferation and differentiation 
of lymphocytes, stimulate other cytokines 
hence mediators of septic shock 

Chemokine IL-8 Induces chemotaxis for neutrophils and 
other granulocytes; stimulates 
angiogenesis 

Interferon IFNα, IFN-β, 
IFN-γ 

Antiviral activity, regulators of the innate 
immunity 

Colony 
stimulating 
factors 

CSF1, CSF2, 
CSF3 

Stimulate the formation of macrophage 
colonies 

Ref: Adapted from (Coico and Sunshine, 2009, Tisoncik et al., 2012, Fournier and 

Philpott, 2005, Couper et al., 2008) 
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Initiation of pro-inflammatory factors begins with the recognition of pathogens 

associated molecular patterns (PAMPs) by the appropriate pathogen recognition 

receptors (PRRs) (Fournier and Philpott, 2005).   

Toll-like receptors (TLR) are a major subgroup of PRRs that initiate interaction 

between the host immune cells and PAMPs leading to initiation of the adaptive 

immune responses against the microbial pathogens.  Different types of TLRs are 

expressed surface of the antigen presenting cells with TLR4.  Following bacterial 

infection, TLR4 mediate interaction with gram-negative bacteria and TLR2 mediate 

interaction with gram positive-bacteria (Wang et al., 2012).  The bacterial cell wall 

components recognized include peptidoglycan, lipoproteins and lipoteichoic acid, 

found in gram-positive bacteria (Fournier and Philpott, 2005, Thurlow et al., 2011).  

Macrophages and dendritic cells also phagocytize the pathogens initiating adaptive 

immune responses to the recognized PAMPs (Fournier, 2012, Hanke and Kielian, 

2012).  TLR2 has also been largely accepted as a key recognition receptor associated 

with the attraction of neutrophils as a result of the interaction with S. aureus 

lipoprotein and peptidoglycan in the phagosome (Fournier, 2012).  

Biofilms of S. aureus, contain polysaccharides, proteins and eDNA (Thurlow et al., 

2011). Bacterial DNA and biofilm eDNA can engage TLR-9-dependent activation 

(Thurlow et al., 2011) resulting in attraction of the phagocytes including 

macrophages, neutrophils and dendritic cells amplifying the process of phagocytosis, 

and initiation of the adaptive immune response.  

 

1.3.2 Acquired Immunity 

It is beyond the scope of this literature review to describe the details of the 

immunological events underpinning the initiation of adaptive immunity which has 

been described in multiple immunology/immunobiology textbooks and reviews 

(Coico and Sunshine, 2009, Murphy et al., 2012).  A brief description is however 

described below.  
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The cytokines produced post-interaction of the innate immune associated phagocytic 

cells such as dendritic cells, macrophages particularly IL-12 and IFN-γ, result in the 

initiation of the development of adaptive immunity (Janeway and Medzhitov, 2002).   

Naïve T-cells, which continuously circulate and migrate within the host awaiting 

activation by allowing for interaction with antigen-specific epitopes presented to 

them by dendritic cells in the secondary lymphoid organs, develop as either helper T 

cells (TH1, TH2) that interact with MHC Class II or cytotoxic T cells (TC) that 

interact with MHC Class I.   Each T cell subset produces different types of cytokines 

(Table 3). 

TH1 cells primary produce IFN-γ, IL-2 and TNF-β whereas TH2 cells produce IL-3, 

IL-4, IL-5, IL-10 and IL-13.  These 2 subsets also differ from each other in their 

responses of infection with intracellular verses extracellular pathogens.  TH1 cells 

respond to the intracellular pathogens whereas TH2 cells respond to the extracellular 

pathogens.  Mysteriously, each TH subset performs the task of stimulating the 

production of each subset while inhibiting the development of the other T-cell subset 

through the cytokine IL-10 produced by TH2 cells and INF-γ produced by TH1 cells.  

However, the mechanisms of differentiation of T-cell precursors into one of the other 

T cell subsets in vivo, is still not known. The current hypothesis is that the cytokine 

environment of the naïve T cells differentiation promotes induction of one or the 

other subset.  In the presence of IL-12, the naïve T cells differentiate into TH1 

whereas in the IL-4 environment, they differentiate into TH2 subset.  The major cells 

types and the effector molecules produced at shown in Table 6. The balance of 

cytokines and bacterial antigen presented to T-cells can dictate the directions of the 

immune response toward cellular and/or humoral immunity.  
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Table 3: Production of cytokines by different lymphocyte subsets* 

Subsets 
of 
CD4+ 
T cell 

 
Cytokines 
produced 

 
Major functions 

TH1 
 
 
 
 
 
 
 
 
TH2 

IL-2 
 
 
IFN-γ 
 
 
TNF-β 
 
 
IL-3 
 
IL-4 
 
 
 
IL-5 
 
 
IL-10 
 
 
IL-13 

Major growth factor,  induces proliferation and 
differentiation of T cells and NK cells 
 
Primary role is to control neutrophil recruitment and 
trafficking, differentiates T cells into TH1 
 
Phagocytosis 
 
 
Stimulates cell proliferation and differentiation, progenitor 
 
Stimulates cell proliferation, isotope (IgE) switching and 
up regulates production of MHC class II, inhibits 
TH1production 
 
Regulations the activation, proliferation and differentiation 
of eosinophils 
 
Inhibits IFN-γ synthesis, down regulates expression of 
cytokines  
 
Inhibits inflammatory cytokines 

TC IFN-γ 
 
 
 
 
TNF-β 

Primary role is to control neutrophil recruitment and 
trafficking, increases expression of MHC class I proteins in 
bacterial cells allowing for recognition of cytotoxic attack, 
activates macrophages 
 
Coordinates with IFN-γ for activation of macrophage 

* Khan, 2008, McLoughlin et al., 2008, Murphy et al., 2012 
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The responses of B cells to antigens depend upon the nature of the antigens.  

Polysaccharides are T-cell independent (T-I) not requiring the help of T-cells.  These 

antigens are classified as type II antigens because the immune response stimulated 

are specific but not polyclonal because of the engagement of B-cell receptor.  

T-I type II antigens induce strong primary antibody responses in mice which has 

been claimed to confer long-term humoral immunity (Garcia de Vinuesa et al., 

1999), generate memory B-cells and stimulate extrafollicular foci for plasma cell 

production (Obukhanych and Nussenzweig, 2006).  

Protein antigens are T-dependent (T-D) antigens that are processed for presentation 

of the epitopes displayed in the MHC Class II molecules for interaction and 

recognitions by the helper TH2 and/or TH1 cells.  T-D antigens stimulate germinal 

centres which can be identified by expression of IgG, IgE or IgA isotypes or somatic 

hypermutations in the Ig loci (Kocks and Rajewsky, 1989, McHeyzer-Williams and 

McHeyzer-Williams, 2005). 
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1.4 Current approaches to S. aureus therapeutics 
1.4.1 Active vs Passive immunisation 

Passive immunization occurs when antibodies produced against an antigen of interest 

are administered to the subjects (Lee, 2003).  The benefit is for immunocompromised 

patients, particularly in ICUs or neonates who cannot generate an immune response 

for the clearance of a bacterial infection (Rauch et al., 2014).  Target groups also 

include patients undergoing surgery such as emergency or implanted devices and 

trauma victims who may not be able to produce adequate immune responses quick 

enough by active immunisation and are limited to time constraints and need a quick 

response (Schaffer and Lee, 2008, Berg and Bakker-Woudenberg, 2013).  Passive 

immunotherapy will provide an immediate response, however injected antibody will 

be quickly broken down and thus will provide short term protection (Berg and 

Bakker-Woudenberg, 2013).   

Active immunization refers to self-production of immune responses including the 

production of antibodies and/or CMI depending upon the nature of the antigen and 

adjuvant used, following exposure to antigens.  This immune response maybe  

naturally acquired or artificially acquired (Berg and Bakker-Woudenberg, 2013).  

Unlike passive immunization, acquired immunity lasts a longer time.  The use of an 

adjuvant is frequently preferred to induce sufficient T cell-dependant immune 

response (Berg and Bakker-Woudenberg, 2013).   

The most commonly used adjuvants are alum-based which preferentially induce TH2 

polarized immune responses with little contribution to the induction of TH1 mediated 

immunity upon the route of immunization (Feinen et al., 2014).  More recently, 

alum-based adjuvants formulation combined with the relevant TLR agonists have 

been reported to yield TH1 polarized immune response and improved protective 

potential against the disease syndromes (Allen and Mills, 2014).   

The target groups for active immunization with an effective S. aureus vaccine may 

include patients with pending elective surgeries, high risk transfer groups such as 

healthcare providers, school children, athletes, prisoners and military personnel, as 
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well as intravenous drug uses or individuals with long term ailments such as HIV and 

diabetes (Schaffer and Lee, 2008).  

 

1.4.2 Current status of Vaccine Development against S. aureus 

There is currently no successful S. aureus vaccine available.  However several 

research groups around the world are investigating targets for active and passive 

immunisation (Daum and Spellberg, 2012, Shinefield and Black, 2006, Bagnoli et 

al., 2012).  

 

1.4.2.1 Whole cell vaccine 

This vaccine consists of heat or formalin-inactivated whole cells mixed with an 

alum-based adjuvant or Freund’s incomplete adjuvants, the latter being used only in 

animals for the prevention of bovine mastitis.  The key advantage to a whole cell 

vaccine is a production of antibodies against a broad spectrum of antigens present in 

S. aureus. Vaccine Research International has developed a whole cell vaccine, SA75 

that is currently in Phase I trials (http://www.vri.org.uk/PhaseITrial.pdf).  The 

vaccine contains whole S. aureus killed in chloroform and has been shown to 

stimulate an immune response of IgG in 75% of patients (24 of 32 subjects), while 

being safe to administer to humans (Ohlsen and Lorenz, 2010).  A phase I clinical 

trial showed 64% of vaccinated individuals had antibodies against Cna, low response 

towards clumping factor (3%) and no antibodies towards FnBP and Eap (Ohlsen and 

Lorenz, 2010).  However in late 2006, the project stalled due insufficient funds and 

vaccine trials are no longer progressing (Berg and Bakker-Woudenberg, 2013).   

 

1.4.2.2 Capsular polysaccharide-based vaccines 

Capsule polysaccharides have been used successfully for the development of 

vaccines against infections with Haemophilus influenzae type b, Neisseria 
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meningitidis and Streptococcus pneumoniae and are a popular target for vaccine 

development due to their importance in virulence (Huda et al., 2011)  Staphylococcus 

aureus capsular polysaccharide has proven to be ineffective as demonstrated by their 

poor immunogenicity in a mouse model (Fattom et al., 2004).   

Nabi Biopharmaceuticals conjugated CPs types 5 and 8 with Pseudomonas 

aeruginosa exotoxoid A (StaphVax) vaccine which failed in Phase III trials in 

haemodialysis patients (Proctor, 2012).  However, there was some success post 

vaccination with the capsular conjugate vaccine in reducing S. aureus bacteraemia 

using CP-targeted antibodies up to 10-14 day post immunisation (Schaffer and Lee, 

2008).   By the end of the trial, at the end point of week 54, there was a 26% 

reduction of S. aureus bacteraemia (Walsh et al., 2008). Further developments with 

StaphVax stopped and lead Nabi Biopharmaceutical to test it as a potential passive 

immunotherapy vaccine called AltaStaph.  AltaStaph consists of polyclonal 

antibodies against CP5 and CP8 derived from healthy individuals who received the 

StaphVax preparation (Fattom et al., 2004).  Current reports from the AltaSaph  

phase II clinical trials have failed in preventing bacteraemia in neonates and deaths in 

children and adults with bacteraemia (Otto, 2010a).  Nabi Pharmaceuticals have 

halted both as the trials have proven unsuccessful in protection to patients with S. 

aureus infections (Otto, 2010a).   

Nabi Pharmaceuticals are currently evaulating TriStaph™ and PentaStaph™. 

TriStaph™ includes type 336 in addition to CP5 and CP8 (Huda et al., 2011) P. 

aeruginosa exotoxoid A.  PentaStaph™, a 5 component vaccine conjugated to P. 

aeruginosa exotoxoid A, targets CP types 5 and 8, type 336, PVL and alpha toxin as 

potential vaccine candidates. This vaccine is currently in Phase II trials (Ohlsen and 

Lorenz, 2010, Proctor, 2012).  A similar 4 component vaccine, SA4Ag, is being 

developed by Pfizer which includes CP5 and CP8 individually conjugated to a 

recombinant ClfA and MntC (Peter Richmond, Head of Vaccine Clinical Trials 

Group, Telethon Kids Institute, Western Australia, confidential personal 

communication).  
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Some reasons for the lack of success in the development of CP based conjugate S. 

aureus vaccines that have been put forward include production/induction of non-

efficacious antibodies unlike the protective antibodies produced by conjugate 

vaccines against infections with H. influenzae type b, N. meningitidis and S. 

pneumoniae (Daum and Spellberg, 2012, Huda et al., 2011).  Another potential 

reason for the failure of CP-based vaccines may be due to the existence of significant 

numbers of non-encapsulated S. aureus strains as exemplified by the USA300 strain, 

a currently circulating highly virulent CA-MRSA strain (Daum and Spellberg, 2012).  

 

1.4.2.3 PNAG-based vaccine 

PNAG is currently in preclinical trials for potential vaccine development (Ohlsen and 

Lorenz, 2010, Harro et al., 2010).  The native form of PNAG, which is acetylated, 

was trialled however the antibodies generated in a S. aureus bacteraemia mouse 

model were unsuccessful in clearing infection (Schaffer and Lee, 2008).  Naturally 

occurring PNAG is enzymatically modified to lose its cationic character resulting in 

a partial deaceytlated form, shown to have a crucial role in structural integrity of the 

polymer and biological function (Otto, 2010a, Vuong et al., 2004).   Maira-Litran et 

al, (2005) raised antibodies against dPNAG conjugated to diphtheria toxoid and 

trialled as a potential passive immunotherapy using mouse as an animal model to 

determine its potential to prevent of sepsis. Mice injected with dPNAG specific 

antibodies showed reduction of 54-91% of S. aureus in blood culture than controls 

(Maira-Litran et al., 2005).   

 

1.4.2.4 Lipoteichoic acid based vaccine 

Biosynexus Inc developed Pagibaximab, a passive immunotherapay vaccine 

composed of human chimeric monoclonal antibodies against lipoteichoic acid 

developed by recombinant DNA technology (Weisman et al., 2011).  As lipoteichoic 

acid is present in all gram-positive bacteria, the vaccine aimed at preventing 
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bloodstream infections against S. aureus and coagulase negative staphylococcal 

species in low birth weight neonates (Schaffer and Lee, 2008).   

Pagibaximab antibodies have been bind to S. aureus lipoteichoic acid and subsequent 

cytokines produced following infection (Weisman et al., 2011). Published reports 

have indicated success in neonates with regards to its safety and potential of 

protective antibodies.  Howeve, no data obtained from the PhaseII/III trials have 

been published as yet (Huda et al., 2011, Jansen et al., 2013).  

 

1.4.2.5 MSCRAMM 

Vaccines targeting other MSCRAMM are also under investigations for their vaccine 

potential against staphylococcal infections in different laboratories (Jansen et al., 

2013, Maira-Litran et al., 2005, Bagnoli et al., 2012, Kim et al., 2010b, Pozzi et al., 

2012).  

Infection with a S. aureus mutant strain demonstrated that loss of IsdB in vivo 

significantly decreases virulence and hence considered as an attractive vaccine target 

as it is conserved among clinical isolates (Kuklin et al., 2006).  IsdB was first 

identified during a study where patient sera were screened for antibodies against S. 

aureus (Kuklin et al., 2006).   Due to recent interest in the proteins involved in iron 

regulation, Syntiron/Sanofi Pasteur have patented a multivalent vaccine technology 

(SRP®) targeting all iron-regulating proteins (Sheldon and Heinrichs, 2012).   

Merck developed Vaccine V710, containing the IsdB recombinant protein, was 

trialled in adults with S. aureus infection following elective cardiothoracic surgery 

(Schaffer and Lee, 2008).   This vaccine initially claimed to successfully induce 

opsonophagocytic antibodies prior to elective cardiothoracic surgery however was 

unable to reduce incidence of postoperative S. aureus bacteraemia in the patients 

(Fowler et al., 2013) and resulted in higher mortalities then in the placebo group 

(McNeely et al., 2014).  This trial has now been halted.    
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Inhibitex, Inc targeted the MSCRAMM proteins using polyclonal antibodies against 

ClfA in S. aureus and SdrG in S. epidermidis and developed the vaccine INH-A21 

Veronate® (DeJonge et al., 2007). From the blood donor population, 2% of donors 

exhibited high levels of antibody against the antigens and were selected for 

production of INH-A21.  Similar to their phase II clinical trials, the target group was 

low birth weight infants and the delivery of passive immunotherapy to prevent late 

onset of sepsis (DeJonge et al., 2007). Unfortunately, in a total of 50 of 989 placebo 

infants (5%) and 60 of 994 vaccine administered infants (6%) developed late onset of 

sepsis indicated no statistically significant differences between the vaccinated verses 

the placebo groups (DeJonge et al., 2007).  

Inhibitex, Inc has also developed a monoclonal antibody, called tefibazumab 

(Aurexis), with high affinity against ClfA (Ohlsen and Lorenz, 2010, Proctor, 2012).  

Endocarditis rabbit models used to test the passive protective potential of two doses 

of tefibazumab in combination with vancomycin when successful reduction in S. 

aureus levels in blood and organs was found.  

Based on molecular modelling, recombinant N terminus of the Candida adhesion 

protein Als3p or rAls3p-N reported three dimensional structural similarities to S. 

aureus ClfA (Spellberg et al., 2008).  The rAls3p-N has been was found to protect 

mice against lethal candidiasis but only when used as a vaccine conjugated to 

complete Freund’s adjuvant.  This vaccine induced a high T cell mediated immune 

response and protected animals against S. aureus lethal challenge.  Baquir et al., 

(2010) further tested the immunogenicity of this vaccine and confirmed the rAls3p-N 

was able to stimulate IFN-γ and IL-17, requirements for protection in mice.  While 

the authors are planning for phase I clinical trials (Baquir et al., 2010), it is important 

to note that the use of Freund’s complete adjuvant in humans or even in animals is 

not permitted by the FDA.  Therefore, alternative more suitable adjuvants will need 

to be tested. 

Two combination vaccines, ClfA, FnBPB, and SdrD as combo 1 and ClfA, FnBPB, 

SdrD and a non-toxigenic SpAKKAA (a mutant of Spa) as combo 2 were investigated 

by Kim et al. (2011).  Combinations were mixed with either complete and/ or 
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incomplete Freund's adjuvant. Both vaccines resulted in a significant reduction in 

bacterial load following challenge with S. aureus strain Newman (Kim et al., 2011).  

Mortality rates were delayed that was statistically significant over the mock 

challenge mice which succumbed to infection on day 4 post challenge (Kim et al., 

2011).   

Kim et al., (2010) engineered a variant of Spa with a mutation in its binding domains 

to Fcγ or Fab VH3 to generate SpAKKAA, a mutant unable to bind to the 

immunoglobulins and unable to generate a B-cell apoptosis (Plotkin et al., 2013).  

When Balb/c mice in the animal trials were injected with the purified mutant SpA-

DKKAA emulsified in aluminium hydroxide adjuvant, the antibody tires found to be 

10-fold higher than the non-variant (Kim et al., 2010a). When challenged with S. 

aureus strain Newman, the antibodies produced were able provide protection by 

decreasing infection and increasing opsonophagocytic clearance (Kim et al., 2010a).  

Overall, mice vaccinated with SpaKKAA displayed fewer staphylococci in organ tissue 

after challenge and reduced mortality rates leading to interesting results for the 

potential use of Spa as a vaccine target (Kim et al., 2010a).  

 

1.4.2.7 Exotoxins 

A recent study demonstrated successful active immunization using a mutant form of 

Hla (HlaH35L) produced by a single amino acid substitution of histidine 35 with 

leucine.  This substitution renders toxin unable to form cytolytic pores in host cells 

(Bubeck Wardenburg and Schneewind, 2008).  The HlaH35L vaccine protection in a 

mouse S. aureus pneumonia and decreased bacterial CFU load in lung tissue of mice 

(Bubeck Wardenburg and Schneewind, 2008).  The same group tested the anti- 

HlaH35L antibodies in a passive immunisation mouse model and reported decrease of 

bacterial CFUs observed in lungs tissue (P=0.02). Interestingly, passive 

immunization with anti-PVL antibodies did not confer protection against in mice 

against S. aureus infection.  In contrast, Brown et al., (2008) reported that their PVL 

vaccine offered protection in mice against infections with CA-MRSA.  The 

difference between the PVL mutant strains used in this experiment was, unlike an 
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amino acid substitution created by Bubeck Wardenburg and Schneewind, this 

research group genetically replaced the PVL genes with the tetracycline resistance 

gene tetM (Labandeira-Rey et al., 2007).  Similarities by both groups include the use 

Balb/c mouse pneumonia models with similar bacterial challenge via subcutaneous 

routes of injection.  

Vaccines aimed at neutralizing the toxicity of SE toxins have also been evaluated 

using mouse as a model system.  LeClaire et al., (2002) genetically altered SEB with 

a 3 mutations at site L45R/Y89A/Y94A producing inactivated toxin, SEBv.  This 

mutation renders the toxin unable to interact with MHC Class II receptors (Larkin et 

al., 2010). The altered toxin was mixed with and/or without Ribi adjuvant and 

challenged in a mouse model to observe inflammatory cytokine responses.  

Unfortunately, while the vaccine was able to elicit a high amount of neutralizing 

antibodies, the antibodies were unable to suppress the T cell responses produced in 

vivo.  The same group purified the anti-SEB antibodies using affinity 

chromatography followed by evaluation in a rhesus monkey model.  Antibodies were 

delivered intraperitoneal 20mins prior to and 4hr after aerosolized SEB challenge.  

The results were deemed successful as all rhesus monkeys receiving the antibody 

survived while the control group monkeys succumbed to the challenge with a wild-

type SEB producing strain (LeClaire et al., 2002).  

Integrated BioTherapeutics are trialling recombinant SEB containing the same point 

mutations, L45R/Y89A/Y94A, as used by Le Claire’s group (Larkin et al., 2010).  

Pre-clinical trials with a preparation of the polyclonal antibodies raised against the 

mutated antigen were found to neutralize the toxin in vitro.  This vaccine, called 

STEBVax, is currently awaiting recruitment of healthy adults for phase I clinical 

trials for the treatment of TSS 

(http://www.clinicaltrials.gov/ct2/show/NCT00974935). Interestingly antibodies 

raised against mutant SEB have been shown to cross react with SEC, which contains 

68% sequence similarity to SEB (Larkin et al., 2010).  Given the low distribution 

among S. aureus, the vaccine is being development for protection should the 

superantigen be used for biological warfare purposes (Otto, 2010a).  
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1.4.3 Pre-requisites for a successful S. aureus vaccine 

Staphylococcus aureus is a challenging target for vaccine development because of 

the production of multiple arrays of virulence factors, all of which vary in expression 

depending on strain, the environment in vivo and type of infection.  An ideal vaccine 

will have to target all of the following obstacles as described by Scully et al., (2014) 

and Ohlsen and Lorenz, (2010).  

1. Ability to prevent bacteria essential nutrients required for proliferation in 

vivo and hence survival.  

 
2. Ability to prevent adherence of S. aureus by blocking interaction of 

potential adhesins, including structural and secreted proteins and 

polysaccharides to host cells. 

 
3. Developing strategies for overcoming bacterial immune evasion and anti-

phagocytosis strategies.  

 
4. Ability to neutralize the action of the exotoxins and enzymes capable of 

killing the host cells including immune cells by lysis apoptosis or necrosis. 

 

The multivalent approach to vaccine development has understandable been the 

preferred approach to ensure coverage of more target antigens than single antigen 

targets (Scully et al., 2014).  Data presented in this thesis indirect supports the 

multivalent vaccine approach whether used for active immunisation or passive 

immunotherapy.  

 

1.4.4 Anti-biofilm treatment strategies 

Inhibition of biofilm formation and attachment strategies has been investigated 

(Ammons, 2010) and coating of medical implant devices with antibiotics has been 

studied (Knetsch and Koole, 2011) with valuable results due to the potential 

development of antibiotic resistance (Babra et al., 2013a, Babra et al., 2013b).  The 
36 

 



Chapter 1 
Literature Review and Overview 

aims of anti-biofilm approach is to prevent the initiation of formation of biofilm as 

well as to develop strategies for disruption of already formed biofilms a view to 

enhancing the killing efficacy of antibiotics.  

Minocycline and rifampin coated catheters were tested to determine incidence of 

central line associated S. aureus bacteraemia in hospital settings and showed 

significant decrease (Ramos et al., 2011).  Antibiotic coating of medical devices in 

one study involved adsorption of the antibiotic amoxicillin and rifampin onto 

polyurethanes which was reported to better the performance of antibacterial activity 

in terms of longevity (Piozzi et al., 2004).   

However, despite the improvement of antibacterial activity, seceral issues arise with 

this treatment strategy.  The first and foremost issue lies in the ability of antibiotic to 

successfully maintain antimicrobial activity for long-term implants (Knetsch and 

Koole, 2011).  Short-term indwelling devices such as catheters could benefit as 

compared to permanent devices as minimum inhibitory concentration maintenance is 

more likely.  The second major issue with this strategy is the potential of the medical 

device associated S. aureus to develop resistance to antibiotics to which it was 

previously susceptible in the planktonic state (Babra et al., 2013b).  

 

1.4.5 Electrochemical and ultrasound treatment 

Electrochemical and ultrasound approaches towards biofilm degradation have been 

investigated in an effort to enhance antibiotic transport through the ECM (Smith, 

2005).   Introduction of low power electrical currents to bacteria can affect 

electrophorectic mobility of membrane proteins and disorient cell behaviour and 

structural integrity (Del Pozo et al., 2008). Using this theory, the current can increase 

bacterial sensitivity with potential bactericidal effects in the presence of antibiotics.  

Enhanced penetration of erythromycin, daptomycin and moxifloxacin on MRSA 

biofilms over 24h was demonstrated in vitro. However, this strategy has yet to be 

explored in vivo (Del Pozo et al., 2008).   Low levels of ultrasound frequency have 

been shown to increase permeability through biofilm channels. Using this principle, 

37 
 



Chapter 1 
Literature Review and Overview 

low frequency ultrasound enhanced bacterial killing by gentamycin on E. coli 

biofilms and vancomycin on S. epidermidis biofilms (Smith, 2005).   More recently, 

ultrasound has been reported to enhance the bactericidal of the antimicrobial peptide, 

human β-defensin 3, against S. aureus biofilm (Zhu et al., 2013).  

 

1.4.6 Silver anti-biofilm treatment 

Silver, as an antimicrobial agent, is an ancient form of treatment going back to 

4000BC with the transport of water in silver vessels and silver salts for water 

preservations (Knetsch and Koole, 2011) and the effects of silver ions and 

compounds have been well acknowledged as toxic towards several microorganisms 

(Kim et al., 2007).  More recently, silver ions and silver nanoparticles have been 

used successfully in the treatment of burns and chronic wounds associated with or 

caused by S. aureus (Chung and Toh, 2014).  Silver ions have an effect on DNA 

replication, rendering bacteria unable to replicate in addition to inhibiting oxidation 

of glucose and products involved in the respiratory cycles (Secinti et al., 2011). 

Secinti et al (2011) tested S. aureus infected rabbit model over a 28 day experiment 

with and without nanoparticle silver ion coated implanted screws.   The team 

discovered that all silver coated screws were uninfected whereas 90% of the 

uncoated titanium control screws had developed biofilm (Secinti et al., 2011).  

Though initial reports are promising, demonstration of the long-term effect with 

implanted silver coated devices is yet to be investigated.  

 

1.4.7 Antimicrobial peptides 

Antimicrobial peptides, or AMPs, are oligopeptides that were first discovered in 

1939 when the soil bacteria extracts were found to exhibit antimicrobial activity 

against pneumococcal infections in mice (Bahar and Ren, 2013).  Specifically 

peptides with antimicrobial activity have been isolated from various sources such as 

human, animal, insects, bacteria and plant cells with over 5,000 AMPs synthesized 

since their discovery (Bahar and Ren, 2013).  
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In humans, primarily keratinocytes, AMPs are part of innate immunity with activity 

against bacteria, fungi and viruses.  The largest group of AMPs produced by human 

keratinocytes and sebocytes are defensins which have antimicrobial properties 

against gram-positive and negative-bacteria.  AMPs are categorized into 1 of 4 

secondary structural groups viz., β-sheet, α-helix, extended, and loop (Peters et al., 

2010). The main target for antibacterials AMPs is the lipopolysaccharide found 

abundant in the bacterial cell membrane of gram negative bacterial pathogens.   

Among AMPs, antibacterial AMPs are the largest researched and investigated group 

(Bahar and Ren, 2013).  Nisin, an antibacterial AMP, has been shown to be able to 

kill MRSA with higher MICs than antibiotics, chloramphenicol and ramoplanin, used 

in the study and similar activity to bacitracin (Brumfitt et al., 2002). 

Unfortunately, resistance towards antimicrobial peptides has been demonstrated 

widely by staphylococci species.  Both S. aureus and S. epidermidis produce secreted 

proteases such as areolysin which actively degrade select AMPs as well as surface 

charge changing proteins including Dlt locus which causes D-alanylation of teichoic 

acids and IcaB N-acetylglucosamine deacetylase which induces positive charge on 

the pathogen (Otto, 2010b, Li et al., 2007).  Most AMPs display a cationic character 

and an alteration on surface charge discourages binding hence inhibiting 

antimicrobial activity (Saar-Dover et al., 2012).  Bacteria have remarkably adapted to 

counteract the presence of AMPs by cationic AMP sensors.  In addition to the Dlt 

locus, these include the vraF/vraG genes which encode for the ABC transporter 

system proteins and the mprF gene which encodes an enzyme that prevents binding 

of cationic AMP to the bacterial cytoplasmic membrane (Li et al., 2007).  

Though much research in vitro has been performed and is still ongoing, 

investigations in vivo have yet to be carried out for evaluation of the in vitro 

observations.  

 

  

39 
 



Chapter 1 
Literature Review and Overview 

1.4.8 Other 

Ionic liquids (IL) and deep eutectic solvents (DESs) have been studied and are 

acknowledged as having antifungal and antimicrobial properties (Zakrewsky et al., 

2014).  More recently, Zakrewkey et al., (2014) demonstrated the use of IL and 

DESs in the successful treatment of skin infections Pseudomonas aeruginosa and 

Salmonella enterica biofilms in combination with a topical drug delivery and/or 

antibiotic.  Treatment was delivered against infected wounds with the use of a 

synthesised IL and ceftazidime, a broad spectrum antibiotic.  The group confirmed 

>98% reduction of biofilm with the dual formulation confirming the ability of IL to 

breakdown biofilm resulting in enhancement of antibiotic’s ability to reduce bacterial 

numbers (Zakrewsky et al., 2014).  Ionic liquids work by disrupting and lysing 

bacterial cells following interaction with the negatively charged bacteria cell 

membrane (Venkata Nancharaiah et al., 2012).  Venkata Nancharaiah et al., (2012) 

found that IL was able to increase S. aureus membrane permeability in vitro and 

successfully prevent biofilm development using two biofilm assays.  The activity of 

IL in their study was also found to be higher against gram-positive bacteria, S. 

aureus, with a higher rate of permeability and biofilm prevention as compared to 

gram negative bacteria, P. aeruginosa.  
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1.5 Objectives of this Research Project 
The goals of this research project were: 

o To identify and characterize novel surface-associated protein potential biofilm 

forming antigens and examine their significance as virulence and potential 

vaccine candidates in the prevention of systemic infection 

o To explore strategies for dispersal of biofilm with a view to enhancing the 

efficacy of treatment with antibiotics 

o To develop an in vitro method for identification of predominant biofilm 

forming antigens of S. aureus 

o To validate the biofilm forming potential of the antigens using in vitro methods 

developed in this project 

o To identify novel biofilm-asociated antigen(s) and evaluate the 

immunogenicity and protective potential of the major identified antigen(s) 

In order to accomplish the goals stated above, the following aims need to be 

accomplished; 

[1]. Collection, phenotypic and genotypic characterization of Australian S. aureus 

of human origin. 

[2]. Identification of the major exotoxins and MSCRAMM produced by Australian 

S. aureus of human origin. 

[3]. Determination of the biofilm-forming potential of Australian versus accredited 

international human S. aureus isolates in vitro. 

[4]. Evaluation of the efficacies of treatment of S. aureus biofilm in vitro with a 

biofilm degradating enzyme(s) and a broad spectrum antibiotic. 

[5]. Proteomic analysis of S. aureus as biofilm(s) versus planktonic cultures for 

identification of novel biofilm-associated antigen(s). 

[6]. Determine the immunogenicity and comparative protective potential of the 

predominant biofilm-forming antigen identified in [5].  
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1.6 Outline of thesis  

The chapters in this thesis are assembled using a hybridization of accepted 

publications, submitted and/or prepared manuscripts, with individual chapters on the 

review of literature, general methodology not covered in the manuscripts and/or 

publications, discussion and references.  

 

CHAPTER 1 and 2 – Literature Review and Materials and Methods 

 

CHAPTER 3 

Antibiotic resistance persistence was examined in biofilm vs planktonic bacteria as 

well as the role of capsular polysaccharide in biofilm formation.  In this study, we 

reported a correlation between biofilm formation and the presence of PNAG however 

there was not an absolute correlation indicating participation of additional biofilm 

adhesins. This study also proves no correlation between encapsulation and the 

formation of biofilm in S. aureus.  Persistence of antibiotic resistance was observed 

in 30 day old subcultures prepared from S. aureus biofilms.  However, once 

dispersed into planktonic form, susceptibility was reverted after 4 weeks post-

subculturing.  

 

CHAPTER 4 

Serological and genotyping methods were used to detect the presence of capsular 

polysaccharide and the surface-associated polysaccharide type 336. The 4 major 

types of capsule were observed between clinical and student S. aureus isolates used 

in this thesis. In this study, we observed 6 strains that were non-tyeable by 

serological and genotyping methods. However 4 out of the 6 were determined to 

possess capsule using an improved Maneval’s staining method.  This implicates the 

presence of additional capsular types among non-typeable isolates of S. aureus. 
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 CHAPTER 5 

In this chapter, diversity and distribution of important virulence factors of S. aureus 

among clinical and student S. aureus isolates used in this study was determined. 

Using PCR genotyping, 25 primer sets were used to determine the presence of 

MSCRAMM and exotoxins genes.  Commercially available toxin typing kits were 

also used to determine the presence of the most common Staphylococcal 

enterotoxins.  Random Amplified Polymorphic DNA (RAPD) methods were used to 

further characterize the diversity and distribution of virulence factors through cluster 

analysis.  The data suggested the distribution of virulence factors are not genotype 

specific among the test and control isolates.  This study implicates MSCRAMM Spa, 

IsdA, IsdB, SdrD and SdrE and the toxins SEG, α-toxin and β-toxin are 

predominantly expressed and provide useful targets the development of cocktail 

vaccines. 

 

In CHAPTER 6, biofilm disruption was tested with 8 treatment groups.  The biofilm 

disruption enzymes – DNase and Dispersin B – were tested in combination with 

Tobramycin, a broad spectrum antibiotic.  Scanning electron microscopy was 

implemented to provide physical evidence of biofilm disruption and bacterial 

damage with a combination therapy.  Dispersin B, previously thought a weak biofilm 

disrupter in S. aureus as compared to DNase, proved to be more successful with 

Tobramycin than DNase and Tobramycin in vitro.  The combination of DNase and 

an antibiotic has previously been explored and treatment alone with Dispersin B, 

however this study provides a novel report of combination therapy for biofilm-

associated S. aureus infections.  

 

CHAPTER 7 details the proteomics analysis performed for identification of the 

biofilm-associated potential virulence proteins expressed in vitro under iron-

depletion conditions. A single protein band of interest was isolated using SDS-PAGE 
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and subjected to proteomics analysis where Fructose-biphosphate aldolase, or 

Aldolase, was identified at a virulence protein in S. aureus. 

 

CHAPTER 8 – Antisera against Aldolase and MntC was raised in Balb/c mice and 

tested for the ability to produce an immune response by detecting IgM, IgA, IgG1 

and IgG2a.  Antibodies were then administered to determine the potential ability as a 

passive immunotherapy vaccine candidate.  Blood, spleen and liver were examined 

to determine bacterial load after a 4hr challenge.  Antibodies raised were tested 

against the PEG method developed in Chapter 9.  

 

CHAPTER 9 describes a novel biofilm inhibition assay developed using the MBEC 

(minimum biofilm eradication concentration) biofilm peg lid and antibodies towards 

several virulence factors.  This new method allows for direct determination of the 

presence of antigen to allow or inhibit the bacteria to form biofilm on the peg lid.  

Predominant virulence factors identified in Chapter 5 were tested in the biofilm 

inhibition assay.  

 

CHAPTER 10 – Conclusion  
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Chapter 2 – Generic Materials and Methods 

2.1 Bacterial strains and Controls 

Nineteen isolates were obtained from the Freeze-dry Microbiology database, 

maintained by the Microbiology Department of the School of Biomedical Sciences, 

Curtin University, by Mr Alain Delhaize.   All the freeze-dried isolates  were 

obtained from Royal Perth Hospital and/or Queen Elizabeth II Hospital, Perth, 

Western Australia.  Twelve (12) strains were isolated from the undergraduate 

Medical Microbiology students following ethics approval by Curtin University’s 

Human Ethics Committee, Approval Number SoBS 04/11.  The clinical and student 

isolates used in this study are listed in Table 2.1. American Type Culture Collection 

(ATCC) controls were purchased as quality control strains for biofilm production and 

and the typing of the isolates by PCR (Table 2.2). Capsular polysaccharide control 

strains (Table 2.3) were kindly donated by Professor Gerald Pier, Department of 

Medicine, Brigham and Women's Hospital, Harvard Medical School. 

Primary identifications tests were performed all on isolates for the confirmation of S. 

aureus before storage and preservation.  These include gram staining (GPC, 

grapevine clusters) and a positive slide coagulase test (clumping in presence of 

plasma).  A tube coagulase was performed if there were weak slide coagulase 

reactions.  Other tests carried out included DNase test and growth characteristics on 

Mannitol Salt Agar (Kateete et al., 2010).  
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Table 2.1: List of bacterial isolates used in the project 

No Bacteria Project ID Source/Reference 

1 Staphylococcus aureus HuAISRF-Saur1 Freeze dry Microdb*  

2 Staphylococcus aureus HuAISRF-Saur2 Freeze dry Microdb  

3 Staphylococcus aureus HuAISRF-Saur3 Freeze dry Microdb  

4 Staphylococcus aureus HuAISRF-Saur4 Freeze dry Microdb  

5 Staphylococcus aureus HuAISRF-Saur5 Freeze dry Microdb  

6 Staphylococcus aureus HuAISRF-Saur6 Freeze dry Microdb  

7 Staphylococcus aureus HuAISRF-Saur7 Freeze dry Microdb  

8 Staphylococcus aureus HuAISRF-Saur9 Freeze dry Microdb  

9 Staphylococcus aureus HuAISRF-Saur11 Freeze dry Microdb  

10 Staphylococcus aureus HuAISRF-Saur12 Freeze dry Microdb  

11 Staphylococcus aureus HuAISRF-Saur13 Freeze dry Microdb  

12 Staphylococcus aureus HuAISRF-Saur14 Freeze dry Microdb  

13 Staphylococcus aureus HuAISRF-Saur15 Freeze dry Microdb  

14 Staphylococcus aureus HuAISRF-Saur16 Freeze dry Microdb  

15 Staphylococcus aureus HuAISRF-Saur18 Freeze dry Microdb  

16 Staphylococcus aureus HuAISRF-Saur19 Freeze dry Microdb  

17 Staphylococcus aureus HuAISRF-Saur20 Freeze dry Microdb  

18 Staphylococcus aureus HuAISRF-Saur21 Freeze dry Microdb  

19 Staphylococcus aureus HuAISRF-Saur23 Freeze dry Microdb  

20 Staphylococcus aureus H1-769199 Student strain 

21 Staphylococcus aureus H2-FH Student strain 

22 Staphylococcus aureus H3-718972 Student strain 

23 Staphylococcus aureus H4-Paul C (ear) Student strain 

24 Staphylococcus aureus H5-13188622 (nose) Student strain 

25 Staphylococcus aureus H6-Maria Student strain 

26 Staphylococcus aureus H7-MelO Student strain 

27 Staphylococcus aureus H8-28062009 Student strain 

28 Staphylococcus aureus H9-080989 Student strain 

29 Staphylococcus aureus H10-38911557 Student strain 

30 Staphylococcus aureus H11-9555100 (nose) Student strain 

31 Staphylococcus aureus H12-13965121 (nose) Student strain 

* Microbiology database (Microdb) 

63 
 



Chapter 2 
Materials and Methods 

Table 2.2: List of bacterial isolates used as controls  

ATCC ID Strain Clinical data Genotype/Phenotype 

ATCC® 
29213™ 

Staphylococcus aureus 
subsp. aureus 
Rosenbach 

Wound Quality control strain 
Strong biofilm producer* 

ATCC® 
13565™ 

Staphylococcus aureus 
subsp. aureus 
Rosenbach 

Ham involved in 
food poisoning 

Produces large amounts of β-
hemolysin* 

ATCC® 
49775™ 

Staphylococcus aureus 
subsp. aureus 
Rosenbach 

Patient with 
chronic 
furunculosis 

Produces PVL 
Produces γ-hemolysin* 

ATCC® 
51651™ 

Staphylococcus aureus 
subsp. aureus 
Rosenbach 

Patient with 
menstrual toxic 
shock syndrome 

Produces SEF  
Produces TSST-1* 

ATCC® 
8096™ 

Staphylococcus aureus 
subsp. aureus 
Rosenbach 

Furuncle Produces α-hemolysin* 

ATCC® 
55804™ 

Staphylococcus aureus 
subsp. aureus 
Rosenbach 

Urine  Serotype 336* 

* Information retrieved from the ATCC website 

 

Table 2.3: Capsular polysaccharide controls 

Strain ID CP type Source/Reference 

Strain M Type 1, or CP1 Kindly provided by 

Professor Gerald Pier 

Department of Medicine 

Brigham and Women's 

Hospital, Channing Labs, 

Harvard Medical School 

Boston, MA  

Smith Diffuse Type 2, or CP2 

Strain Newman Type 5, or CP5 

USA 400 MW2 Type 8, or CP8 

LAC USA 300 Negative control, or CP 

negative 

 

  
64 

 



Chapter 2 
Materials and Methods 

2.2 Nutritional Media used for growth and storage of Staphylococcal cultures 

The media used for the cultivation and storage of S. aureus and S. epidermidis were 

as follows.   

 

2.2.1 Nutrient Broth and Agar 

13g of dehydrated culture media (Oxoid) was added to 1L of distilled water.  Broth 

base was evenly mixed and placed for sterilization autoclaving at 121°C for 30 

minutes. Filter sterilized glucose solution was added to Nutrient broth to make a 1% 

concentration for all biofilm growth. To 100mL of Nutrient broth, 1.5g of agar was 

added.  Solution was gently mixed and placed for sterilization 121°C for 30 minutes 

after which it was cooled to 56°C in a water bath.  In a biohazard cabinet, plates were 

aseptically poured at approximately 5 to 6 plates per 100mLs. 

 

2.2.2 Brain Heart Infusion Broth and Agar 

37g of dehydrated Brain heart infusion base (Oxoid) was added to 1L of dH20 and 

heated till base dissolved.  Broth was placed for sterilization autoclaving at 121°C for 

30 minutes.  To make BHIA, 1.5g of agar was added to 100mL of BHIA and placed 

for sterilization 121°C for 30 minutes after which it was cooled to 56°C in a water 

bath.  All plates were aseptically poured in a biohazard cabinet and stored at 4°C till 

usage.  

 

2.2.3 Long-term storage of isolates  

After primary S. aureus identification, cryobeads (Blackaby Diagnostics) were used 

for long-term storage of strains.  A single swab was used to collect a thick inoculum 

of bacteria from a Mueller Hinton purity plate (PathWest Media) and transferred to 

inoculate collection tube with fluid containing cryobeads.  The beads were inverted 3 

times and a slim glass pasteur pipette was used to collect all remaining fluid which 
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was correctly discarded.  The remaining beads, containing bacteria, were stored at -

80°C till required. To obtain bacteria from a cryobead, a single bead was aseptically 

collected and placed in Nutrient broth.  Broth cultures were placed at 37°C on a 

120rpm orbital shaker to obtain sufficient growth.  

 

2.3 Biofilm formation  

Strains to be tested were grown overnight from a fresh cryobead in sterile nutrient 

broth on an orbital shaker (80rpm).  Cells were pelleted at 15,000rpm for 2mins and 

washed twice in 1xPBS.  Suspensions were adjusted to 0.132 OD600nm and made into 

a 2% inoculum using sterile nutrient broth supplemented with 1% glucose.  To a 

clean 96 well microtiter plate, 200 µL of the broth culture was aliquoted and placed 

for 18hrs at 37°C on an orbital shaker (80rpm).  The plate was removed from the 

orbital shaker and left to stand still at 37°C for a further 24hrs.  

 

2.4 Isolation of bacterial DNA 

UltraClean® Microbial DNA Isolation Kit (Mo Bio) was used to extract DNA from 

S. aureus isolates.  A purity plate was streaked out and a single colony was 

inoculated in 2mL of Nutrient broth.  Briefly 1.8mL of an aerated overnight culture 

grown at 37°C was centrifuged at 12,000rpm for 30secs.  The supernatant was 

removed and the pellet was re-centrifuged to remove remaining liquid.  DNA was 

then extracted from the pelleted cells as per manufacturer’s instruction.  All extracts 

were quantified using the Nanodrop to ensure adequate amount of DNA was 

recovered after which they were stored at -20ºC until required. 

 

2.5 Genotyping 

Amplification of target genes was performed using the materials and methods as 

follows.  
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2.5.1 Preparation of primer and polymerase chain reaction 

Oligonucleotides were designed using Primer-BLAST and/or Primer3Plus obtained 

from sequences deposited on Genbank, NCBI.  Primer pairs were analysed using 

Primer3 to eliminate potential of self-complementary or secondary formation and 

rate oligonucleotides for G-C content, size, molecular weight and required Tms.   

Oligonucleotides used in this project were synthesized by Geneworks with 

lyophilized stocks made to a stock concentration of 100µM.  The final working 

concentration was prepared to 10pmol using RNase/DNnase-free, molecular biology 

grade water (Fermentas).  Primer stocks and working concentrations were stored at -

20°C and thawed prior to use.  PCR master mixes and reactions were stored on ice 

during experiment preparation.  Unless otherwise stated, all genomic PCR 

components were purchased from Thermo Scientific Fermentas unless otherwise 

stated.  All PCR reactions were performed to amplify targeted gene sequences using 

the following protocol before amplification using Veriti Thermal Cyclers.  

The general PCR components in the master mix are shown below.  

Table 2.4: Component preparation with desired primers for gene amplification 

PCR Reaction Components Volume 

PCR Master Mix (2x), Fermentas 5µL 

Forward Primer, 10pmol 0.2µL 

Reverse Primer, 10pmol 0.2µL 

Template DNA 1 µL 

Water, nuclease-free 3.6µL 

Total volume 10µL 

 

The Tm for each primer set was determined by an initial temperature gradient. PCR 

and primer optimization conditions were dependent on sequences and appropriate 

positive controls listed in their respective experiments.  From the 10µL total volume, 

5 - 6µL of PCR product was combined with 2µL loading buffer  (30% glycerol, 
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0.25% bromophenol blue) and loaded on a 1.5% agarose gel in 1x Sodium Borate 

buffer for gel electrophoresis.  Agarose preparation and components of SB stock are 

listed in Table 2.5 

Table 2.5: Gel electrophoresis components and methods 

1.5% Agarose 50x SB Buffer 

1.5g agarose in 100mL 1x SB Buffer 

0.8µL/100mL Midori Green stain 

Microwaved at high for 2min, poured 

and set at room temperature 

20 g NaOH 

120 g H3BO3 (boric acid powder) 

Bring to 1 L with dH2O 

Adjusted to 1x SB Buffer for gel runs 

 

Gels were run at 120V to 140V at room temperature and visualised on a UV 

transilluminator to observe amplified bands.  Unless otherwise indicated, 

O’RangeRuler 100 to 1500bp DNA Ladder (Fermentas) was run to identify rough 

band size.  

 

2.6 Measurement of antibody response 

Measurement of isotype-specific antibody responses was carried out using indirect 

enzyme-linked immunosorbent assays, ELISA, which was performed according to 

(Chen et al., 2008).  The protocol used is described below.  

 

2.6.1 Indirect ELISA  

100µL of antigen comprising intact S. aureus was added to the allocated wells (≈ 

0.250 OD600nm) in PBS to the indicated wells.  The microtiter plate was covered 

with a clear sealing film and incubated at 37°C for 2hrs or overnight at 4°C.  The 

antigen was carefully aspirated and washed 3x with wash buffer (1x PBS with 0.05% 

Tween 20) with flick to remove fluid and inverting the tray on an absorbent paper 

towel.  Approximately 100µl of blocking buffer was dispensed into the well and 
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incubated at 37°C for 2hrs or overnight at 4°C.  Wells were washed 3x with wash 

buffer using the same flick and blot method.  Serial doubling dilutions (100µL 

volume) of the primary antibody was prepared using PBS as the solvent starting from 

the first well (approximately 1 in 100 or 1 in 200) up to the end 7th well.  The tray 

was incubated at 37°C for 2hrs or overnight at 4°C.  A 1 in 1,000 dilution was 

prepared of the appropriate enzyme conjugated secondary antibody (IgG-Alkaline 

Phosphatase or ALP).  Of this, 100µL was dispensed and incubated at 37°C for 2hrs 

or overnight at 4°C.  The tray was washed 3x with wash buffer using the flick and 

blot method.  To each well, 100 µl of enzyme substrate (p-nitrophenyl phosphate for 

ALP) was added and incubated with the tray covered in aluminium foil at room 

temperature for approximately 12-20 minute.  Colour intensity was read at 405nm 

using the plate reader.  

The mean absorbance of the controls was deducted from the absorbance values for 

each individual well.   The values were plotted against the reciprocal of each dilution 

to produce an antibody titre deemed appropriate for further analysis.  

 

2.6.2 Materials used in ELISA 

Buffers described in the ELISA protocol are listed below with their components and 

preparation procedure.  
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Table 2.7: Buffer preparation and their components used for ELISA 

Coating Buffer (g/L) Blocking Buffer (g/L) Substrate Buffer (g/L) 

Na2CO3             1.56g 

NaHCO3           2.94g 

 

Made up to 800ml with 

dH2O 

 

Adjusted pH to 9.6 with 

1M NaOH and then made 

up to 1L with d.H2O 

Tris(0.01M)        1.21g                

NaCl (0.15M)     8.5g                   

Gelatin (0.2%)    2.0g  

BSA(1%)            10g      

               

 

Dissolved in 750ml 

dH2O and made up to 1L. 

Diethanolamine    106g                

MgSO4.7H2O       0.249g

   

Add to 800ml d.H2O 

 

 

Adjusted pH to 10 and 

then made up to 1L with 

d.H2O 

 

 

2.7 Immunoproteomic analysis 

A detailed process for the preparation of S. aureus protein lysates and isolation of the 

unique biofilm-associated antigen, fructose-1,6-bisphosphate aldolase,  is described 

in Chapter 7 and 8.   

 

2.7.1 Protein quantification 

Measurement of protein concentration of lysates was determined using the Micro 

BCA Assay (Thermofisher). Preparation of standards and working reagents were 

performed according to manufactures’ instructions.  In a 96 well microtitre plate, 

total amount of 150µL of protein standard was mixed well with 150µL of working 

reagent.  This was incubated for 2hrs at 37ºC to allow colour development. Given the 

following absorbance at OD562nm and their corresponding concentrations, a standard 

curve was obtained for a basic protein estimation profile. 

 

70 
 



Chapter 2 
Materials and Methods 

Table 2.8: Protein standards and absorbance’s used to plot a standard curve.  

Sample OD562nm Final BSA Concentration 
A 2.581 200 µg/mL 
B 0.742 40 µg/mL 
C 0.431 20 µg/mL 
D 0.250 10 µg/mL 
E 0.160 5 µg/mL 
F 0.120 2.5 µg/mL 
G 0.092 1 µg/mL 
H 0.090 0.5 µg/mL 
I 0.000 0 µg/mL = Blank 

 

The average absorbance of the blank was subtracted from each OD reading of the 

standards and unknown samples. Growth curve used in this study (Fig 2) allowed for 

measurement and protein quantification of samples.  

Fig 2: Micro BCA Assay for protein estimation at OD562nm 

 

Note: The Micro BCA Assay was used for general estimation and compared to 

protein quantification determined at OD280nm.   
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2.8 Separation of proteins on SDS PAGE 

Following protein quantification, protein lysates were run on Sodium dodecyl 

sulphate polyacrylamide gel electrophoresis, SDS-PAGE, for separation of proteins. 

SDS-PAGE analysis used a combination of hancast gels using the BioRad system 

and pre cast Novex® NuPAGE® SDS-PAGE gel system. 

 

2.8.1 Preparation of Hand-cast gels and SDS Buffers 

Buffers were stored at room temperature after preparation as detailed in Table 2.9 

and Table 2.10.  

Table 2.9 Buffers used in protein gel construction 

4x Stacking Buffer 4x Resolving Buffer 10% Ammonium 

persulfate (APS) 

Tris (0.5M)                  30.25g 

pH 6.8 with HCL 

SDS (0.4%)                  2g 

Made to 500mL with dH2O 

Tris (15M)              91g 

pH 8.8 with HCL 

SDS (0.4%)            2g 

Made to 500mL with 

dH2O 

APS            1g 

Dissolved in 10mLs 

dH20 

 

The 10% APS solution was continuously stored at 4ºC and removed prior to gel 

construction.  SDS buffer was prepared as a 10X running buffer store and diluted to 

1x Running buffer prior to a protein gel run.   
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Table 2.10 SDS Buffer components 

Buffer components Concentration 10x Running Buffer 

Glycine 192mM 288g 

Tris 25mM 60.4g 

SDS 0.1% 20g 

Ingredients combined and made to 2L of dH2O  

 

2.8.2 Gel compositions and PAGE method 

PROTEAN® II XL Cell system by Biorad was utilized to run large SDS-PAGE for 

proteomic analysis.  Depending on the gel percentage required (Table 2.11), handcast 

gels were constructed using 3mm clean glass plate (200mm x 200mm, 220mm x 

200mm) with appropriate spacers and sandwich clamps.   

Table 2.11 Resolving and Stacking gel compositions 

Resolving Gel 

(20mL) 

8% 10% 20% Stacking Gel 

(10mL) 

3% 4.5% 

4x Resolving 

Buffer 

5mL 5mL 5 mL 4x Stacking 

Buffer 

2.5mL 2.5mL 

Water 9.7mL 8.3mL 1.7 mL Water 6.5mL 6mL 

30% 

Acrylamide/Bis 

29:1 

5.3mL 6.7mL 13.3 

mL 

30% 

Acrylamide/Bis 

29:1 

1mL 1.5mL 

TEMED 0.02mL 0.02mL 0.02mL TEMED 0.02mL 0.02mL 

10% APS 0.2mL 0.2ml 0.2 mL 10% APS 0.1mL 0.1mL 

 

The plate sandwich was placed in a slab gel casting stand, carefully tightened and 

checked for leaks. Resolving gel was made up with the addition of 10% APS and 

Tetramethylethylenediamine (TEMED - last).  Sterile dDW was placed over the 

resolving gel while gel polymerization occurred.  After roughly 20 mins, dDW was 

removed and the stacking gel was poured and appropriate gel combs were inserted. 
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After solidification, comb was gently removed and the constructed gels were locked 

in placed to run in the PROTEAN® II XL Cell tank.   

Approximately 350mL of SDS 1x running buffer was added to the upper tank and 

1.2L to the lower tank.  Tank was cooled at 10ºC constant for the duration of the gel 

run with water circulating pump.   Samples were run overnight at 6-8mA constant 

using a PowerPac™ power supply (Biorad).   

Assembled cassettes were removed from running tank the next morning.  The protein 

gels were disassembled from the cassette and rinsed 3 times in dDW for 5 mins each 

on an orbital shaker, 80rpm.  

 

2.8.3 Staining solutions  

Coomassie staining was performed for visualization of proteins following SDS-

PAGE.  Gels were fixed and stained using the solutions detailed in Table 2.12.   All 

stains were stored at room temperature.  

Table 2.12 Composition of staining solutions for protein gels 

Fixing Solution Staining Solution Destain Solution 

40% Methanol 

10% Acetic Acid 

0.02% Coomassie R-250  

30% Methanol, 10% Acetic 

Acid 

8% Acetic Acid 

 

Gels were fixed by the addition of fixing solution and microwaving the gel for 45 sec 

at high.  Fixed gels were placed at room temperature on an 80rpm orbital shaker for 

15 to 30 mins.  The fixing step was repeated before decanting the fixing solution and 

adding staining solution.  The gel was then microwaved at high for 45 sec.  The gels 

were placed at room temperature on an 80rpm orbital shaker for 30 mins.   After 

decanting the staining solution, destain solution was added and microwaved at high 

for 45 sec.  The gel was placed on the orbital shaker until the desired background 
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was obtained.  A change in destain solution may have been done once or twice 

depending on the level of background clearance.  

 

2.8.4 Western blotting 

After protein isolation from SDS-PAGE, western blot was performed on the protein 

of interest.  Pre cast Novex® NuPAGE® SDS-PAGE gel system were (Invitrogen, 

Life Technologies) used for western blotting in this study.  All gels were run using 

the XCell SureLock™ transfer system (Life Technologies) as per manufacturer’s 

instructions.  All buffers were freshly made prior to use and stored at room 

temperature except for Blocking buffer which was stored at 4 ºC (Table 2.13).  

After running SDS-PAGE, the pre cast gel was placed in 1xTransfer buffer for 10 to 

15mins prior to assemble of the XCell SureLock™ transfer cassette.  

Table 2.13 Western Blot buffer compositions 

Transfer Buffer Tris Buffered Saline with 

Tween20 (TBST) 

Blocking Buffer 

Tris (25mM)             3.03g Tris (20nm) 

pH 7.5 

2.42g BSA (3%)              3g 

Glycine 

(190nm) 

14.27g NaCl (150nm) 8.76g TBST                   100mL 

Methanol 

(20%) 

200mL Tween20 

(0.1%) 

1mL Stored at 4ºC 

Made up to 1L 

(pH 8.3) 

Made up to 1L 

 

For each transfer, a nitrocellulose membrane cut to the size of the gel was pre-soaked 

in 1x transfer buffer.  A transfer sandwich was assembled in the following order from 

top to bottom: blotting pad, filter paper, transfer membrane, protein gel, filter paper 

and blotting pad.  The assemble sandwich cassette was in turn placed into the XCell 
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SureLock™ tank and locked in place.  The inner cassette was filled with 1x transfer 

buffer and the outer tank with chilled dDW.  Transfer was run at 30V constant for 

1hr.  

For protein transfer detection following antibody incubation, the Immun-Star™ AP 

Chemiluminescence Kit (Biorad) was implemented as a detection system before 

visualization on the ChemiDoc™ MP System (Biorad) imager.  

 

2.9 Affinity Gel Chromatography 

HIS-Select Nickel Affinity Gel (Sigma-Aldrich) was used for selective purification 

of recombinant protein, Dispersin B, which was developed to contain a histidine tag.  

Storage of the affinity gel (Sigma Aldrich) in 30% ethanol was delivered by the 

manufacturer, which was removed prior to packing into a column.  The ethanol was 

removed by rinsing the gel contents in 1 to 2 volumes of dDW followed by 

equilibration with 5 volumes of equilibration buffer.  The ingredients used for this 

process are shown below.  

Table 2.14 Composition of the buffers (made up in dH2O) using in column 

chromatography 

Extraction Buffer Equilibration and Wash 

buffer 

Elution Buffer 

20mM Tris-HCL 

pH 7.5 

500mM NaCl 

 

50 mM sodium phosphate 

pH 8.0 

0.3 M sodium chloride  

10 mM imidazole 

50 mM sodium phosphate 

pH 8.0  

0.3 M sodium chloride  

250 mM imidazole 

 

The column was packed with the washed gel by gently pouring 15mL of the packing 

contents into an appropriate sized column (~20mL).  After column gel settling, the 

column was washed with 3 bed volumes of extraction buffer followed by passing 

cleared lysate through the column.  The column was then washed with 3 bed volumes 
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of extraction buffer containing 5mM imidazole followed by 3 bed volumes of 

extraction buffer containing 20mM imidazole.  The final elution of the protein was 

performed with wash of 2 bed volumes of extraction buffer containing100mM 

imidazole.  Flow rate of the fraction was approximately 0.5mL/min.  

Used column were washed with 4 bed volumes of wash buffer and gel contents were 

removed and stored in 30% ethanol at 4ºC for future usage.  

 

2.10 Electro-transformation of pDispersin B into E. coli 

Escherichia coli DH5α was transformed with the plasmid pDispersin applying 

standard procedures (Sambrook, 2001). The plasmid consisted of the expression 

vector pASK-IBA33plus (3250bp, IBA Lifesciences) containing a synthetic gene 

encoding dispersin B as described by Gokcen et al. (2013). Briefly, 5µl of provided 

pDispersin DNA was mixed gently with 40µl MAX Efficiency® DH5α™ 

Competent Cells (Life Technologies) and stored on ice for 30 mins.   

Using 1mm electroporation cuvettes (BTX Harvard Apparatus), plasmid DNA was 

electroporated into MAX Efficiency® DH5α™ (1.8 v 25 uF and 200 ohms) followed 

by recovery on ice. Cells were placed in tubes containing LB broth and incubated at 

37ºC on an orbital shaker (120 rpm) for 2 hour before being plated on LB agar 

containing 150µg/ml ampicillin. 

 

2.11 Plasmid isolation and size verification 

Plasmid DNA was isolated using the AxyPrep Plasmid MiniPrep Kit (Axygen 

Biosciences) according to the manufacturer’s instructions.  The plasmid preparations 

were checked for purity using agarose gel electrophoresis. Five microliters of 

plasmid DNA was loaded with 1µl of 5x loading buffer (Fermentas) onto a 1% 

agarose gel made up with 1x Sodium Borate buffer (10 mM NaOH, pH 8.5 with 

H3BO3), and electrophoresed at 100V. Gels were stained with 0.8uL/100mL Midori 

Green DNA Stain (Nippon Genetics) and visualized using a UV transilluminator. 
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The size of the isolated plasmids was verified by double restriction enzyme digest 

using HindIII and XbaI (Promega) according to the manufacturer’s instructions. 

O’GeneRuler 1 kb Plus DNA Ladder (ThermoScientific) was used as a base pair 

marker. 

 

2.12 Determination of DNase concentration 

Staphylococcus aureus biofilms were developed as previously described.  Three 

treatment groups were used viz., 2 concentrations of DNAse (50KU and 140KU) and 

one PBS treatment control group. One hundred microliters (100µL) of DNase at 

different concentrations was added to the allocated wells containing biofilm and 

placed on an orbital shaker (50rpm) for 2hrs. Biofilm cells were washed once in PBS 

and stained for 5mins with 0.1% crystal violet before washing twice with PBS. 

Crystal violet was solubilized in 96% methanol and the absorbance read at OD630nm. 

The OD value obtained for the negative control was subtracted from those of the 

treatment groups. 

 

2.13 Determination of Dispersin B activity against biofilm 

Strong biofilms were developed over 3 days.  Briefly, biofilms were washed twice in 

PBS and incubated for 2hrs at 37ºC on an orbital shaker, 80rpm with various 

concentration of purified Dispersin B –720µg/ml, 500µg/mL, 100µg/mL, 50µg/mL, 

10µg/ml and control, µg/ml.  The supernatant was removed and stained with 0.2% 

Crystal Violet (Sigma) after which the wells washed and air dried.  Biofilm bound 

bacteria were solubilized in 96% Methanol and the OD obtained by reading the plate 

values at 630nm using the EnSpire Multimode Plate Reader (PerkinElmer).  

 

2.14 SDS removal from purified protein(s) 

Removal of SDS from purified protein(s) was performed prior to immunization in a 

mouse model.  This was done by implementing the ProteoSpinTM Detergent Clean-
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Up Micro kit (Norgen Biotek Corp) as per manufacturer’s instructions.  Briefly the 

pH of the protein sample was adjusted to 4.5 using the acidic binding buffer 

provided.  Purified protein was then loaded onto an assembled micro spin column 

after column resin was prewashed with 500µL modified column activation and wash 

buffer (0.5mL Acidic Binding buffer, 12.5mL isopropanol, 12mL sterile deionized 

water). Maximum of 650µL of purified protein was loaded onto the column at one 

time and spun at 15,000rpm for 5mins.  The process was repeated until entire sample 

was applied to column.  After repeat washing with 250µL modified column 

activation and wash buffer, the column was washed with 250µL of regular column 

activation and wash buffer.  Protein was then eluted in 2 rounds of centrifugation 

with 25uL of elution buffer (50mM sodium phosphate pH 12.5).  Prior to elution, 

5µL of neutralizer was added to the elution fraction tube to neutralize the protein 

elution.   Proteins were quantified using the Micro BCA Assay and also quantified at 

OD280nm. Eluted proteins were stored at -20ºC until required. 

 

2.15 Establishment of a Growth Curve for S. aureus  

A single colony was used to inoculate 5mL of Nutrient broth.  The broth was left to 

grow overnight at 37ºC on an orbital shaker, 80rpm.  Cells were pelleted and washed 

twice in cold 1x PBS with adjustment of OD600nm. Serial two fold dilutions were 

performed in cold 1x PBS and their ODs were measured (Table 2.15).  Colony 

forming units of each dilution was performed with 10-fold dilutions and plated out 

on MH plates.  The plates were incubated overnight at 37ºC. 
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Table 2.15 Absorbance at OD600nm and CFU/mLs of undiluted and doubling dilutions 

of S. aureus used for construction of the growth curve 

Dilution OD600nm CFU/mL log10 

Neat 1 3.64 x 1019 19.5611 

1 in 2 0.541 2.08 x 1017 17.31806 

1 in 4 0.283 3.2 x 1013 13.50515 

1 in 8 0.148 4.00 x 1010 10.60206 

1 in 16 0.0695 2.26 x 1010 10.35411 

1 in 32 0.0325 4.60 x 108 8.662758 

 

Fig 3. Growth curve of S. aureus used in this study 

 

Prior to an experiment, approximate ODs were adjusted and CFU/mL determined by 

plated out on MH plates with 10-fold dilutions.  
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ABSTRACT 

The development of persistent antibiotic resistance by human MSSA strains and 

substantial association with poly-N-acetyl glucosamine (PNAG) in biofilms is 

reported in this investigation. Sixteen of 31 MSSA strains under study were found to 

have developed resistance to one or more antibiotics, with 4 strains, 2 of which did 

not produce biofilms, showing resistance to cefoxitin, undetectable by mecA 

amplification. Antibiotic resistance displayed by 13/14 biofilm-forming S aureus 

isolates remained persistent for 4 weeks prior to reverting back to the original 

antibiotic susceptibility, prompting a suggestion of determining antibiograms for 

clinical S aureus isolates subcultured from biofilms developed in vitro as well as 

planktonic subcultures prepared from the site of infection. While there was 

correlation of antibiotic resistance with biofilm formation, as also demonstrated 

previously in other investigations, this is the first time that association of persistence 

of antibiotic resistance with biofilm formation is being reported. We also observed 

no association between biofilm formation and major capsule types. However, 

substantial, although not absolute, association of biofilm formation with PNAG was 

observed, warranting continued identification of additional surface-associated 

polysaccharide and/or protein antigens associated with biofilm formation for 

development of an effective vaccine against S aureus infections regardless of 

capsular phenotype. 

 

INTRODUCTION 

Staphylococcus aureus is a pathogenic gram-positive bacterium that has emerged as 

a frequent cause of nosocomial or hospital acquired infections [1].   The pathogen 

can cause a variety of infections ranging from superficial skin, deep seated skin, 

wound sepsis, pneumonia, septic arthritis, post-surgical toxic shock syndrome, 

endocarditis and osteomyelitis to name a few [1 ,2, 3, 4].  In a hospital setting, 

patients who have been surgically treated with indwelling devices or catheters have a 

higher rate of S aureus infections [5].  There has been an increasing trend in 
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resistance towards β-lactam antibiotics which gives rise to a severe health issue in 

hospital and community settings [6].  Many nosocomial S aureus strains have been 

shown to be resistant to methicillin (MRSA) [5], spread of which, associated with 

both nosocomial and community-acquired infections (CA-MRSA), has been reported 

in all continents [7].  Resistance of this bacterium to antibiotics leads to difficulty in 

successfully treating invasive and non-invasive S aureus infections. In the United 

States, high incidence of invasive MRSA infections have been observed, with death 

in about 20% of all infections, as compared to other pathogenic strains [6], with 

increasing incidence also observed in the UK and Australia [1, 8].  

Persistence of S aureus in infections is dependent on a multiplicity of virulence 

factors promoting establishment of infection and invasion, and evading the host 

immune responses [6].  One of the most important virulence factors is the ability of 

this organism to form biofilms [1].   Biofilm or polysaccharide slime [9] has a major 

impact on medical implants as it increases bacterial tolerance towards antimicrobial 

agents and penetration of host defence elements [10].   Importantly, MRSA strains 

that form biofilms also develop resistance to all the commonly used antibiotics to 

which the planktonic bacteria are susceptible [1]. The aims of this study were to a) 

determine antibiotic susceptibility profile of MSSA strains isolated from biofilms 

versus planktonic cultures which required selection of a reproducible method for 

assessment of biofilm formation, and b) determine potential association of biofilm 

formation by MSSA with the 2 major surface-associated polysaccharides viz., 

polysaccharide intercellular adhesin (poly-N-acetyl glucosamine [PNAG)] and the 

predominant capsular types 5 or 8.   
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MATERIAL AND METHODS 

Collection of human S aureus isolates 

Nineteen isolates were kindly donated by the Microbiology Section, School of 

Biomedical Sciences, Curtin University and 12 strains were isolated from 

undergraduate students studying medical microbiology following approval by Curtin 

University’s Human Ethics Committee (Approval Number SoBS 04/11). All isolates 

were stored on cryobeads (Blackaby Diagnostics) at -80°C for further usage.   

 

Biofilm analysis 

a) TCP method 

This method was adapted from a procedure carried out according to Patterson 

et al. (2010) [11]. The bacterial strains were grown in a 96 well microtitre 

plate with nutrient broth in 370C orbital shaker (80 rpm) for 24hrs.  The 

suspensions were adjusted to 108 cfu/mL. Two hundred and fifty microliters 

(250µL) of each suspension was added to a 96 well flat bottom microtitre 

plate and incubated at 370C for 18hrs on an orbital shaker after which they 

were removed from the shaker and left at 370C without shaking for the 

remaining 6hrs.   After incubation, cells were washed with sterile saline 

(three times) and fixed in 96% pure ethanol.  Wells were then stained with 

2% crystal violet and washed three times with sterile distilled water to 

remove excess stain.   200uL of 33% glacial acetic acid was then added to 

each well and absorbance (OD) measured at 600nm.  The average OD of 

negative control was subtracted from test values.  An accredited strong 

biofilm producer S aureus ATCC29213 was also included in this study. The 

arbitrary cut off point used for biofilm formation was 0.120 OD600nm 

according to Christensen et al. (1985) [12]. S aureus strains showing 4 X 

OD600nm at the cut off point (equivalent to an OD of 0.480) or less OD were 

considered to represent weakly adherent biofilm forming populations, up to 6 

X OD600nm at the cut off point (equivalent to 0.720600nm) as moderately 
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adherent biofilm forming populations and values greater than 6 X OD600nm as 

strongly adherent biofilm forming populations. 

b) Congo Red Agar Method 

Congo Red agar plates were made as described elsewhere [13]. Briefly, plates 

were inoculated and placed in a 37°C hot room and observed over 72hrs for 

slime production.  A positive result was indicated by the production of black 

colonies.  Weak slime producers were indicated by red/pink growth [13]. This 

experiment was repeated three times to ensure reproducibility. Accredited 

strong biofilm producer S aureus ATCC29213 was also included in this 

investigation.   

 

Antibiotic Sensitivity/Susceptibility Testing Method 

For a comparison between free planktonic and biofilm-associated bacteria, antibiotic 

sensitivity plates (PathWest) were inoculated using the CDS method [14]. Briefly, 

bacteria were grown in 2mL of nutrient broth supplemented with 2% glucose. Broths 

were left in 35°C for 48hrs to allow adequate biofilm development, after which the 

supernatant was removed.  Bacteria grown in biofilm and free-floating bacteria were 

streaked for single colonies on MH plates (PathWest).  Single colony for each was 

stabbed with a straight wire, suspended in 2.5mL saline and flooded onto Sensitest 

plates (PathWest).  Plates were dried for 15 min in 37°C hot room after which the 

following antibiotics discs (Oxoid) were carefully placed on each plate: 

benzylpenicillin 0.5ug (P 0.5), cefoxitin 10ug (FOX 10), cephalexin 100ug (CL 100), 

ciprofloxacin 2.5ug (CIP 2.5), co-trimoxazole 25ug (SXT 25), erythromycin 5ug (E 

5), linezolid 10ug (LZD 10), mupirocin 200ug (MUP 200), rifampicin 1ug (RD 1), 

teicoplanin 15ug (TEC 15), tetracycline 10ug (TE 10) and vancomycin 5ug (VA 5).  

Zones of inhibition 6 mm or greater were recorded as sensitive except VA5 and 

TEC15 where zones greater than or equal to 2 mm were recorded as sensitive.  
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DNA extraction 

Using an extraction kit (MO-Bio), all 31 the S aureus strains were placed for DNA 

extraction.  All extracts were stored at -20°C until required for experimentation after 

which they were thawed and placed on ice.  

 

Capsular polysaccharide (CP), icaA/D and mecA typing 

DNA extracts of the 31 S aureus isolates were subjected to PCR for CP types 5 or 8, 

ica A/D and mecA gene expression as follows: 

(a) Capsular polysaccharide typing 

For CP typing, primers published by Moore and Lindsay (2001) [2] were used 

(CP5 forward 5’-ATGACGATGAGGATAGCG-3’ and CP5 reverse 5’-

CTCGGATAACACCTGTTGC-3’; and CP8 forward 5’- 

ATGACGATGAGGATAGCG-3’ and reverse 5’- 

CACCTAACATAAGGCAAG-3’).  Predicted product sizes and Tm were 880 

and 1147 bp, and 60°C and 53°C, for CP5 and CP8 respectively.  PCR cycling 

condition were 95°C for 5mins, 95°C for 30sec, Tm for 30secs, 72°C for 5min 

(x25) and extension at 72°C for 5 min.  PCR product was electrophoresed in 

1xTAE buffer in a 1.5% agarose gel stained with SYBR® Safe DNA Gel Stain 

(Invitrogen). 

b) ica typing 

DNA extracts of the 31 S aureus isolates were run against icaA and icaD 

primers published by Vasudevan et al. (2003) [15].  The primers used for icaA 

and icaD typing were icaA forward was 5’- CCTAAC TAACGAAAG GTAG-

3’, icaA reverse 5’- AAGATATAGCGA TAAGTG C-3’; and icaD forward 

5’-AAACGTAAGAGAGGTGG-3’and icaD reverse 5’-

GGCAATATGATCAAGATAC-3’ respectively. Predicted band size for icaA 

was 1315bp with a Tm of 48°C and predicted band for icaD was 381bp with a 

Tm of 47°C.  PCR run cycle was 95°C for 5mins, 95°C for 45secs, Tm for 
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45secs, 72°C for 5mins (x30) and extension at 72°C for 5 mins.  PCR product 

was run in 1xTAE buffer in a 1.5% agarose gel stained with SYBR® Safe 

DNA Gel Stain (Invitrogen). 

c) mecA typing 

Detection of the mecA gene was carried out as described previously [16] using 

the following primers: mecA forward 5’-

AAAATCGATGGTAAAGGTTGGC-3’ and mecA reverse 5’- 

AGTTCTGCAGTACCGGATTTGC-3’.  Predicted band size was 533bp with a 

Tm of 52°C.  The PCR was run on a cycle of 94°C for 5mins, 95°C for 30secs, 

Tm for 30secs, 72°C for 60secs (x25) and extension at 72°C for 10 mins.  The 

PCR product was then electrophoresed in 1xTAE Buffer on a 1.5% agarose gel 

stained with SYBR® Safe DNA Gel Stain (Invitrogen). 

 

RESULTS 

Using the TCP method, 31 strains were assessed for biofilm production including 

one strong biofilm producing ATCC S aureus strain 29213. This method revealed 

that all human S aureus isolates were biofilm producers with 14 (45.2%), 15 (48.4%) 

and 2 (6.4%) strains showing strong, moderate and weak biofilms respectively (Table 

1).  Using the CRA method, colonies that are red or dark red in colour indicate 

negative biofilm production.  Colonies that stained black were labelled as biofilm 

producers.  Out of 31 strains including ATCC, 12 (38.7%) samples were positive 

with black colonies (biofilm producers) whereas 19 (61.3%) were negative for 

biofilm production with red colonies after 72hrs in a 37°C.  The ATCC S aureus 

strain 29213, an accredited strong biofilm producer, also displayed dark black 

colonies as anticipated. It was thus clear that the TCP method was better than the 

CRA method for detection of biofilm producers despite the observation of varying 

degrees of biofilm formation (Table 1).  
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Table 1.  Typing of human S aureus isolates  
 
Strain Number  CP5 CP8 icaA icaD  CRA TCP 
SA 1   − − − + − +/− 
SA 2   − + − + − + 
SA 3   + − − + + + 
SA 4   − + + + + + 
SA 5   − − + − + + 
SA 6   + − − + + + 
SA 7   + − + + − + 
SA 9   + − + + + ++ 
SA 11   − + + + − + 
SA 12   + − + + − +/− 
SA 13   − + + + − ++ 
SA 14   − + + + − + 
SA 15   − + + + − +/− 
SA16   − + + + − ++ 
SA 18   + − + + + ++ 
SA 19   + − + + − ++ 
SA 20   + − + + − + 
SA 21   + − + + − ++ 
SA 23   − − + + − + 
SA-H1    − − − − − + 
SA-H2   − − − − − + 
SA H3   − + + + + ++ 
SA H4   − + + + + + 
SA H5   − − − − + ++ 
SA H6   + − + + − ++ 
SA H7   + − + + + ++ 
SA H8   − + + + − + 
SA H9    − + + + + ++ 
SA H10   − + + + + ++ 
SA H11   − + + + − ++ 
SA H12   − + + + − + 
SA ATCC29213 + − + + + + 

 
 
*For CP typing, Ica typing and CRA, results listed as Negative (−) and positive (+)  
*For TCP method, results listed as Negative (−), weak (+/−), moderate (+) and strong 
positive (++) 
 
Using the CP typing method, 11/31 strains were CP5 positive (35.5%), 15/31 were 

CP8 positive (48.4%) with 5 strains being untypeable (16.1%) (Table 1).  Twenty-

three (23) of the 31 strains used in this study revealed possession of both icaA and 

icaD genes, which were either CP5 or CP8 positive. Nine (9) of the 23 icaA icaD 
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positive strains were moderate biofilm producers whereas 13/23 strains were strong 

biofilm producers. Out of the remaining 9 strains, one strain was positive for either 

icaA with the remaining 4 strains being positive for the icaD gene only.  Three S 

aureus strains that were all CP negative were also icaA and icaD negative (Table 1).  

Antibiotic sensitivity tests on the planktonic cultures of human S. aureus isolates 

revealed that they were all methicillin sensitive (MSSA) with similar results being 

obtained mecA gene typing (data not shown). However, when assessed for antibiotic 

susceptibility of S aureus isolated from the biofilms, 16 of these isolates had 

developed resistance towards TE 10, TEC 15, P 0.5, CIP 2.5, SXT 25, CL 100 and 

FOX 10 upon cultivation as biofilms (Table 2).   
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Table 2. Development of antibiotic resistance in MSSA strains in biofilms 

Antibiotic ↓, Strain → 

 

 
 

It was thus clear that a high rate of resistance to antibiotics developed when MSSA 

isolates were grown as biofilms.  To determine the persistence of antibiotic 

resistance, S aureus from biofilms were subcultured for 30 days and their antibiotic 

resistance profile determined at day 30 when it was discovered that the resistance to 

most antibiotics was maintained (Table 3) as judged by the fact the persistence of 

antibiotic resistance by 13/14 moderate to strong biofilm forming S aureus strains.  
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Table 3. Antibiotic resistance profile of S. aureus strains after 30 days of 
subculturing. 

 

 
 
SA denotes S. aureus   
 
 
 
Of the 16 strains that developed antibiotic resistance, 14 strains were either strong or 

moderate biofilm producers whereas two strains were weak biofilm formers 

indicating an excellent correlation between antibiotic resistance and biofilm 

production. On the other hand, 11/31 of human S. aureus biofilm producing isolates 

were encapsulated indicating a lack of correlation of the capsule with biofilm 

formation.  On the other hand, 23/31 MSSA strains that were icaA icaD positive 

(74%) were biofilm producers indicating a substantial but not absolute correlation 

with biofilm formation/production.  

Eleven of the 16 antibiotic resistant strains, 11 strains (68.75%) S aureus possessed 

both icaA and icaD genes, essential for production of PNAG [17], a potential 

contributor to biofilm formation, indicating a substantial relationship with antibiotic 

resistance.  Three of the 16 antibiotic resistant strains were CP negative, 7 CP5 
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positive and 6 CP8 positive indicating a lack of correlation of antibiotic resistance 

with encapsulation. One ica negative strain (SA-H2) that was classified as a 

moderate biofilm producer, developed resistance to benzylpenicillin 0.5ug (P 0.5) 

and cefoxitin 10ug (FOX 10). Of the 4 cefoxitin resistant strains, one was CP 

negative while the other three were CP5 positive.  All four strains were found to have 

retained their resistance to cefoxitin after 4 weeks of biofilm formation (Table 3).  

 

DISCUSSION 

The resistance of microbial biofilms towards antimicrobial reagents has been the 

subject of intense interest and yet little is known about the mechanisms of involved.  

Mah et al. (2001) [10] have suggested that maturity of the biofilm is a function of 

slow growth, stress response and quorum sensing.  While biofilms of the common 

opportunistic pathogens are widely distributed, the resistance mechanisms operating 

in biofilm formation appear to be distinct from those responsible for conventional 

antibiotic resistance. However, studies have also shown that biofilm bacteria that 

were once resistant can revert to sensitivity upon dispersion of the biofilm [18].  

Formation of biofilm is regulated by a single icaADBC operon, which produces the 

proteins IcaA, IcaD, IcaB and IcaC.  These proteins are involved in the production of 

the polysaccharide intercellular adhesion, poly-β-1,6-linked N-acetylglucosamine or 

PNAG, the major exopolysaccharide in the S aureus biofilm matrix.  The expression 

of icaA and icaD genes is of utmost importance in the activation of PNAG synthesis 

[17]. PNAG and is structurally and functionally similar to polysaccharide 

intercellular adhesion or PIA which is produced by Staphylococcus epidermidis [19]. 

PNAG is considered to be one of the key components of the cell surface that 

mediates bacterial adherence to host surfaces, enabling biofilm formation and 

protection [20].   Another component that enables S aureus to resist host defence 

systems is the production of a capsular polysaccharide or CP.  It is generally 

observed that bacteria that possess an extracellular CP are the “culprit” for invasive 

diseases [21].   This CP enables the bacteria to evade the host immune response by 
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resisting phagocytosis.  The two major serotypes expressed are serotypes 5 and 8 that 

account for approximately 25% to 50% of human isolates, respectively [21].    

Staphylococci, in particular S aureus, are frequent pathogens in hospital and 

community acquired settings [1].  This pathogen has emerged as a chronically 

infecting pathogen, which has demonstrated resistance to multiple antibiotics leading 

to strains that are methicillin resistant or MRSA [5].  In the US alone, it is estimated 

that up to 20% of patients undergoing surgery will acquire one or more nosocomial 

infections costing up to $10 billion [22].  Furthermore, the World Health 

Organization, (2001) [23] recently estimated that the overall prevalence of hospital-

associated infections in developed countries to be between 5.1% and 11.6%, with (a) 

more severe a burden in neonatal care, critical care and elderly patients who lack 

immune function as compared to the general population, and (b) higher rate of 

mortality in patients who develop septicaemia and pneumonia [23].  The rate of 

infection in developing countries was found to be several folds higher as compared to 

developed countries [23].   

S aureus possesses several immune evasion strategies such as production of 

leukocidal toxins in particular, capsular polysaccharides and Microbial Surface 

Components Recognizing Adhesive Matrix Molecules or MSCRAMM [24].  

However, one additional characteristic of importance is the ability of S aureus to 

form biofilms at the site of infection. In this investigation, we found that even 

approximately 50% of S aureus isolates that are methicillin-sensitive (MSSA) as 

planktonic cultures acquired resistance to one or more antibiotics upon biofilm 

formation confirming previous reports [10, 18].  However, we found that the biofilm-

associated acquired antibiotic resistance by the S aureus isolates persisted for 4 

weeks when grown as planktonic cultures, representing a matter of serious concern in 

the therapy of staphylococcal infections. While there was an association between 

biofilm formation and antibiotic resistance developed by MSSA strains as was 

apparent with all the 16 biofilm-producing S aureus strains, this association was not 

absolute with the persistence of the acquired antibiotic resistance warranting further 

investigations. It was interesting, however, that none of the MSSA strains used in 
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this study, that acquired resistance to cefoxitin (4/16) were originally resistant to 

cefoxitin, the antibiotic used in many pathology laboratories for determination of 

susceptibility to methicillin [25], with the remaining 12/16 (75%) strains displaying 

resistance to one or more other antibiotics.   

Notwithstanding the suggestion of using more than one method for assessment of 

biofilm formation of S aureus, the presented data prompts a recommendation that 

antibiotic susceptibilities of clinical S aureus isolates be determined from cultures of 

biofilm-associated S aureus developed in vitro, in addition to the planktonic cultures 

prepared directly from the infection site, for optimal therapeutic outcomes 

particularly for stubborn hospital and community acquired staphylococcal infections 

including those associated with biomaterial implants [26].  

Although there was a general trend of development of antibiotic resistance in S. 

aureus strains expressing both icaA and icaD genes, 75% (12/16) antibiotic resistant 

strains showing this trait, the correlation was not absolute The absence of 100% 

correlation of PIA/PNAG of S aureus with biofilm formation is not surprising given 

the reported participation of other virulence antigens in biofilm formation such as 

fibronectin-binding proteins, FnBPA and FnBPB [28], collagen-binding adhesion 

(cna) proteins and clumping factor (clfA) [29]. 

In summary, our findings suggest that there is no correlation between biofilm 

formation and encapsulation but there is substantial, although not absolute, 

association with PNAG confirms the need to continue identification and 

characterization of other polysaccharide and non-polysaccharide MSCRAMM 

participating in biofilm formation as is actively being pursued in some laboratories 

[4, 28, 29]. Our data also suggests that serious consideration should be given to 

determining antibiograms for S. aureus isolated from patients using both biofilms 

developed in vitro as well as planktonic cultures prepared from specimens taken 

directly from the site of infection for achievement of potentially better therapeutic 

outcomes.  

 

96 
 



Chapter 3 
Human methicillin-sensitive Staphylococcus aureus biofilms: Potential associations with antibiotic 

resistance persistence and surface polysaccharide 
 
Acknowledgements 

We like to acknowledge the support of the Research Performance Funds and 

technical support by Alain Delhaize of the School of Biomedical Sciences, CHIRI, 

Curtin University. Furthermore, there is no conflict of interest associated with this 

study. 

 

REFERENCES 

 

[1] Smith, K., Gould, K.A., Ramage, G., Gemmell, C.G. et al., 2010. Influence of 

tigecycline on expression of virulence factors in biofilm-associated cells of 

methicillin-resistant Staphylococcus aureus. Antimicrob. Agents and 

Chemother., 54, 380-387.  

[2] Moore, P.C.I., Lindsay, J.A., 2001. Genetic variation among hospital isolates 

of methicillin-sensitive Staphylococcus aureus: Evidence for horizontal 

transfer of virulence genes. J. Clin. Microbiol., 39, 2760-2767. 

[3] Jain, A., Agarwal, A., 2009. Biofilm production, a marker of pathogenic 

potential of colonizing and commensal staphylococci. J. Microbiol. 

Methods., 76, 88-92. 

[4] Vergara-Irigaray, M., Maira-Litrán, T., Merino, N., Pier, G.B., et al. 2008. 

Wall teichoic acids are dispensable for anchoring the PNAG 

exopolysaccharide to the Staphylococcus aureus cell surface. Microbiol., 154, 

865-877. 

[5] Foster, T.J., 2004. The Staphylococcus aureus “superbug”. J. Clin. 

Invest., 114, 1693–1696. 

[6] DeLeo, F.R., Otto, M., 2008. An antidote for Staphylococcus aureus 

pneumonia? J. Exp. Med., 205, 271-274. 

[7] Von Eiff, C., Maas, D., Sander, G., Friedrich, A.W., Peters, G., et al. 2008. 

Microbiological evaluation of a new growth-based approach for rapid 

97 
 

http://mic.sgmjournals.org/search?author1=Marta+Vergara-Irigaray&sortspec=date&submit=Submit
http://mic.sgmjournals.org/search?author1=Tomas+Maira-Litr%C3%A1n&sortspec=date&submit=Submit


Chapter 3 
Human methicillin-sensitive Staphylococcus aureus biofilms: Potential associations with antibiotic 

resistance persistence and surface polysaccharide 
 

detection of methicillin-resistant Staphylococcus aureus. J. Antimicrob. 

Chemoth., 61, 1277-1280. 

[8] Collignon, P., Nimmo, G.R., Gottlieb, T., Gosbell, I.B., 2005.  

Staphylococcus aureus bacteraemia, Australia. Emerg. Infect. Dis., 11, 554-

561. 

[9] Arciola, C.R., Campoccia, D., Gamberini, S., Cervellati, M., et al., 

2002. Detection of slime production by means of an optimised Congo red 

agar plate test based on a colourimetric scale in Staphylococcus 

epidermidis clinical isolates genotyped for ica locus. Biomaterials, 23, 4233-

4239. 

[10] Mah, T.F.C., O’Toole, G.A., 2001. Mechanisms of biofilm resistance to 

antimicrobial agents. Trends Microbiol.,  9, 34-39. 

[11] Patterson, J.L., Stull-Lane, A., Girerd, P.H. and Jefferson, K.K., 2010. 

Analysis of adherence, biofilm formation and cytotoxicity suggests a greater 

virulence potential of Gardnerella vaginalis relative to other bacterial 

vaginosis-associated anaerobes. Microbiol., 156, 392-399. 

[12] Christensen, G. D., Simpson, W.A., Younger, J.J., Baddour, L.M., et al. 1985. 

Adherence of coagulase-negative staphylococci to plastic tissue culture 

plates: a quantitative model for adherence of staphylococci to medical 

devices. J. Clin. Microbiol., 22, 996-1006. 

[13] Freeman, D.J., Falkiner, F.R., Keane, C.T., 1989. New method for detecting 

slime production by coagulase negative staphylococci. J. Clin. Pathol., 42, 

872-874. 

[14] Bell, S.M., Pham, J.N., Fisher, G.T., 2011.  Antibiotic Susceptibility Testing 

by the CDS Method: A Manual for Medical and Veterinary Laboratories. 

Fifth Edition. Available 

at: http://web.med.unsw.edu.au/cdstest/GTF_CDS_site/Files/Manuals/Earlier

Versions/CDS_Manual_5_Simplex.pdf. Accessed 30th November 2011.  

[15] Vasudevan, P., Nai, M.K.M., Annamalai, T., Venkitanarayanan, K.S., 2003. 

Phenotypic and genotypic characterization of bovine mastitis isolates of 

Staphylococcus aureus for biofilm formation. Vet. Microbiol., 92, 179-185. 

98 
 

http://web.med.unsw.edu.au/cdstest/GTF_CDS_site/Files/Manuals/EarlierVersions/CDS_Manual_5_Simplex.pdf.%20Accessed%2030th%20November%202011
http://web.med.unsw.edu.au/cdstest/GTF_CDS_site/Files/Manuals/EarlierVersions/CDS_Manual_5_Simplex.pdf.%20Accessed%2030th%20November%202011


Chapter 3 
Human methicillin-sensitive Staphylococcus aureus biofilms: Potential associations with antibiotic 

resistance persistence and surface polysaccharide 
 
[16] Mukarami, K., Minamide, W., Wada, K., Nakamura, E., et al. 1991. 

Identification of methicillin-resistant strains of Staphylococci by Polymerase 

Chain Reaction. J. Clin. Micro., 29, 2240-2244. 

[17] Otto, M., 2009. Staphylococcus epidermidis- the accidental pathogen. Nat. 

Rev. Microbiol., 7, 555-567. 

[18] Stewart, P.S., 2002. Mechanisms of antibiotic resistance in bacterial biofilms. 

Int. J. Med. Microbiol., 292, 107-113. 

[19] Lasa, I., 2006. Towards the identification of the common features of bacterial 

biofilm development. Int. Microbiol., 9, 21-28. 

[20] Sadovskaya, I., Faure, S., Watier, D., Leterme, D et al. 2007. Potential use of 

poly-N-acetyl-beta-(1,6)-glucosamine as an antigen for diagnosis of 

staphylococcal orthopedic-prosthesis-related infections. Clin. Vaccine 

Immunol., 14, 1609-1615. 

[21] O’Riordan, K., Lee, J.C., 2004. Staphylococcus aureus Capsular 

Polysaccharides. Clin. Microbiol., 17, 218-234 

[22] Brady, R.A., Leid, J.G., Camper, A.K., Costerton, J.W. et al. 2006. 

Identification of Staphylococcus aureus proteins recognized by the antibody-

mediated immune response to a biofilm infection. Infect. Immun., 3415-3426. 

[23] World Health Organization., 2001. The burden of health care-associated 

infection worldwide: A summary. Available 

at: http://www.who.int/gpsc/country_work/summary_20100430_en.pdf. 

Accessed 2nd December 2011. 

[24] Vancraeynest, D., Hermans, K. and Haesebrouck, F., 2004. Genotypic and 

phenotypic screening of high and low virulence Staphylococcus 

aureus isolates from rabbits for biofilm formation and MSCRAMM. Vet. 

Microbiol., 103, 241-247. 

[25] Fernandes, C.J., Fernandes, L.A., Collignon, P., 2005. Cefoxitin resistance as 

a surrogate marker for detection of methicillin-resistant Staphylococcus 

aureus. J. Antimicrob. Chemoth., 55, 506-510. 

[26] Nuryastuti, T., Krom, B.P., Aman, A.T., Busscher, H.J., et al. 2001. Ica-

expression and gentamicin susceptibility of Staphylococcus epidermidis 

99 
 

http://www.ncbi.nlm.nih.gov/pubmed?term=
http://www.ncbi.nlm.nih.gov/pubmed?term=
http://www.ncbi.nlm.nih.gov/pubmed?term=
http://www.who.int/gpsc/country_work/summary_20100430_en.pdf.%20Accessed%202nd%20December%202011
http://www.who.int/gpsc/country_work/summary_20100430_en.pdf.%20Accessed%202nd%20December%202011


Chapter 3 
Human methicillin-sensitive Staphylococcus aureus biofilms: Potential associations with antibiotic 

resistance persistence and surface polysaccharide 
 

biofilm on orthopaedic implant biomaterials.  J. Biomed. Mater. Res. Part 

A., 96, 365-371. 

[27] Crampton, S. E., Gerke, C., Schnell, N. F., Nichols, W. W., et al. 1999. The 

intracellular adhesion (ica) locus is present in Staphylococcus aureus and is 

required for biofilm formation. Infect. Immun., 67, 5247-5433. 

[28] O’Neill, E., Pozzi, C., Houston, P., Humphreys, H., et al. 2008. A novel 

Staphylococcus aureus biofilm phenotype mediated by fibronectin-binding 

proteins, FnBPA and FnBPB. J. Bact., 190, 3835-3850. 

[29] Bekir, K., Haddad, O., Grissa, M., Chaib, K., et al. 2012. Molecular detection 

of adhesin genes and biofilm formation in methicillin resistant 

Staphylococcus aureus. African. J. Microbiol. Res., 6, 4908-4917. 

 

100 
 



 

 

 

Chapter 4 

 

Waryah CB, Gogoi-Tiwari J, Wells K, Costantino P, Al-

Salami H, Sunagar R, Isloor S, Hegde N, Richmond P & 

Mukkur T (2014) Serological versus molecular typing of 

surface-associated immune evading polysaccharide antigens - 

based phenotypes of Staphylococcus aureus. J Med Microbiol, 

Nov 63(Pt 11):1427-31. Impact factor of 2.266 

 

An original reprint of this publication is available in the 

Appendix 

 

101 
 



Chapter 4 
Serological vs molecular typing of surface-associated immune evading polysaccharide antigens – 

based phenotypes of Staphylococcus aureus 
 

 

Serological versus molecular typing of surface-

associated immune evading polysaccharide antigens 

– based phenotypes of Staphylococcus aureus 

 
Charlene Babra Waryah1, Jully Gogoi-Tiwari1, Kelsi Wells1, Paul Costantino1, 

Hani Al-Salami2, Raju Sunagar3, Shrikrishna Isloor3, Nagendra Hegde4, Peter 

Richmond5, and Trilochan Mukkur1* 

 
1Schools of Biomedical Sciences and 2School of Pharmacy, Faculty of Health 

Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, 

Perth, Western Australia 6102 
3Department of Veterinary Microbiology, Karnataka Veterinary, Animal and 

Fisheries Sciences University, Hebbal, Bengaluru 560024, Karnataka, India 
4Ella Foundation, Genome Valley, Turkapally, Shameerpet Mandal, Hyderabad 

500078, Andhra Pradesh, India 
5School of Paediatrics and Child Health, University of Western Australia, Crawley, 

Western Australia 6009 

 

Running title: Surface-associated polysaccharide antigens of S. aureus 

____________________________________________________________________

Key Words: Capsular polysaccharides, Polysaccharide antigen 336, Staphylococcus 

aureus, Serological typing, Genotyping, Capsular staining 

*Corresponding author: Trilochan Mukkur, T.Mukkur@curtin.edu.au  

102 
 



Chapter 4 
Serological vs molecular typing of surface-associated immune evading polysaccharide antigens – 

based phenotypes of Staphylococcus aureus 
 
ABSTRACT 

Aim of this study was to compare the performance of serological versus molecular 

typing methods to detect capsular polysaccharide (CP) and surface-associated 

polysaccharide antigen 336 phenotypes of Staphylococcus aureus isolates. Molecular 

typing of CP types 1, 5 and 8 was carried out using PCR whereas serological typing 

of CP1, 2, 5, 8 and antigen 336 was carried out by slide agglutination using specific 

antisera. By genotyping, 14/31 strains were CP8 positive, 12/31 strains were CP5 and 

the remaining 6/31 isolates were non-typeable (NT). One isolate was positive for 

both CP5 and CP8 by PCR but was confirmed as CP8 type serologically. Detection 

of CP2 and type 336 by PCR was not possible because specific primers were either 

not available or were non-specific. Using serotyping, 14/31 strains were CP8 

positive, 11/31 CP5 positive and 2/31 positive for antigen 336. The remaining four S. 

aureus isolates were serologically NT. However, three of 4 NT and two 336-positive 

S. aureus isolates were encapsulated as determined by light microscopy after 

capsular staining. This discovery was surprising and warrants further investigations 

on the identification and characterisation of additional capsular phenotypes prevalent 

among S. aureus clinical isolates. It was concluded that serological typing was a 

better method than molecular typing method for use in epidemiological 

investigations based upon the distribution of surface-associated polysaccharide 

antigens-based phenotypes. 

 

INTRODUCTION 

Staphylococcus aureus is an important human pathogen causing a broad range of 

infectious diseases facilitated by its ability to asymptomatically colonize healthy 

individuals (Daum & Spellberg, 2012; Foster, 2004). The most common conditions 

associated with this pathogen include wound infections, boils, carbuncles and 

impetigo, which typically follow abrasions of the skin or mucosal surfaces.   The 

organism can further invade the body or be introduced through medical devices, 

resulting in systematic infections ranging from osteomyelitis and pneumonia to 

septicaemia, meningitis and endocarditis (O’Riordan & Lee, 2004; Tzianabos et al., 
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2001). Staphylococcus aureus is also a common pathogen of immuno-compromised 

patients and a leading nosocomial pathogen in nursing homes, neonatal care and 

intensive care units (Ohlsen & Lorenz, 2010). 

Staphylococcus aureus produces several virulence factors, among which the capsular 

polysaccharides (CP), which are anti-phagocytic (Sutter et al., 2011), have been 

widely used as vaccine targets (O’Riordan & Lee, 2004; Robbins et al., 2004).  

Initial studies, using agglutination tests, reported the existence of 11 CP types based 

on serological specificity (Sompolinsky et al., 1985; Karakawa et al., 1988). 

However, studies carried out later reported the existence of only four capsular types, 

1, 2, 5 and 8, with the remaining types representing mutated forms of one or more of 

the CP types (O’Riordan & Lee, 2004, Fattom et al., 1998). Many previous studies 

reported majority of human S. aureus strains (70-80%) to possess either CP5 and/ or 

CP8 (Skurnik et al., 2010; Roghman et al., 2005; Verdier et al., 2007), which 

underpinned the rationale of targeting these two predominant types for the 

development of conjugate vaccines against infections caused by S. aureus. 

Staphylococcus aureus strains that harboured the capsule locus for CP5 or CP8, but 

were non-typeable by serological methods for CP1, 2, 5, and 8, were labelled as 

serotype 336, a surface-associated polysaccharide antigen that is a variant of S. 

aureus cell wall teichoic acid (Sutter et al., 2011). 

The aim of this study was to compare the performance of serological versus 

molecular typing methods in determining the distribution of different surface-

associated capsular and the somatic polysaccharide 336 phenotypes of S. aureus 

isolated from Western Australians. 
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METHODS 

Collection of isolates 

A total of 31 S. aureus isolates were used in this investigation. Nineteen of these 

isolates were obtained from Royal Perth Hospital and Queen Elizabeth II Hospital in 

Perth, Western Australia and 12 isolates collected from undergraduate laboratory 

medicine students in the School of Biomedical Sciences, Curtin University, Perth, 

Western Australia (Human Ethics approval Number SoBS 04/11). Positive controls 

used in this investigation were S. aureus Strain M (CP1), Smith Diffuse (CP2), Strain 

Newman (CP5), USA 400 (CP8), LAC USA 300 (CP negative) and an antigen 336 

positive ATCC S. aureus strain, 55804. 

 

DNA extraction 

Prior to use, the strains were freshly cultured in nutrient broth (PathWest media) with 

a cryobead followed by incubation overnight in a shaking incubator at 37°C.  DNA 

was extracted using a commercial kit (MO-Bio) and stored at -20°C.  All extracts 

were thawed on ice prior to genotyping using PCR. 

 

Genotyping of CP types 

The PCR primers (Geneworks) used in this study are shown in Table 1.  PCR 

parameters for cap1 and cap2 were as follows: 94°C for 5min (initial denaturation), 

then 25 cycles of 94°C for 30sec (denaturation), Tm for 30sec (annealing) and 72°C 

for 60sec (extension) and 72°C for 5min (final extension).  PCR parameters for cap5 

and cap8 were the same as described previously (Babra et al., 2013). 
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Table 1: PCR primers used for capsular polysaccharide typing  

Target 
gene 

Forward Primer  
(5’-3’) 

Reverse Primer  
(5’-3’) 

Tm Expected 
size (bp) 

Reference 

cap1 
 

AGG TCT GCT 
AAT TAG TGC AA 

GAA CCC AGT 
ACA GGT ATC 
ACC A 
 

570C 550 (Gogoi-
Tiwari et al, 
unpublished) 
 

cap2 
 

AGC AAT CTT 
CGG TTA TTG 
CCG GTG 

ATG ACG GTA 
AGG CAT CAA 
GGT CG 

600C 731 (Gogoi-
Tiwari et al, 
unpublished) 
 

cap5 
 

ATG ACG ATG 
AGG ATA GCG 
 

CTC GGA TAA 
CAC CTG TTG C 

540C 881 (12) 

cap8 
 

ATG ACG ATG 
AGG ATA GCG 

CAC CTA ACA 
TAA GGC AAG 

520C 1148 (12) 

 

PCR products were separated on a 1.5% agarose gel in 1xTAE buffer and the gel 

stained with Midori Green 0.8μL/100mL (Nippon Genetics).  The positive controls 

used for the PCR were Strain M (CP1), Smith Diffuse (CP2), Strain Newman (CP5), 

USA 400 (CP8) and the negative control, LAC USA 300. 

 

CP Serotyping 

Serotyping was carried out using an agglutination test as described elsewhere 

(Verdier et al., 2007). CP-specific antisera were raised in specific pathogen-free 

Quackenbush mice, against CP1, CP2, CP5, CP8 and antigen 336 as described 

according to Gogoi-Tiwari et al (unpublished). Briefly, mice were immunized with S. 

aureus strains M (CP1), Smith Diffuse (CP2), Newman (CP5), USA MW2 (CP8), 

USA LAC 300 (CP-negative) and ATCC 55804 (336) using the following 

immunization schedule:  The first three doses were administered at days 0, 7, 14 and 

21.   Each dose (0.2 mL per mouse subcutaneous) consisted of formalin-killed S. 

aureus without an adjuvant (5x107 CFU, 1x108 CFU and 5x108 at days 0, 7, 14 and 

21, respectively). The 4th and 5th doses contained 1x109 CFU and 5x109 CFU, 

respectively, mixed equally with the Imject Alum Adjuvant (Thermo Scientific). 
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Non-specific reactivity of the typing sera was eliminated by cross-absorption with 

appropriate S. aureus cells of different serotypes including the accredited antigen 

336-strain (ATCC 55804). 

 

Microscopic detection of capsules 

The capsules were stained using a modified Maneval’s method (Maneval, 1941; 

Engelkirk & Duben-Engelkirk, 2008).  Briefly, the modified method involved 

scraping of biofilm-associated cells, which were spun down at 6,000 rpm for 2 

minutes and the bacterial pellet washed once with 1xPBS. Cells were then suspended 

in a solution of 5% sucrose and centrifuged at 6,000rpm for 2 minutes. Supernatant 

was removed and the pellet was suspended once more in 5% sucrose. Cells were 

centrifuged at 9,000rpm for 2 minutes and supernatant was removed to obtain as 

much pellet as possible. Cells in the pellet was gently emulsified in a drop of 1% 

Congo red on a clean microscope slide and air-dried. The slide was then flooded with 

Muir’s Mordant (also known as Maneval’s stain) and left to stand for 2 minutes 

before rinsing gently with tap water. The slide was then blot-dried using clean filter 

paper and viewed using an oil immersion objective (1000x magnification). 

 

RESULTS AND DISCUSSION 

Summary of results obtained using genotyping versus serotyping methods is shown 

in Table 2.  Both genotyping and serotyping methods revealed that none of the 

strains were positive for CP1. Serotyping was the only effective method for the 

detection of CP2-postive S. aureus strains because the designed primers for cap2 

were non-specific and cross-reacted with the positive control strains for cap5, cap8 

and cap1, producing 731bp amplicons (data not shown). However, none of the 

strains were found to be CP2-positive by serology.  Genotyping for cap5 identified 

12/31 strains (37.5%) to be positive, while one strain produced amplicons of 

respective expected sizes for both cap5 and cap8 (Table 2). Serologically, however, 
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this strain agglutinated only with anti-CP8 serum. Both the genotyping and 

serotyping results were in agreement for CP8, where 14/31 (43.75%) of the isolates 

were positive.  As primers for type 336 were not available, genotyping for antigen 

336 could not be carried out at this time. Using PCR, 6/31 (19.35%) of the isolates 

were regarded as NT isolates.  Two of the 6 NT strains, or 2/31 (6.25%) of the total 

isolates that were non-typeable either by genotyping or serotyping, were found to be 

antigen 336-positive by serotyping. Taken together, a total of 4/31 strains or 12.9% 

were regarded as being non-typeable. 
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Table 2: Summary of genotyping and serotyping results 
 

Capsular type Number (and percentage) of isolates 
 Detection by PCR  
CP1 0 (0%) 
CP2 NA* 
CP5 12** (37.5%) 
CP8 14 (43.75%) 
336 PNA*** 
NT 6 (19.35%) 
 Detection by serology 
CP1 0 (0%) 
CP2 0 (0%) 
CP5 11 (35.5%) 
CP8 14 (43.75%) 
336 2 (6.45%) 
NT 4 (12.9%) 
 Detection by staining 
Positive reference 
strains M (CP1), 
Smith Diffuse (CP2), 
Newman (CP5) and 
MW2 (CP8) 
 
Negative reference 
strain US LAC 300 
 
CP5 and CP8 
seropositive isolates 
 

 
Capsule visible on all the strains 
 
 
 
 
No capsule visible 
 
 
Capsule visible on 26 out of 26 
 

Non-typeable No capsule visible on 1 out of 4 
Capsule visible on 3 out of 4 
 

336 positive Capsule visible on 2 out of 2 
  

 

*Not applicable – the primers produced non-specific bands with positive controls for cap1, 

cap5 and cap8 besides cap2; **Includes one strain that showed positive for both CP5 and 

CP8 by genotyping however confirmed to be CP8 by serotyping; ***Primers not available 

 

All of the strains were then subjected to capsular staining. The bacterial cell stained 

red/purple against a dark background with the capsules appearing as unstained white 
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halos.  Strain USA LAC 300 (CP negative) and one of our test isolates, H7, which 

was positive for CP5 by genotyping  (Babra et al., 2013) and serotyping (this study), 

were used as negative and positive controls respectively (Figures 1 and 2).   All of 

the cap8 positive isolates were found to have a capsule as did all the cap5 positive 

isolates including one strain that was positive for both CP5 and CP8 by PCR but was 

CP8 positive by serology. Quite surprisingly, it was discovered that 3 of the 4 NT 

isolates were also encapsulated when subjected to capsular staining (Figure 3). 

 

 

Fig 1: Negative control (USA LAC 300) S. aureus isolate stained with modified 

Maneval’s staining method (1000 x magnification). 
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Fig 2:  Positive CP control S. aureus isolate (H7) stained with modified Maneval’s 

capsule staining method (x1000 magnification). 
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Fig 3: A non-typeable CP isolate of S. aureus strain negative (by genotyping and 

serotyping) displays a capsule using modified Maneval’s capsule staining method 

(x1000 magnification).  
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Staphylococcus aureus is the cause of multiple disease syndromes in both 

community and hospital settings.  A well-known and established key factor in its 

virulence is the production of a capsule (Englekirk & Duben-Engelkirk, 2008), an 

important immune evasion molecule of S. aureus (Nanra et al., 2012). As such it has 

been used as a target for vaccine development and evaluated as a key component of 

conjugate vaccines in pre-clinical models as well as in human trials (Nanra et al., 

2012; Pozzi et al., 2012). 

Our study has shown that capsular phenotypes 5 and 8 were the predominant 

capsular phenotypes among the Western Australian S. aureus isolates included in this 

investigation. However, we found that serological typing using slide agglutination 

was better for determining capsular phenotype than the genotyping method because 

of the lack of availability of specific primers for detection of CP2 and antigen 336. 

Serologically, 81.5% of the total S. aureus isolates were comprised of CP8 (43.74%) 

and CP5 (37.5%), confirming previous reports from select other countries 

(Roghmann et al., 2005; Verdier et al., 2007; Skurnik et al., 2010), the remaining 

isolates being either antigen 336-positive or non-typeable. 

 Sompolinsky et al. (1985) performed capsular typing of S. aureus isolated from 

human infections for the 11 capsular serotypes by precipitation and agglutination 

with specific antisera. This research group reported that 63% of their isolates were 

type 8, 16% were type 5, 2% were type 7 and 0.3% were type 10, with more than 

90% of total isolates being encapsulated. The remaining 10% of the encapsulated 

isolates were not identified as belonging to the 11 known capsular types, which may 

represent a prototype capsule that is different from the accepted 11 serotypes 

(Sompolinsky et al., 1985). This is in contrast to the previous report that the lack of 

expression of a capsule by NT strains was due to random point mutations in the 

CP5A promoter or replacement by the insertion sequence IS257 (Cocchiaro et al., 

2006). Our study demonstrated the existence of more serotypes than just the four 

capsular types [CP1, 2, 5, 8] and also raises a question on the validity of the antigen 

336 as a somatic non-capsular antigen. 
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Given that most vaccines have employed surface-associated polysaccharide antigens 

particularly CP5 and CP8, conjugated with one or more potential adhesins such as 

alpha toxin, ClfB and IsdB  (Pozzi et al., 2012), coupled with the fact that no 

protection is expected to be imparted against infections caused by NT S. aureus, it is 

important to gain knowledge on the nature of the antigens unique to NT isolates, 

including new capsular antigens/phenotypes, for the formulation of an improved 

vaccine against S. aureus. Our study has highlighted the potential importance 

determining the prevalence of not only the major capsular serotypes, CP5 and CP8, 

of S. aureus but also of other antigens particularly antigen 336. The fact that 75% of 

the NT S. aureus strains and the antigen 336-positive strain were also encapsulated, 

even by light microscopy, warrants further investigations on the identification of 

additional capsular types present among the NT isolates for complete 

epidemiological investigations and formulation of appropriate conjugate vaccines.  
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ABSTRACT 

An extensive array of virulence factors associated with S. aureus has contributed 

significantly to its success as a major nosocomial pathogen in hospitals and 

community causing variety of infections in affected patients.  Virulence factors 

produced by this opportunistic pathogen include immune evading polysaccharides 

such as capsular polysaccharides, poly-N-acetyl glucosamine and teichoic acid in 

addition to damaging toxins including haemolytic toxins, enterotoxins, cytotoxins, 

exfoliative toxin and microbial surface-associated components recognizing adhesive 

matrix molecules (MSCRAMM). In this investigation, 31 West Australian S. aureus 

isolates of human origin and 6 controls were analyzed for relative distribution of 

virulence-associated genes using PCR and/or an immunoassay kit, and MSCRAMM 

by PCR-based typing. Genes encoding protein MSCRAMM viz.,  Spa, ClfA, ClfB, 

SdrE, SdrD, IsdA and IsdB were detected >90% of the isolates.  Gene encoding α-

toxin was detected in >90% of the isolates whereas genes encoding β-toxin and SEG 

were detectable in 50 - 60% of the isolates. Genes encoding the toxin proteins 

viz.,,SEA, SEB, SEC, SED, SEE, SEH, SEI, SEJ, TSST, PVL, ETA and ETB were 

detectable in >50% of the isolates. Use of RAPD-PCR for determining the virulence 

factor-based genetic relatedness among the isolates revealed five cluster groups 

confirming genetic diversity among the MSSA isolates.  

1. Introduction 

Staphylococcus aureus is a frequent opportunistic pathogen known to cause a wide 

variety of diseases ranging from skin infections, such as boils and carbuncles to more 

serious infections such as toxic shock syndrome, endocarditis, pneumonia and sepsis  

[1-4].  This has led to the emergence of S. aureus as a common cause of hospital 

acquired and community acquired infections [5, 6].  

 

The pathogenesis of S. aureus is attributed to several virulence factors including 

biofilm formation and associated prolonged persistence of antibiotic resistance, and 

the production of a wide array of toxins [5, 7].  A biofilm or slime, defined as a 
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congregation of microorganisms residing in a protective extracellular matrix [8, 9], 

constitutes the first step in initial attachment followed by colonization and 

subsequent infection.  Colonization is commonly associated with an assortment of 

adherence factors or adhesins which aid bacterial attachment to the host surface 

using microbial surface component recognizing adhesive matrix molecules 

(MSCRAMM).  Over 20 different MSCRAMM, which can be expressed in S. 

aureus, have been identified [10]. Major protein adhesins in this group include 

biofilm-associated protein (Bap), clumping factors A and B (ClfA, ClfB), fibronectin 

binding proteins A and B (FnBPA, FnBPB), collagen-binding protein (Cna), bone 

sialoprotein binding protein (Bbp), iron regulated surface determinant A and B 

(IsdA, IsdB), serine aspartate repeat gene proteins D and E (SdrD, SdrE) and Protein 

A (Spa) [11-14].  Following adherence, the biofilm is further strengthened by an 

intracellular adhesin encoded by the ica operon (icaA, icaB, icaC and icaD genes) 

which produce the cell surface polysaccharide poly-N-acetyl β-1-6 glucosamine 

(PNAG) and another antigen 336, a derivative of cell wall teichoic acid [13, 15, 16].  

A strong relationship between PNAG and biofilm formation, although not absolute, 

was previously reported [8, 17].  

 

In addition to the possession of MSCRAMM, S. aureus also produces a range of 

exotoxins that aid in host tissue membrane disruption providing nutrients essential 

for bacterial cell growth [18, 19] with some also contributing to biofilm formation.  

Exotoxins produced include cytotoxins, Panton Valentine leucocidin (PVL) and 

haemolysins (α, β, γ), which possess the ability to form pores in host cells enabling 

lysis [20, 21]. Additional toxins encoded for and/or produced include toxic shock 

syndrome toxin (TSST-1) and the staphylococcal enterotoxins or SE (SEA-SEE, 

SEG-SEJ), some of which are best characterized as super-antigens in reference to 

their ability to activate the proliferation of T-cells leading to release of increasing 

levels of pro-inflammatory cytokines [22, 23]. These also include the rare and 

virulent exfoliative toxins ETA and ETB [24].  
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The increasing trend towards development of persistent antibiotic resistance 

improves the ability of this pathogen to resist treatment with antibiotics [5, 25] a 

fundamental feature in the development of chronic infections. Aim of this study was 

to determine the diversity of distribution of the major MSCRAMM and toxins among 

the West Australian S. aureus isolates of human origin, using serological and/or 

genotypic analysis and determine their genetic relatedness.  

 

2. Materials and Methods  

2.1 Collection of strains 

A total of 19 human S. aureus strains donated by different clinical pathology 

laboratories to the School of Biomedical Sciences in West Australia were kindly 

donated by Mr Alain Delhaize, Senior Technical Manager, responsible for managing 

this collection. The remaining 12 S. aureus isolates were collected from the 

laboratory medicine students enrolled in Medical Microbiology (Human Ethics 

approval Number SoBS 04/11) and 5 accredited capsular (CP) positive or negative 

control strains were kindly provided by Professor Gerald Pier, Channing Laboratory, 

Brigham and Women's Hospital.  The 5 accredited CP positive or negative control 

strains used in this investigation included Strain M (CP1), Smith Diffuse (CP2), 

Strain Newman (CP5), USA 400 (CP8) and LAC USA 300 (CP neg).  The 6th control 

strain was ATCC® 29213™, a strong biofilm former.  All strains were subjected to 

preliminary microbiological testing to confirm S. aureus [26] and methicillin-

sensitivity (MSSA) as described elsewhere [5].  All S. aureus strains were stored at -

80°C on cryobeads (Blackaby Diagnostic Pty Ltd, WA) for future studies.   Positive 

ATCC toxin typing controls used in this study were ATCC® 13565™ for β-

hemolysin, ATCC® 49775™ for PVL and γ-hemolysin, ATCC® 51651™ for TSST-

1 and ATCC® 8096™ for α-hemolysin.   
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2.2 Bacterial strain growth 

Pure colonies of S. aureus strains were inoculated in sterile nutrient broth dispensed 

in McCartney vials and incubated at 37°C for 24hrs in a shaker incubator.  

2.3 DNA extraction 

All strains were subjected to DNA extraction using the Mo-Bio DNA Extraction kit 

(MO BIO Laboratories, Inc Carlsbad, CA). All extracts were stored at −20 °C until 

used.  

2.4 Detection of genes encoding PVL and mecA  

Utilization of the GenoType® MRSA assay (Hain-Lifesciences) was used for 

detection of PVL and the presence of methicillin resistance.  Briefly, DNA was 

isolated from cultured media and amplified with biotinylated primers.   The 

amplified product was bound using a DNA strip technology that permitted visual 

identification of the presence of mecA and PVL genes in S. aureus.   

2.5 Detection of S. aureus enterotoxins  

A SET-RPLA Toxin Detection kit purchased from Themo-Fisher Scientific Australia 

was used to serologically type SEA, SEB, SEC and SED. Briefly, latex sensitized 

with a combination of anti-enterotoxin A-D types serially diluted and added to the 

bacterial suspension.   After 24hr incubation at room temperature, each well was 

observed for agglutination, which indicated the presence of enterotoxins. 

2.6 Genotyping of S. aureus strains 

Determination of the presence of enterotoxins, mentioned in section 3.5, was further 

confirmed by genotyping. Because the scope of detection of the exotoxins produced 

by the S. aureus isolates was limited because of the lack of availability of serological 

kits, the presence of a number of other toxins, described below, was carried out by 

genotyping. 

 

123 
 



Chapter 5  
Diversity of Virulence Factors Associated with Western Australia Methicillin-Sensitive 

Staphylococcus aureus Isolates of Human Origin 
 
The primers used in this investigation with their respective melting temperature 

(Tm), band size and references are shown in Table 1. Briefly, the conditions used for 

detection of different virulence factors were as follows: 

 

Amplification of tsst-1, clfA, clfB, cna and spa was performed at 95°C for 5 min, 30 

cycles of 95°C for 30 sec, Tm for 30 sec and 72°C for 45 sec with a final extension 

of 72°C for 10min.    

Amplification of fnBpA, fnBpB, hlb, sdrE, bbp, isdA and sdrD and sdrE genes was 

performed at 95°C for 5 min, 35 cycles of 95°C for 30 sec, Tm for 30 sec and 72°C 

for 45 sec with a final extension of 72°C for 10min. Primers for isdB were developed 

in this study and amplified with the following conditions at 35 cycles of 95°C for 30 

sec, Tm for 1min and 72°C for 2 min with a final extension of 72°C for 10min. 

 

Amplification of hla genes was performed at 95°C for 5 min, 38 cycles of 95°C for 

30 sec, Tm for 30 sec and 72°C for 45 sec with a final extension of 72°C for 10min.  

While amplification of sea, seb, sec, sed, see, seg, seh, sei and sej was performed at 

95°C for 5 min, 30 cycles of 95°C for 2 min, Tm for 1 min and 72°C for 1 min with a 

final extension of 72°C for 5min, amplification of eta and etb were performed at 

95°C for 5 min, 30 cycles of 95°C for 1 min, 58°C for 1 min and 72°C for 1 min with 

a final extension of 72°C for 10min. Amplification of hlb was performed at 95°C for 

5 min, 35 cycles of 95°C for 45 sec, Tm for 45 sec and 72°C for 1 min with a final 

extension at 72°C for 10min.  
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Table 1. Primers used for detection of exotoxins and MSCRAMM using 

conventional PCR  

Proteins targeted Primer 
Forward  
(5’-3’) 

Primer 
Reverse 
(5’-3’) 

Tm Expected 
band 
size (bp) 

Reference 

Cna 
Collagen binding 
protein 

AAA GCG 
TTG CCT 
AGT GGA 
GA 

AGT GCC 
TTC CCA 
AAC CTT 
TT 

50°C 192 [2] 

ClfA 
Clumping factor A 

CGC CGG 
TAA CTG 
GTG AAG 
CT 

TGC TCT 
CAT TCT 
AGG 
CGC ACT 
T 

55°C 314 [27] 

ClfB 
Clumping factor B 

ATG ATC 
TTG CTT 
GCG TT 

CCG ATT 
CAA 
GAG TTA 
CAC C 

47°C 215  [27]  

Spa 
Protein A 

TCA AGC 
ACC AAA 
AGA GGA 
AGA 

GTT TAA 
CGA CAT 
GTA CTC 
CGT TG 

51°C Variable [28] 

FnBPA 
Fibronectin binding 
protein A 

GCG GAG 
ATC AAA 
GAC AA 

CCA TCT 
ATA GCT 
GTG TGG 

48°C 1279 [29] 

FnBPB 
Fibronectin binding 
protein B 

GGA GAA 
GGA ATT 
AAG GCG 

GCC GTC 
GCC TTG 
AGC GT 

56°C 820 [29] 

Bbp 
Bone sialoprotein 
binding protein 

AAC TAC 
ATC TAG 
TAC TCA 
ACA ACA 
G 

ATG TGC 
TTG AAT 
AAC 
ACC ATC 
ATC T 

53°C 575 [30] 

IsdA 
Iron regulated 
surface determinant 
A 

CTG CGT 
CAG CTA 
ATG TAG 
GA 

TGG CTC 
TTC AGA 
GAA 
GTC AC 

52°C 332 [25] 

IsdB 
Iron regulated 
surface determinant 
B 

ACG AGA 
GTT TGG 
TGC GCT 
AT 

GTT GAG 
GCC CCT 
ACT TCT 
GA 

55°C 192 This study 

SdrD 
Serine aspartate 
repeat gene D 

CGG AGC 
TGG TCA 
AGA AGT 

TGC CAT 
CTG CGT 
CTG TTG 

52.3°C 500 [25] 
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AT TA 
SdrE 
Serine aspartate 
repeat gene E 

AGA AAG 
TAT ACT 
GTA GGA 
ACT G 

GAT GGT 
TTT GTA 
GTT ACA 
TCG T 

50°C 433 [31] 

TSST-1 
Toxic shock 
syndrome toxin 

ACC CCT 
GTT CCC 
TTA TCA 
TC 

TTT TCA 
GTA TTT 
GTA 
ACG CC 

53°C 326 [32] 

ETA 
Exfoliative toxin A 

GCA GGT 
GTT GAT 
TTA GCA 
TT 

AGA TGT 
CCC TAT 
TTT TGC 
TG 

58°C 93 [33] 

ETB 
Exfoliative toxin B 

ACA AGC 
AAA AGA 
ATA CAG 
CG 

GTT TTT 
GGC TGC 
TTC TCT 
TG 

58°C 226 [33] 

Hla 
Alpha toxin 

GTA CTA 
CAG ATA 
TTG GAA 
GC 

GTA ATC 
AGA TAT 
TTG AGC 
TAC 

47°C 274 [34] 

Hlb 
Beta toxin 

GCC AAA 
GCC GAA 
TCT AAG 

CGC ATA 
TAC ATC 
CCA TGG 
C 

51°C 840 [29] 

SEA 
Staphylococcal 
enterotoxin A 

TTG GAA 
ACG GTT 
AAA ACG 
AA 

GAA CCT 
TCC CAT 
CAA 
AAA CA 

50°C 120 [35] 

SEB 
Staphylococcal 
enterotoxin B 

TCG CAT 
CAA ACT 
GAC AAA 
CG 

GCA 
GGT ACT 
CTA TAA 
GTG CC 

50°C 478 [35] 

SEC 
Staphylococcal 
enterotoxin C 

GAC ATA 
AAA GCT 
AGG AAT 
TT  

AAA 
TCG GAT 
TAA CAT 
TATA CC  

50°C 257 [35] 

SED 
Staphylococcal 
enterotoxin D 

CTA GTT 
TGG TAA 
TAT CTC 
CT 

TAA TGC 
TAT ATC 
TTA TAG 
GG 

50°C 317 [35] 

SEE 
Staphylococcal 
enterotoxin E 

AGG TTT 
TTT CAC 
AGG TCA 
TCC 

CTT TTT 
TTT CTT 
CGG TCA 
ATC 

50°C 209 [35] 

SEG AAG TAG AGA 55°C 287 [35] 
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Staphylococcal 
enterotoxin G 

ACA TTT 
TTG GCG 
TTC C 

ACC ATC 
AAA CTC 
GTA TAG 
C 

SEH 
Staphylococcal 
enterotoxin H 

GTC TAT 
ATG GAG 
GTA CAA 
CAC T 

GAC CTT 
TAC TTA 
TTT CGC 
TGT C 

48.4°C 213 [35] 

SEI 
Staphylococcal 
enterotoxin I 

GGT GAT 
ATT GGT 
GTA GGT 
AAC 

ATC CAT 
ATT CTT 
TGC CTT 
TAC CAG 

50°C 454 [35] 

SEJ 
Staphylococcal 
enterotoxin J 

CAT CAG 
AAC TGT 
TGT TCC 
GCT AG 

TGA ATT 
TTA CCA 
TCA 
AAG 
GTA C 

50°C 142 [35] 

 

All PCR products were subjected to electrophoresis on a 1.5% agarose gel and 

stained with 0.8uL/100mL of Midori Green DNA Stain (Nippon Genetics) in a 1x 

Sodium Borate Buffer (1x SB Buffer).   An O'RangeRuler DNA Ladder, 100-1500 

bp, (Fermentas) was used to observe approximate band sizes on the gel which was 

visualised on a UV transilluminator. 

3.7 RAPD analysis  

Three sequence primers, previously published were used for RAPD-PCR test to 

provide more information on clinical, student and control strains used in this study 

[36].  Primer C (5′-AGGGAACGAG-3′), OPA9 (5′-GGGTAACGCC-3′) and OPA13 

(5′-CAGCACCCAC-3′) were used to amplify using 1 cycle of 94 °C for 60sec, 35 

cycles of 94 °C for 35sec, 33 °C for 30 s, 72 °C for 65 sec, followed by 1 cycle 72 °C 

for 7 min [36]. 

 

All PCR products were run on a 1% agarose gel in 1xSB Buffer.  Gel was stained 

with Midori Green and viewed under a UV transilluminator.  Bacterial DNA was 

randomly selected to run in duplicates to ensure reproducibility of amplification.   

Bands were scored in binary code with a factor of 1 representing presence of band 
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and a factor of 0 representing absence of bands.  Results of the 3 primer sets were 

banded to produce a dendrogram using UPMA (DenoUPMA, 

http://genomes.urv.cat/UPGMA/index.php) and using the Jaccard coefficient to 

determine the relatedness and level of similarity between the isolates used in this 

study. 

3. Results and Discussion 

Several MSCRAMM were detected by genotyping in a high percentage of S. aureus 

isolates. These included genes encoding the proteins ClfA, ClfB Spa, SdrD, SdrE, 

IsdA and IsdB (Table 2). On the other hand, genes encoding the Bbp, FnBpB and 

Cna  proteins were detectable in less than 50% of the isolates, gene encoding FnBpA 

protein being detectable in the smallest percentage of the isolates.  

 

The average number of MSCRAMMs detected in this study was approximately 7, 

with 27 strains having a range of >6-10 (data not shown).  In only 4/31 strains, 5 

MSCRAMM or less were detected.  Compiled results for MSCRAMM typing are 

shown in Table 2.   

 

 

Table 2. Distribution of MSCRAMM detected by genotyping 

 
Gene encoding   Number of positive isolates (%) 
SpaA    28 (90.32%) 
FnBPA               2 (6.45%)   
FnBPB               13 (41.93%) 
Cna    12 (38.71%) 
ClfA    26 (83.87%) 
ClfB    27 (87.1%) 
SdrD    28 (90.32%) 
SdrE    30 (96.77%) 
Bbp    14 (45.16%) 
IsdA    28 (90.32%) 

IsdB    30 (96.77%) 
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Among the toxins, the most prevalent toxin detected by genotyping among the S. 

aureus isolates was α-toxin, 2nd and 3rd most prevalent detected toxins being the 

enterotoxin G and β-toxin (Table 3). The genes encoding other toxins were prevalent 

in less than 30% of the isolates, lowest being the exfoliative toxins A and B. No 

strain was positive for genes encoding PVL toxin.   

 

Table 3: Distribution of different toxins detected by genotyping and/or 

serotyping 

Encoding gene  Number of positive isolates (%)  
Staph Enterotoxin A  8 (25.8%) 
Staph Enterotoxin B  6 (19.35%) 
Staph Enterotoxin C  3 (9.68%) 
Staph Enterotoxin D  0 (0%) 
Staph Enterotoxin E  0 (0%) 
Staph Enterotoxin G  19 (61.29%) 
Staph Enterotoxin H  4 (12.9%) 
Staph Enterotoxin I  9 (29.03%) 
Staph Enterotoxin J  0 (0%) 
Tsst-1    8 (25.8%) 
PVL    0 (0%) 
Alpha toxin   30 (96.77%) 
Beta toxin   13 (49.93%) 
Exfoliative toxin A  1 (3.23%) 
Exfoliative toxin B  1 (3.23%) 

 

Twenty-three strains possessed genes encoding 2-4 different types of toxins. Only 3 

strains possessed the gene for one toxin and 5 strains expressed genes for >5 toxins.  

The average number of toxins produced by the S. aureus strains in this study was 3 

toxins (data not shown).  

 

The SET-RPLA Toxin Detection kits were able to detect fewer toxins as compared to 

SE genotyping (Table 4).  Of the 8 SEA positive S. aureus strains, only 3 were 

detected in serotyping and of 6 SEB positive strains, only 1 was detected in 

serotyping (Table 4).  Of the 3 SEC positive strains, only 2 were detected by 
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serotyping; however the genotyping and serotyping correlated with 0 positives by 

both methods (not significant at the p<0.05 level, but substantial at p<0.06). 

 

Table 4: Correlation of serotyping versus genotyping methods for the 

major super-antigenic enterotoxins 

Toxin Serotyping (n=31) Genotyping (n=31) Pearson 
correlation 
coefficient r 

SEA 3 (9.68%) 8 (25.8%) 0.553 
SEB 1 (3.23%) 6 (19.35%) 0.371 
SEC 2 (6.45%) 3 (9.7%) 0.891 
SED 0 (0%) 0 (0%) Not possible to 

calculate the r 
value but can be 
assumed to be 1.0 

 

PCR typing was more sensitive than immunoassays in detecting the genes associated 

with toxin production.  

 

Accredited test capsular control strains were not positive for genes encoding SED, 

SEE, PVL, ETA or ETB.  All test control strains were positive for α, β and the TSST 

toxins and Spa, ClfA, ClfB, SdrE and SdrD MSCRAMM (Table 5).  
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Table 5: Typing of control S. aureus strains  

Control stain    Detectable toxin genes     
ATCC 29213   SEA, SEC, SEG, SEI, TSST, α-toxin, β-toxin 

Strain M (CP1)               SEA, SEC, SEG, SEH, SEI, TSST, α-toxin, β-toxin 
Smith Diffuse (CP2)  SEA, SEB, SEC, SEG, SEH, SEI, TSST, α-toxin, β-toxin 
Strain Newman (CP5)  SEA, SEG, SEI, TSST, α-toxin, β-toxin 

USA 400 MW2 (CP8)  SEA, SEC, SEG, SEH, TSST, α-toxin, β-toxin 
LAC USA 300 (CP neg) SEG, SEH, SEI, TSST, α-toxin, β-toxin 
    

    Detectable MSCRAMM 

ATCC 29213   FnBPA, Spa, ClfA, ClfB, Bbp, SdrE, SdrD, IsdA 
Strain M (CP1)               FnBPA, Spa, Cna, ClfA, ClfB, SdrE, SdrD, Bbp, IsdA 

Smith Diffuse (CP2)  FnBPA, FnBPB, Spa, Cna, ClfA, ClfB, SdrE, SdrD, IsdA 
Strain Newman (CP5)  FnBPB, Spa, Cna, ClfA, ClfB, SdrE, SdrD, Bbp 
USA 400 MW2 (CP8)  FnBPA, Spa, Cna, ClfA, ClfB, SdrE, SdrD, Bbp, IsdA 
LAC USA 300 (CP neg) FnBPA, FnBPB, Spa, Cna, ClfA, ClfB, SdrE, SdrD, Bbp  

 

Smith Diffuse S. aureus (CP2) expressed 9 MCRAMMs and 9 toxins, the highest of 

the control strains.  Strain M (CP1) expressed 9 MSCRAMM and 8 toxins, USA 400 

MW2 (CP8) expressed 9 MSCRAMM and 7 toxins, LAC USA 300 (CP neg) 

expressed 9 MSCRAMM and 6 toxins,  ATCC 29213 expressed 8 MCRAMMs and 

7 toxins and Strain Newman (CP5) expressed 8 MSCRAMM and 6 toxins. 

 

Amplification with primer OPA09 and OPA13 yielded 4 RAPD patterns from 3 

distinct bands each whereas amplification with Primer C yielded 6 RAPD patterns 

from 4 distinct bands. Presence or absence of bands resulted in binary data that was 

analyzed to produce a dendrogram. Using RAPD analysis, 5 cluster groups 

displaying the distribution of MSCRAMM and toxins between the groups were 

discernible (Figure 1).  
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Figure 1: RAPD-based dendrogram indicating the genetic relatedness among S. 

aureus isolates including the control isolates 
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The cluster cut off point was determined at 33% level of similarity (0.333) resulting 

in 5 major cluster groups (Table 6) viz., Cluster Ia and Ib (level of similarity 0.667 to 

0.800), Cluster IIa and IIb (level of similarity 0.333 to 0.750), Cluster IIIa and IIIb 

(level of similarity 0.333 to 1.000), Cluster IVa and IVb (level of similarity 0.500-

0.600) and Cluster V (level of similarity 1.000), that were used to compare the 

cluster groups (Table 6).  

 

Table 6: Distribution of the known MSCRAMM and toxins produced by 

the strains used in this study.  

Group Strains and subgroups (n) MSCRAMM Toxins 

I Group Ia (3)  
 
 
 
 
Group Ib (2)  

FnBPA, FnBPB, Spa, 
Cna, ClfA, ClfB, SdrE, 
SdrD, Bbp, IsdA, IsdB 
 
FnBPB, Spa, Can, ClfA, 
ClfB, SdrE, SdrD, Bbp, 
IsdA, IsdB  

SEA, SEC, SEG, SEH, 
SEI, TSST, α-toxin, β-
toxin, ETA, ETB 
 
SEB, SEG, SEH, SEI, 
TSST, α-toxin, β-toxin 

II Group IIa (2) 
 
 
 
Group IIb (1) 
 

FnBPa, FnBPB, SpA, 
ClfA, ClfB, SdrE, SdrD, 
IsdA, IsdB 
 
FnBPB, SdrE, SdrD, 
IsdA, IsdB 

SEB, SEG, TSST, α-
toxin 
 
 
SEC, α-toxin 
 

III Group IIIa (18) 
 
 
 
 
Group IIIb (1)  

FnBPA, FnBPb, SpA, 
ClfA, ClfB, Cna, Bbp, 
SdrE, SdrD, IsdA, IsdB 
 
Spa, Cna, ClfA, ClfB, 
SdrE, SdrD, IsdA, IsdB 

SEA, SEB, SEC, SEH, 
SEI, TSST, α-toxin, β-
toxin 
 
 
SEC, SEG, TSST, α-
toxin 

IV Group IVa (5) 
 
 
 
 
Group IVb (4) 

FnBPA, FnBPB, Spa, 
ClfA, ClfB, SdrE, SdrD, 
Bbp, IsdA, IsdB 
 
FnBPA, FnBPB, Cna, 
Spa, ClfA, ClfB, SdrE, 
SdrD, Bbp, IsdA, IsdB 

SEA, SEC, SEG, SEH, 
SEI, TSST, α-toxin, β-
toxin 
 
SEA, SEC, SEG, SEH, 
SEI, TSST, α-toxin, β-
toxin 

V Group V (1)  FnBPA, FnBPB, SpA, 
Cna, Clfa, Clfb, SdrE, 
SdrD, Bbp, IsdA, IsdB 

SEA, SEB, Sec, SEG, 
SEH, SEI, TSST, α-
toxin, β-toxin 
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It can be seen that the majority of S. aureus isolates were clustered into Group IIIa, 

with 58% (18/31) of the isolates displaying clonal similarity of MCRAMM and 

toxins. The genetic diversity or data on virulence factors associated with clonal 

complexes of MSSA strains in West Australia has not been reported unlike reports 

recently conducted in Europe [37]. Given that infections and persistence of S. aureus 

is a multi-step process involving several virulence factors [7, 15], the information 

gained in this study may assist in the development and/or formulation of vaccines 

that can successfully in preventing infections caused by S. aureus by blocking the 

function of the MCSCRAMM or toxins with the greatest prevalence among the S. 

aureus isolates.  Further studies are clearly warranted to test this hypothesis. 

 

The current strategies used for the development of vaccines against infections caused 

by S. aureus targeting a limited number of single antigens [15] may or may not be 

effective for global vaccine usage because of the differences in  the distribution of 

genes encoding different virulence factors as demonstrated by this study. A relatively 

recent study demonstrated that each bacterial strain isolated from patients enrolled in 

their study displayed a different antibody responses triggered by 19 antigens [25].  

 

Ideally, an effective S. aureus vaccine must generate protective immunity that can 

neutralize the major exotoxins and interfere with adhesion facilitated by the major 

MSCRAMM participating in biofilm formation and colonization by this pathogen. 

Many different types of vaccines including MSCRAMM-based vaccines [38], 

capsular polysaccharide and/or PNAG-based conjugate vaccines [3, 15, 38] 

involving conjugation of one to 3 MSCRAMM [27, 38] or selected inactivated toxins 

including  α-toxin encoded by the hla gene [3, 28, 38-41] have been evaluated using 

passive and/or active immunization of mice. However, none of these vaccines were 

considered provide satisfactory protection, essentially resulting in the hope of ever 

developing an effective vaccine against S. aureus infections for use in humans [42], 

particularly after observing antigenic competition subsequent to co-administration of 

CP-based and PNAG-based conjugate vaccines [43]. Fortunately, not all the potential 

options for the development of an effective vaccine against infections caused by S. 
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aureus have been exhausted if one was to take the distribution of virulence antigens 

among the isolates in to account as an important parameter that was investigated in 

this study.   
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ABSTRACT 

Staphylococcus aureus in biofilms is highly resistant to the treatment with 

antibiotics, to which the planktonic cells are susceptible. This is likely to be due to 

the biofilm creating a protective barrier that prevents antibiotics from accessing the 

live pathogens buried in the biofilm. S. aureus biofilms consist of an extracellular 

matrix composed of, but not limited to, extracellular bacterial DNA (eDNA) and 

Poly-β-1, 6-N-acetyl-D-glucosamine (PNAG). Our study revealed that despite 

inferiority of dispersin B, an enzyme that degrades PNAG, to DNase I that cleaves 

eDNA, in dispersing the biofilm of S. aureus, both enzymes were equally efficient in 

enhancing the antibacterial efficiency of tobramycin, a model broad-spectrum 

antibiotic used in this investigation. However, a combination of these two biofilm-

degrading enzymes was significantly less effective in enhancing the antimicrobial 

efficacy of tobramycin than the individual application of the enzymes. These 

findings indicate that combinations of different biofilm-degrading enzymes may 

compromise the antimicrobial efficacy of antibiotics and need to be carefully 

assessed in vitro before being used for treating medical devices or in pharmaceutical 

formulations.  

 

INTRODUCTION 

Bacterial adaption leading to antibiotic resistance has become the greatest challenge 

in the development of successful antimicrobial therapies1. A history of over usage of 

antibiotics and underestimation of the bacterial ability to adapt to the host and 

environment has rendered many pathogenic bacteria virtually untreatable1.  

Staphylococcus aureus can cause a wide range of infections in immunocompromised 

individuals owing to its ability to asymptomatically colonize healthy individuals as 

part of the normal flora2. Many S. aureus strains have acquired a remarkable 

resistance against β-lactam antibiotics leading to an uphill battle against infections 

caused by this potential pathogen3. Infections with community and hospital acquired 

methicillin resistant S. aureus (MRSA) have been documented worldwide4.  
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Staphylococcus aureus has been associated with primary infections in patients 

diagnosed with cystic fibrosis and chronic ear infections, particularly in indigenous 

Australian populations5, and is one of the principal causes of premature death in 

cystic fibrosis patients when co-infected with Pseudomonas aeruginosa6, 7. The lungs 

of cystic fibrosis sufferers have a high level of sputum production which impairs host 

clearing mechanisms, thus increasing the risk of biofilm formation by the normal 

flora in the lung8.   

Production of biofilms by S. aureus is a significant factor involved in colonization 

and persistence of infections9 as it protects the bacteria from host immune defense as 

well as providing a protective barrier allowing for resistance to antimicrobial 

therapy10. A major structural component of S. aureus biofilms is represented by poly-

β-1,6-N-acetyl-D-glucosamine (PNAG)3, 14. As a second important component, 

extracellular DNA (eDNA) is present in many biofilms formed by S. aureus11.  

Dispersin B is a 40 kDa soluble glycoside hydrolase produced by the periodontal 

disease-associated bacterium Actinobacillus actinomycetemcomitans12, 13. Due to its 

ability to specifically cleave the β-1,6-glycosidic bonds in PNAG, dispersin B 

efficiently degrades pre-formed biofilms of S. epidermidis, but is only moderately 

effective in degrading S. aureus biofilms12, 14, 15. There are reports of PNAG 

independent biofilm formation16, however majority of S. aureus contain the ica 

operon cluster required for PNAG production and biofilm formation17.   

In contrast, DNase I detaches biofilms formed by S. aureus but displays only 

moderate activity on S. epidermidis biofilms11. Dispersin B was reported to sensitize 

S. epidermidis, but not S. aureus, biofilms to killing by the cationic detergent 

cetylpyridinium chloride (CPC), whereas DNase I also sensitized S. aureus biofilms 

to CPC killing, suggesting differenced in the accessibility of PNAG and eDNA in the 

biofilms of these organisms15.  

We hypothesized that treatment of S. aureus biofilms with one or both of the biofilm 

degrading enzymes may enhance the susceptibility to antibiotics used in 

staphylococcal infections. We selected tobramycin for this investigation, as it is 
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active against many Gram-positive and Gram-negative pathogens and commonly 

used to reduce the bacterial burden of the lungs of cystic fibrosis patients co-infected 

with S. aureus and P. aeruginosa18, 19.  

Our study has demonstrated that treatment of pre-formed S. aureus biofilms with the 

biofilm-degrading enzymes DNase I or Dispersin B enhances the bactericidal activity 

of tobramycin, a model antibiotic used in this investigation. However, the 

antimicrobial efficacy of tobramycin was significantly reduced when pre-formed 

biofilms were treated with a combination of the two enzymes.  

 

MATERIALS AND METHODS 

Production and purification of recombinant dispersin B 

Escherichia coli DH5α was transformed with the plasmid pDispersin applying 

standard procedures20. The plasmid consisted of the expression vector pASK-

IBA33plus (IBA Lifesciences) containing a synthetic gene encoding dispersin B as 

described previously21. 

The E. coli strain containing pDispersin was grown overnight at 37ºC in LB broth 

(Oxoid) containing 300µg/mL ampicillin on an orbital shaker at 60rpm. Four 1-L 

Erlenmeyer culture flasks, each containing 400mL Terrific broth (Invitrogen) 

supplemented with 300µg/mL ampicillin were inoculated with 50µL of the E. coli 

culture and incubated overnight at 30ºC on a shaking incubator till OD600nm reached 

~2. Induction of recombinant dispersin B expression was achieved by addition of 

200ng/mL anhydrotetracycline (Clontech).  The flasks were placed on a shaking 

incubator at 37ºC for 2 hours. The bacteria were harvested by centrifugation 

(10,000g, 10 min, 4°C).  The supernatant was discarded and the cell pellet 

resuspended in 16mL extraction buffer (20mM Tris-HCl, pH7.5, 500mM NaCl) 

containing 1mM PMSF, 2mg/mL lysozyme and 0.1% IGEPAL® (Sigma). The cell 

suspensions was sonicated 3 times for 10 sec at low amplitude, using a Diagenode 

Biorupter Plus device (10 sec pulse-off time), followed by incubation on ice for 30 
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min. DNase I was added to a final concentration of 5µg/mL, and RNase A to a final 

concentration of 10µg/mL, followed by incubated at room temperature for 30mins 

with gentle shaking. 

After removal of the cell debris by centrifugation (15,000g, 30min, 4ºC), the 

supernatant was filtered through a 0.2µm filter. The filtered supernatant was passed 

through a His-Select Nickel Affinity Gel (Sigma-Aldrich) column with 8mL bed 

volume.  The column was washed with 3 column volumes of extraction buffer before 

washing successively with extraction buffer containing 5mM and 20mM imidazole, 

respectively.  Elution of dispersin B was achieved with 2 bed volumes of extraction 

buffer containing 100mM imidazole. Fractions (500µL) were collected and the 

OD280nm of each fraction measured. Fractions containing the enzyme activity were 

pooled and dialysed overnight against 100mM phosphate buffer containing 200mM 

NaCl, pH 5.9.  The dialysates was mixed with an equal volume of 20% glycerol in 

the same buffer before storing at -20ºC. The protein content was estimated by 

assuming that a 1mg/ml solution has an absorption value of 1.25 

(http://web.expasy.org/protparam/). The dispersin B activity was confirmed using 4-

nitrophenyl-N-acetyl-β-D-glucosaminide as a substrate as described by Kaplan et al. 

(2003). 

 

Bacterial growth inhibition assay   

The S. aureus isolate ATCC ® 29213™, a strong biofilm producer, was used in this 

investigation.  The strain was grown overnight in Nutrient broth (NB, Oxoid) at 37ºC 

on an orbital shaker at 80rpm. The cells were washed twice by suspending pelleted 

cells in cold phosphate buffered saline (PBS pH 7.4, NaCl 137mmol/L, KCl 

2.7mM/L, Na2HPO4 10mM, KH2PO4 1.8mM) and centrifugation at 15,000 rpm for 

2 minutes..  The cell density was adjusted to an OD600nm of 0.132 and the suspension 

placed on ice.  A tobramycin dilution series ranging from 2µg/mL to 0.0625µg/mL 

was prepared in NB and dispensed in a 96-well microtiter plate (198µL/well). Two 

µL of the S. aureus suspension (0.132 OD600nm) was added to each well, followed by 

146 
 



Chapter 6 
Combination of different biofilm-degrading enzymes may compromise enhancement of the antimicrobial efficacy 

of antibiotics against Staphylococcus aureus 

incubation at 37ºC and 80 rpm for 24 h.  The OD600nm was recorded and the sample 

values corrected by subtraction of the averaged blank values.   

 

DNase I and dispersin B-mediated biofilm degradation  

S. aureus biofilms were grown on 96-well plates  as previously described3. After 

washing the biofilms twice with PBS, 100µL PBS containing either various 

concentration of DNase I (Sigma Aldrich, D4527, constituted from a freeze-dried 

vial at 50KU/mL and 140KU/mL) or dispersin B (720µg/mL, 500µg/mL, 100µg/mL, 

50µg/mL, 10µg/mL) were added to each well. The plates were incubated on an 

orbital shaker for 2h at 37ºC and 50rpm (DNase I treatment) or 80rpm (dispersin B 

treatment). The remaining attached biofilms were washed once with PBS and stained 

for 5min with 0.2% crystal violet solution in PBS before washing twice with PBS. 

The crystal violet adsorbed to the residual biofilms was solubilized in 96% methanol 

and the OD630nm recorded on an EnSpire Multimode plate reader (PerkinElmer).  The 

OD630nm value obtained for the negative control without biofilm was subtracted from 

the sample values. 

 

Effect of combinations of biofilm degrading enzymes with tobramycin on 

bacterial cell viability  

S. aureus ATCC ® 29213™, a strong biofilm forming strain, was grown overnight in 

NB supplemented with 1% glucose at 37ºC and then diluted 1:200 in the growth 

medium. The bacterial suspension was dispensed in a 96-well microtiter plate 

(200µL/well) and the plate incubated for 24 h at 37ºC on an orbital shaking platform 

at 60rpm, followed by incubation at 37ºC without shaking for an additional 24h. The 

biofilm formed on the bottom of the wells was washed twice with PBS. Solutions 

containing DNase I, dispersin B and tobramycin, alone or in different combinations, 

were prepared as specified in Table 1 and added to the bacterial suspensions in the 

wells (100µL/well) of the microtitre plate. The plate was incubated on an orbital 
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shaker for 2.5h at 37ºC and 60 rpm.  The supernatant was aspirated from the 

treatment groups and remaining biofilms were scraped, suspended in 200µL of cold 

PBS and spread plated nutrient agar (Oxoid), followed by incubation at 37°C 

overnight. For validating the activity of dispersin B alone, a corresponding 

experiment was performed with biofilms produced by Staphylococcus epidermidis.  

Table 1: Experimental design for assessment of the effects of singular use or 
combinations of biofilm-degrading enzymes with tobramycin in vitro.  

 

Biofilm preparation for Scanning Electron Microscopy (SEM) 

An overnight culture of S. aureus ATCC ® 29213™ in NB was pelleted in a 1.5-mL 

microcentrifuge tube (12,000rpm, 3 min). The cells were washed twice with 1mL 

ice-cold PBS and adjusted with NB to 108 CFU/mL.  Aluminium stubs were placed 

upright in a 24-well plate containing NB with 1% glucose (2mL/well).  To each well, 

40µL of the bacterial suspension was added, and the plate incubated for 24h at 37ºC 

without shaking. The stubs were aseptically removed and gently washed with PBS. 

The stubs were placed into a new 24-well plate containing solutions of DNase I, 

dispersin B and tobramycin alone or in different combinations as specified in Table 1 

Group Composition Concentration  

1 Buffer control PBS 

2 Tobramycin 0.75µg/mL in PBS 

3 DNase  140kU/mL  in PBS 

4 Dispersin B 0.72mg/mL Dispersin B  

5 DNase + Dispersin B 140kU/mL DNase I, 0.72mg/mL, Dispersin 

B 

6 DNase + tobramycin 0.75µg/mL tobramycin, 140kU/mL DNase I 

7 Dispersin + tobramycin 0.75µg/mL tobramycin 0.72mg/mL 

Dispersin B 

8 DNase, dispersin B and 

Tobramycin  

0.75µg/mL tobramycin, 140kU/mL DNase, 

0.72mg/mL dispersin B  
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(2mL/well). After incubation at 37ºC for 2.5h, the stubs were removed; their surface 

rinsed with PBS and allowed to dry at 37ºC for 30mins.  To each stub surface 25µL 

2.5% glutaraldehyde in PBS was added. After incubation for ≥3h at 4°C, the stubs 

were gently washed with water, dehydrated with 70%, 90% and 100% ethanol and 

placed into a desiccator for 3 days. The specimens were coated with 5nm platinum 

and analyzed using a Zeiss Neon 40ESB Crossbeam Electron Microscope.   

 

RESULTS AND DISCUSSION   

Biofilm-degrading activity of DNase I and dispersin B  

The hypothesis underpinning our investigation was that combination of 2 biofilm-

degrading enzymes will result in an improved dispersal of biofilms and antimicrobial 

efficacy of antibiotics in comparison with that obtained by the treatment of biofilms 

with the enzymes individually. The results obtained described in the text clearly did 

not validate this hypothesis.  

Commercially available DNase I previously demonstrated to degrade eDNA in 

staphylococcal biofilms21, and recombinant dispersin B known to cleave PNAG19 

were used in this investigation. Tobramycin, a broad-spectrum antibiotic, used in the 

treatment of patients with chronic ear infections5, co-infected with S. pneumoniae 

and non-typeable Haemophilus influenzae, and cystic fibrosis patients frequently co-

infected with S. aureus and P. aeruginosa6 was used as a model antibiotic in this 

investigation. 

In preliminary experiments, we confirmed that DNase I, applied at 140kU/mL, 

efficiently degraded pre-formed S. aureus biofilms grown on 96-well plates, leading 

to 65% reduction of staining with crystal violet compared to the untreated control 

(p≤0.015, data not shown). Also dispersin B, applied at 0.72mg/mL, partially 

degraded the S. aureus biofilm in this assay.  

The specificity of the activity of the dispersin B preparation used in our study was 

confirmed by its ability to release the p-nitrophenolate moiety from the surrogate 
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substrate 4-nitrophenyl-N-acetyl-β-D-glucosaminide. The biofilm-degrading activity 

of this enzyme was also validated using biofilms formed by S. epidermidis used as a 

control in our investigation (data not shown).  

 

Combined activity of biofilm-degrading enzymes with tobramycin  

In a series of experiments, we studied the effect of the biofilm-degrading enzymes 

and the antibiotic tobramycin, alone and in combination, on the viability of S. aureus 

cells in the biofilm. In a standard broth microdilution assay, tobramycin partially 

suppressed the growth of S. aureus in the range of 0.5–1µg/mL (OD600nm. <0.1). 

Thus, a tobramycin concentration of 0.75µg/ml was used in the subsequent 

experiments for the treatment of S. aureus biofilms. S. aureus biofilms grown on 96-

well plates were incubated with the different enzyme and antibiotic solutions. Then 

the total number of viable S. aureus in each well, including the planktonic cells in the 

supernatant as well as the biofilm-associated cells, was determined. Cell scraper was 

used to ensure dislodging of the biofilm-embedded S. aureus.  In all treatment groups 

the viability of the S. aureus cells was significantly affected, although to varying 

degrees (Table 2). Tobramycin alone resulted in 40-fold reduction, which is 

comparable to the effect of dispersin B alone (no significant difference). 

Significantly higher (p<0.004) efficacy was observed after treatment with DNase I 

alone resulting in 1285-fold reduction. Remarkably, the combination of DNase I with 

dispersin B reduced the cell viability less efficiently (p<0.005) than DNase alone 

indicating an inhibitory effect on the activity of dispersin B for DNase I. Most active 

were the combinations of tobramycin with DNase I (p<0.002) and tobramycin with 

dispersin B (p<0.004) resulting in 8780-fold and 7500-fold reduction, respectively. 

Unexpectedly, the triple combination of tobramycin, DNase I and dispersin B 

displayed comparably significantly less activity (129-fold reduction, p<0.034). The 

most probably explanation is the effect of one dispersal agent is disrupting the action 

of the other leading to a reduction in the efficacy of the antibiotic against S. aureus.  
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Treatment of S. epidermidis biofilms with dispersin B resulted in 12-fold reduction 

(1.2 x1012 CFU/mL) compared to the untreated control (1.24 x1013 CFU/mL) (data 

not shown in Table 2). Thus, dispersin B had a similar effect on the viability of S. 

epidermidis as on S. aureus.  

 

Table 2: Total viable CFUs/mL after treatment of preformed S. aureus biofilms 
in vitro with biofilm-degrading enzymes, singularly or in combination 
with tobramycin  

Treatme

nt 

group 

Active 

ingredients  

Average  

CFU/mL  

Log10 CFU/mL 

± SEa 

Fold reduction 

1 Control  6.0 x1011 11.76±0.09 N/A 

2 Tobramycin 1.47 x1010 10.14±0.12 40-fold  

3 DNase I 4.67 x108 8.66±0.06 1285-fold 

4 Dispersin B 9.37 x1010 10.82±0.26 6.4-fold 

5 DNase I + 

Dispersin B 

1.87 x1010 10.20±0.17 32-fold 

6 DNase I + 

Tobramycin 

8.0x107 7.90±0.00 8780-fold 

7 Dispersin B + 

Tobramycin 

6.83 x107 7.69±0.27 7500-fold 

8 DNase I + 

Tobramycin  

+ Dispersin B 

4.67 x109 9.66±0.10 129-fold 

aSE, standard error; N/A not applicable 
 
 

Effect of biofilm-degrading enzymes and tobramycin on biofilm morphology  

For studying the effect of the different treatments on the biofilm morphology, we 

allowed S. aureus biofilms to grow on aluminum stubs, which were then incubated 
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with the enzyme and antibiotic solutions before being processed for scanning 

electron microscopy. The untreated control biofilms displayed the characteristic 

features including sequential layering and the presence of well-developed channels 

that permit nutrients to flow through the biofilm (Fig. 1). The biofilm after 

tobramycin treatment was characterized by incomplete coverage of the substrate but 

still consisted of several cell layers. A largely reduced number of cells remaining 

attached to the substrate with more extended areas of complete dispersal was 

observed after all treatments containing DNase I and/or dispersin B. Apparently, the 

most efficient treatments for removal of the biofilm was the tobramycin-dispersin B 

followed by tobramycin-DNase I combination.  

 

Figure 1 Scanning electron micrographs (magnification 6000-fold) showing S. 

aureus biofilms treated with buffer (Control) and after incubation with DNase I, 

dispersin B and tobramycin, alone and in combination, as indicated.  

Figure 1(a) – Group 1: Control 

Figure 1(b) – Group 2: Tobramycin 

Figure 1(c) – Group 3: DNase I 

Figure 1(d) – Group 4: Dispersin B 

Figure 1(e) – Group 5: DNase I and dispersin B 

Figure 1(f) – Group 6: DNase I and Tobramycin 

Figure 1(g) – Group 7: Dispersin B and Tobramycin 

Figure 1(h) – Group 8: Dispersin B, DNase I and Tobramycin 
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Conclusions  

Previous studies have demonstrated the efficacy of DNase I in degrading the biofilms 

of various Gram-positive and Gram-negative pathogens and its ability to enhance the 

bactericidal activity of several antibiotics22. However, no investigation thus far has 

studied the effect of a combination of biofilm degrading enzymes such as DNase and 

Dispersin B in combination with an antibiotic. Using S. aureus as a biofilm-forming 

pathogen, and tobramycin as a clinically relevant antibiotic, our study has 

demonstrated that use of multiple biofilm degrading enzymes in combination with 

each other does not necessarily result in a synergistic dispersal effect and may reduce 

the overall antimicrobial efficacy of the antibiotic Although the mechanism 

underlying the antagonistic effect of the two enzymes warrants further investigation, 

the outcome of this study suggests that combinations of different biofilm-degrading 

enzymes or compounds with antibiotics require careful assessment of their ability to 

enhance the efficacy of antibiotics in vitro before consideration for use in 

disinfecting or covalent coating of medical devices, or incorporation in 

pharmaceutical formulations targeted for use in vivo.  
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Abstract 

Staphylococcus aureus produces a wide variety of virulence factors, all influenced by 

bacteria’s host environment.  Over 50+ virulence factors have been identified which 

include capsular polysaccharide, poly-N-acetyl glucosamine (PNAG), exotoxins, 

enzymes and microbial surface components recognizing adhesive matrix molecules, 

(MSCRAMM). In this investigation, methicillin-sensitive S. aureus was grown using 

iron-replete versus iron deplete bacteriological media with a view to identify novel 

antigens associated with biofilm formation using preliminary proteomic analysis. 

One novel overexpressed band was isolated and purified.  Fructose bisphosphate 

adolase Class 1 (FBA-1) was identified as an antigen associated with biofilm in S. 

aureus. FBA-1 showed little homology to FBA-1 of Homo sapiens based upon its 

protein sequence.  FBA-1 is a highly conserved enzyme that is not only involved in 

essential metabolic pathways but also acts as a moonlighting protein. Because of the 

little homology of the protein sequence of S. aureus FBA-1 with H. sapiens, it was 

concluded that it could potentially be used as a target for the discovery of new 

antimicrobials and a potential vaccine candidate against infections caused by S. 

aureus. 

 

Introduction 

Staphylococcus aureus represents a major health concern as nosocomial and 

community acquired infections [1].  Treatment of S. aureus has become 

progressively challenging due to the emergence of antibiotics resistance due to 

biofilm formation [2, 3]. Virulence of S. aureus is attributed to the many factors 

including leucocidins, proteases, hemolysins, immune evasion molecules and 

molecules contributing to biofilm formation [4-6].  Bacterial infections are 

influenced by host environment which dictate expression of these virulence factors 

[7]. One important virulence attribute of most bacterial pathogens is the acquisition 

of iron for its survival in the host [8].  Iron redirects the central metabolism, 

including the iron and heme-dependent regulons of S. aureus [1, 9, 10], such that 
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metabolic blocks that hinder synthesis of virulence factors by S. aureus are avoided 

overcoming its vulnerability to host’s immunological defences [11].   

A different approach for proteomic analysis was undertaken in this investigation.  

Staphylococcus aureus was grown in iron-sequestering media using 2,2’ Bipyridyl, 

an iron chelating compound to enhance the expression of iron and heme-dependent 

potential virulence genes [9].  One novel overproduced protein band was isolated and 

purified from 1D SDS-PAGE gel and identified to be fructose- 1,6-bisphosphate 

aldolase Class 1 by preliminary proteomic analysis.  

 

Materials and Method 

Optimizing bacterial growth in the presence of 2,2’ Bipyridyl 

A biofilm producing strain, HuAIRSF-S.aur23 (S23),  selected for this investigation 

was  grown overnight in 5mL of NB supplemented with 1% glucose (Glc) at 37°C.  

The culture was inoculated in NB (1% Glc) with or without 75µm of iron chelating 

agent 2,2’ Bipyridyl (BP) and was grown for 24hr at 37°C on an orbital shaker.    

Growth of bacteria was determined at OD600nm. To determine the effect of BP on 

biofilm, a 1 in 200 dilution of the culture was made in a 96 well plate and grown 

static for 24hr to develop biofilms iat 3 concentrations of BP.  Supernatant was 

carefully aspirated and the biofilms were washed 2x with cold PBS.  Biofilms were 

stained with 0.2% crystal violet for 5min, washed 2x with cold PBS and solubilized 

in methanol (96%). Measurements were taken at OD450nm. 

 

Preparation of whole cell lysates  

The method for preparation was adapted from LaFrentz et al. [12].  To create 

biofilms, 100mL of NB (1% Glc) with or without BP was transferred to vented tissue 

culture flasks (Nunc). An inoculation with 20µL of the overnight culture was made 

and was incubated for 48hrs at 37°C.  

Four types of lysates prepared from S. aureus grown in flasks were as follows:  
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1. Biofilm-embedded S. aureus grown in the presence of BP (BP+) 

2. Free-floating (planktonic) S. aureus decanted from flasks grown BP+ 

3. Biofilm-embedded S. aureus grown in the absence of BP (BP-) 

4. Free-floating (planktonic) S. aureus decanted from flasks grown BP- 

 

Biofilm matured over 72hrs at 37°C without shaking and carefully handled to 

prevent disruption of biofilm.  After 72hrs, supernatant was carefully poured off 

representing free-floating S. aureus.   Cold PBS (100mL) was then added to each 

flask to wash biofilm bound bacteria.  Cells were initially removed by manual 

agitation and followed by cell scrapers (ThermoFisher) to disperse any persistent 

biofilm.  Biofilm-associated and free-floating cells were spun at 15,000g (20mins at 

4°C) in Avanti® J-E Centrifuge (Beckman Coulter) and washed 3x in cold PBS.  

Cells were resuspended in 50mL of PBS containing 0.5mg Lysozyme (Sigma) and 

0.5mg Lysostaphin (Sigma) and incubated overnight at 37°C.  Following 

incubations, cells were resuspended in 0.5mM PMSF (Sigma) 800µL/100mg wet 

cell.   Cells were ribolyzed at 4°C in BIO101/Savant FastPrep FP120 at max speed 

for 45sec with acid-washed Glass beads (425-600µm, Sigma).  Lysates were 

centrifuged at 15,000g (30mins at 4°C) and supernatant containing proteins was 

stored at -20°C until required.  Protein content in the samples was estimated using 

the Micro BCA Assay (Thermo Fisher, Scoresby Vic) according to manufacturer’s 

instructions.  

 

Polyacrylamide Gel Electrophoresis 

(a) SDS-PAGE 

Discontinuous SDS-PAGE was performed to compare the lysates prepared using 

Novex® NuPAGE® SDS-PAGE gel system in the X-cell SureLock Mini cell system 

(Invitrogen, Life Technologies). A precast 10% NuPAGE® Bis-Tris gel (8x8cm, 

1.0mm) was inserted into the mini cassette. The four whole cell lysates (20µg) were 

loaded and electrophoresed at 200V for 35min. BenchMark™ Protein Ladder 

(Novex®, Life Technologies) was run to estimate the molecular weight (mwt) of 
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proteins.  Gels were stained in SimplyBlue™ SafeStain (Life Technologies) and 

visualized on the ChemiDoc™ MP System (Biorad). For the isolation of preparative 

amounts of the unique band, SDS-PAGE using 20% polyacrylamide was used. 

 

(b) Western Blotting 

Following SDS-PAGE, proteins were transferred onto nitrocellulose membrane 

(0.45µm, Biorad) using XCell SureLock™ Transfer System (Life Technologies). 

Following assembly of the transfer sandwich cassette, the system was run for 1hr at 

30V constant. The MagicMark™ XP Western Protein Standard (Life Technologies) 

was used for mwt estimation of proteins.   

Unless otherwise stated, all washing, blocking and incubation steps were performed 

on an orbital shaker at 120rpm.  The blot was removed, washed 3 times in TBST 

(5min each wash) and blocked at RT for 1hr in 3% BSA in 1x TBST.  The blot was 

incubated overnight with rabbit anti-S. aureus primary antibody (1:2,500, Abnova) at 

4ºC.  The blot was rinsed 3 times (5 mins each wash) with TBST and incubated with 

secondary anti-rabbit antibody for 1hr at RT. The blot was rinsed 3 times (5 mins 

each wash) with TBST and Immun-Star™ Goat Anti-Rabbit AP Chemiluminescence 

Kit (Biorad) was applied according to manufacturer’s recommendation as a substrate.  

The ChemiDoc™ MP System (Bio-Rad) imager was used to capture the signals of 

band.  

 

Protein Identification by Mass Spectrometry 

A protein of interest (30 - 40 kDa) identified to be unique in virulence was 

aseptically sliced out of a Coomassie stained gel.  The section was stored at -20ºC 

until sequencing by Mass Spectrometry was performed by Proteomics International. 

The section was trypsin digested [13] and extracted according to standard procedures 

before analysis on 5800 Proteomic Analyzer (AB Sciex).  Identification was 

performed using a software matching system (Mascot – Matrix Science) with a 

Ludwig NR Database.  

163 
 



Chapter 7 
Identification of a novel Staphylococcus aureus biofilm-associated antigen using proteomic analysis 

 

Bioinformatics analysis 

Following Proteomic analysis, the protein sequence was compared to other bacteria. 

Sequences, obtained from NCBI databases from 8 bacteria were compared for level 

of similarity with human FBA-1. The bacteria used included Gram-positive S. 

aureus, Streptococcus pneumoniae, Streptococcus agalactiae, Staphylococcus 

epidermidis and Gram-negative Pseudomonas aeruginosa, Neisseria meningitidis, 

Campylobacter jejuni and Escherichia coli.  A multiple sequence alignment was 

created using ClustalW2.1 program and a protein identity similarity index created. 
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Results 

Standardisation of cultural conditions  

The effect of 3 concentrations of BP on the growth of S. aureus was determined for 

optimal growth and biofilm formation [9, 14], ensuring the availability of iron of 

iron-sequestering protein, capable of capturing iron from the host.  Concentration of 

BP selected for this experiment was 75µM to obtain adequate growth and biofilm 

formation (Table 1).  

 

Table 1: Determination of bacterial growth conditions for optimal production 

of biofilms of S. aureus in the presence of BP at OD600nm 

Parameter 50µM 75µM 100µM 

Bacterial cell density 

at 600nm ± SEM  

0.486 ± 0.052 0.518 ± 0.029 0.418 ± 0.006 

Percent reduction 4.8% 11% 18.2% 

Absorbance of  lysed 

biofilm measured at 

450nm 

0.074 ± 0.000 0.073 ± 0.001 0.059 ± 0.001 

 

 

Purification of biofilm-associated band  

Upon 1-D SDS PAGE, a unique band between 30-40kDa, which was under-

expressed supernatant and biofilm (BP−) cells of S. aureus, was overexpressed in the 

supernatant and biofilm (BP+) cells (Fig 1).   
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Fig 1: SDS-PAGE of S.aureus grown in BP+ or BP- media 

 

Lane 1 - BenchMark Protein ladder with approximate mwt.  Lane 2 – Protein lysate 

of supernatant BP- S.aureus cells, Lane 3 – Protein lysate of biofilm cells BP-, Lane 

– 4 - Protein lysate of supernatant cells BP+ , Lane 5 – Protein lysate of biofilm cells 

BP+.  Differential overexpressed protein can be observed in lanes 3 and 4 between 

molecular mass of 30 and 40kDa.  Several additional bands can be observed between 

the 4 lysates between 15 and 20kDa in lanes 2 and 4.  However, the overexpression 

of the differential band in lanes 4 and 5 was more prominent. 
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Using the PROTEAN® II XL Cell system (Biorad) a hand-cast 20% gel 

(Acrylamide/Bis 29:1, Sigma) was prepared.  The gel was run at were run overnight 

at 6-8mA constant using a PowerPac™ power supply (Biorad) and 10ºC cooling 

system with water circulating pump . The higher percentage of polyacrylamide gel 

allowed for better separation of this relatively lower mwt protein band (Fig 2).  

 

Fig 2: Discontinuous SDS-PAGE (20%) for isolation of unique protein band 

 

Lane 1: BenchMark Protein ladder with approximate mwt.  Lane 2 – Protein lysate of 

supernatant BP- S.aureus cells, Lane 3 – Protein lysate of biofilm cells BP-, Lane – 4 

- Protein lysate of supernatant cells DP+ , Lane 5 – Protein lysate of biofilm cells 

BP+.  The same overexpressed differential protein can be observed in lanes 3 and 4 

between 30 and 40kDa.  

 

167 
 



Chapter 7 
Identification of a novel Staphylococcus aureus biofilm-associated antigen using proteomic analysis 

The gel band stained with Coomassie blue was aseptically sliced out with a sterile 

scalpel submitted for identification by Mass Spectrometry [13] .  Protein was 

checked for purity by Western blotting using anti-S. aureus antibody (Fig 3) when a 

single relatively diffuse band of ~33 kDa was observed. 

 

Fig 3: Western blot of purified protein 

 

Lane 1 contains the MagicMark™; Lane 2 contains purified FBA; Lane 3 is an 

artificial representation of the location of the FBA. 
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Mass Spectrometry predicted the protein band to be Fructose-bisphosphate adolase 

Class 1, FBA-1, approximately 32.8kDa with a score of 593.  Score greater of each 

peptide sequence match was enough to confirm identity. Seven peptides were 

matched for FBA-1 (Fig 4) which identities higher than the cut off and had a 

significant threshold of p<0.05. Interestingly, the band was identified after covering 

only 27% of S. aureus genome sequence (Tax_Id=948561 Staphylococcus aureus 

O11). 

 

Fig 4: Protein identification of FBA-1 
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Multiple Sequence Alignment 

The protein sequence of S. aureus FBA-1 was aligned with other species using the 

ClustalW2.1 sequence alignment program to determine similarities (Fig. 5). 

Fig. 5: Sequence alignment using the ClustalW2.1 program 
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The percent identity matrix was generated using the multiple sequence alignment 

showing very little similarity between S. aureus FBA-1 and FBA-1 from the 

remaining species (Table 2).  
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Table 2: Percent Identity Matrix – created by ClustalW2.1 

 S. 
pneumoniae 

S. 
agalactiae 

S. 
epidermidis 

P. 
aeruginosa 

N. 
meningitidis 

C. jejuni E.coli S. aureus H. sapiens 

S. pneumoniae 100.00 87.71 46.45 38.30 40.07 27.99 10.45 11.47 11.34 

S. agalactiae 87.71 100.00 47.16 39.01 40.07 29.35 8.36 12.54 12.37 

S. epidermidis 46.45 47.16 100.00 39.79 38.38 29.12 8.77 8.86 10.25 

P. aeruginosa 38.30 39.01 39.79 100.00 77.97 30.03 10.26 10.18 10.93 

N. meningitidis 40.07 40.07 38.38 77.97 100.00 28.62 9.91 11.15 9.29 

C. jejuni 27.99 29.35 29.12 30.03 28.62 100.00 10.80 10.31 8.18 

E.coli 10.45 8.36 8.77 10.26 9.91 10.80 100.00 8.28 8.66 

S. aureus 11.47 12.54 8.86 10.18 11.15 10.31 8.28 100.00 13.56 

H. sapiens 11.34 12.37 10.25 10.93 9.29 8.18 8.66 13.56 100.00 
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Discussion 

Fructose-bisphosphate aldolase, FBA-1 or aldolase, is a highly conserved enzyme 

that is involved in glycolysis and gluconeogenesis [15, 16].  Aldolase performs an 

aldol reaction by reversibly catalysing dihydroxyacetone phosphate with 

glyceraldehyde 3-phosphate to form fructose 1,6-bisphosphate [17].  Interestingly, 

enzymes also play a role in virulence as exemplified by interaction of glyceraldehyde 

3-phosphate dehydrogenase (GAPDH), an enzyme that also interacts with aldolase in 

glycolysis found performing non-glycolytic activities on the surface of Gram-

positive bacteria, including S. aureus [18, 19].  In S. aureus, a study identified 

GAPDH as a cell wall protein that binds to iron-binding transferrin, that is known to 

enhance virulence of pathogens [20, 21].   The function of aldolase has also been 

explored further as an increasing number of glycolytic pathway enzymes being 

classified as moonlighting enzymes such as GAPDH [22].   

Aldolases are cytoplasmic enzymes that have been found localized on bacterial 

membrane for interaction with host molecules [16].  Tunio et al., [16] further 

characterized the ability of aldolase in adhesion to host human cells where aldolase 

deficient Neisseria meningitidis showed a significant reduction in adherence to two 

different cell types; human brain microvascular endothelial cells and human larynx 

carcinoma cells.  Another study demonstrated that aldolase from Streptococcus 

pneumoniae had no human orthologues [23].  A result confirmed in this study using a 

multiple sequence alignment including S. aureus which shows 13.56% identity with 

human aldolase. Blau et al. [24] demonstrated recombinant aldolase and anti-aldolase 

antibodies were able to inhibit encapsulated and non-capsulated S. pneumonia from 

binding to lung carcinoma epithelial cells. This highlights the potential of aldolase in 

biofilm formation, a significant virulence factor in establishment and persistence of 

infections caused by S. aureus [3, 25, 26]. 

Ling et al. [23] demonstrated that immunization of mice with aldolase conferred 

protection when challenged with pneumococci with a survival rate, at 21 days post-

challenge, of 36% [23].  
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In this investigation, FBA-1 has, for the first time, been identified as the 

overexpressed virulence protein associated with biofilm formation in S. aureus. The 

molecular mass of this enzyme is approximately 33 kDa, which is in compliance 

with that reported previously reported [27].  A previous investigation reported the 

presence of FBA Class 2 in planktonic cultures of S. aureus [28] but not in biofilms. 

Because of low homology of FBA Class 1 with the human aldolase, further 

investigations of its virulence and protective potential against infections caused by S. 

aureus are justifiably warranted.  
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Abstract 

Fructose-bisphosphate aldolase class 1 (FBA-1) a moonlighting protein, was 

identified as the novel antigen that was overproduced by S. aureus grown an iron-

deplete environment.  FBA-1 was purified from the biofilm of S. aureus and tested 

for its passive protective potential versus that of the manganese transport protein C 

(MntC), an accredited biofilm associated antigen, using an acute murine bacteraemia 

model. The immunogenicity of the MntC was found to superior to that of FBA-1. 

The major antibody isotype induced by FBA-1 was IgM whereas immunisation with 

MntC resulted in production of significant levels of IgG1 and IgG2a isotypes. 

Antibodies against FBA-1 were able to significantly lower the bacterial load in 

spleen but not so in blood and liver. It is concluded that MntC is a superior potential 

vaccine candidate for than FBA-1 for the prevention of staphylococcal infection in 

mice. 

 

Introduction 

Staphylococcus aureus remains a challenging infection to treatment due to the 

pathogen’s ability to produce a wide variety of virulence factors. 1, 2  The regulation 

and production of virulence factors by S. aureus is largely dependent on host 

environment 3 and one such factor is the ability to acquire iron from the host for 

bacterial survival. 4 Iron has been shown to be involved in the regulation of the 

expression of proteins, many of which are involved in central metabolic pathways in 

S. aureus. 5   

One such protein is fructose-bisphosphate aldolase class 1, hereafter referred to as 

FBA-1. Under the stress of an iron sequestering compound, 2,2’ bipyridyl, FBA-1 

was identified as a 33kDa biofilm-associated protein expressed by S. aureus. FBA-1 

is conserved cytoplasmic enzyme that catalyses the reversible reaction of splitting the 

aldol, fructose 1, 6-bisphosphate into triose phosphates, dihydroxyacetone phosphate 

and glyceraldehyde 3-phosphate. 6-8 Despite the lack of secretion signals, FBA-1 is 

expressed on the surface of many bacterial pathogens participating in the adhesion 
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and biofilm formation 7, 10, 11 acting as a moonlighting protein. 6 A previous study 

reported that FBA-1 of S. aureus was only expressed under planktonic or free-

floating conditions.7  This is in contrast to our finding that FBA-1 was produced in 

both the biofilm as well as planktonic cells of S. aureus (Unpublished).  

Manganese transport protein C (MntC) is a conserved manganese binding surface 

lipoprotein that has been shown to be involved in biofilm formation and in vivo 

survival in the host. 8  

In this investigation, S. aureus purified FBA-1 and recombinant MntC were 

evaluated for their immunogenicity and protective potential using an acute murine 

bacteraemia model.  Antibodies raised were then tested for their passive protective 

potential against acute bacteraemia caused by S. aureus using a mouse model.  

Results were compared to immune response raised by S. aureus MntC.   

 

Materials and Methods 

Isolation of Fructose-bisphosphate aldolase Class I 

Protein lysates were prepared as previously described using strain HuAISRF-S.aur23 

or S23 (Waryah, unpublished).  Briefly S23 was grown in vented tissue culture flasks 

in 100mL NB (1% glucose) with the iron chelating agent 2,2’ Bipyridyl or BP 

(75µm).  Biofilm was allowed to develop for 72hr at 37˚C after the supernatant was 

carefully aspirated.  Biofilm bound cells were initially removed by manual agitation 

by washing with cold PBS then by using cell scrapers (Thermofisher) to scrape any 

persistent biofilms. Cells were spun down at 15,000g for 20mins at 4°C followed by 

overnight incubation in 50mL PBS with 0.5mg Lysozyme (Sigma) and 0.5mg 

Lysostaphin (Sigma).  Following incubation the cells were suspended in 800µL of 

0.5mM PNSF (Sigma) per 100mg wet cell weight.  For final lysis, cells were 

ribolyzed at 4°C in BIO101/Savant FastPrep FP120 at max speed for 45sec using 

acid-washed Glass beads (425-600µm, Sigma).  Finally proteins were collected from 

the supernatant after centrifugation at 15,000g for 30mins at 4°C.  
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The lysates were subjected to discontinuous SDS-PAGE electrophoresis 20% 

polyacrylamide gel in the PROTEAN® II XL Cell system (Bio-Rad) for isolation of 

the ~33kDa band identified as fructose 1,6-bisphosphosphate aldolase class 1 (FBA-

1) (Unpublished). One lane contained pre-stained ladder and 14 lanes contained 

protein lysate.   PROTEAN® II XL Cell system (Bio-Rad) was cooled at 10ºC 

constant using a water circulation pump and two SDS-PAGE gels run overnight at 6-

8mA constant. After completion of electrophoresis, individual lanes from each gel 

were sliced out and fixed in 40% methanol containing 10% acetic acid for 15min at 

RT on an orbital shaker at 80rpm.  The gel slices were stained with Coomassie R-250 

(0.02% in 30% methanol, 10% acetic acid) at RT for 30min at RT on an orbital 

shaker at 80rpm.  The gel slices were destained in 8% acetic acid until a clear 

background was obtained. Bands corresponding to ~33kDa were sliced out with a 

clean scalpel, minced into smaller gel fragments and suspended in 400µL elution 

buffer (0.25 M Tris-HCl buffer, pH 6.8; 0.1% (w/v) SDS).  The protein sections in 

elution buffer were transferred into 100k molecular weight cut off (MWCO) 

Nanosep® Centrifugal Devices (Pall Corporation) for protein concentration and 

separation from polyacrylamide gel following centrifugation at 14,000g for 15mins 

at 4ºC.  A second elution was carried out using the same protocol to ensure a higher 

protein recovery.  Protein quantification was performed using the Micro BCA Assay 

as per manufacturer’s instructions (ThermoFisher). 

 

Removal of SDS from extract 

Prior to animal trials, ProteoSpin™ Detergent Clean-Up Micro Kit (Norgen Biotek 

Corp, Millennium Science Pty Ltd) was implemented to remove SDS from the eluted 

protein as per manufacturer’s instructions.   
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Polymerase Chain Reaction of MntC gene 

DNA extraction of S23 was performed using the MO-BIO commercial extraction kit 

and stored at -20°C.  DNA extract was thawed on ice prior to genotyping using PCR.   

Primers for the detection of MntC were designed in this study using the online 

Primer3plus primer design tool with S. aureus MntC gene sequence deposited on 

Genbank, NCBI.  Primer mntCF 5’-CATGGCACGTTGTTCTTTTG-3’ and Primer 

mntCR 5’-TGGTGGAGACAACGTCGATA-3’ were used with the following 

conditions: 95°C for 10min (initial denaturation), then 32 cycles of 95°C for 30sec 

(denaturation), 49°C for 30sec (annealing) and 72°C for 1min (extension) and 72°C 

for 7min (final extension).  PCR products were run on a 1.5% agarose gel in 1x 

Sodium Borate buffer (10 mM NaOH, pH 8.5 with H3BO3). Gels were stained with 

0.8µL/100mL Midori Green DNA Stain (Nippon Genetics) and visualized using a 

UV transilluminator. 

 

Purification of MntC 

The MntC was cloned and expressed into a pRSetA bacterial expression vector with 

the incorporation of a His-tag.  Following cloning, plasmid was transformed into 

E.coli DH5α cells and plated to screen for plasmid containing colonies using 

ampicillin as a selction marker.  The plasmid was isolated and expressed in E.coli 

BL21 cells with the induction of the MntC protein with IPTG.  Cells were harvested 

and denatured with 8M urea.  Cell lysates were passed through a Ni-NTA column for 

purification of the His-tagged MntC.  Purified MntC was confirmed by SDS-PAGE 

and Western blotting to be 38kDa protein.   

 

Production of antisera and experimental design 

All animals used in this investigation were approved by the Curtin University 

Animal Ethics Committee (AEC approval number 042-2014). Three groups of 5-6 
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week-old Balb/c mice were used in this investigation.  Mice in groups 1 and 2 were 

immunised with FBA-1 and MntC respectively.  The third group comprising the 

control group was sham-vaccinated with sterile PBS. 

The immunisation regime was the same for all the groups. While the control group of 

mice were sham-immunised with sterile PBS, those in groups 1 and 2 were 

immunized with two doses, 2µg and 4µg, of FAB-1 and MntC respectively.  The 3rd 

and 4th doses of 6 µg and 10 µg of each antigen were mixed with equal amounts of 

Alumjet (Thermo-Fisher) before administration via the subcutaneous route.  The 

immunisation or sham-immunisation regime involved delivery of the different doses 

on day 0, 7, 14 and 18. All mice were euthanized on the 23rd day and blood samples 

were collected via cardiac puncture.  The method used for semi-quantification of the 

different antibody isotypes (IgG1, IgG2a, IgM and IgA) levels was indirect ELISA 

as described elsewhere. 9  

The protective potential of FAB-1 and MntC was assessed by passive immunisation 

of mice with 0.5mL of antigen-specific antisera or PBS representing the controls via 

the intraperitoneal route. The vaccinated or sham-vaccinated mice were allowed to 

rest for 2 days, followed by bacterial challenge with 1x107 CFU/mL HuAIRSF-

S.aur23 (S23).  Four hours post-challenge, mice were euthanized for collection of 

blood in a microfuge tube containing an anticoagulant (4% solution of sodium citrate 

in sterile dDW, pH 7.0), spleen and liver to determine bacterial burden as described 

elsewhere (Anderson et al.,2012).  Briefly, blood was serially diluted and plated to 

enumerate bacterial load in CFU/mL.  Liver and spleen were weighed and 

homogenized prior to serial dilution to enumerate the bacterial load (CFU/mL) per 

gram of tissues. Statistical analysis was performed using paired Student t-test and p-

value≤0.05 was considered statistically significant.  
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Results 

The IgG antibody titers of mice vaccinated using the same dosage regime were ~ 200 

for with FBA- 1 and 3,200 for MntC respectively, using a cut-off point of 0.100 (Fig 

1). The titer of MntC was significantly higher than that for FBA-1 (p<0.02).   

 

 

Figure 1: Antibody titers of FBA-1 versus MntC versus Control mice 
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Immunisation of mice with FBA-1 resulted in the induction of only the IgM isotype 

whereas immunisation of mice with the MntC protein resulted in the production of 

IgG1 and IgG2a isotypes. The IgM isotype levels of mice immunised with FBA-1 

were significantly greater (p-value < 0.005) than those of mice immunised with 

MntC or sham-immunised with PBS. 

 

 

Figure 2: IgM levels of FBA-1, MntC versus Control mice 
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IgG1 levels were significantly higher in the antisera against MntC (Table 3, p-value 

< 0.002) as compared to the control.   On the other hand, there was no IgG1 response 

in mice vaccinated with FBA-1 and sham-vaccinated control mice (Fig 3).  

 

 

Figure 3: IgG1 levels of antisera against FBA-1, MntC versus the Control mice 
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IgG2a levels of sera were also significantly higher for MntC in comparison with that 

of FBA-1 and the sham-immunised control group of mice (p-value <0.002) as 

compared to the control (Fig 4). On the other hand, IgA was not induced against 

either FBA-1 or MntC (Figure 5). 

 

 

Figure 4: IgG2a levels of antisera against FBA-1, MntC and Control mice 
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Figure 5: IgA levels of antisera against FBA-1, MntC and Control mice 
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observed in FBA-1 vaccinated and the sham-vaccinated control mice. There was 

essentially no bacterial clearance from the blood or liver of mice vaccinated or sham-

vaccinated with FBA-1 or PBS respectively. Clearance of S. aureus from the spleen 

of FBA-1 vaccinated mice was significantly higher (p<0.007) than that observed in 

the sham-vaccinated group showing a significant reduction (1.32-fold) in the 

bacterial load.  Bacterial load was not significantly reduced in the mice administered 

with the anti-FBA-1 antibody with only a 1.04 fold reduction.  

 

Fig 6: Bacterial load in the tissues of mice immunised with MntC versus FBA-1.  
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Discussion 

 

Bacterial biofilms are a major concern in the treatment of persistent infections, with 

more than 80% of infections being difficult to treat because of biofilm formation. 10 

No effective vaccine against infections caused by the versatile S. aureus, a 

pathogenic bacterium that easily adapts to its external environment is currently 

available. 11 Many different vaccine candidate antigens have been evaluated in 

laboratory animal models and also in humans in the search of an effective vaccine. 11-

15  

More recently proteins produced by S. aureus have been shown to function as dual 

proteins such as MntC.  MntC is a manganese transport protein that has been 

implicated as a microbial surface component recognizing adhesive matrix molecule 

(MSCRAMM). 8, 16 MntC is a cell surface protein that is expressed in vivo early in 

infection and is part of the Mnt complex.  The Mnt complex comprises MntA, MntB 

and MntC making up an ABC transporter, or ATP binding cassette. 8, 16  The MntC is 

a lipoprotein that specifically binds to manganese whereas MntA is an ATP binding 

protein and MntB is an integral membrane transporting protein. 8This investigation 

has confirmed, using the passive immunotherapy mouse model, the protective 

potential of MntC reported previously using the rat model (Anderson et al., 

2012). 8, 16 However, antibodies against FBA-1, a recently identified biofilm-

associated antigen, were unable to provide significant passive protective potential 

against S. aureus bacteraemia as judged by only 1.07 fold and 1.04 fold reductions in 

bacterial load in the blood and liver respectively.  On the other hand, the CFUs of S. 

aureus were significantly reduced (p<0.005) in the spleen with a 1.32 fold reduction.   

There are number of possible explanations for the poor performance of FAB-1 in 

protecting mice against acute bacteraemia. Expression of FBA-1 may not occur as 

early in infection as that reported for the MntC (Anderson et al., 2012). A second 

potential reason may be the comparatively inferior immunogenicity of the FBA-1 

versus the MntC, either requiring higher doses for immunisation or a higher dose of 

the adjuvant. The MntC antigen of S. pneumoniae was previously reported to elicit a 
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protective immune response in mice, immunised with 25µg of protein injected 

intraperitoneally with 75µL of Inject Alum adjuvant, against challenge with the 

pathogen (Ling et al. 2004).  The 3rd possible reason may be the sharing of a 

common epitope between the FBA-1 of S. aureus and mammals, despite the low 

level of observed similarity with protein sequence of Homo sapiens, a mammalian 

species. A 4th potential reason for the poor protective potential may be the induction 

of the antibody isotype IgM only which has a significantly shorter half life than the 

other antibody isotypes (IgG1 and IgG2a). Further studies are clearly warranted for 

testing of these hypotheses. 
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Abstract 

Biofilm formation is an important contributor to the virulence of bacterial pathogens 

due to promotion of persistence/colonization, persistent resistance to antibiotics and 

host’s innate immune system. This study describes and validates an antibody-based 

inhibition assay for determination of the most significant virulence-associated 

antigens associated with biofilm formation.  Staphylococcus aureus was used as a 

model pathogen for this investigation because it causes systemic and/or localised 

infections in both humans and animals.  Using monoclonal or polyclonal antibodies 

against a multiplicity of accredited structural or secreted virulence antigens such as 

surface adhesins and exotoxins, it was confirmed that ClfA, FnBPA, SdrD, PNAG 

and α-toxin were the most significant antigens associated with biofilms of S. aureus 

as judged by 50% or greater inhibition of biofilm formation in vitro with specific 

antibodies.  However, antibodies against accredited protective antigens viz., MntC, 

isdD, isdB and Bbp, were found to inhibit biofilm formation by only 20% indicating 

their minor contribution to biofilm formation. No inhibition of biofilm formation was 

observed with antibodies against select major super-antigenic toxins or immune 

evasion antigen, Protein A. The concept underpinning the described method has the 

potential for identification of biofilm-associated antigens of other bacterial 

pathogens. 

 

Introduction 

Staphylococcus aureus has a remarkably large array of virulence antigens which 

include surface-associated immune evading capsular polysaccharides, biofilm-

associated Poly-N-acetyl glucosamine (PNAG), exotoxins and extracellular binding 

proteins, collectively known as microbial surface components recognizing adhesive 

matrix molecules, or MSCRAMM (Kropec et al., 2005).  The major accredited 

exotoxins of significance include alpha toxin, toxic shock syndrome toxin (TSST) 

and multiple staphylococcal enterotoxins (SEs) (Verkaik et al., 2010) whereas the 

major MSCRAMM include Clumping factor A (ClfA), Protein A (Spa), fibronectin 
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binding protein A (FnBPA), iron-responsive surface-determinant A and B (IsdA, 

IsdB), serine aspartate repeat gene proteins D and E (SdrD, SdrE) and bone 

sialoprotein-binding protein (Bbp) (Foster et al., 2014).  

Four major capsular phenotypes of S. aureus have been recognised (O'Riordan and 

Lee, 2004) thus far. Lack of relationship between encapsulation and biofilm 

formation has been reported previously (Babra et al., 2014). In this study, an 

immunological method that may be used to identify potential biofilm-associated 

antigens of S. aureus in vitro has been described. The identified biofilm-associated 

antigens could be used in the development of potentially effective conjugate vaccine 

formulations against infections caused by this S. aureus.  

The MBEC™ (minimum biofilm eradication concentration) Assay, formerly named 

as the Calgary Biofilm Device, was developed as a biofilm growth device for 

bacterial pathogens (Ceri et al., 1999). The MBEC™ lid comprises of 96 pegs that 

corresponds with the wells of a standard 96 well microtiter plate. The MBEC assay is 

routinely used as an wet laboratory based platform for the determination of 

Minimum Inhibitory Concentration (MIC), a standard laboratory measurement for 

susceptibility testing (Harrison et al., 2005).  In addition, the MBEC assays can be 

used for testing of susceptibility of pathogens to antibiotics, disinfectants, heavy 

metals as well as biofilm formation (http://www.innovotech.ca/products_mbec.php).   

Numerous studies have confirmed that MIC may be different for free-floating versus 

biofilm bacterial cultures (Ceri et al., 1999; Babra et al., 2014). However, the MBEC 

assay has not thus far been adapted for determination of inhibition of biofilm 

formation by bacterial pathogens using specific antibodies.  In this investigation, an 

antibody-mediated biofilm inhibition assay was developed for determination of the 

most significant virulence antigens of S. aureus potentially contributing to biofilm 

formation using the principle underpinning an indirect enzyme-linked 

immunosorbent assay (ELISA). 
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Materials and Methods 

Antibodies used in this study are listed in Table 1, with their origin and source, and 

the highest titres/working dilutions used in the specific antibody-based biofilm 

inhibition assay.  

 

Table 1: Antibodies towards several MSCRAMM and toxins obtained including their 

origin and working dilution factor.  

Antibody Target Origin Titer of aby Source 

Anti-S.aureus 

aby* 

Whole cell Rabbit 1 in 500 Abcam 

Anti-α toxin 

aby 

Toxin Rabbit 1 in 50,000 Sigma 

Aldrich 

Anti-ClfA aby MSCRAMM Mouse 1 in 5,000 Tim Foster 

Anti-Spa aby MSCRAMM Goat 1 in 5,000 Abcam 

Anti-FnBPa 

aby 

MSCRAMM Rabbit 1 in 2,000 Tim Foster 

Anti-TSST aby Toxin Rabbit 1 in 5,000 Abcam 

Anti-isdA aby MSCRAMM Mouse 1 in 5,000 Tim Foster 

Anti-isdB aby MSCRAMM Mouse 1 in 5,000 Tim Foster 

Anti-SdrD aby MSCRAMM Mouse 1 in 4,000 Tim Foster 

Anti-SdrE aby MSCRAMM Mouse 1 in 3,000 Tim Foster 

Anti-Bbp aby MSCRAMM Mouse 1 in 2,500 Tim Foster 

Anti-SE aby Toxin Mouse 1 in 10,000 Abcam 

Anti-PNAG 

aby 

Biofilm Goat 1 in 8  Gerald Pier 

*Aby denoted antibody 
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Bacterial control strains 

The quality control Staphylococcus aureus strain, a wound isolate, used in this 

investigation was ATCC® 29213™, a strong biofilm producer.  In this investigation 

ATCC® 29213™ also served as the bacterial control for MSCRAMM viz., PNAG, 

ClfA, Spa, FnBPA, IsdA, IsdB, SdrD, SrdE and Bbp. A clinical strain in our 

laboratory collection, H23, was designated as the control for MntC after positive 

amplification with MntC primers (unpublished).  

 

Controls for toxins were as follows: α toxin control was ATCC® 8096™, β toxin 

control was ATCC® 13565™ and TSST control was ATCC® 51651™. Two strains 

served as the control for the Staphylococcal Enterotoxins (SEs): ATCC® 13565 ™, 

purchased from ATCC and Strain Smith Diffuse, kindly donated by Professor Gerald 

Pier, Channing Laboratory, Brigham and Women's Hospital, Boston MA. ATCC® 

13565 ™ was positive for SEA, SEC and SED whereas Smith Diffuse strain was 

positive for SEA, SEB and SEC.   

 

Optimization of a PEG method  

After confirming the working dilution factor for antibodies to be used in the peg-

based assay using an adapted indirect ELISA assay (Fry et al., 2008), designated 

wells in a 96 well microtiter plate were filled with 200µL of antibody. The MBEC™ 

Biofilm Inoculator plate lid (Innovotech  Inc) was placed on top of the antibody 

containing wells and placed on an orbital shaker, 80rpm, for 2hrs at 37ºC or 

overnight at 4ºC.  

Staphylococcus aureus control strains were grown overnight in 2mL of NB on an 

orbital shaker (80rpm).  Bacterial cells were centrifuged and washed twice in PBS. 

Cells were diluted in PBS to adjust the absorbance to 0.132 at OD600nm (equivalent to 

approximately 108 CFU/mL) and placed on ice to prevent multiplication.   Prior to 

incubation with the peg plate, the bacterial culture (0.132 at OD600nm) was diluted 

tenfold (equivalent to 107 CFU/mL), in NB containing 1% glucose. 
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The MBEC plate lid was gently washed 3 times in chilled wash buffer.  In a fresh 96 

well microtiter plate, 200µL of 1:10 bacterial suspension was added to the 

corresponding antibody coated peg.  The MBEC peg lid was placed on culture and 

incubated for 3hrs on an orbital shaker, 80rpm, at 37ºC to allow formation (or lack of 

formation) of biofilm on the peg.  

Pegs were cut off the lid aseptically and washed three times in chilled sterile PBS 

(5mL/wash). After the final wash, the peg was placed in chilled 5mL of sterile PBS 

buffer on ice and subjection to gentle sonication at 47kHz ±6% in a water sonicator 

(Bransonic 1200 E4) for 20 mins to disrupt the peg-bound bacteria.  Sonication was 

used to dislodge bacteria because no loss of viability S. aureus had been observed in 

standardisation of the method (data not shown). Pegs were immediately removed and 

discarded.  The dislodged bacteria (100 µL) were aseptically spread-plated onto MH 

Agar plates, incubated overnight at 37ºC and CFUs determined. For every peg 

method, control groups without antibody were used for calculation of percentage 

reduction in bacterial colony counts.  The CFUs for each control microorganisms in 

the biofilms of uncoated and antibody coated Pegs were determined in triplicate.  
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Results and Discussion 

The concept underpinning the developed PEG method is direct inhibition of biofilm 

formation by specific antibodies against virulence factors of S. aureus using the 

MBEC™ Biofilm Inoculator plate. Using accredited ATCC controls against 

Staphylococcal toxins and MSCRAMM, biofilm inhibition was determined using 

corresponding specific antisera.  Using the highest working dilution of antibodies, 

determined using indirect ELISA (Table 1), biofilm inhibition experiments were 

carried out to determine the most prevalent detectable virulence antigens associated 

with biofilms of S. aureus. 

There have been numerous attempts to develop effective vaccines for prevention of 

infections caused by S. aureus in humans (Fattom et al., 2004; Kropec et al., 2005; 

Maira-Litran et al., 2005; Verdier et al., 2007; Bubeck Wardenburg and Schneewind, 

2008; Huda et al., 2011; Pozzi et al., 2012) but none has claimed success in 

developing a universal vaccine thus far in achieving this goal for all infections 

caused by this pathogen (Lee, 2003 ; Schaffer and Lee, 2008; Pier, 2013). The basis 

of selection of different antigens for vaccine development in the formulation of 

conjugate vaccines has been their protective potential, judged mainly by reduction in 

bacterial loads in select organs of mice administered antigen-specific antibodies, and 

improvement in the opsonophagocytic killing indices of S. aureus. Given that most 

bacterial pathogens form biofilms, which in addition to promoting persistent 

antibiotic resistance (Babra et al., 2014), attenuate the effectiveness of the host’s 

innate immune defences including inflammation (Archer et al., 2011; Thurlow et al., 

2011; Babra et al., 2014), it is important to identify the antigens associated with 

biofilms of S. aureus.  

The common method used for determining the association of a bacterial virulence 

antigen with biofilm formation is the generation of knockout mutants devoid of the 

target gene such that it loses the ability to form a biofilm (Caiazza and O'Toole, 

2003; Anderson et al., 2012b; Pozzi et al., 2012). However, there are no reports that 

have determined the relatibe potential contribution of biofilm-asociated antigens of 

S. aureus. Furthermore, since this process of constructing knockout mutants can be 
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time consuming and unpredictable, the immunological assay described in this 

communication offers this opportunity.  

O’Neill et al, (2007) reported that among MSSA isolates grown in media 

supplemented with 4% sodium chloride, PIA/PNAG production correlated with 

biofilm development. Our previous studies (Babra et al., 2014) confirmed these 

results. On the other hand, no PNAG production in MRSA isolates grown in the 

presence of either glucose or 4% NaCl was detected despite the fact that the ica 

operon was transcribed suggesting ica-independent mechanism presumably mediated 

by a protein adhesins. In this investigation, specific antibodies against the accredited 

virulence antigens inhibiting biofilm formation were found to range from 50 to ~80% 

(Table 2) using the antibody-based biofilm-inhibition assay. Specific anti-α toxin, 

anti-PNAG, anti-SdrD, anti-ClfA and anti-FnBPA antibodies inhibited biofilm 

formation by 77%, 69.8%, 57.6% and 52% respectively. Since specific anti-FnBPB 

antibodies, which have been reported to contribute to formation of biofilm by S. 

aureus (Geoghegan et al., 2013) were not available, its potential association with 

biofilm formation using the immunological assay could not be determined.  
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Table 2: A brief summary of antibody and the respective bacterial control with the percent reductions observed in the biofilm inhibition assay 

Antibody Bacterial control CFU/mL** 

with Antibody 

CFU/mL** 

without Antibody 

Percent 

Reduction 

P-value 

Anti-S. aureus 

aby 

ATCC® 29213™ 3.80±0.28 x102 1.11±0.107 x103 65.9% 0.011 

Anti-α toxin aby ATCC® 8096™ 1.0±0.04 x103 4.37±0.29 x103 77% 0.006 

Anti-ClfA aby ATCC® 29213™ 1.92±0.058 x103 4.53±0.20 x103 57.6% 0.003 

Anti-Spa aby ATCC® 51651™ 2.96 ±0.083 x103 2.66±0.131 x103 NIL N/A 

Anti-FnBPa aby ATCC® 29213™ 1.2±0.15 x102 2.5±0.29 x102 52% 0.049 

Anti-TSST aby ATCC® 51651™ 3.65±0.074 x103 2.66 ±0.131 x103 NIL N/A 

Anti-isdA aby ATCC® 29213™ 8.77±0.74 x102 1.19 ±0.037 x103 26.5% 0.080 

Anti-isdB aby ATCC® 29213™ 5.0±0.14 x102 6.5±0.29 x102 22.3% 0.063 

Anti-SdrD aby ATCC® 29213™ 2.6±0.60 x102 6.5±0.29 x102 60% 0.009 

Anti-SdrE aby ATCC® 29213™ 2.4±0.29 x102 3.0±0.57 x102 20% 0.514 

Anti-Bbp aby ATCC® 29213™ 3.92±0.380 x103 4.53±0.020 x103 17.9% 0.237 

Anti-SE aby 

(Positive SEs) 

ATCC® 13565 ™ 

(SEA, SEC, SED) 

 

1.08±0.035 x103 

 

 

1.19±0.142 x103 

 

 

9.2% 

 

 

0.562 

 

 

204 
 



 

Strain Smith 

Diffuse* 

(SEA, SEB, SEC) 

9.5±0.06 x102 1.33±0.32 x103 28.8% 0.005 

Anti-PNAG aby ATCC® 29213™ 2.35±0.003 x103 7.78±0.004 x103 69.8% 0.000 

Anti-MntC aby Human strain S23 1.84±0.080 x103 2.68±0.092 x103 31.3% 0.021 

Anti-Aldolase 

aby 

Human strain S23 2.0±0.197 x103 2.69±0.092 x103 23.9% 0.135 

*Strain Smith Diffuse has been previously identified as positive for SEA, SEB and SEC 

**Average CFU/mL (n=3) 
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Examining the relative prevalence of different virulence genes, we found that genes 

encoding the MSCRAMM Spa, ClfA, ClfB, SdrE, SdrD, IsdA, IsdB and MnTc were 

detected in greater than 90% of the isolates whereas those producing FnBPA 

accounted for only 6.5% of the total number of isolates examined (unpublished). 

Genes for α-toxin were also detected in greater than 90% of the isolates.  

Interestingly, antibodies against Protein A showed no association with biofilm 

formation. While this may have been due to the difference in the spa type of the 

strain used to raise polyclonal antibodies by the supplier, Abcam, the level of spa 

expression has been reported to have no detectable effect on non-specific killing in 

opsonophagocytic antibody assay (OPA) (Nanra et al., 2012). However, despite the 

reported protective potential of surface Protein A (Yi et al., 2012), no contribution of 

this immune evasion molecule to biofilm formation was observed. While in contrast 

to the finding reported by Merino et al (2009), our finding supports the recent report 

by Foulston et al, (2014) that protein A and fibrinogen-binding proteins A did not 

contribute significantly to biofilm formation.  It would however be interesting to 

examine the inhibitory effect of specific anti-FnBPB antibodies on biofilm formation 

by S. aureus. 

The relatively insignificant contribution of MntC to biofilm formation found in this 

study by the Peg assay supports the speculation stated by Salazar et al (2014) that 

“the protective role played by MntC in animal models may have been due to 

impairment of its adhesive properties” despite its multifunctional role as an ion-

scavenging and binding properties for ECM and potential binding to proteins in the 

coagulation cascade in the host (Anderson et al., 2012a). The observation that no 

apparent contribution of enterotoxin A, C and D was does not rule out potential 

contribution by enterotoxin B and warrants determination using specific anti-SEB 

antibodies. 

Previously published research has demonstrated association of individual virulence 

antigens with biofilm formation (Deivanayagam et al., 2000; Foster, 2002; Caiazza 

and O'Toole, 2003; Kropec et al., 2005; Kim et al., 2010) but not on their 

comparative potential contribution to biofilm formation as determined using the 
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immunological assay described in this communication.  The concept underpinning 

this method may also be applicable for determining the comparative contribution of 

different virulence factors/antigens of other human and animal bacterial pathogens.  

 

Acknowledgements 

The first author would like to acknowledge CHIRI Biosciences, Research Precinct 

Curtin University for the facilities provided in addition to Curtin University for 

providing the Australian Postgraduate Award.  The authors would like to thank 

Professor Emeritus Timothy Foster, Trinity College, Dublin for providing samples of 

most of the anti-MSCRAMM antibodies. The authors also extend their sincere 

thanks to Professor Gerald Pier, Brigham and Women’s Hospital, Channing 

Laboratory, Boston, USA for providing the antisera against PNAG and Smith 

Diffuse strain used in this investigations. 

207 
 



Chapter 9 
Development of a novel inhibition assay for identification of the most significant biofilm forming antigens of 

Staphylococcus aureus 

References 

Anderson, A.S., Scully, I.L., Timofeyeva, Y., Murphy, E., McNeil, L.K., Mininni, 

T., Nunez, L., Carriere, M., Singer, C., Dilts, D.A. and Jansen, K.U., 2012a. 

Staphylococcus aureus manganese transport protein C is a highly conserved 

cell surface protein that elicits protective immunity against S. aureus and 

Staphylococcus epidermidis. J Infect Dis 205, 1688-96. 

Anderson, M.J., Lin, Y.C., Gillman, A.N., Parks, P.J., Schlievert, P.M. and Peterson, 

M.L., 2012b. Alpha-toxin promotes Staphylococcus aureus mucosal biofilm 

formation. Front Cell Infect Microbiol 2, 64. 

Archer, N.K., Mazaitis, M.J., Costerton, J.W., Leid, J.G., Powers, M.E. and Shirtliff, 

M.E., 2011. Staphylococcus aureus biofilms: properties, regulation, and roles 

in human disease. Virulence 2, 445-59. 

Babra, C., Tiwari, J., Costantino, P., Sunagar, R., Isloor, S., Hegde, N. and Mukkur, 

T., 2014. Human methicillin-sensitive Staphylococcus aureus biofilms: 

potential associations with antibiotic resistance persistence and surface 

polysaccharide antigens. J Basic Microbiol 54, 721-8. 

Bubeck Wardenburg, J. and Schneewind, O., 2008. Vaccine protection against 

Staphylococcus aureus pneumonia. J Exp Med 205, 287-94. 

Caiazza, N.C. and O'Toole, G.A., 2003. Alpha-toxin is required for biofilm 

formation by Staphylococcus aureus. J Bacteriol 185, 3214-7. 

Ceri, H., Olson, M.E., Stremick, C., Read, R.R., Morck, D. and Buret, A., 1999. The 

Calgary Biofilm Device: new technology for rapid determination of antibiotic 

susceptibilities of bacterial biofilms. J Clin Microbiol 37, 1771-6. 

Deivanayagam, C.C., Rich, R.L., Carson, M., Owens, R.T., Danthuluri, S., Bice, T., 

Hook, M. and Narayana, S.V., 2000. Novel fold and assembly of the 

repetitive B region of the Staphylococcus aureus collagen-binding surface 

protein. Structure 8, 67-78. 

Fattom, A.I., Horwith, G., Fuller, S., Propst, M. and Naso, R., 2004. Development of 

StaphVAX, a polysaccharide conjugate vaccine against S. aureus infection: 

from the lab bench to phase III clinical trials. Vaccine 22, 880-7. 

208 
 



Chapter 9 
Development of a novel inhibition assay for identification of the most significant biofilm forming antigens of 

Staphylococcus aureus 

Foster, T.J. 2002. Bacterial Adhesion to Host Tissues: Mechanisms and 

Consequences; Surface protein adhesins of staphylococci. In: M. Wilson 

(Ed.), Chapter 1: Surface protein adhesins of staphylococci. Cambridge 

University Press, p. 328. 

Foster, T.J., Geoghegan, J.A., Ganesh, V.K. and Hook, M., 2014. Adhesion, invasion 

and evasion: the many functions of the surface proteins of Staphylococcus 

aureus. Nature reviews. Microbiol 12, 49-62. 

Foulston, L., Elsholz, A.K., DeFrancesco, A.S. and Losick, R., 2014. The 

extracellular matrix of Staphylococcus aureus biofilms comprises 

cytoplasmic proteins that associate with the cell surface in response to 

decreasing pH. mBio 5, e01667-14. 

Fry, S.R., Chen, A.Y., Daggard, G. and Mukkur, T.K., 2008. Parenteral 

immunization of mice with a genetically inactivated pertussis toxin DNA 

vaccine induces cell-mediated immunity and protection. J Med Microbiol 57, 

28-35. 

Geoghegan, Joan A., Monk, Ian R., O’Gara, James P. and Foster Timothy J., 2013. 
Subdomains n2n3 of fibronectin binding protein a mediate staphylococcus 
aureus biofilm formation and adherence to fibrinogen using distinct 
mechanisms. J Bact 195, 2675–2683. 

Harrison, J.J., Turner, R.J. and Ceri, H., 2005. High-throughput metal susceptibility 

testing of microbial biofilms. BMC Microbiol 5, 53. 

Huda, T., Nair, H., Theodoratou, E., Zgaga, L., Fattom, A., El Arifeen, S., Rubens, 

C., Campbell, H. and Rudan, I., 2011. An evaluation of the emerging 

vaccines and immunotherapy against staphylococcal pneumonia in children. 

BMC Public Health 11 Suppl 3, S27. 

Kim, H.K., Cheng, A.G., Kim, H.Y., Missiakas, D.M. and Schneewind, O., 2010. 

Nontoxigenic protein A vaccine for methicillin-resistant Staphylococcus 

aureus infections in mice. J Exp Med 207, 1863-70. 

Kropec, A., Maira-Litran, T., Jefferson, K.K., Grout, M., Cramton, S.E., Gotz, F., 

Goldmann, D.A. and Pier, G.B., 2005. Poly-N-acetylglucosamine production 

in Staphylococcus aureus is essential for virulence in murine models of 

systemic infection. Infect Immun 73, 6868-76. 

209 
 



Chapter 9 
Development of a novel inhibition assay for identification of the most significant biofilm forming antigens of 

Staphylococcus aureus 

Lee, J.C. 2003 New Bacterial Vaccines: Chapter 18 Staphylococcus aureus Vaccine. 

In: R.W. Ellis and  B.R. Brodeur (Eds.). LandesBioscience, p. 11. 

Maira-Litran, T., Kropec, A., Goldmann, D.A. and Pier, G.B., 2005. Comparative 

opsonic and protective activities of Staphylococcus aureus conjugate 

vaccines containing native or deacetylated Staphylococcal Poly-N-acetyl-

beta-(1-6)-glucosamine. Infect Immun 73, 6752-62. 

Merino, N., Toledo-Arana, A., Vergara-Irigaray, M., Valle, J., Solano, C., Calvo, E., 

Lopez, J.A., Foster, T.J., Penades, J.R. and Lasa, I., 2009. Protein A-mediated 

multicellular behavior in Staphylococcus aureus. J Bacteriol 191, 832-43. 

Nanra, J.S., Buitrago, S.M., Crawford, S., Ng, J., Fink, P.S., Hawkins, J., Scully, I.L., 

McNeil, L.K., Aste-Amezaga, J.M., Cooper, D., Jansen, K.U. and Anderson, 

A.S., 2012. Capsular polysaccharides are an important immune evasion 

mechanism for Staphylococcus aureus. Hum Vaccin Immunother 9. 

O'Neill, E., Pozzi, C., Houston, P., Smyth, D., Humphreys, H., Robinson, D.A. and 

O'Gara, J.P., 2007. Association between methicillin susceptibility and biofilm 

regulation in Staphylococcus aureus isolates from device-related infections. J 

Clin Microbiol 45, 1379-88. 

O'Riordan, K. and Lee, J.C., 2004. Staphylococcus aureus capsular polysaccharides. 

Clin Microbiol Rev 17, 218-34. 

Pier, G.B., 2013. Will there ever be a universal Staphylococcus aureus vaccine? Hum 

Vaccin Immunother 9, 1865-76. 

Pozzi, C., Wilk, K., Lee, J.C., Gening, M., Nifantiev, N. and Pier, G.B., 2012. 

Opsonic and protective properties of antibodies raised to conjugate vaccines 

targeting six Staphylococcus aureus antigens. PloS one 7, e46648. 

Salazar, N., Castiblanco-Valencia, M.M., Silva, L.B., Castro, I.A., Monaris, D., 

Masuda, H.P., Barbosa, A.S. and Areas, A.P., 2014. Staphylococcus aureus 

Manganese Transport Protein C (MntC) Is an Extracellular Matrix- and 

Plasminogen-Binding Protein. PloS one 9, e112730. 

Schaffer, A.C. and Lee, J.C., 2008. Vaccination and passive immunisation against 

Staphylococcus aureus. Int J Antimicrob Agents 32 Suppl 1, S71-8. 

210 
 



Chapter 9 
Development of a novel inhibition assay for identification of the most significant biofilm forming antigens of 

Staphylococcus aureus 

Thurlow, L.R., Hanke, M.L., Fritz, T., Angle, A., Aldrich, A., Williams, S.H., 

Engebretsen, I.L., Bayles, K.W., Horswill, A.R. and Kielian, T., 2011. 

Staphylococcus aureus biofilms prevent macrophage phagocytosis and 

attenuate inflammation in vivo. J Immunol 186, 6585-96. 

Verdier, I., Durand, G., Bes, M., Taylor, K.L., Lina, G., Vandenesch, F., Fattom, A.I. 

and Etienne, J., 2007. Identification of the capsular polysaccharides in 

Staphylococcus aureus clinical isolates by PCR and agglutination tests. J Clin 

Microbiol 45, 725-9. 

Verkaik, N.J., Boelens, H.A., de Vogel, C.P., Tavakol, M., Bode, L.G., Verbrugh, 

H.A., van Belkum, A. and van Wamel, W.J., 2010. Heterogeneity of the 

humoral immune response following Staphylococcus aureus bacteremia. Eur 

J Clin Microbiol Infect Dis 29, 509-18. 

Yi, S.Q., Zhang, X.Y., Yang, Y.L., Yang, Y., Liu, S.L., Fu, L., Yu, C.M. and Chen, 

W., 2012. Immunity induced by Staphylococcus aureus surface protein A was 

protective against lethal challenge of Staphylococcus aureus in BALB/c 

mice. Microbiol Immunol 56, 406-10. 

211 
 



Chapter 10 
Conclusion and Future Directions 

 

Chapter 10 – Conclusion 

 

Staphylococcus aureus is the most common causative agent of invasive 

staphylococcal infections and is commonly referred to as “Golden Staph” (Lyon & 

Skurray, 1987).  This facultative anaerobic bacterium has also been isolated from 

other infections such as toxic shock syndrome, endocarditis and septicaemia 

(O'Riordan & Lee, 2004, Skurnik et al., 2010).  It has been isolated from nosocomial 

infections, which often occur in the form of infection of permanent prosthetic 

implants, contact lenses and urinary tract infections, among many others (Cramton et 

al., 1999, Ando et al., 2004, Anderson et al., 2012).   

Because of a multitude of clinical manifestations/disease syndromes caused by 

multiple antibiotic resistant S. aureus, particularly pneumonia and sepsis in neonates, 

it is urgent to develop an effective prophylactic vaccine against S. aureus that can be 

used in pregnant mothers to impart protection to the neonate via colostrum and milk, 

and in elderly patients prior to any surgical intervention in hospitals worldwide.  

Given that majority of staphylococcal infections (80%) are biofilm-associated (Harro 

et al., 2010, Anderson et al., 2012) and biofilm-associated pathogens are 50 to 500 

times more resistant with potential to lead to chronic infection, it is quite plausible 

that biofilm-associated S. aureus has different proteome than its planktonic phase.  

This study was designed to explore the potential of previously unknown virulence 

and/or biofilm-associated antigens, particularly surface-associated proteins, leading 

to development and persistence of resistance to antibiotics.  It is therefore important 

to determine not only the novel antigens associated with biofilm formation but also 

contribution of the already accredited surface antigens, termed as MSCRAMM, 

during biofilm formation.   

This investigation revealed substantial association between biofilm formation and the 

presence of PNAG (Babra et al., 2013).  The association was substantial albeit not 
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absolute indicating the presence of additional potential MSCRAMM contributing or 

associated with the formation of biofilm by S. aureus  There was also a strong 

association between biofilm formation of MSSA strains and persistence of antibiotic 

resistance (Cernohorska, 2010, Babra et al., 2013, Babra et al., 2013) with a higher 

rate of resistance developed in the biofilm-embedded state, which is most likely a 

contributing factor to treatment failures recorded for S. aureus infections. Resistance 

was maintained up to day 30 following subculturing of the isolates, suggesting 

serious consideration be given to investigate the antibiograms for S. aureus from 

infected patients in both biofilm and planktonic cultures prior to the commencement 

of treatment with antibiotics.  Although the ability of biofilm to resist to treatment 

with antibiotics has long been acknowledged however this study reported the 

persistence of antibiotic resistance with formation of biofilm (Babra et al., 2013).  

Extensive research has been carried on capsular polysaccharides (O'Riordan & Lee, 

2004) of S. aureus as immune evasion molecule and its use in the formulation of 

conjugate vaccines against infections caused by S. aureus in immune-competent and 

immune-compromised subjects including animals and humans (Fattom et al., 1996, 

Han et al., 2000, Robbins et al., 2004, Kampen et al., 2005, Nanra et al., 2012). 

However, their role in biofilm formation had not been explored.  Using well-

established, independent in vitro biofilm analysis methods – TCP and Congo red agar 

methods (Babra et al., 2013)  and CP serotyping and genotyping, it was discovered 

and reported (Waryah et al., 2014) that there is no association between the 

production of capsule and biofilm formation.  In addition to this discovery, an 

improved optimized modified TCP method, with defined cut off points used for 

biofilm formation, was developed (Babra et al., 2013) 

A comparison of the serotyping method, developed using bovine mastitis isolates in 

this laboratory by Gogoi-Tiwari et al., 2014, Australian Veterinary Journal, in press), 

revealed that serological typing as a better method for presence of capsule and the 

somatic polysaccharide 336 phenotypes than genotyping.  In Western Australia, the 

capsular phenotypes 5 and 8 were the predominant capsular types S. aureus human 

clinical and student S. aureus isolates. However, there were a number of isolates   

that were found to be encapsulated determined by the use of an improved Maneval’s 
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capsular staining method incorporating the use of a sucrose gradient in the method to 

remove the non-encapsulated and hence non-typeable S. aureus isolates (Waryah et 

al., 2014).  

Previous to investigations presented in this thesis, it was generally accepted that there 

were only 4 capsular types of S. aureus, the remaining capsular types being labelled 

as non-typeable or serotype 336 (Nanra et al., 2012).  One unexpected discovery 

found in this investigation was the prevalence of additional capsular types observed 

by the presence of capsule on non-CP1, CP2, CP5, CP8 or serotype 336 isolates. Due 

to time constraints, the scope of this thesis was unable to accommodate exploration 

of this interesting finding. One limitation of the capsular typing study was the lack of 

primers against type 336. However given the high specificity of the serotyping 

analysis, this limitation was easily overcome.  Future investigation in validity of 

serotype 336 as a somatic non-capsular antigen is also warranted.  

Using a combination of genotyping and serotyping methods, 26 virulence factors 

including MSCRAMM and toxins, were found to be distribution among the available 

or collected S. aureus isolates.   Diversity of the strains, determined using RAPD 

analysis, revealed the distribution of virulence genes to be diverse with genes 

encoding MSCRAMM Spa, ClfA, ClfB, SdrE, SdrD, IsdA and IsdB dominant in 

90% of isolates. Genes encoding α-toxin were detected in greater than 90% of the 

isolates followed by β-toxin and SEG enterotoxin detected in 50-60% of the isolates.  

 Many investigations that have concentrated on finding a single target for 

development of a vaccine against many bacterial infections including those caused 

by S. aureus (Middleton, 2008, Huda et al., 2011, Sharma et al., 2011, Shahrooei et 

al., 2012, Jiang et al., 2014). On the other hand, many others have targeted 

development of vaccines using a combination of inactivated virulence antigens as 

conjugate vaccines involving linkage with surface-associated polysaccharide 

antigens, including PNAG, but without gaining knowledge about their contribution 

to formation of biofilms (Maira-Litran et al., 2005, Pozzi et al., 2012). Although 

PNAG has already been used in the formulation of conjugate vaccines using select 

MSCRAMM antigens, my project is the first one to report the significant biofilm-
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associated virulence antigens using a novel peg-based technique (Waryah, submitted 

for publication to the Journal of Medical Microbiology). This study has indicated the 

importance of developing conjugate cocktail vaccines based on the contributions of 

the major MSCRAMM to biofilm formation.   

In addition to identifying the potential antigens contributing to biofilm formation by 

S. aureus, this study also investigated the effect of dispersal of the biofilms using 

biofilm-degrading enzymes on the antimicrobial efficacy of antibiotics in vitro, using 

tobramycin as a model antibiotic. Extracellular bacterial DNA (eDNA) and the 

surface-associated PNAG have been demonstrated to play important roles in biofilm 

formation by S. aureus (Haaber et al., 2012, Lister & Horswill, 2014). When used as 

singular enzymes, the antimicrobial efficacy increased 8780 fold for DNAse I and 

7500 fold for dispersin-treated biofilms. However, when combined together for 

treatment of the biofilm, a significant reduction in the antibiotic efficacy of 

tobramycin was observed (manuscript submitted for publication).  This study 

demonstrated that using Tobramycin with DNase I or Dispersin B alone enhances the 

bactericidal activity of the antibiotic.  Previously thought to be a weak disruptor of S. 

aureus biofilms, Dispersin B with Tobramycin was effective in dispersing the 

biofilms enough to significantly enhance the antimicrobial efficacy of tobramycin, an 

antibiotic widely used in patients suffering from cystic fibrosis (Khan et al., 1995, 

Sawicki et al., 2012, Trapnell et al., 2012). One limitation of this study is the testing 

of only Tobramycin. However, the principle underpinning the use of biofilm-

disrupting agents to enhance the efficacy of antibiotics has been demonstrated. The 

exact treatment strategies for different bacterial infections for different persistent 

microbial infections caused by different pathogens would need to be worked out in 

vitro prior to their assessment in vivo. The mechanisms underpinning the observed 

mutual inhibition between these 2 biofilm-degrading enzymes were not determined 

because of time constraints. However, the evaluation effect of coating medical 

devices with the biofilm degrading enzymes for prevention of biofilm formation, are 

highly warranted.  

Staphylococcus aureus grown under the stressful iron-deprivation, revealed the 

presence of a unique over-produced protein band in the biofilm of this nosocomial 
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pathogen. The purified band, 33kDa in molecular mass, was identified as Fructose-

bisphosphate aldolase Class 1 (FBA-1), which is also a moonlighting protein, by 

mass spectrometry. FBA Class 1 was previously reported to be present in the 

planktonic S. aureus cells but without any association with the biofilms.  

Using the antibodies against FBA-1 and MntC in SPF Balb/c mice, passive 

protective potential of these antigen-specific sera was compared using the acute 

murine bacteraemia model. It is hypothesised that the better passive protective 

potential of anti-MntC sera may be either associated with the short half-life of the 

IgM versus the longer half-life of the IgG isotypes (IgG1 and IgG2a), need to use a 

higher dose, adjustment of the vaccine formulation to reflect a higher content of the 

adjuvant as has been reported for a S. pneumoniae antigen (Ling et al., 2004) or the 

sharing of an epitope of FBA-1 with the mammalian counterpart despite a low level 

of similarity.  

Future direction for validating the role of FBA-1 in establishment by biofilm 

formation and virulence should involve using the following approaches: 

1. Determining the cross-reactivity of the S. aureus FBA-1 with the mouse 

and/or human FBA-1 serologically. 

Studies carried out on the immunogenicity and protective potential that are 

presented in this thesis, relied on the protein sequence homology data. If 

serological cross-reactivity of the S. aureus FBA-1 with mouse or human 

aldolase is discovered, which is highly unlikely, it will no longer be a 

candidate for vaccine development or a target for discovery of new  

antibiotics. Furthermore, the validity of determining the similarity/homology 

between 2 molecules using the protein sequence data will be under challenge.  

 

If no cross-reactivity is discovered as is expected, the approaches outlined 

below, should be pursued for confirming and/or validating the role of FBA-1 

in biofilm formation and virulence of S. aureus. Using the novel peg-based 

antibody inhibition method described in Chapter 9, it has already been 

determined that both the FBA-1 and MntC of S. aureus form biofilms to the 
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same extent. However, MntC molecule has been shown to be expressed early 

in the infection cycle, which information is not available for the FBA-1 of S. 

aureus, hence the 2nd future direction. 

 

2. Determining the phase at which the gene for FBA-1 is expressed in the 

invasive infection cycle of S. aureus in vivo: If FBA-1 is not produced in the 

early phase of the infection cycle, acute murine bacteraemia model, used by 

many research laboratories could not be considered as a suitable model for 

evaluation of its protective potential. 

 

3. Determining the effect of lowering the levels  of FBA-1 by regulating its 

production using anhydrotetracycline (Puckett et al., 2014): Virulence of S. 

aureus grown under these conditions should be reduced assuming that FBA-1 

is produced early in the infection cycle of S. aureus bacteraemia. 

 
4. Determining the effect of deletion of the gene encoding FBA-1 on the 

virulence of S. aureus in vivo as has been reported for Mycobacterium 

tuberculosis (Puckett et al., 2014). Deletion of FBA-1 of S. aureus should 

reduce its virulence permitting mice to live longer after challenge with the 

wild type. 

 
5. Evaluating the dose response of recombinant FBA-1 of S. aureus with 

variable quantities of adjuvants with the aim of producing high-titred specific 

antisera containing IgG1 and IgG2 isotypes: This may involve evaluation of 

different types of traditional and other adjuvant formulations that have been 

reviewed by commercial companies such as Invivogen 

(http://www.invivogen.com/review-vaccine-adjuvants) and also some 

research laboratories (Mohan et al., 2013, Bergmann-Leitner & Leitner, 

2014). 
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Additional Information 

Chapter 3  

For biofilm formation, bacteria were grown in 96 well microtitre plates. Fig 1: 

Example of biofilm production in vitro 

 

From left to right: weak, medium and strong biofilm producers 

 

Table 1: Tissue Culture plate readings at 600nm using the Crystal Violet method  

Strain OD600nm Strain OD600nm Strain OD600nm Strain OD600nm 
S1 0.723 S11 1.319 S20 1.172 H6 1.384 
S2 1.328 S12 0.564 S21 1.271 H7 1.297 
S3 1.133 S13 1.439 S23 1.439 H8 1.088 
S4 1.048 S14 1.088 H1 1.388 H9 1.434 
S5 1.098 S15 0.818 H2 1.119 H10 1.476 
S6 0.893 S16 1.225 H3 1.468 H11 1.514 
S7 1.115 S18 1.206 H4 1.167 H12 1.358 
S9 1.445 S19 1.228 H5 1.435 ATCC 

29213 
1.288 

Cut off was OD600nm 0.120.  Strains with a cut off of OD600nm ≤0.480 were 

considered weak.  OD values ≤0.720 were moderate biofilm formers and OD values 

>0.721 were considered strong biofilm forming bacteria 
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Fig 2: Production of a red pigment on Congo Red Agar plates indicates weak slime 

producers and production of black indicates strong slime producers 

 

Table 2: Congo red agar plate colour observation after 72hr 

Strain Colour Strain Colour 

S1 Red S11 Red 

S2 Red S12 Red 

S3 Black S13 Dark red 

S4 Black S14 Red 

S5 Black S15 Dark red 

S6 Black S16 Dark red 

S7 Red S18 Black 

S9 Black S19 Dark red 

 Strain Colour Strain Colour 
S20 Dark red H6 Dark red 
S21 Dark red H7 Black 
S23 Red H8 Red 
H1 Red H9 Black 
H2 Red H10 Black 
H3 Black H11 Dark red 
H4 Black H12 Red 
H5 Black ATCC 29213 Black 
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Fig 3: Control strains USA LAC (CP negative) and USA 400 MW2 (CP8) were 

positive for methicillin resistance identified on both Chromogenic MRSA ID plates 

and mecA amplification 
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Chapter 4  

Table 3: Raw data comparing the capsular genotyping and serotyping observations 

Sl. 
No 

S aureus  
human strain 

Detection of capsular 
genotype by PCR method 

Detection of capsular 
serotype  by Slide 
Agglutination test 

 
CP1 

 
CP2 

 

 
CP5 

 
CP8 

 

 
CP1 

 
CP2 

 

 
CP5 

 
CP8 

 
1 S.aur 1 − − − − − − − − 
2 S.aur 2 − − − ✓ − − − ✓ 
3 S.aur 3 − − ✓ − − − ✓ − 
4 S.aur 4 − − − ✓ − − − ✓ 
5 S.aur 5 − − − − − − − - 
6 S.aur 6 − − ✓ − − − ✓ − 
7 S.aur 7 − − ✓ − − − ✓ − 
8 S.aur 9 − − ✓ − − − ✓ − 
9 S.aur 11* − − ✓ ✓ − − - ✓ 
10 S.aur 12 − − ✓ − − − ✓ − 
11 S.aur 13 − − − ✓ − − − ✓ 
12 S.aur 14 − − − ✓ − − − ✓ 
13 S.aur 15 − − − ✓ − − − ✓ 
14 S.aur 16 − − − ✓ − − − ✓ 
15 S.aur 18 − − ✓ − − − ✓ − 
16 S.aur 19 − − ✓ − − − ✓ − 
17 S.aur 20 − − ✓ − − − ✓ − 
18 S.aur 21 − − ✓ − − − ✓ − 
19 S.aur 23 − − − − − − − − 
20 H1 - 769199 − − − − − − − − 
21 H2 - FH − − − − − − − − 
22 H3 - 718972 − − − ✓ − − − ✓ 
23 H4 - Paul C Ear − − − ✓ − − − ✓ 
24 H5 - 13188622 − − − − − − − ✓ 
25 H6 - Maria − − ✓ − − − ✓ − 
26 H7 - Mel O − − ✓ − − − ✓ − 
27 H8 - 28062009 − − − ✓ − − − ✓ 
28 H9 - 080989 − − − ✓ − − − ✓ 
29 H10 - 38911557 − − − ✓ − − − ✓ 
30 H11 - 9555100  − − − ✓ − − − ✓ 
31 H12 - 13965121  − − − ✓ − − − ✓ 
32 ATCC 29213 − − ✓ − − − ✓ − 

*Strain found positive by genotyping for CP5 and CP8 but was confirmed as only CP8 

positive using serotyping 
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Figure 4 (a) and (b): A comparison of the improved Muir’s Mordant method.  Figure 

(a) shows a view of S, aureus stained with the original Muir’s Mordant Method 

under the microscope at 100X. It is difficult to see the clear outline of the capsule 

(white halo around purple/red stained bacteria). Large deposits of background debris 

can be noticed in the slide.  Figure (b) shows a view of S. aureus stained with the 

improved Muir’s Mordant Method under the microscope at 100X. Only a few stain 

deposits, with essentially no cell debris, are visible.   

(a) 

 

(b)*** 

 

*** Picture showing the distinct capsule was selected as the front cover image for Journal of 
Medical Microbiology
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Chapter 5 

Table 4: Raw data analysis of the Staphylococcal enterotoxin typing by PCR and 

serological kits 

Genotyping  Serotyping  Serotyping 
 Tecra Staph 

Enterotoxin kit** 
SET_RPLA toxin kit 

Strai
n No 

SE
A 

SE
B 

SE
C 

SE
D 

Abs 
 
OD490±10n

m 

Colour 
code 

SE
A 

SE
B 

SE
C 

SE
D 

1 ‒ ‒ ‒ ‒ 0.152 1 ✓ ‒ ‒ ‒ ‒ 
2 ✓ ‒ ‒ ‒ 3.317 3 ‒ ‒ ‒ ‒ ‒ 
3 ‒ ‒ ‒ ‒ 1.575 3 ✓ ‒ ‒ ‒ ‒ 
4 ‒ ‒ ‒ ‒ 3.242 4 ✓ ‒ ‒ ‒ ‒ 
5 ‒ ‒ ‒ ‒ 0.311 2 ✓ ‒ ‒ ‒ ‒ 
6 ✓ ‒ ‒ ‒ 0.653 3 ✓ ‒ ‒ ‒ ‒ 
7 ✓ ✓ ‒ ‒ 0.134 1 ‒ ‒ ‒ ‒ ‒ 
9 ✓ ‒ ‒ ‒ 1.923 4 ✓ ✓ ‒ ‒ ‒ 
11 ✓ ‒ ‒ ‒ 1.547 4 ✓ ✓ ‒ ‒ ‒ 
12 ✓ ✓ ‒ ‒ 3.252 5 ✓ ‒ ✓ ‒ ‒ 
13 ‒ ‒ ‒ ‒ 0.457 2 ✓ ‒ ‒ ‒ ‒ 
14 ‒ ‒ ‒ ‒ 0.170 1 ‒ ‒ ‒ ‒ ‒ 
15 ‒ ‒ ‒ ‒ 0.170 1 ‒ ‒ ‒ ‒ ‒ 
16 ‒ ‒ ‒ ‒ 0.177 1 ‒ ‒ ‒ ‒ ‒ 
18 ‒ ✓ ‒ ‒ 0.234 2 ✓ ‒ ‒ ‒ ‒ 
19 ‒ ✓ ‒ ‒ 0.208 2 ✓ ‒ ‒ ‒ ‒ 
20 ‒ ‒ ‒ ‒ 0.143 1 ‒ ‒ ‒ ‒ ‒ 
21 ‒ ✓ ‒ ‒ 0.140 1 ‒ ‒ ‒ ‒ ‒ 
23 ‒ ‒ ‒ ‒ 0.168 1 ‒ ‒ ‒ ‒ ‒ 
H1 ‒ ✓ ‒ ‒ 3.244 5 ✓ ‒ ‒ ‒ ‒ 
H2 ‒ ‒ ‒ ‒ 0.111 1 ‒ ‒ ‒ ‒ ‒ 
H3 ‒ ‒ ‒ ‒ 0.358 2 ✓ ‒ ‒ ‒ ‒ 
H4 ‒ ‒ ✓ ‒ 0.234 5 ✓ ‒ ‒ ✓ ‒ 
H5 ‒ ‒ ✓ ‒ 0.857 2 ✓ ‒ ‒ ‒ ‒ 
H6 ‒ ‒ ‒ ‒ 0.273 1 ✓ ‒ ‒ ‒ ‒ 
H7 ‒ ‒ ‒ ‒ 0.115 1 ‒ ‒ ‒ ‒ ‒ 
H8 ‒ ‒ ‒ ‒ 0.146 1 ‒ ‒ ‒ ‒ ‒ 
H9 ‒ ‒ ✓ ‒ 3.228 5 ✓ ‒ ‒ ✓ ‒ 
H10 ✓ ‒ ‒ ‒ 2.770 4 ✓ ✓ ‒ ‒ ‒ 
H11 ✓ ‒ ‒ ‒ 0.108 2 ‒ ‒ ‒ ‒ ‒ 
H12 ‒ ‒ ‒ ‒ 0.133 1 ‒ ‒ ‒ ‒ ‒ 

**Kit was used in the study but not published 
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Table 5: Further analysis for comparison with the genotyping and serotyping against SEA, 

SEB, SEC and SED 

SEA  SEB  SEC 
 Geno 

typing 
Sero 
typing 

 Geno 
typing 

Sero 
typing 

 Geno 
typing 

Sero 
typing 

S.aur2 ✓ ‒ S.aur7 ✓ ‒ H4 ✓ ✓ 
S.aur6 ✓ ‒ S.aur12 ✓ ✓ H5 ✓ ‒ 
S.aur7 ✓ ‒ S.aur18 ✓ ‒ H9 ✓ ✓ 
S.aur9 ✓ ✓ S.aur19 ✓ ‒ SED: No positives 
S.aur11 ✓ ✓ S.aur21 ✓ ‒ SEA: Only 2 were 

positive using both 
methods 
SEB: None of the strains 
were positive using both 
methods 
SEC: Only 2 were 
positive for both 

S.aur12 ✓ ‒ H1 ✓ ‒ 
H10 ✓ ✓ ‒ indicates a negative 

result 
✓ indicates a positive 
result 

H11 ✓ ‒ 
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Table 6: Binary data obtained from RAPD PCT analysis used to create the 

dendrogram 

Primer C   OPA13  OPA09 

Isolate Band 
1 

Band 
2 

Band 
3 

Band 
4 

Isolate Band 
1 

Band 
2 

Band 
3 

Isolate Band 
1 

Band 
2 

Band 
3 

1 0 0 1 1 1 0 0 1 1 1 1 0 
2 0 1 1 1 2 0 0 1 2 1 1 0 
3 0 1 1 0 3 0 0 0 3 1 1 0 
4 0 1 1 1 4 0 0 1 4 1 1 0 
5 0 1 1 1 5 0 0 1 5 1 1 0 
6 0 1 1 1 6 0 1 1 6 1 1 0 
7 0 1 1 0 7 0 1 1 7 1 1 0 
9 0 1 1 1 9 0 1 1 9 1 1 0 
11 0 1 1 1 11 0 1 1 11 1 1 0 
12 0 1 1 1 12 0 1 1 12 1 1 0 
13 0 1 1 1 13 0 0 1 13 1 1 0 
14 0 1 1 1 14 0 1 1 14 1 1 0 
15 0 1 1 1 15 0 0 1 15 1 1 0 
16 0 1 1 1 16 0 0 1 16 1 1 0 
18 0 1 1 1 18 0 1 1 18 1 1 0 
19 0 1 1 1 19 0 0 1 19 1 1 0 
20 0 1 1 0 20 0 1 1 20 0 0 0 
21 0 1 0 1 21 0 1 1 21 1 0 0 
23 0 1 0 1 23 0 0 1 23 1 0 0 
H1 0 0 0 1 H1 0 1 1 H1 0 0 1 
H2 0 0 0 1 H2 0 1 0 H2 0 0 1 
H3 0 1 1 0 H3 0 1 1 H3 0 1 0 
H4 0 1 1 1 H4 0 1 0 H4 0 1 0 
H5 0 0 0 1 H5 1 0 1 H5 0 1 1 
H6 0 0 1 0 H6 0 1 0 H6 0 1 0 
H7 0 0 1 0 H7 0 1 0 H7 1 0 0 
H8 0 0 1 0 H8 0 1 0 H8 0 1 0 
H9 0 1 1 0 H9 1 1 0 H9 0 0 0 

H10 0 0 1 1 H10 0 1 0 H10 0 0 0 
H11 1 0 1 1 H11 0 0 1 H11 1 0 0 
H12 0 0 1 0 H12 0 1 0 H12 0 0 1 
SBP 0 0 1 0 SBP 0 1 0 SBP 0 1 0 
CP1 0 0 1 1 CP1 0 0 1 CP1 1 0 0 
CP2 0 0 1 0 CP2 0 0 0 CP2 0 0 0 
CP5 0 0 1 0 CP5 0 1 1 CP5 1 0 0 
CP8 0 0 1 1 CP8 0 1 0 CP8 1 0 0 
LAC 0 0 1 0 LAC 0 1 0 LAC 0 0 0 
51651 0 1 1 0 51651 0 1 1 51651 0 0 0 
13565 0 1 1 0 13565 0 0 0 13565 0 0 0 
49775 0 0 1 0 49775 0 0 0 49775 1 0 0 
8096 0 0 1 1 8096 0 0 1 8096 0 0 0 
T336 0 1 1 0 T336 0 1 0 T336 0 1 0 
RAPD primer groups were run at the same time including thermocycler and same 

agarose gel.  Only the most intense bands were recorded.  
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Table 7: UPMA Dendrogram raw data input 

>SA1 0 0 1 1 0 0 1 1 1 0 
>SA2 0 1 1 1 0 0 1 1 1 0 
>SA3 0 1 1 0 0 0 0 1 1 0 
>SA4 0 1 1 1 0 0 1 1 1 0 
>SA5 0 1 1 1 0 0 1 1 1 0 
>SA6 0 1 1 1 0 1 1 1 1 0 
>SA7 0 1 1 0 0 1 1 1 1 0 
>SA9 0 1 1 1 0 1 1 1 1 0 
>SA11 0 1 1 1 0 1 1 1 1 0 
>SA12 0 1 1 1 0 1 1 1 1 0 
>SA13 0 1 1 1 0 0 1 1 1 0 
>SA14 0 1 1 1 0 1 1 1 1 0 
>SA15 0 1 1 1 0 0 1 1 1 0 
>SA16 0 1 1 1 0 0 1 1 1 0 
>SA18 0 1 1 1 0 1 1 1 1 0 
>SA19 0 1 1 1 0 0 1 1 1 0 
>SA20 0 1 1 0 0 1 1 0 0 0 
>SA21 0 1 0 1 0 1 1 1 0 0 
>SA23 0 1 0 1 0 0 1 1 0 0 
>H1 0 0 0 1 0 1 1 0 0 1 
>H2 0 0 0 1 0 1 0 0 0 1 
>H3 0 1 1 0 0 1 1 0 1 0 
>H4 0 1 1 1 0 1 0 0 1 0 
>H5 0 0 0 1 1 0 1 0 1 1 
>H6 0 0 1 0 0 1 0 0 1 0 
>H7 0 0 1 0 0 1 0 1 0 0 
>H8 0 0 1 0 0 1 0 0 1 0 
>H9 0 1 1 0 1 1 0 0 0 0 
>H10 0 0 1 1 0 1 0 0 0 0 
>H11 1 0 1 1 0 0 1 1 0 0 
>H12 0 0 1 0 0 1 0 0 0 1 
>CP1 0 0 1 1 0 0 1 1 0 0 
>CP2 0 0 1 0 0 0 0 0 0 0 
>CP5 0 0 1 0 0 1 1 1 0 0 
>CP8 0 0 1 1 0 1 0 1 0 0 
>CPNEG 0 0 1 0 0 1 0 0 0 0 
>29213 0 0 1 0 0 1 0 0 1 0 
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Chapter 6 

An absorbance reading less than 0.100 OD600nm was determined as weak growth due 

to susceptibility to the tobramycin.  The MIC cut off for tobramycin was determined 

as 0.100 OD600nm for medium to strong growth. This was detected between 1µg/ml 

and 0.5µg/ml (Table 9)  

 

Table 9: Tobramycin concentration effect on bacterial cells and OD600nm 

 Concentration OD600nm 

1µg/ml 0.086 

0.5 µg/ml 0.108 

0.25 µg/ml 0.114 

0.125 µg/ml 0.136 

0.0625 µg/ml 0.160 

  

 

Figure 5: Cut off value was deemed at 0.100 
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Table 10: Determination of DNase 1 concentration against Biofilm following 

staining by Crystal violet with standard error mean (±) 

 Control 50kU DNase 140kU DNase 

Best 3 values 0.246 0.229 0.178 

0.248 0.212 0.179 

0.247 0.209 0.149 

Average minus 

blank±SEM 

0.121±0.001 0.091±0.006 0.043±0.010 

P-value N/A 0.045 0.015 

 

 

Fig 6: Determination of DNase 1 concentrations with 3 concentration listed in Table 

10 

 

Following administration of DNase and/or control, cells were washed and stained 

with crystal violet.  ODs were obtained at 630nm following solubilisation in 96% 

Methanol.  
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Fig 7: Verification of plasmid DNA on 1% agarose gel  

 

 

 

pDispersin after purification using the AxyPrep Plasmid MiniPrep Kit from 

transformed E. coli.  Lane 1 contains Hyperladder I (Bioline) with bp standards as 

indicated.  Lane 2 contains plasmind DNA. Gel was run with 1% agarose in 1xSB 

buffer at 90V for 45mins.  
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Fig 8: Plasmid size verification following restriction enzyme digests. 

 

pDispersin was double digested with HindIII and XbaI.  Gel was run with 1% 

agarose in 1xSB buffer at 90V for 1hr.  Lane 1 contains the O’Generuler 1kb Plus 

DNA Ladder (ThermoScientific).  Lane 2 contains digested plasmid DNA.   
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Table 11: Fractions were collected via column chromatography and were recorded 

with the following absorbance at OD280nm.  Fraction numbers 36 to 52 contained 

dispersin B were pooled and dialyzed overnight.  

Fraction 
No 

Abs @ 
280nm 

 

Fraction 
No 

Abs @ 
280nm 

 

Fraction 
No 

Abs @ 
280nm 

1 0.077 
 

31 0.104 
 

61 0.012 
2 0.000 

 
32 0.273 

 
62 0.226 

3 0.059 
 

33 0.181 
 

63 0.000 
4 0.054 

 
34 0.129 

 
64 0.174 

5 0.095 
 

35 0.539 
 

65 0.130 
6 0.064 

 
36 0.743 

 
66 0.000 

7 0.126 
 

37 1.087 
 

67 0.138 
8 0.098 

 
38 1.159 

 
68 0.000 

9 0.084 
 

39 1.186 
 

69 0.000 
10 0.008 

 
40 1.208 

 
70 0.039 

11 0.036 
 

41 1.159 
 

71 0.050 
12 0.142 

 
42 1.200 

 
72 0.000 

13 0.090 
 

43 1.166 
 

73 0.175 
14 0.121 

 
44 1.179 

 
74 0.174 

15 0.013 
 

45 1.109 
 

75 0.000 
16 0.193 

 
46 1.121 

 
76 0.000 

17 0.156 
 

47 1.076 
 

77 0.053 
18 0.192 

 
48 1.054 

 
78 0.055 

19 0.056 
 

49 0.970 
 

79 0.147 
20 0.072 

 
50 0.836 

 
80 0.160 

21 0.135 
 

51 0.671 
 

81 0.165 
22 0.085 
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Fig 9: Elution profile of Dispersin B 

 

 

Fractions 36 – 52 representing the enzyme activity pooled  

 

 

Table 12: Determination of purified dispersin B activity against biofilm ± SEM 

Concentration of 
Dispersin 

*Set 1 *Set 2 Average ±SEM P-value 

Neat 1.008 1.190 0.818 ± 0.091 0.02 
500µg/mL 1.013 1.213 0.832 ± 0.100 0.03 
100µg/mL 1.058 1.239 0.868 ± 0.091 0.02 
50µg/mL 1.177 1.181 0.898 ± 0.002 0.05 
10µg/mL 1.751 1.780 1.487 ± 0.015 0.14 
0µg/mL 1.913 2.031 1.691 ± 0.059 N/A 

* Duplicate sets of experiment were performed 
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Fig 10: Release of p-nitrophenolate from 4-nitrophenyl-N-acetyl-β-D-glucosaminide, 

by purified dispersin B over a 4-hour timeframe, confirming the presence of glycosyl 

hydrolase activity. 
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Chapter 7 

Protein identification of fructose-biphosphate adolase class 1 

 

 

Data obtained by mass spectrometry performed by Proteomics International the 

revealed possible identity of a Fructose-biphosphate adolase class 1 from S. aureus. 

Protein sequence coverage was 27%.  
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Chapter 8 

Table 13: Immunization schedule and details 

Candidate 
Antigen 

Total number 
for 
immunization 
or sham-
immunization 

Antisera 
production 

Samples  
collected 

Challenge 
*** 

Samples 
collected*
*** 

FAB-1* 17 mice 12 mice  
 

Blood 5 mice Blood, 
Liver, 
Spleen 
 

Manganese 
Transport 
Protein C 

17 mice 12 mice  
 

Blood 5 mice Blood, 
Liver, 
Spleen 

Control 
PBS** 

16 mice 11 mice Blood 5 mice Blood, 
Liver, 
Spleen 
 

*Newly identified Fructose-biphosphate aldolase (FAB-1) 
**Phosphate Buffered Saline 
***Challenge 1x107 CFU/mL 
**** Weigh organs to enable calculation CFU/g of tissue 

 

Table 14: Antibody titers of antisera from mice sham-immunized with PBS (control), 

aldolase and MntC determined by indirect ELISA 

Titers → 

Group ↓ 

100 200 400 800 1600 3200 6400 

Control 0.014 0.024 0.013 0.013 0.000 0.000 0.000 

Aldolase 0.243 0.135 0.087 0.071 0.011 0.000 0.000 

MntC 1.504 1.041 0.729 0.496 0.197 0.125 0.070 
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Table 15: Data analysis of IgM levels between 3 groups ± SEMs 

Table  - IgM Levels – OD at 405nm ± SEM 

No Anti-PBS Control Anti-FBA 1 aby* Anti-MntC aby 

1 0.042 ± 0.002 0.098 ± 0.007 0.043 ± 0.002 

2 0.060 ± 0.003 0.127 ± 0.006 0.035 ± 0.003 

3 0.041 ± 0.001 0.132 ± 0.006 0.035 ± 0.001 

4 0.041 ± 0.003 0.133 ± 0.041 0.043 ± 0.009 

5 0.036 ± 0.004 0.065 ± 0.006 0.043 ± 0.001 

P-value N/A 0.0048 0.04986 

*aby = antibody 

Fig 11: Data analysis showing OD405nm 
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Table 16: Data analysis of IgG1 levels between 3 groups ± standard error means 

Table 3 – IgG1 Levels – OD at 405nm ± SEM 

No Anti-PBS Control Anti-FBA I aby* Anti-MntC aby* 

1 0.078 ± 0.015 0.087± 0.013 0.807± 0.196 

2 0.079± 0.016 0.088± 0.019 0.897± 0.170 

3 0.085± 0.015 0.080± 0.013 0.774± 0.258 

4 0.082± 0.026 0.091± 0.019 0.816± 0.122 

5 0.091± 0.029 0.104± 0.036 1.443± 0.421 

P-value N/A 0.0758 0.0022 

*aby = antibody 

 

Fig 12: Data analysis showing OD405nm 
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Table 17: Data analysis of IgG2a levels between 3 groups ± standard error means 

Table 4 – IgG2a Levels – OD at 405nm ± SE 

No Anti-PBS Control Anti-FBA I aby* Anti-MntC aby* 
1 0.073± 0.004 0.036± 0.015 0.134± 0.055 

2 0.074± 0.009 0.048± 0.020 0.146± 0.061 

3 0.114± 0.049 0.040± 0.018 0.150± 0.050 

4 0.056± 0.013 0.039± 0.026 0.152± 0.060 

5 0.072± 0.024 0.061± 0.035 0.149± 0.062 

P-value N/A N/A 0.0023 

*aby = antibody 

 

Fig 13: Data analysis showing OD405nm 
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Table 18: Data analysis of IgA levels between 3 groups ± standard error means 

Table 5 – IgA Levels – OD at 405nm ± SE 

No Anti-PBS 
Control 

Anti-FBA I aby* Anti-MntC aby* 

1 0.061 ± 0.003 0.062 ± 0.002 0.052 ± 0.000 

2 0.061 ± 0.004 0.061 ± 0.002 0.053 ± 0.002 

3 0.052 ± 0.003 0.053 ± 0.006 0.054 ± 0.001 

4 0.060 ± 0.003 0.061 ± 0.005 0.050 ± 0.003 

5 0.057 ± 0.003 0.069 ± 0.011 0.050 ± 0.003 

P-value N/A 0.2715 0.0450 

*aby = antibody 

 

Fig 14: Data analysis showing OD405nm 
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Blood and organ collection were serially diluted till countable colonies were obtained 

(Tables 19-21).  Blood CFUs were calculated at 100µL whereas organ CFUs were 

caluclated per 100mg.  

Table 19 – Control group CFUs per mL 
Control No Blood Liver Spleen 

1 4.49x109 5.04 x109 3.36 x1012 
2 5.85 x1010 1.98 x1010 2.08 x1012 
3 2.11 x1010 2.17 x1012 1.41 x1012 
4 1.36 x1011 4.03 x1011 1.63 x1012 
5 1.19 x1012 2.48 x109 3.88 x1012 

P-value N/A N/A N/A 
 

 

Table 20 – Aldolase group CFUs per mL 
Aldolase No Blood Liver Spleen 

1 8.97 x109 4.39 x1010 1.19 x1010 
2 1.22 x1010 4.35 x108 1.84 x108 
3 5.19 x109 3.83 x1010 4.35 x1010 
4 8.59 x109 5.07 x1010 6.90 x107 
5 5.06 x1010 4.89 x1010 1.14 x1010 

P-value 0.071 0.312 0.005 
Fold Reduction 16.477 fold 14.276 fold 184.604 fold 

 

 

Table 21 – MntC group CFUs per mL 
MntC No Blood Liver Spleen 

1 0 2.53 x105 0 
2 0 3.05 x106 0 
3 0 3.99 x106 0 
4 0 3.75 x108 0 
5 0 1.69 x108 0 

P-value 0.000 0.008 0.000 
Fold Reduction N/A 4725.946 N/A 
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Fig 15 Analysis of log10 CFU per mL of blood 
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Chapter 9 

Table 22: Summary of data used in this chapter 

Biofilm Inhibition Assay 
SEM = standard error mean, aby = antibody 
 CFU/mL Average   CFU/mL Average 
Anti S. 
aureus 
aby 

Set 1 330 380 Control  Set 1 930 1115 
Set 2 430  Set 2 1300 
Set 3 380 Set 3 1115 
SEM 28.88 SEM 106.81 

 
  CFU/mL Average    CFU/mL Average 
Anti α 
toxin 
aby 

Set 1 920 1000 Control  Set 1 3860 4370 
Set 2 1040 Set 2 4880 
Set 3 1040 Set 3 4370 
SEM 40.00 SEM 294.45 

 
  CFU/mL Average    CFU/mL Average 
Anti 
ClfA 
aby 

Set 1 2020 1920 Control  Set 1 4920 4533 
Set 2 1820 Set 2 4280 
Set 3 1920 Set 3 4400 
SEM 57.74 SEM 196.41 

 
  CFU/mL Average    CFU/mL Average 
Anti 
Bbp aby 

Set 1 3320 3720 Control Set 1 4920 4533 
Set 2 3360 Set 2 4280 
Set 3 4480 Set 3 4400 
SEM 380.18 SEM 19.64 

 
  CFU/mL Average    CFU/mL Average 
Anti 
isdA 
aby 

Set 1 730 876.67 Control Set 1 1230 1193 
Set 2 940 Set 2 1120 
Set 3 960 Set 3 1230 
SEM 73.56 SEM 36.67 

 
  CFU/mL Average    CFU/mL Average 
Anti 
sdrD 
aby 

Set 1 200 260 Control Set 1 650 650 
Set 2 200 Set 2 600 
Set 3 380 Set 3 700 
SEM 60 SEM 28.87 
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  CFU/mL Average    CFU/mL Average 
Anti 
isdB aby 

Set 1 480 505 Control Set 1 650 650 
Set 2 530 Set 2 600 
Set 3 505 Set 3 700 
SEM 14.44 SEM 28.87 

 
  CFU/mL Average    CFU/mL Average 
Anti 
sdrE aby 

Set 1 290 240 Control Set 1 200 300 
Set 2 190 Set 2 300 
Set 3 240 Set 3 400 
SEM 28.87 SEM 57.74 

 
  CFU/mL Average    CFU/mL Average 
Anti 
FnBPa 
aby 

Set 1 100 120 Control Set 1 200 250 
Set 2 110 Set 2 300 
Set 3 150 Set 3 250 
SEM 15.28 SEM 28.87 

 
  CFU/mL Average    CFU/mL Average 
Anti SE 
aby 
against 
A,C, D 

Set 1 1140 1086.67 Control Set 1 1280 1196.67 
Set 2 1100 Set 2 920 
Set 3 1020 Set 3 1390 
SE 35.28 SE 141.93 

 
  CFU/mL Average    CFU/mL Average 
Anti SE 
aby 
against 
A,B, C 

Set 1 940 950 Control Set 1 1280 1335 
Set 2 950 Set 2 1335 
Set 3 960 Set 3 1390 
SEM 5.77 SEM 31.75 

 
  CFU/mL Average    CFU/mL Average 
Anti Spa 
aby 

Set 1 3000 2960 Control Set 1 2760 2660 
Set 2 2800 Set 2 2820 
Set 3 3080 Set 3 2400 
SEM 83.27 SEM 131.15 

 
  CFU/mL Average    CFU/mL Average 
Anti 
TSST 
aby 

Set 1 3600 3653.33 Control Set 1 2760 2660 
Set 2 3560 Set 2 2820 
Set 3 3800 Set 3 2400 
SEM 74.24 SEM 131.15 
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  CFU/mL Average    CFU/mL Average 
Anti 
PNAG 
aby 

Set 1 240 235 Control Set 1 784 778 
Set 2 230 Set 2 780 
Set 3 235 Set 3 770 
SEM 2.89 SEM 4.16 

 
  CFU/mL Average    CFU/mL Average 
Anti 
MntC 
aby 

Set 1 1760 1840 Control Set 1 2520 2680 
Set 2 1760 Set 2 2840 
Set 3 2000 Set 3 2680 
SEM 80.00 SEM 92.38 

 
  CFU/mL Average    CFU/mL Average 
Anti 
Aldo-
lase aby 

Set 1 2400 2040 Control Set 1 2520 2680 
Set 2 2000 Set 2 2840 
Set 3 1720 Set 3 2680 
SEM 197.32 SEM 92.38 
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Human methicillin-sensitive Staphylococcus aureus biofilms:
potential associations with antibiotic resistance persistence
and surface polysaccharide antigens
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The development of persistent antibiotic resistance by human methicillin-sensitive Staphylococcus
aureus (MSSA) strains and substantial association with poly-N-acetyl glucosamine (PNAG) in
biofilms is reported in this investigation. Sixteen of 31 MSSA strains under study were found to
have developed resistance to one or more antibiotics, with four strains, two of which did not
produce biofilms, showing resistance to cefoxitin, undetectable by mecA amplification. Antibiotic
resistance displayed by 13/14 biofilm-forming S. aureus isolates remained persistent for 4 weeks
prior to reverting back to the original antibiotic susceptibility, prompting a suggestion of
determining antibiograms for clinical S. aureus isolates subcultured from biofilms developed in
vitro as well as planktonic subcultures prepared from the site of infection. While there was
correlation of antibiotic resistance with biofilm formation confirming previous reports, this is the
first time that persistence of the biofilm-associated antibiotic resistance by S. aureus as planktonic
cells is reported. Among the two methods used for assessment of biofilm formation, the tissue
culture plate (TCP) method revealed that almost all strains were strong or moderate biofilm
producers whereas only 19/31 strains were biofilm producers using the Congo Red agar (CRA)
method indicating the superiority of the TCP method in detecting biofilm producers. We also
observed no association between biofilm formation and major capsule types. However,
substantial, although not absolute, association of biofilm formation with PNAG was observed,
warranting continued identification of additional surface-associated polysaccharide and/or
protein antigens associated with biofilm formation for development of an effective vaccine against
S. aureus infections regardless of capsular phenotype.
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Introduction

Staphylococcus aureus is a pathogenic gram-positive
bacterium that has emerged as a frequent cause of
nosocomial or hospital acquired infections [1]. The

pathogen can cause a variety of infections ranging from
superficial skin, deep seated skin, wound sepsis, pneu-
monia, septic arthritis, post-surgical toxic shock syn-
drome, endocarditis, and osteomyelitis to name a few [1–
4]. In a hospital setting, patients who have been surgically
treated with indwelling devices or catheters have a
higher rate of S. aureus infections [5]. There has been an
increasing trend in resistance towards b-lactam anti-
biotics which gives rise to a severe health issue in hospital
and community settings [6]. Many nosocomial S. aureus
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strains have been shown to be resistant to methicillin
(MRSA) [5], spread of which, associated with both
nosocomial and community-acquired infections (CA-
MRSA), has been reported in all continents [7]. Resistance
of this bacterium to antibiotics leads to difficulty in
successfully treating invasive and non-invasive S. aureus
infections. In the United States, high incidence of
invasive MRSA infections have been observed, with death
in about 20% of all infections, as compared to other
pathogenic strains [6], with increasing incidence also
observed in the UK and Australia [1, 8].

Persistence of S. aureus in infections is dependent on a
multiplicity of virulence factors promoting establish-
ment of infection and invasion, and evading the host
immune responses [6]. One of the most important
virulence factors is the ability of this organism to form
biofilms [1]. Biofilm or polysaccharide slime [9] has a
major impact on medical implants as it increases
bacterial tolerance towards antimicrobial agents and
penetration of host defense elements [10]. Importantly,
MRSA strains that form biofilms also develop resistance
to all the commonly used antibiotics to which the
planktonic bacteria are susceptible [1]. The aims of this
study were to (a) determine antibiotic susceptibility
profile of methicillin-sensitive S. aureus (MSSA) strains
isolated from biofilms versus planktonic cultures which
required selection of a reproducible method for assess-
ment of biofilm formation and (b) determine potential
association of biofilm formation by MSSA with the two
major surface-associated polysaccharides viz., polysac-
charide intercellular adhesin (poly-N-acetyl glucosamine
[PNAG]) and the predominant capsular types 5 or 8.

Materials and methods

Collection of human S. aureus isolates
Nineteen isolates were kindly donated by the Microbiol-
ogy Section, School of Biomedical Sciences, Curtin
University and 12 strains were isolated from undergrad-
uate students studying medical microbiology following
approval by Curtin University’s Human Ethics Commit-
tee (Approval Number SoBS 04/11). All isolates were
stored on cryobeads (Blackaby Diagnostics) at �80 °C for
further usage.

Biofilm analysis
a. TPC method: This method was adapted from a

procedure carried out according to Patterson
et al. [11]. The bacterial strains were grown in a
96well microtitre plate with nutrient broth in 37 °C
orbital shaker (80 rpm) for 24 h. The suspensions

were adjusted to 108 cfu/ml. Two hundred fifty
microliter of each suspension was added to a 96well
flat bottom microtitre plate and incubated at 37 °C
for 18 h on an orbital shaker after which they were
removed from the shaker and left at 37 °C without
shaking for the remaining 6 h. After incubation,
cells were washed with sterile saline (three times)
and fixed in 96% pure ethanol. Wells were then
stained with 2% crystal violet and washed three
times with sterile distilled water to remove excess
stain. Two hundred microliter of 33% glacial acetic
acid was then added to each well and absorbance
(OD) measured at 600 nm. The average OD of
negative control was subtracted from test values.
An accredited strong biofilm producer S. aureus
ATCC29213 was also included in this study. The
arbitrary cut off point used for biofilm formation
was 0.120 OD600nm according to Christensen
et al. [12]. S. aureus strains showing 4 � OD600nm

at the cut off point (equivalent to an OD of 0.480) or
less OD were considered to represent weakly
adherent biofilm forming populations, up to 6 �
OD600nm at the cut off point (equivalent to
0.720600nm) as moderately adherent biofilm form-
ing populations and values greater than 6 �
OD600nm as strongly adherent biofilm forming
populations.

b. Congo Red agar method: Congo Red agar plates
were made as described elsewhere [13]. Briefly,
plates were inoculated and placed in a 37 °C hot
room and observed over 72 h for slime production.
A positive result was indicated by the production of
black colonies. Weak slime producers were indicat-
ed by red/pink growth [13]. This experiment was
repeated three times to ensure reproducibility.
Accredited strong biofilm producer S. aureus
ATCC29213 was also included in this investigation.

Antibiotic sensitivity/susceptibility testing method
For a comparison between free planktonic and biofilm-
associated bacteria, antibiotic sensitivity plates (PathW-
est) were inoculated using the CDS method [14]. Briefly,
bacteria were grown in 2 ml of nutrient broth supple-
mented with 2% glucose. Broths were left in 35 °C for
48 h to allow adequate biofilm development, after which
the supernatant was removed. Bacteria grown in biofilm
and free-floating bacteria were streaked for single
colonies on MH plates (PathWest). Single colony for each
was stabbed with a straight wire, suspended in 2.5 ml
saline andflooded onto Sensitest plates (PathWest). Plates
were dried for 15 min in 37 °C hot room after which the
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following antibiotics discs (Oxoid) were carefully placed
on each plate: benzylpenicillin 0.5 mg (P 0.5), cefoxitin
10 mg (FOX 10), cephalexin 100 mg (CL 100), ciprofloxa-
cin 2.5 mg (CIP 2.5), co-trimoxazole 25 mg (SXT 25),
erythromycin 5 mg (E 5), linezolid 10 mg (LZD 10),
mupirocin 200 mg (MUP 200), rifampicin 1 mg (RD 1),
teicoplanin 15 mg (TEC 15), tetracycline 10 mg (TE 10),
and vancomycin 5 mg (VA 5). Zones of inhibition 6 mm
or greater were recorded as sensitive except VA5 and
TEC15 where zones greater than or equal to 2 mm were
recorded as sensitive.

DNA extraction
Using an extraction kit (MO-Bio), all 31 the S. aureus
strains were placed for DNA extraction. All extracts were
stored at�20 °C until required for experimentation after
which they were thawed and placed on ice.

Capsular polysaccharide (CP), icaA/D and mecA
typing
DNA extracts of the 31 S. aureus isolates were subjected to
PCR for CP types 5 or 8, ica A/D and mecA gene expression
as follows:
a. Capsular polysaccharide typing: For CP typing,

primers published by Moore and Lindsay [2] were
used (CP5 forward 50-ATGACGATGAGGATAGCG-30

and CP5 reverse 50-CTCGGATAACACCTGTTGC-30;
and CP8 forward 50-ATGACGATGAGGATAGCG-30

and reverse 50-CACCTAACATAAGGCAAG-30). Pre-
dicted product sizes and Tm were 880 and 1147 bp,
and 60 °C and 53 °C, for CP5 and CP8, respectively.
PCR cycling condition were 95 °C for 5 min, 95 °C
for 30 s, Tm for 30 s, 72 °C for 5 min (�25) and
extension at 72 °C for 5 min. PCR product was
electrophoresed in 1xTAE buffer in a 1.5% agarose
gel stained with SYBR® Safe DNA Gel Stain
(Invitrogen, Perth, WA).

b. ica typing: DNA extracts of the 31 S. aureus isolates
were run against icaA and icaD primers published
by Vasudevan et al. [15]. The primers used for icaA
and icaD typing were icaA forward was 50-CCTAAC
TAACGAAAG GTAG-30, icaA reverse 50-AAGATA-
TAGCGA TAAGTG C-30; and icaD forward 50-AAACG-
TAAGAGAGGTGG-30 and icaD reverse 50-
GGCAATATGATCAAGATAC-30, respectively. Pre-
dicted band size for icaA was 1315 bp with a Tm
of 48 °C and predicted band for icaD was 381 bp
with a Tm of 47 °C. PCR run cycle was 95 °C for
5 min, 95 °C for 45 s, Tm for 45 s, 72 °C for 5 min
(�30) and extension at 72 °C for 5 min. PCR product
was run in 1xTAE buffer in a 1.5% agarose gel
stained with SYBR® Safe DNA Gel Stain (Invitrogen).

c. mecA typing: Detection of themecA gene was carried
out as described previously [16] using the following
primers: mecA forward 50-AAAATCGATGG-
TAAAGGTTGGC-30 and mecA reverse 50-AGTTCTG-
CAGTACCGGATTTGC-30. Predicted band size was
533 bp with a Tm of 52 °C. The PCR was run on a
cycle of 94 °C for 5 min, 95 °C for 30 s, Tm for 30 s,
72 °C for 60 s (�25) and extension at 72 °C for
10 min. The PCR product was then electrophoresed
in 1xTAE Buffer on a 1.5% agarose gel stained with
SYBR® Safe DNA Gel Stain (Invitrogen).

Results

Using the TCP method, 31 strains were assessed for
biofilm production including one strong biofilm produc-
ing ATCC S. aureus strain 29213. This method revealed
that all human S. aureus isolates were biofilm producers
with 14 (45.2%), 15 (48.4%), and 2 (6.4%) strains showing
strong, moderate, and weak biofilms, respectively
(Table 1). Using the CRA method, colonies that are red
or dark red in color indicate negative biofilm production.
Colonies that stained black were labeled as biofilm
producers. Out of 31 strains including ATCC, 12 (38.7%)
samples were positive with black colonies (biofilm
producers) whereas 19 (61.3%) were negative for biofilm
production with red colonies after 72 h (37 °C). The ATCC
S. aureus strain 29213, an accredited strong biofilm
producer, also displayed dark black colonies as anticipat-
ed. It was thus clear that the TCP method was better than
the CRA method for detection of biofilm producers
despite the observation of varying degrees of biofilm
formation (Table 1).

Using the CP typing method, 11/31 strains were CP5
positive (35.5%), 15/31 were CP8 positive (48.4%) with
five strains being untypeable (16.1%; Table 1). Twenty-
three (23) of the 31 strains used in this study revealed
possession of both icaA and icaD genes, which were either
CP5 or CP8 positive. Nine (9) of the 23 icaA icaD positive
strains were moderate biofilm producers whereas 13/23
strains were strong biofilm producers. Out of the
remaining nine strains, one strain was positive for either
icaA with the remaining four strains being positive for
the icaD gene only. Three S. aureus strains that were all CP
negative were also icaA and icaD negative (Table 1).

Antibiotic sensitivity tests on the planktonic cultures
of human S. aureus isolates revealed that they were all
MSSA with similar results being obtained mecA gene
typing (data not shown). However, when assessed for
antibiotic susceptibility of S. aureus isolated from the
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biofilms, 16 of these isolates had developed resistance
towards TE 10, TEC 15, P 0.5, CIP 2.5, SXT 25, CL 100 and
FOX 10 upon cultivation as biofilms (Table 2).

It was thus clear that a high rate of resistance to
antibiotics developed when MSSA isolates were grown as
biofilms. To determine the persistence of antibiotic
resistance, S. aureus from biofilms were subcultured for
30 days and their antibiotic resistance profile determined
at day 30 when it was discovered that the resistance to
most antibiotics was maintained (Table 3) as judged by
the fact the persistence of antibiotic resistance by 13/14
moderate to strong biofilm forming S. aureus strains.

Of the 16 strains that developed antibiotic resistance,
14 strains were either strong or moderate biofilm
producers whereas two strains were weak biofilm
formers indicating an excellent correlation between
antibiotic resistance and biofilm production. On the
other hand, 11/31 of human S. aureus biofilm producing
isolates were encapsulated indicating a lack of correla-

tion of the capsule with biofilm formation. On the other
hand, 23/31 MSSA strains that were icaA icaD positive
(74%) were biofilm producers indicating a substantial but
not absolute correlation with biofilm formation/
production.

Eleven of the 16 antibiotic resistant strains, 11 strains
(68.75%) S. aureus possessed both icaA and icaD genes,
essential for production of PNAG [17], a potential
contributor to biofilm formation, indicating a substantial
relationship with antibiotic resistance. Three of the 16
antibiotic resistant strains were CP negative, seven CP5
positive and six CP8 positive indicating a lack of
correlation of antibiotic resistance with encapsulation.
One ica negative strain (SA-H2) that was classified as a
moderate biofilm producer, developed resistance to
benzylpenicillin 0.5 mg (P 0.5) and cefoxitin 10 mg
(FOX 10). Of the four cefoxitin resistant strains, one
was CP negative while the other three were CP5 positive.
All four strains were found to have retained their

Table 1. Typing of human S. aureus isolates.

Strain number CP5 CP8 icaA icaD CRA TCP

SA 1 � � � þ � þ/�
SA 2 � þ � þ � þ
SA 3 þ � � þ þ þ
SA 4 � þ þ þ þ þ
SA 5 � � þ � þ þ
SA 6 þ � � þ þ þ
SA 7 þ � þ þ � þ
SA 9 þ � þ þ þ þþ
SA 11 � þ þ þ � þ
SA 12 þ � þ þ � þ/�
SA 13 � þ þ þ � þþ
SA 14 � þ þ þ � þ
SA 15 � þ þ þ � þ/�
SA16 � þ þ þ � þþ
SA 18 þ � þ þ þ þþ
SA 19 þ � þ þ � þþ
SA 20 þ � þ þ � þ
SA 21 þ � þ þ � þþ
SA 23 � � þ þ � þ
SA-H1 � � � � � þ
SA-H2 � � � � � þ
SA H3 � þ þ þ þ þþ
SA H4 � þ þ þ þ þ
SA H5 � � � � þ þþ
SA H6 þ � þ þ � þþ
SA H7 þ � þ þ þ þþ
SA H8 � þ þ þ � þ
SA H9 � þ þ þ þ þþ
SA H10 � þ þ þ þ þþ
SA H11 � þ þ þ � þþ
SA H12 � þ þ þ � þ
SA ATCC29213 þ � þ þ þ þ
For CP typing, Ica typing, and CRA, results listed as negative (�) and positive (þ).
For TCP method, results listed as negative (�), weak (þ/�), moderate (þ), and strong positive (þþ).
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resistance to cefoxitin after 4 weeks of biofilm formation
(Table 3).

Discussion

The resistance of microbial biofilms towards antimicro-
bial reagents has been the subject of intense interest and

yet little is known about the mechanisms of involved.
Mah et al. [10] have suggested thatmaturity of the biofilm
is a function of slow growth, stress response and quorum
sensing. While biofilms of the common opportunistic
pathogens are widely distributed, the resistance mech-
anisms operating in biofilm formation appear to be
distinct from those responsible for conventional anti-
biotic resistance. However, studies have also shown that

Table 2. Development of antibiotic resistance in MSSA strains in biofilms.

Antibiotic

Staphylococcus aureus [SA] strains

SA1 SA3 SA4 SA6 SA7 SA9 SA12 SA16

TE 10 S ! R R S R S ! R S !R R
RD 1 R R S R R S R S
TEC 15 S ! R S S ! R S S S S S
FOX 10 S S ! R S S S ! R S S S
P 0.5 S ! R S S S R S S R
E 5 S R S S R S S S
CIP 2.5 S S S S ! R S S S S
SXT 25 S S S S S S ! R S S
MUP 200 S S S S S S S S
LZD 10 S S S S S S S S
CL 100 S S S S ! R S ! R S S S ! R
VA 5 S S S S S S S S

Strains SA19 SA23 SA-H2 SA-H6 SA-H8 SA-H9 SA-H10 SA-H11

TE 10 S ! R R S R S S S S
RD 1 S S S S S S S S
TEC 15 S S ! R S S S S S S
FOX 10 S S S ! R S ! R S S S S
P 0.5 R R R R R S ! R S R S ! R
E 5 S S S S S S S S
CIP 2.5 S S S S S ! R S S S
SXT 25 S S R S S S S S
MUP 200 S S S S S S S S
LZD 10 S S S S S S S S
CL 100 S S S S S S S S
VA 5 S S S S S S S S

S ! R, sensitive to resistant; S, sensitive; R, resistant.

Table 3. Antibiotic resistance profile of S. aureus strains after 30 days of subculturing.

Antibiotics

Antibiotic resistance of human S. aureus strains

Resistance at day 1 Resistance at day 30

TE 10 SA1, SA3, SA6, SA7, S 12 SA1, SA3, SA6, SA7, SA16,
SA16, SA19, SA23, SAH6 SA19, SA23, SAH6

TEC 15 SA1, SA4, SA23 SA1, SA23
P 0.5 SA1, SA7, SA16, SA19, SA23 SA1, SA7, SA16, SA19, SA23

SAH2, SAH6, SAH8, SAH 9, SAH2, SAH6, SAH8, SAH 9, SAH10
SAH10, H11

CIP 2.5 SA6, SAH8 SAH8
SXT 25 SA9 SA9
CL 100 SA6, SA7, SA16 SA7, SA16
FOX 10 SA3, SA7, SAH2, SAH6 SA3, SA7, SAH2, SAH6

SA denotes S. aureus.
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biofilm bacteria that were once resistant can revert to
sensitivity upon dispersion of the biofilm [18]. The
superiority of the TCP method over the CRA method
observed in this investigation may indicate potential
differences in the surface-associated antigens participat-
ing in biofilms formation. The Congo Red dye is a
nonspecific dye that has been shown to bind both
polysaccharides and proteins [19], nature of which
molecules participating in the CRA test has not been
elucidated. Our observation on the lack of correlation
between the CRA test with biofilm formation by S. aureus
is supported by a recent report on the lack of
correlation of PNAG production with biofilm formation
by a gram-negative pathogen, Yersinia pestis [20]. However,
because of the hydrophilic nature of the surface-
associated polysaccharide antigens such as capsule,
PNAG and teichoic acids, their potential contribution
to biofilm formation in the TCP method may be
minimal, unless specifically derivatized, in comparison
with that of MSCRAMMs comprising multiple protein
structures that are potentially hydrophobic and/or ionic
in nature [21, 22].

Formation of biofilm is regulated by a single icaADBC
operon, which produces the proteins IcaA, IcaD, IcaB, and
IcaC [23]. These proteins are involved in the production of
the polysaccharide intercellular adhesion, poly-b-1,6-
linked N-acetylglucosamine or PNAG, the major exopo-
lysaccharide in the S. aureus biofilm matrix. The expres-
sion of icaA and icaD genes is of utmost importance in the
activation of PNAG synthesis [17]. PNAG is structurally
and functionally similar to polysaccharide intercellular
adhesion or PIA which is produced by Staphylococcus
epidermidis [24]. PNAG is considered to be one of the key
components of the cell surface that mediates bacterial
adherence to host surfaces, enabling biofilm formation
and protection [25]. Another component that enables
S. aureus to resist host defense systems is the production of
a capsular polysaccharide or CP. It is generally observed
that bacteria that possess an extracellular CP are the
“culprit” for invasive diseases [26]. This CP enables the
bacteria to evade the host immune response by resisting
phagocytosis. The two major serotypes expressed are
serotypes 5 and 8 that account for approximately 25–50%
of human isolates, respectively [26].

Staphylococci, in particular S. aureus, are frequent
pathogens in hospital and community acquired
settings [1]. This pathogen has emerged as a chronically
infecting pathogen, which has demonstrated resistance
to multiple antibiotics leading to strains that are
methicillin resistant or MRSA [5]. In the US alone, it is
estimated that up to 20% of patients undergoing surgery
will acquire one or more nosocomial infections costing

up to $10 billion [27]. Furthermore, the World Health
Organization [28] recently estimated that the overall
prevalence of hospital-associated infections in developed
countries to be between 5.1% and 11.6%, with (a) more
severe a burden in neonatal care, critical care and elderly
patients who lack immune function as compared to the
general population, and (b) higher rate of mortality in
patients who develop septicaemia and pneumonia [28].
The rate of infection in developing countries was found to
be several folds higher as compared to developed
countries [28].

S. aureus possesses several immune evasion strategies
such as production of leukocidal toxins in particular,
capsular polysaccharides and Microbial Surface Compo-
nents Recognizing Adhesive Matrix Molecules or
MSCRAMMS [29]. However, one additional strategy of
importance for the survival of S. aureus is its ability to
form biofilms at the site of infection, which renders it
resistant to antibiotics. In this investigation, we found
that even approximately 50% of S. aureus isolates that are
MSSA as planktonic cultures acquired resistance to one or
more antibiotics upon biofilm formation confirming
previous reports [10, 18]. However, we found that the
biofilm-associated acquired antibiotic resistance by the S.
aureus isolates persisted for 4 weeks when grown as
planktonic cultures, representing a matter of serious
concern in the therapy of staphylococcal infections.
While there was an association between biofilm forma-
tion and antibiotic resistance developed by MSSA
strains, this association was not absolute because of
the persistence of the acquired antibiotic resistance as
planktonic cells by these strains warranting further
investigations. It was interesting, however, that none of
the MSSA strains used in this study, that acquired
resistance to cefoxitin (4/16) were originally resistant
to cefoxitin, the antibiotic used in many pathology
laboratories for determination of susceptibility to
methicillin [30], with the remaining 12/16 (75%) strains
displaying resistance to one or more other antibiotics.

Notwithstanding the suggestion of using more than
one method for assessment of biofilm formation of
S. aureus, the presented data prompts a recommendation
that antibiotic susceptibilities of clinical S. aureus isolates
be determined from cultures of biofilm-associated
S. aureus developed in vitro, in addition to the planktonic
cultures prepared directly from the infection site,
for optimal therapeutic outcomes particularly for
stubborn hospital and community acquired staphylococ-
cal infections including those associated with biomaterial
implants [31].

Although there was a general trend of development of
antibiotic resistance in S. aureus strains expressing both
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icaA and icaD genes, 75% (12/16) antibiotic resistant
strains showing this trait, the correlation was not
absolute The absence of 100% correlation of PIA/PNAG
of S. aureuswith biofilm formation is not surprising given
the reported participation of other virulence antigens in
biofilm formation such as fibronectin-binding proteins,
FnBPA and FnBPB [32], collagen-binding adhesion (cna)
proteins and clumping factor (clfA) [33].

In summary, our findings suggest that there is no
correlation between biofilm formation and encapsula-
tion regardless of the method used for assessing biofilm
formation but there is substantial, although not absolute,
association with PNAG confirming the need to continue
identification and characterization of other polysaccha-
ride and non-polysaccharide MSCRAMMs participating in
biofilm formation as is actively being pursued in some
laboratories [4, 32, 33]. Our data also suggest that serious
consideration should be given to determining antibio-
grams for S. aureus isolated from patients using both
biofilms developed in vitro as well as planktonic cultures
prepared from specimens taken directly from the site of
infection for achievement of potentially better therapeu-
tic outcomes.
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The aim of this study was to compare the performance of serological versus molecular typing

methods to detect capsular polysaccharide (CP) and surface-associated polysaccharide antigen

336 phenotypes of Staphylococcus aureus isolates. Molecular typing of CP types 1, 5 and 8 was

carried out using PCR, whereas serological typing of CP1, 2, 5, 8 and antigen 336 was carried

out by slide agglutination using specific antisera. By genotyping, 14/31 strains were CP8 positive,

12/31 strains were CP5 and the remaining 6/31 isolates were non-typable (NT). One isolate was

positive for both CP5 and CP8 by PCR, but was confirmed as CP8 type serologically. Detection

of CP2 and type 336 by PCR was not possible because specific primers were either not available

or non-specific. Using serotyping, 14/31 strains were CP8 positive, 11/31 CP5 positive and 2/31

positive for antigen 336. The remaining four S. aureus isolates were serologically NT. However,

three of four NT and two 336-positive S. aureus isolates were encapsulated as determined by

light microscopy after capsular staining. This discovery was surprising and warrants further

investigations on the identification and characterization of additional capsular phenotypes

prevalent among S. aureus clinical isolates. It was concluded that serological typing was a better

method than molecular typing for use in epidemiological investigations based upon the

distribution of surface-associated polysaccharide antigens-based phenotypes.

INTRODUCTION

Staphylococcus aureus is an important human pathogen
causing a broad range of infectious diseases facilitated by
its ability to asymptomatically colonize healthy individuals
(Daum & Spellberg, 2012; Foster, 2004). The most common
conditions associated with this pathogen include wound
infections, boils, carbuncles and impetigo, which typically
follow abrasions of the skin or mucosal surfaces. The
organism can further invade the body or be introduced

through medical devices, resulting in systematic infections
ranging from osteomyelitis and pneumonia to septicaemia,
meningitis and endocarditis (O’Riordan & Lee, 2004;
Tzianabos et al., 2001). S. aureus is also a common pathogen
of immunocompromised patients and a leading nosocomial
pathogen in nursing homes, and neonatal care and intensive
care units (Ohlsen & Lorenz, 2010).

S. aureus produces several virulence factors, among which
the capsular polysaccharides (CPs), which are anti-phago-
cytic (Sutter et al., 2011), have been widely used as vaccine
targets (O’Riordan & Lee, 2004; Robbins et al., 2004). Initial
studies, using agglutination tests, reported the existence of

Abbreviations: ATCC, American Type Culture Collection; CP, capsular
polysaccharide; NT, non-typable.
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11 CP types based on serological specificity (Sompolinsky
et al., 1985; Karakawa et al., 1988). However, studies carried
out later reported the existence of only four capsular types,
1, 2, 5 and 8, with the remaining types representing mutated
forms of one or more of the CP types (O’Riordan & Lee,
2004, Fattom et al., 1998). Many previous studies reported
the majority of human S. aureus strains (70–80 %) to possess
either CP5 and/or CP8 (Skurnik et al., 2010; Roghmann
et al., 2005; Verdier et al., 2007), which underpinned the
rationale of targeting these two predominant types for the
development of conjugate vaccines against infections caused
by S. aureus. S. aureus strains that harboured the capsule
locus for CP5 or CP8, but were non-typable (NT) by
serological methods for CP1, 2, 5 and 8, were labelled as
serotype 336, a surface-associated polysaccharide antigen
that is a variant of S. aureus cell wall teichoic acid (Sutter
et al., 2011). The aim of this study was to compare the
performance of serological versus molecular typing methods
in determining the distribution of different surface-asso-
ciated capsular and somatic polysaccharide 336 phenotypes
of S. aureus isolated from Western Australians.

METHODS

Collection of isolates. A total of 31 S. aureus isolates were used in
this investigation. A total of 19 of these isolates were obtained from
Royal Perth Hospital and Queen Elizabeth II Hospital in Perth,
Western Australia, and 12 isolates were collected from undergraduate
laboratory medicine students in the School of Biomedical Sciences,
Curtin University, Perth, Western Australia (Human Ethics approval
no. SoBS 04/11). Positive controls used in this investigation were S.

aureus strain M (CP1), Smith Diffuse (CP2), strain Newman (CP5),
USA 400 (CP8), LAC USA 300 (CP negative) and an antigen 336-
positive American Type Culture Collection (ATCC) S. aureus strain,
55804.

DNA extraction. Prior to use, the strains were freshly cultured in
nutrient broth (PathWest media) with a cryobead, followed by incuba-
tion overnight in a shaking incubator at 37 uC. DNA was extracted

using a commercial kit (MO-Bio; GeneWorks) and stored at 220 uC.
All extracts were thawed on ice prior to genotyping using PCR.

Genotyping of CP types. The PCR primers (GeneWorks) used in
this study are shown in Table 1. PCR parameters for cap1 and cap2
were as follows: 94 uC for 5 min (initial denaturation); then 25 cycles
of 94 uC for 30 s (denaturation), Tm for 30 s (annealing) and 72 uC
for 60 s (extension); and 72 uC for 5 min (final extension). PCR
parameters for cap5 and cap8 were the same as described previously
(Babra et al., 2014).

PCR products were separated in a 1.5 % agarose gel in 16TAE
buffer and the gel was stained with 8 ml Midori Green l21 (Nippon
Genetics). The positive controls used for the PCR were strain M
(CP1), Smith Diffuse (CP2), strain Newman (CP5) and USA 400
(CP8), and LAC USA 300 was used for the negative control.

CP serotyping. Serotyping was carried out using an agglutination
test as described elsewhere (Verdier et al., 2007). CP-specific antisera
were raised in specific pathogen-free Quackenbush mice, against CP1,
CP2, CP5, CP8 and antigen 336 according to the protocol of J. Gogoi-
Tiwari and others (unpublished). Briefly, mice were immunized with
S. aureus strains M (CP1), Smith Diffuse (CP2), Newman (CP5), USA
MW2 (CP8), USA LAC 300 (CP negative) and ATCC 55804 (336)

using the following immunization schedule. The first three doses were

administered at days 0, 7 and 14. Each dose (0.2 ml per mouse,

subcutaneous) consisted of formalin-killed S. aureus without an

adjuvant (56107, 16108 and 56108 c.f.u. at days 0, 7 and 14,

respectively). The fourth and fifth doses contained 16109 and

56109 c.f.u., respectively, mixed equally with the Imject Alum

adjuvant (Thermo Scientific). Non-specific reactivity of the typing

sera was eliminated by cross-absorption with appropriate S. aureus

cells of different serotypes, including the accredited antigen 336 strain

(ATCC 55804).

Microscopic detection of capsules. The capsules were stained

using a modified Maneval’s method (Maneval, 1941; Engelkirk &

Duben-Engelkirk, 2008). Briefly, the modified method involved

scraping of biofilm-associated cells, which were spun down at

6000 r.p.m. for 2 min and the bacterial pellet was washed once with

16PBS. Cells were then suspended in a solution of 5 % sucrose and

centrifuged at 6000 r.p.m. for 2 min. The supernatant was removed

and the pellet was suspended once more in 5 % sucrose. Cells were

centrifuged at 9000 r.p.m. for 2 min and the supernatant was

removed to obtain as much pellet as possible. Cells in the pellet

were gently emulsified in a drop of 1 % Congo red on a clean

microscope slide and air dried. The slide was then flooded with

Muir’s mordant (also known as Maneval’s stain) and left to stand for

2 min before rinsing gently with tap water. The slide was then blot

dried using clean filter paper and viewed using an oil immersion

objective (61000 magnification).

RESULTS AND DISCUSSION

A summary of the results obtained using genotyping versus
serotyping methods is shown in Table 2. Both genotyping
and serotyping methods revealed that none of the strains
were positive for CP1. Serotyping was the only effective
method for the detection of CP2-positive S. aureus strains
because the designed primers for cap2 were non-specific
and cross-reacted with the positive control strains for cap5,
cap8 and cap1, producing 731 bp amplicons (data not
shown). However, none of the strains were found to be
CP2 positive by serology. Genotyping for cap5 identified
12/31 strains (38.7 %) to be positive, while one strain
produced amplicons of the respective expected sizes for
both cap5 and cap8 (Table 2). Serologically, however, this
strain agglutinated only with anti-CP8 serum. Both the
genotyping and serotyping results were in agreement for
CP8, where 14/31 (45.16 %) of the isolates were positive. As
primers for type 336 were not available, genotyping for
antigen 336 could not be carried out at this time. Using
PCR, 6/31 (19.35 %) of the isolates were regarded as NT
isolates. A total of 2 of the 6 NT strains, or 2/31 (6.45 %) of
the total isolates that were NT either by genotyping or by
serotyping, were found to be antigen 336 positive by
serotyping. Taken together, a total of 4/31 strains or 12.9 %
were regarded as being NT.

All of the strains were then subjected to capsular staining.
The bacterial cell stained red/purple against a dark
background with the capsules appearing as unstained
white haloes. Strain USA LAC 300 (CP negative) and one
of our test isolates, H7, which was positive for CP5 by
genotyping (Babra et al., 2014) and serotyping (this study),
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were used as negative and positive controls, respectively
(Figs 1 and 2). All of the cap8-positive isolates were found
to have a capsule, as did all the cap5-positive isolates,
including one strain that was positive for both CP5 and
CP8 by PCR but was CP8 positive by serology. Quite
surprisingly, it was discovered that three of the four NT
isolates were also encapsulated when subjected to capsular
staining (Fig. 3).

S. aureus is the cause of multiple disease syndromes in
both community and hospital settings. A well-known and
established key factor in its virulence is the production of a
capsule (Engelkirk & Duben-Engelkirk, 2008), an import-
ant immune evasion molecule of S. aureus (Nanra et al.,
2012). As such it has been used as a target for vaccine

development and evaluated as a key component of conjugate
vaccines in preclinical models, as well as in human trials
(Nanra et al., 2012; Pozzi et al., 2012).

Our study has shown that capsular phenotypes 5 and 8
were the predominant capsular phenotypes among the
Western Australian S. aureus isolates included in this inves-
tigation. However, we found that serological typing using
slide agglutination was better for determining capsular
phenotype than the genotyping method because of the lack
of availability of specific primers for detection of CP2 and
antigen 336. Serologically, 80.6 % of the total S. aureus
isolates were composed of CP8 (45.16 %) and CP5
(35.48 %), confirming previous reports from select other
countries (Roghmann et al., 2005; Verdier et al., 2007;

Table 1. PCR primers used for CP typing

Target

gene

Forward primer (5§A3§) Reverse primer (5§A3§) Tm (6C) Expected

size (bp)

Reference

cap1 AGG TCT GCT AAT TAG TGC AA GAA CCC AGT ACA GGT ATC

ACC A

57 550 J. Gogoi-Tiwari and

others, unpublished

cap2 AGC AAT CTT CGG TTA TTG CCG

GTG

ATG ACG GTA AGG CAT CAA

GGT CG

60 731 J. Gogoi-Tiwari and

others, unpublished

cap5 ATG ACG ATG AGG ATA GCG CTC GGA TAA CAC CTG TTG C 54 881 Babra et al., (2013)

cap8 ATG ACG ATG AGG ATA GCG CAC CTA ACA TAA GGC AAG 52 1148 Babra et al., (2013)

Table 2. Summary of genotyping and serotyping results

Capsular type No. (and percentage) of isolates

Detection by PCR

CP1 0 (0 %)

CP2 NA*

CP5 12 (38.7 %)D

CP8 14 (45.16 %)

336 PNA

NT 6 (19.35 %)

Detection by serology

CP1 0 (0 %)

CP2 0 (0 %)

CP5 11 (35.5 %)

CP8 14 (45.16 %)

336 2 (6.45 %)

NT 4 (12.9 %)

Detection by staining

Positive reference strains M (CP1), Smith Diffuse (CP2), Newman (CP5)

and MW2 (CP8)

Capsule visible on all the strains

Negative reference strain US LAC 300 No capsule visible

CP5 and CP8 seropositive isolates Capsule visible on 26 out of 26

NT No capsule visible on 1 out of 4

Capsule visible on 3 out of 4

336 positive Capsule visible on 2 out of 2

NA, Not applicable; PNA, primers not available.

*The primers produced non-specific bands with positive controls for cap1, cap5 and cap8, as well as bands for cap2.

DIncludes one strain that showed positive for both CP5 and CP8 by genotyping; however, it was confirmed to be CP8 by serotyping.
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Skurnik et al., 2010), the remaining isolates being either
antigen 336 positive or NT.

Sompolinsky et al. (1985) performed capsular typing of S.
aureus isolated from human infections for the 11 capsular
serotypes by precipitation and agglutination with specific
antisera. This research group reported that 63 % of their
isolates were type 8, 16 % were type 5, 2 % were type 7 and
0.3 % were type 10, with more than 90 % of total isolates
being encapsulated. The remaining 10 % of the encapsu-
lated isolates were not identified as belonging to the 11
known capsular types, in these isolates the capsule may
represent a prototype capsule that is different from the
accepted 11 serotypes (Sompolinsky et al., 1985). This is in
contrast to a previous report that the lack of expression of a
capsule by NT strains was due to random point mutations

in the CP5A promoter or replacement by the insertion
sequence IS257 (Cocchiaro et al., 2006). Our study demon-
strated the existence of more serotypes than just the four
capsular types (CP1, 2, 5, 8) and also raises a question on
the validity of the antigen 336 as a somatic non-capsular
antigen.

Given that most vaccines have employed surface-associated
polysaccharide antigens, particularly CP5 and CP8, con-
jugated with one or more potential protein adhesins such
as alpha toxin, ClfB and IsdB (Pozzi et al., 2012), coupled
with the fact that no protection is expected to be imparted
against infections caused by NT S. aureus, it is important to
gain knowledge on the nature of the antigens unique to NT
isolates, including new capsular antigens/phenotypes, for
the formulation of an improved vaccine against S. aureus.
Our study has highlighted the potential importance of
determining the prevalence of not only the major capsular
serotypes, CP5 and CP8, of S. aureus, but also other
antigens particularly antigen 336. The fact that 75 % of the
NT S. aureus strains and the antigen 336-positive strain
were also found to be encapsulated, even by light micros-
copy, warrants further investigations on the identification
of additional capsular types present among the NT isolates
for complete epidemiological investigations and formula-
tion of appropriate conjugate vaccines.
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Fig. 1. Negative control S. aureus isolate (USA LAC 300)
stained by modified Maneval’s capsule staining method (�1000
magnification).

Fig. 2. Positive CP control S. aureus isolate (H7) stained by
modified Maneval’s capsule staining method (�1000 magnification).

Fig. 3. NT CP isolate of S. aureus (CP negative by genotyping and
serotyping) displays a capsule using modified Maneval’s capsule
staining method (�1000 magnification).
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