Preclinical Evaluation of MicroRNA-34b/c Delivery for Malignant Pleural Mesothelioma

Tsuyoshi Ueno\(^a\), Shinichi Toyooka\(^a\)*, Takuya Fukazawa\(^b\), Takafumi Kubo\(^a\), Junichi Soh\(^a\), Hiroaki Asano\(^a\), Takayuki Muraoka\(^a\), Norimitsu Tanaka\(^a\), Yuho Maki\(^a\), Kazuhiko Shien\(^a\), Masashi Furukawa\(^a\), Masakiyo Sakaguchi\(^c\), Hiromasa Yamamoto\(^a\), Kazunori Tsukuda\(^a\), and Shinichiro Miyoshi\(^d\)

Departments of \(^a\)Thoracic Surgery and \(^c\)Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan;
\(^b\)Department of General Surgery, Kurosaki Medical School, Kurashiki, Okayama 700-8505, Japan

The microRNA-34s (miR-34s) have p53 response elements in their 5-flanking regions and demonstrate tumor-suppressive functions. In malignant pleural mesothelioma (MPM), we previously reported that expression of miR-34b and miR-34c (miR-34b/c) was frequently downregulated by methylation in MPM cell lines and primary tumors. The forced overexpression of miR-34b/c showed significant antitumor effects with the induction of apoptosis in MPM cells. In this study, we examined the in vitro antitumor effects of miR-34b/c using adenovirus vector on MPM. We subcutaneously transplanted NCI-H290, a human MPM cell line, into BALB/C mice and injected adenovirus vector expressing miR-34b/c, luciferase driven by the cytomegalovirus promoter (Ad-miR-34b/c or Ad-Luc), or PBS control into tumors over 5 mm in diameter. A statistically significant growth inhibition of the tumor volume was observed in the Ad-miR-34b/c group from day 6 onward compared to the Ad-Luc group. The inhibition rate of Ad-miR-34b/c, compared to the tumor volume treated with Ad-Luc, was 58.6% on day 10 and 54.7% on day 13. Our results indicate that adenovirus-mediated miR-34b/c gene therapy could be useful for the clinical treatment of MPM.

Key words: mesothelioma, microRNA, microRNA-34b/c, p53

Malignant pleural mesothelioma (MPM) is a neoplasm with highly invasive and aggressive clinical features, and exposure to asbestos is strongly associated with its etiology [1]. Curative modalities such as radiotherapy, conventional chemotherapy, or molecular targeting therapy have not yet been established for advanced MPM, so the development of new treatments is urgently needed [2].

MicroRNAs (miRNAs) are a group of noncoding small RNAs that usually regulate their target mRNAs by posttranscriptional repression [3]. Recently, there has been intensive research into the role of miRNAs in human malignant tumors because of the ability of individual miRNAs to regulate multiple genes implicated in multiple pathways [4]. Similar to encoding genes, some miRNAs have been classified as oncogenic or tumor-suppressive according to their effects on cellular transformation [5]. Among the tumor-suppressive miRNAs are the miRNA-34 family members (miR-34s) with p53 response elements in their 5-flank-
ing regions: the family includes miR-34a, miR-34b and miR-34c [6–8]. These members are direct transcriptional targets of p53 and constitute part of the p53 tumor suppressor network regulating cell cycle arrest, apoptosis and senescence [6, 9].

In MPM, mutations and deletions of the TP53 gene are rare [10, 11], even though MPM is often associated with cell cycle alterations and anti-apoptosis, suggesting functional p53 deficiency [12]. We previously examined the methylation and expression status of miR-34s in thoracic malignancies such as lung cancer and MPM [13, 14]. We found that expression of miR-34b and miR-34c (miR-34b/c) was frequently downregulated by methylation in MPM cell lines and primary tumors, and that forced overexpression of miR-34b/c, but not of p53, had a significant antitumor effect that induced apoptosis in MPM cells in vitro [13].

In this study, we used an adenovirus vector containing miR-34b/c to examine the in vivo antitumor effects of miR-34b/c on the MPM cell line NCI-H290 (H290), in which miR-34b and miR-34c expression is downregulated by methylation.

Materials and Methods

Cell line. H290, a human MPM cell line, was a kind gift from Dr. Adi F. Gazdar (Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA).

Adenovirus vectors carrying microRNA-34b/c and Luciferase. Adenovirus vector expressing miR-34b/c driven by cytomegalovirus (CMV) promoter (Ad-miR-34b/c) was generated by homologous recombination and plaque purified. Adenovirus vector expressing luciferase driven by CMV promoter (Ad-Luc) was used as a control vector [13, 15]. Following the application manual Ver. 1.4 of AdEasy™ vector system (Agilent Technologies, CA, USA), Ad-miR-34b/c and Ad-Luc were amplified by infection with QBI-293A. Adenovirus was purified with CsCl and viral suspension was titrated with O.D. 260 nm [VP/mL].

Experimental animals. We used adult female mice (BALB/C nu/nu: 4 weeks) purchased from Charles River Laboratories Japan (Yokohama, Japan). They were maintained in a specific pathogen-free environment with free access to food and water at the Department of Animal Reserves, Shikata Laboratory, Advanced Science Research Center of Okayama University, and allowed to adapt to their environment for more than one week before beginning the experiments. The animals were housed and handled in accordance with the Okayama University Animal Research Committee Guidelines.

Treatment protocol. H290 human MPM cells [1.0 × 10^5 in 50μl phosphate buffered saline (PBS)], mixed with 50μl of Matrigel (BD Biosciences, San Jose, CA, USA), were subcutaneously injected into the thighs of mice on both sides. The tumors were permitted to grow to approximately 5mm in diameter and the mice were then randomly assigned to one of three treatment groups: (1) intratumoral injection of Ad-Luc, (2) intratumoral injection of Ad-miR34b/c, or (3) intratumoral injection of PBS. The injections were targeted to the center and periphery of each tumor mass to deliver the agent diffusely. The first day of vector administration was taken as day 0. Animals were observed 3 times per week for physical appearance, activity levels and mortality patterns.

The transduction efficiency was checked after intratumoral vector injection. Two mice in each of the 3 groups were injected intratumorally with 100μl of the same concentration of Ad-Luc or Ad-miR-34b/c, or 100μl of PBS. They were sacrificed on day 3 and the intratumoral expression of miR-34b/c was detected using quantitative real-time PCR as described previously.

To examine the antitumor effects of Ad-miR-34b/c, we injected five mice per group with 100μl of Ad-Luc, Ad-miR-34b/c or PBS on day 0, 3 and 6. The average concentration of Ad-Luc and Ad-miR-34b/c was 1.86 (range, 1.25–2.16) × 10^{11} viral particles/tumor in 100μl buffer with reference to a previous report [16].

Tumor sizes were measured with vernier calipers and tumor volume was calculated using the following formula: 3.14 × 1/2 × (the shortest diameter)^2 × (the longest diameter). The day of sacrifice was day 20 after which tissues were frozen quickly by liquid nitrogen and stored at −80°C. The body weight of each mouse was monitored using a sensitive balance during the entire study period.

Statistical analysis. Data were represented as mean ± SD. Mann–Whitney U test was used to compare data between groups. The differences were considered statistically significant at p < 0.05.
Results

Confirmation of miR-34b/c expression after treatment. We evaluated the intratumoral expression of miR-34b and miR-34c after injection in the 3 groups of mice. miR-34b and miR-34c expression in the Ad-miR-34b/c group was 27.9 and 19.2 times higher than in the PBS group, respectively, while that in the Ad-Luc group was the same as the PBS group (Fig. 1). None of the mice died during the experiment in any of the treatment groups.

The growth inhibition of Ad-miR-34b/c treatment on mouse H290 xenografts. Subsequently, we evaluated the growth inhibition of implanted tumors with Ad-miR-34b/c treatment. There was no significant difference in the average tumor volume between the 3 groups on day 0: Ad-Luc 98.4 ± 12.5 mm3, Ad-miR-34b/c 97.1 ± 14.9 mm3, and PBS 108.7 ± 7.1 mm3. Time course and tumor volume after treatment are shown in Fig. 2. A statistically significant growth inhibition of tumor volume was observed in the Ad-miR-34b/c group compared to the Ad-Luc group from day 6 onward. The inhibition rate of Ad-miR-34b/c, compared to the tumor volume treated with Ad-Luc, was 58.6% on day 10 and 54.7% on day 13. Interestingly, the tumor volume in the Ad-miR-34b/c group did not change from day 6 to day 10, suggesting that Ad-miR-34b/c suppressed tumor growth during this period. After day 10, there was no difference in the rate of tumor growth between the Ad-miR-34b/c and Ad-Luc groups.

There was no significant difference in the average body weight of the mice between the 3 groups throughout the experiment (Fig. 3).

Discussion

In this study, we showed the direct antitumor effect of miR-34b/c introduced by adenovirus vector on miR-34b/c silenced MPM cells in vivo. To the best
of our knowledge, the in vivo therapeutic effect of miR-34b/c has not previously been reported in any form of malignant disease. In addition, there have been no reports of miRNA use in MPM in vivo. However, the therapeutic impact of miR-34a was previously shown following lentivirus-mediated transfer. Furthermore, a lipid-based delivery of chemically synthesized miR-34a in lung cancer cells has also been demonstrated [17, 18].

Our previous study revealed the anti-proliferative effect of Ad-miR-34b/c on 3 different miR-34b/c methylated MPM cell lines (H28, H290 and H2052). However, stable xenografts could only be generated from H290 cells in the present study. Although our previous study demonstrated the effect of Ad-miR-34b/c on MPM even in cell H2052 with preserved miR-34a expression, the sole xenograft model here may be considered a limitation in this study.

The tumor growth curve in this study revealed that the antitumor effect was observed until day 10, 4 days after the last injection of Ad-miR-34b/c. There are a number of possible explanations for this, including the heterogeneous tumor infection of Ad-miR-34b/c or the cytostatic effect of Ad-miR-34b/c in vivo.

In addition, miR-34b/c is known to enhance the effects of radiation in vitro, so its use in combination with chemotherapeutic agents or radiation might enhance the antitumor effects of a single treatment [19]. This merits further investigation in future studies.

In summary, we show that miR-34b/c suppresses MPM tumor growth in vivo, which supports the findings of our previous in vitro study. Preclinical studies such as this are an important part of the process of clinical application to assess target molecule and delivery systems in vivo. Thus, our study is relevant in that it shows the feasibility of miRNA MPM therapy using a virus vector, and suggests that Ad-miR-34b/c in particular would be a promising therapeutic agent for MPM.

References