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Abstract

Purpose: The aim of this paper is to optimise process conditions in micro injection

moulding (IM) to minimise shrinkage whilst maximising part mass. Method: A

Design of Experiment (DoE) approach was implemented for studying the effect of five

processing parameters on shrinkage and part mass. A multiple quality criteria based

analysis was used to optimise the process. Results: Significant factors were found for

shrinkage and part mass. Conclusions: The multi quality criteria could be optimized, and

this optimization validated experimentally.
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1. Introduction

1.1 Purpose of paper

Injection moulding literature indicates that part mass has an important role in shrinkage,

where shrinkage is reduced when part mass is maximized (without overfilling behaviors such

as the production of “flash”) [1]. However, it is difficult to use part mass as a factor in an

experiment, as it is not a variable that is easy to control independently (unlike, for example,

mould temperature). It may also be affected by the same factors that influence shrinkage.

In a previous study, metering size was used as a factor (and part mass as a response) [2].

However, two issues act to reduce the usefulness of metering size as a factor. Firstly its

accuracy. The metering size accuracy of a dedicated micro-moulder (Battenfeld 50) – as

used here – has been estimated at 20 mm3 [2] (as against total moulded part size of 150 mm3).

Secondly, the variation of metering size volume with polymer temperature [3].
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In order to use part mass data to attempt to optimise shrinkage, the present study proposes a

multiple quality criteria method, i.e. it attempts to optimise for both the minimum total

shrinkage and the maximum part mass, because of the known effect of one factor on the

other. Shrinkage itself is measured by a recently proposed and demonstrated methodology for

the study of the effects of injection moulding parameters on shrinkage behaviour at the

micro-scale [4].

As optimisation of total shrinkage would be particularly hard to achieve for polymers which

show anisotropic shrinkage behaviour, an example of such a polymer (a grade of

polyoxymethylene) was chosen for this study [5].

1.2 Adoption of part mass as a parameter at the micro-scale

In the literature, few papers have adopted part mass as the experimental response in micro-

parts. Ong et al. [5] analysed parameters affecting the mass of micro-parts using a Design of

Experiment methodology. Mould temperature was the most significant factor affecting part

mass; maximum part mass was associated with increasing mould temperature, injection rate

and injection pressure.

Attia et al. [6] considered part mass as output parameter. The five processing parameters

investigated were melt temperature, mould temperature, injection speed, holding pressure and

cooling time. Desirability functions were considered for improving the quality filling.

Zhao et al. [2] studied specimen quality in terms of metering accuracy and homogeneity: part

weight and gear diameter of moulded micro parts were measured as experiment responses.

The statistical analysis identified the metering size (defined as the volume of material

injected in the cavity mould) and the holding pressure as the most critical factors that affected

the part weight and the diameter of micro part moulded.

1.3 Multiple quality criteria optimisation

Attia et al. [7] used the similar approach to that adopted in the present paper for the

investigation of the effect of processing parameters on two quality criteria: part mass and the

variability of part mass. Desirability functions were successfully implemented to predict the

processing conditions that fulfilled the requests to maximise both criteria. The final results

were validated experimentally for demonstrating the reliability of this approach.

Bellantone et al. [8] have recently adopted a similar approach.

2. Methodology
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2.1 Material and equipment

The material analysed in this paper was a semi-crystalline polymer, polyoxymethylene

(POM), from BASF (Ultraform® W2320 003) [9] (melting point 166°C, tensile strength at

room temperature 65MPa, linear thermal expansion coef. 0.6E-4 mm mm-1 C-1).

Mould manufacture was realized using a KERN Evo five-axis micromilling machine for

ultra-precision machining, with a workpiece precision of 1 μm and final surface quality of 0.1

μm. The micro injection moulding machine used was a Battenfeld Microsystem® 50. The

specimen dimensional measurement was conducted using the optical system TESA Visio

300, with an accuracy of ±1 µm. Part mass was measured using an analytical scale with

accuracy of ±1 mg.

2.2 Detecting influential processing conditions for shrinkage

The statistical design was adopted from Annicchiarico et al. [4].

Table 1 reports the processing parameters analysed in the present paper. Initial values were

determined during a familiarisation stage, where trial and error experiments were conducted

to specify the experimentation window of the process. The screening stage allowed the

identification of the high (+) and low (-) ranges. The higher (+) limits were obtained by

increasing the initial values indicated in Table 1 until excess “flash”, started to be notable.

The lower (-) limit was obtained by decreasing the values gradually until defects started to

appear, for example, incomplete filling or poor edge definition.

Table 2 reports the statistical model adopted, which is based on a half fractional factorial

design. It shows the runs used during the injection moulding stage.

For each combination of processing parameters, the shrinkage of five specimens moulded

cyclically (continuously) were measured according to the standard procedure reported in [10].

Figure 1 shows an example of a moulded POM specimen. During the moulding process, other

moulding conditions are kept constant: cooling time: 17 s; metering volume: 210 mm3;

injection speed: 250 mm s-1.

2.3 Optimising multiple quality criteria using desirability functions

The optimization used here follows the statistical method outlined in [7].

The method applied in this work implements desirability functions [11]. Desirability

functions were used to predict a combination of processing parameters that fulfilled two

quality requirements. Each response yi was individually converted into a desirability function

di that translates each effect between 0 (the effect of the process are out of target and
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unacceptable) and 1 (the effects are relevant to the target value or range). The individual di

were combined in the overall desirability, D, where D= (d1×d2×dm)1/m and m is the number of

responses: also D has a range between 0 and 1, and had to be maximized; the values 0 and 1

had the same meaning of those reported for di.

In this work the goal was to maximize part mass and minimize total shrinkage. The individual

functions for meeting these requirements were represented in Equation 1 and Equation 2,

respectively.

0 y < L

Equation 1 d1=  L ≤ y ≤ T               

1 y > T

1 y < T

Equation 2 d2=     T ≤ y ≤ U               

0 y > U

In both equations, U and L were the upper and lower limits, y was the response, T was the

target and r values were the function weight (linear or non-linear), which in this case were all

set to be equal to 1. Shrinkage minimisation and part mass maximisation requires setting

upper and lower limits selected using the results reported in Table 3. The shrinkage target

was the medium-low value between the specimens with low ST: the target value was set to

3.5% and the upper limit was 4%. Mass target value was chosen as the value closer to the

highest part mass moulded (the specimen moulded with the 16th run). The part mass target

value was 49.5 mg and the low limit was 48 mg. In the optimisation stage, the individual

desirability function di and overall desirability D were maximised and set equal to 1.

2.4 Methodology for measurements

For determining shrinkage, the procedure was adopted from Annicchiarico et al.[4]

Specimens were moulded by manufacturing a micro-mould following the micro-scale

requirements of ISO 294-3 [12] square mould design. The dimensions were adapted to test

micro-scale features. The final dimensions of the single square cavity were length=

9.987±0.001 mm, width= 9.980±0.001 mm, thickness=0.350±0.001 mm.
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Five specimens were chosen, after the injection machine operated for a number of

uninterrupted cycles (Table 1 reports the processing parameters tested) to reach stable

operation conditions, such that random errors were minimised.

The conversion of dimensional variations in total shrinkage values - defined as the difference

in dimensions between a test specimen after 24 hours and the mould cavity in which it was

moulded - was implemented as specified in of ISO 294-4.

Part mass was determined by weighing the same five specimens used for shrinkage

measurements with an analytical scale.

2.5 Data representation

The statistical analyses were conducted using Pareto charts, main effect plots and interaction

plots. Minitab 16 [13] was used to process the data. The processing parameters were labeled

as A (hold time), B (hold pressure), C (injection pressure), D (mould temperature) and E

(melt temperature). The combined influence of two of these parameters was described by

combining the two corresponding letters.

Pareto charts were used for determining the statistical significance of the processing

parameters. The chart reports the absolute value of the effects and draws a reference line on

the chart. The vertical line represents the alpha () value, which was the maximum

acceptable level of risk. Alpha was expressed as a probability, ranging between 0 and 1.

During the statistical study, the  value was set at 0.05. This statistically means that the

possibility of finding an effect that does not really exist was 5%.

The main effects plot permitted the identification of the response of the single critical process

parameters (previously identified by Pareto chart) in terms of direction and magnitude: the

larger the slope of the line, the larger the significance of the respective processing parameter;

a positive slope indicates a direct relationship and a negative one indicates an inverse

relationship with the factor analysed.

The interaction plot identified the response of the combined critical processes. An interaction

was present when the change in the response from the low to the high level of a factor

depended on the level of a second factor. If the lines were parallel to each other or did not

intersect, there was no interaction present within the investigated process window. The

greater the departure of the lines from the parallel state, the higher the degree of interaction.

3. Results

3.1 Measurement results
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Table 3 reports part mass (W) and total shrinkages (ST) values in parallel to (p) and normal to

(n) the flow direction. Part mass values shown in Table 3 include both the specimen and the

attached gate masses. This was done because separating the gate from the specimen caused

profile damage that affected shrinkage measurements. Gate mass was estimated to contribute

to about 2% of total part mass (1.10±0.03 mg gate mass).

Table 4 reports the lowest (Low) and the average (Av) values for total shrinkage (ST), on

parallel to (p), and normal to (n), the flow direction.

3.2 Critical factors that affect shrinkage

Figure 2 reports the Pareto chart of total shrinkage in parallel to the flow direction. Three

single factors had statistically significant effects on shrinkage: mould temperature D, hold

pressure B and melt temperature E. In addition, two combinations of factors had statistically

significance: hold pressure with mould temperature BD, and mould temperature with melt

temperature DE.

Figure 3 shows the corresponding main effects plot for the single critical factors. The figure

shows that mould temperature magnitude is larger than hold pressure and melt temperature.

The slopes of the parameters indicate that an increase in these parameters leads to a decrease

in shrinkage.

The plot of Figure 4 represents the interaction between holding pressure and mould

temperature (labelled as BD in Figure 2). The boxes show the change of total shrinkage, in

parallel to the flow direction STp, with both mould temperature and hold pressure. The top

right box plots shrinkage as a function of mould temperature, the bottom left box plots

shrinkage as a function of hold pressure.

Considering mould temperature (top right), the decrease of total shrinkage in parallel to the

flow direction STp moving from the low (85°C) to the high (115°C) temperature is larger

when hold pressure is low (450 bar) than when it is high (550 bar). Considering hold pressure

(bottom left), the decrease of STp moving from the low (450 bar) to the high (550 bar)

pressure is larger when mould temperature is low (85°C) than when it is high (115°C).

Figure 5 represents the interaction between melt and mould temperatures (labelled as DE in

Figure 2). The boxes show the change of total shrinkage, in parallel to the flow direction STp,

with both mould temperature and melt temperature. The top right box plots shrinkage as a

function of melt temperature, the bottom left box plots shrinkage as a function of mould

temperature.
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Considering mould temperature (top right box), the decrease of total shrinkage in parallel to

the flow direction STp as we move from the low (85°C) to the high (115°C) temperature is

larger when melt temperature is low (190°C) than when it is high (200°C). Considering melt

temperature (bottom left box), the decrease of STp moving from the low (190°C) to the high

(200°C) temperature is larger when mould temperature is low (85°C) than when is high

(115°C).

In contrast to the above, no statistically significant effects of factors were seen for shrinkage

normal to the flow direction.

3.3 Critical factors that affect part mass

Using the same statistical tools used for total shrinkage, the critical factors that affect part

mass were analysed. Figure 6 and Figure 7 represent the Pareto chart and the main effects

chart of the POM specimen part mass. The Pareto chart in Figure 6 shows that in terms of

part mass, the statistically significant process parameters were mould temperature D, hold

pressure B and melt temperature E.

The main effects plot, shown in Figure 7, reports how changing each process parameter

between the low and high values affects the actual magnitude of specimen mass. The slopes

of the three significant parameters, identified from the Pareto chart, are all positive in the

main effects chart, which means that an increase in specimen mass is directly related to each

of the three parameters.

3.4 Optimisation step

Table 5 summarises the critical factors observed for shrinkage and part mass.

The optimisation stage identified the optimum combination of parameters that minimised

shrinkage and maximised the part mass. These are shown in Table 6.

Specimens were moulded for experimental validation. Table 6 reports their shrinkage and

part mass. These results can be compared with those reported in Table 4. Table 7 summarise

this comparison.

In Table 7, the actual average, low and optimised values of shrinkage and weight are given in

parentheses, the optimised in the first row of data and the actual and average in the first

column of data. The body of the table compares the optimised with the non-optimised values

as a percentage change. The first set of three rows compares against average values from

prior experiment. The second set of three rows compare against the best values (lowest
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shrinkage or mass) from prior experiment. A negative value in the table indicates a reduction

in shrinkage or part mass.

Figure 8 reports the mass distribution of the specimens relative to different process

parameters. The x-axis shows the run numbers 1 to 16 as reported in Table 3. Run number 17

is for the optimised process parameters as shown in Table 6. The y-axis shows the resulting

specimen mass expressed in milligrams. In Figure 8 the white bars indicate mass values for

specimens moulded with processing parameter combinations that include low mould

temperature (85°C), while the grey bars refer to mass values resulting from processing

parameter combinations involving high mould temperature (115°C). The 17th bar is the part

mass of the optimised specimen. Error bars are the standard deviation of five specimens.

4. Discussion

The numerical results reported in Table 3 confirmed the general shrinkage trend reported in

the literature [14; 15]: shrinkage in parallel to the flow direction is larger than that normal to

the flow direction.

The critical factors that affect total shrinkage and part mass were summarized in Table 5.

Temperatures (mould and melt) and holding pressure were identified as single critical factors

that affected both shrinkage and part mass. The combinations of each of holding

pressure/mould temperature and melt temperature/mould temperature affect total shrinkage in

parallel to the flow direction. No critical parameters were found for total shrinkage in normal

to the flow direction.

With regard to part mass, the results of this work are in agreement with those of Ong et al.

[5], which identified mould temperature as a critical factor for part mass in the same grade of

POM. In terms of part weight, Zhao [2] found that the holding pressure has a critical

influence (for POM grade Iupitala F20-0).

The effect of optimisation using multiple quality criteria was shown in Table 7. Comparing

the numerical results after the optimisation with those before the optimisation (both average

and low values), it was possible to evaluate that shrinkage in parallel to the flow direction

was reduced (-34% with respect to the average value, -8% with respect to the best shrinkage

value). Shrinkage reduction in parallel to the flow direction seems to be balanced by a slight

increase in shrinkage in normal to the flow direction (+9.2% with respect to the average

value, +40% with respect to the best shrinkage value). The optimised part mass shows a +3%

change with respect to the average part mass and a -0.1% change with respect the best
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(highest) part mass value. Such a reduction in part mass with respect the best target value

does not produce negative effects in terms of incomplete filling or low edge definition. The

optimised values are the results of a compromise between shrinkage minimisation and part

mass maximisation.

Figure 8 confirmed the critical influence of mould temperature (critical factor both for

shrinkage and part mass) highlighted by the statistical study: the relatively short white bars

indicate mass values for specimens moulded low mould temperature (85 °C, as shown in

Table 2). The longer grey bars refer to specimens moulded with high mould temperature

(115°C). The 17th bar is the weight of the optimised specimen. Although the specimen

moulded with the optimised parameter does not show a higher value of mass, it exhibits a

shrinkage which is more balanced in parallel to, and normal to, the flow direction (3.37% and

3.31% respectively) compared to shrinkages reported in Table 3.

5. Conclusions

This paper implemented a statistical methodology in order to attempt to optimise for both

shrinkage and part mass in micro-injection moulding. Five factors were investigated: the

injection pressure, the holding pressure, the melt temperature, the mould temperature and the

holding time. The temperatures (mould and melt) and the hold pressure were identified as

significant factors that affected both shrinkage in parallel to the flow direction and part mass

independently. In addition, shrinkage in parallel to the flow direction is affected by combined

effect of holding pressure-mould temperature and melt temperature-mould temperature. No

critical parameters affected shrinkage in normal to the flow direction. Optimal conditions for

the minimisation of the total shrinkage and maximisation of part mass were determined using

desirability functions. These conditions were tested experimentally. Measurements verified

the reduction in shrinkage and the increase of part mass.
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List of tables

Processing Parameters Initial
Values

Value
+

Value
-

Injection pressure [bar] 850 900 800

Holding pressure [bar] 500 550 450

Melt temperature [°C] 195 200 190

Mould temperature [°C] 100 115 85

Holding time [s] 3 4 2

Table 1. POM processing parameters.

Processing parameter combinations Half fractional factorial matrix

Run
Hold
time
[s]

Hold
press.
[bar]

Inj.
press.
[bar]

Mould
temp.
[°C]

Melt
temp.
[°C]

Hold
time

Hold
press

Inj.
Press

Mould
temp

Melt
temp

1 2 450 900 85 190 + - + - +

2 4 450 900 85 200 + - - + +

3 4 550 800 85 200 + + - - +

4 4 550 900 85 190 + - - - -

5 2 550 800 115 190 + + + - -

6 2 550 900 85 200 - - + - -

7 2 550 800 85 190 + - + + -

8 4 450 900 115 190 - + + - +

9 2 450 800 85 200 - + - + +

10 4 450 800 85 190 - - + + +

11 2 450 900 115 200 + + - + -

12 4 550 800 115 190 + + + + +

13 2 550 900 115 190 - + - - -

14 4 450 800 115 200 - + + + -

15 4 550 900 115 200 - - - - +

16 2 550 800 115 200 - + - + -

Table 2. Matrix of half fractional factorial design and processing values.

Run W [mg] STp [%] STn [%]

1 46.73±0.39 7.649±0.008 2.797±0.007

2 46.98±0.23 6.664±0.001 2.909±0.001

3 47.64±0.33 5.108±0.004 2.890±0.001

4 47.50±0.52 6.092±0.009 2.802±0.002

5 48.19±0.44 3.887±0.002 3.217±0.001

6 47.60±0.38 4.972±0.009 2.923±0.001

7 46.93±0.31 6.775±0.007 2.820±0.001

8 48.23±0.12 3.728±0.001 3.253±0.001

9 46.57±0.18 6.968±0.004 3.388±0.009

10 46.09±0.44 7.954±0.010 2.350±0.008

11 49.32±0.13 3.670±0.001 3.096±0.001

12 48.99±0.03 3.683±0.001 3.155±0.001
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13 49.15±0.08 3.629±0.001 3.177±0.001

14 48.73±0.19 3.640±0.001 3.297±0.002

15 49.42±0.06 3.373±0.001 3.306±0.004

16 49.73±0.12 3.633±0.002 3.030±0.001

Table 3. Specimen mass results (W) and total shrinkage (ST) parallel to (p), and normal to

(n), flow direction.

STp Low [%] STp Av [%] STn Low [%] STn Av [%]

3.63±0.01 5.09±1.66 2.35±0.01 3.03±0.26

Table 4. Lowest and average values for total shrinkage.

Parallel to flow Normal to flow

ST

Mould temperature

None
Hold pressure

Mould temperature and hold pressure
Melt temperature

Mould temperature and melt temperature
W Mould temperature, hold pressure, melt temperature

Table 5. Critical processing parameters.

Hold t

[s]

Hold P

[bar]

Inj. P

[bar]

Mould T

[°C]

Melt T

[°C]
STp [%] STn [%] W [mg]

4 550 800 115 200 3.352±0.001 3.298±0.004 49.42±0.08

Table 6. Optimized parameters with total shrinkage and part mass results.

STp Optim [%] STn Optim [%] W Optim [mg]

(3.35) (3.30) (49.42)

STp Av [%] (5.09) -34%

STn Av [%] (3.03) +9.2%

W Av [mg] (47.98) +3%

STp Low [%] (13rd run) (3.63) -8%

STn Low [%] (10th run) (2.35) +40%

W Low [mg] (16th run) (49.73) -0.1%

Table 7. Optimization stage effect.

List of figures
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Figure 1. POM moulded specimen.

Figure 2. Pareto chart of total shrinkage in parallel to the flow direction.
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Figure 3. Main effects of total shrinkage in parallel to the flow direction.
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Figure 7. Main effects plot of specimen part mass.

Figure 8. POM part mass distribution.


