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Abstract 

Existing work on digital forensics timeline generation focuses on extracting times from a disk image into a timeline. 
Such an approach can produce several million ‘low-level’ events (e.g. a file modification or a Registry key update) 
for a single disk. This paper proposes a technique that can automatically reconstruct high-level events (e.g. 
connection of a USB stick) from this set of low-level events. The paper describes a framework that extracts low-
level events to a SQLite backing store which is automatically analysed for patterns. The provenance of any high-
level events is also preserved, meaning that from a high-level event it is possible to determine the low-level events 
that caused its inference, and from those, the raw data that caused the low-level event to be initially created can also 
be viewed. The paper also shows how such high-level events can be visualised using existing tools. 
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1. Introduction 

This paper presents an automated approach to 
assist analysts during a digital investigation by 
automatically reconstructing high-level events that 
have occurred, for example, the connection of a USB 
stick. The paper makes the following contributions: a 
Python based prototype that extracts dates and times 
from various files on a mounted disk image; a 
framework that allows ‘analysers’ to be written that 
can produce a high-level event based on the presence 
of one or more low-level events. This combined 
approach also allows detailed provenance of any 
automatic inferences to be preserved, from a high-
level event, through the low-level events that were 
(and were not) present, all the way down to the raw 
data that caused a low-level event to be extracted in 
the first place.  

The remainder of this paper is structured as 
follows: Section 2 provides background information 
and justifies a timeline-based approach in a digital 
investigation. Section 3 considers related work, and 
Section 4 discusses the methodology for this 
research. Section 5 presents the design and 
implementation. Section 6 provides sample results 
from the use of the developed tool and Sections 7 and 
8 evaluate the research and discuss conclusions and 
further work.  

 

2. Background 

One of the challenges to digital forensics is the 
volume of data that needs to be analysed. This has 
arisen as a result of a number of factors, including the 
importance of digital evidence in a broader range of 
investigations, increasing storage capacities, and the 
increasing number of digital devices owned by an 
individual [1]. As a result, automation is an 
increasingly important part of digital forensics. Many 
existing automated tools have focused on the 
extraction stage of a digital investigation, i.e. making 
more information accessible from the raw data, and 
are very effective at this. For example, Internet 
Evidence Finder automates the recovery of artefacts 
on a disk image that relate to certain Internet use, e.g. 
Facebook chat artefacts.  

Automated extraction approaches do help with 
digital investigations, but only in that they make 
more data available to an analyst in a form that can 
be understood. Since it is usually necessary to answer 
questions about previous digital events [2], one 
approach that can help is the use of timelines. 
Existing work on timelines in digital investigations is 
discussed in the following section and the timeline 
generation techniques are divided into ‘file system 
only’ and ‘enhanced’. 

 
 



 

3. Related work 

3.1. Timelines based on file system times 
The majority of commercially available forensic 

software packages reconstruct the file system of a 
disk image and make the contents of files and their 
metadata accessible. Depending on the file system in 
use, this metadata usually includes at least Modified, 
Accessed and Created (MAC) times. Some forensic 
tools are capable of turning the multiple times 
associated with a file into a timeline. For example 
Carrier describes how to generate a file activity 
timeline using The Sleuth Kit [3], and Bunting  
describes the graphical ‘Timeline View’ of EnCase 
[4]. The limitation of file system metadata based 
timelines is that they do not consider times that are 
available by examining the contents of files. 
3.2. Timelines including times from inside files 

Olsson and Boldt improved upon file metadata 
based timelines with the Cyber Forensic Time Lab 
(CFTL) [5]. This tool not only recovers file system 
times from FAT and NTFS volumes, but also extracts 
times from a variety of files, for example EXIF data, 
Link files, MBOX Archives and Windows Registry 
files. Interestingly, CFTL also maintains some 
information about the source of extracted events. It is 
also suggested that an extension of the work could be 
to automatically search for “certain predefined 
patterns of suspicious activity, helping the 
investigator to spot interesting parts of the timeline 
more efficiently”.  

Also, log2timeline [6], with the timescanner 
enhancement can automatically and recursively 
examine files and directories. If an appropriate ‘input 
module’ is available for a file, times are extracted and 
added to a timeline. Reference [6] also hints at the 
possibility of grouping events that are part of the 
same activity when describing the potential future use 
of the ‘super event’ table in the SQLite output format.  

A more detailed review of available timeline 
software is available in [7], but the examples in this 
sub-section demonstrate that there are a number of 
benefits to using an ‘enhanced’ timeline in addition 
to improving the richness of the timeline, i.e. 
increasing the number of events. As discussed in [5], 
a tool such as Timestomp could be used to clear file 
system times, but this would not affect times within 
files. Even if not overwritten maliciously, file access 
times can be updated in bulk by anti-virus products 
[6] or the updating of them disabled by default in 
modern operating systems or by altering a Registry 
key.  

3.3.  Visualisations 
There is also some work that discusses the 

visualisation of digital forensic timelines. For 
example, EnCase’s visualisation is mentioned in 
Section 3.1 [4]. 

Buchholz and Falk [8] developed Zeitline, which 
is a GUI based tool that allows file system times to be 
imported from The Sleuth Kit and other sources 
(using Import Filters). This tool provides searching 
and filtering of events. It also introduces the concepts 
of atomic events and complex events, where the 
former are “events that are directly imported from the 
system” and the latter are “comprised of atomic 
events or other complex events”. Zeitline allows an 
investigator to manually combine atomic events into 
complex events.  

Aftertime [9] is a Java based application that not 
only performs enhanced timeline generation (as 
described in Section 3.2) from a disk image, but also 
visualises the results as a histogram, with time on the 
x-axis against numbers of different events on the y-
axis. 

Lowman discusses several visualisations of web 
history data, including heat maps, bar charts of 
activity, word clouds and a timeline view [10]. The 
results presented suggest the visualisations are 
effective. However, it is difficult to know how they 
would scale if they included all events from a disk, as 
described in the previous section.  

One of the problems that all visualisations will 
face is that when all the times are extracted from file 
system metadata and from within files, hundreds of 
thousands of events can be produced. Finding ways 
to display this number of events in a way that is 
useful to an investigator is extremely challenging; as 
[6] states, “a super timeline often contains too many 
events for the investigator to fully analyze, making 
data reduction or an easier method of examining the 
timeline essential”.  
3.4. Summary 

This section has shown the importance of 
recovering times from inside files in addition to using 
file system metadata. However, this causes new 
problems, as the large number of events produced are 
difficult to analyse and extremely problematic to 
visualise in a manner that is useful. It has been 
suggested that highlighting certain patterns of activity 
to indicate areas of interest in the timeline may be an 
effective approach, and that it is important to 
maintain records of the source of extracted data. 
 
 



   

4.  Methodology 

Many of the problems highlighted in the related 
work section stem from the volume of data created 
when all times are extracted from a disk image, 
particularly with the ‘super-timeline’ approach. This 
volume of data, or in particular, the number of events 
that are generated, makes analysis difficult and limits 
the way in which data can be visualised. 

This research aims to determine the extent to 
which it is possible to automate the manual process 
that an investigator can undertake to combine 
multiple ‘low-level’ events, (i.e. data extracted from 
file systems and compound files) into ‘high-level’, 
human-understandable events, e.g. connection of a 
USB stick. Such an approach would produce a 
summary of activity that would assist in focusing an 
investigation on particular areas of interest or perhaps 
prioritising the investigation of one machine over 
another. 

The chosen research method in this case is the 
development of a software prototype. This is chosen 
over a design-based approach, as it means it is also 
necessary to overcome any practical issues that are 
difficult to identify at the design stage.  

Another methodological question that arises is 
whether to build on top of existing frameworks, e.g. 
log2timeline. In the literature review there are several 
identified properties that are desirable in a timeline 
reconstruction system. One of which is traceability of 
any results back to the original low-level data [5]. If 
log2timeline were to be used, the input modules 
would need to be enhanced to accommodate this. To 
allow for such updating, the data structures that they 
process would need to be understood to such an 
extent that code could be implemented entirely 
anyway. As a result, this work implements a 
complete framework for low-level event extraction 
that does replicate much of the log2timeline 
capability, but with some enhancements. Since this is 
a fresh implementation then it is not necessary to 
implement in any particular language based on legacy 
requirements. The implementation language in this 
case is Python 3, which can be considered to be very 
suited to digital forensics as a result of its emphasis 
on readability of code, which means that inspection 
of methods used can be more easily achieved by a 
third-party. 

5.  Design 

This section discusses the design of the timeline 
reconstruction framework. It provides an overview, 
followed by details of the low-level event generation 
and the high-level event reconstruction. 

5.1.  Overall design 
The developed software (Python Digital Forensic 

Timeline (PyDFT)) functions in two main stages: 
low-level event extraction and high-level event 
reconstruction. There are many other supporting 
components that allow this to occur, including case 
management, conversion of different formats for 
storing date-times, and some basic GUIs. However, 
due to space constraints these will not be discussed in 
detail and the focus will be on the generation of low-
level events and the analysis of these low-level 
events to produce high-level events.  The sections 
that follow will discuss the design and 
implementation of these two stages. 

 

5.2.  Generation of low-level events 

5.2.1. Overview 
The generation of low-level events includes both 

file system times, and times extracted from inside 
files. Like log2timeline, this is achieved by the 
analysis of a mounted file system, rather than the disk 
image based approach of Aftertime. While most 
forensic investigations will be working from a full 
disk image, an equivalent mounted file system can be 
easily obtained by mounting the disk image in read-
only mode using both Mac OS X and Linux.  

 
5.2.2. Extraction of file system times 

Since a mounted file system is being examined, it 
is possible to obtain file system times using OS level 
commands. However, this provides a limited set of 
times, e.g. file creation times are not available on all 
systems. Therefore, for NTFS file systems, the times 
are not obtained by querying the file system, but 
instead a check is performed for the presence of the 
$MFT file, that for NTFS, contains all the data 
necessary to extract low-level events about the file 
system. This can be accessed directly on Linux, and 
on Mac OS X using an NTFS driver from Tuxera. If 
the $MFT file is found, it is processed and the 
modified, accessed, created and entry modified times 
from the Standard Information Attribute are used to 
build four events for each file on the file system.  
 
5.2.3.  Times from inside files 

After the generation of the low-level events using 
the MFT, as discussed in the related work section, 
there are a significant number of dates and times that 
can be extracted from inside complex files such as 
Windows Registry hives. This is handled by an 
‘Extractor Manager’. For each file in the mounted file 
system, the function GetTimesFromInsideFiles() is 



 

called and the file is checked to see if any of the time 
extractors available can be used for that file. In order 
to determine which (if any) event extractor can be 
used for a particular file, the file name, file path and a 
file pointer (which can be use to read bytes in order 
to perform signature based matching) are available. 
Upon identifying a file that can be processed further, 
the appropriate time extractor is called, events are 
generated from the times within the file, and these are 
added to the low-level timeline. Time extractors that 
have currently been implemented include: Chrome, 
Firefox and Internet Explorer history, Skype, 
Windows Live Mail, XP Event Logs, Link Files, 
Registry, and Setup API. 
 
5.2.4.  Parsers and bridges 

Each extractor is made up of two parts: parsers, 
which process the raw data structures and recover 
data in a usable form; and bridges, which take the 
information that a parser provides and maps the 
values to a low-level event object. This design makes 
it easier to accommodate new parsers when they are 
developed for data structures (as part of other 
research). It also makes the code in the parsers 
reusable for other research, since they are not 
dependant on components and data structures of the 
Python Digital Forensic Timeline. 
 
5.2.5. Traceability 

Since these time extractors have been re-
implemented specifically for the purpose of timeline 
generation and analysis, this has allowed the concept 
of traceability to be built in at every layer. Practically 
this means that when a low-level event is returned 
from a file by an extractor, it also returns a value that 
allows easy access to the raw data from which this 
event was produced. However, not all data is 
retrieved in exactly the same way and there are 
currently several types of provenance that can be 
returned with the low-level event.  
 
offset: A byte offset within a file, e.g. Windows 
Registry, index.dats. 
line number: A line number within a text based file 
e.g. Setupapi.log. 
SQL Query and record ID: Used when the source 
file is a database and the row number of  the results 
of a specific query can be used, e.g. Firefox history. 
third party: In addition to the extractors developed as 
part of this research, it may be desirable to use third-
party code, and while that code may not be designed 
to preserve provenance to the level of file offsets, this 
at least allows the third-party plugin to be recorded. 

Whichever type of provenance is used, the file 
from which the data was extracted is always captured 
within the low-level event.  
 
5.2.6. Low-level event format 

As discussed in the previous sub-section, one of 
the details preserved in the low-level event format is 
the provenance, i.e. the data that is the source of the 
low-level event. However, there are a number of 
other fields that make up a low-level event. These are 
discussed below. 
 
id: A unique identifier for each event. 
date_time_min: The earliest time that the event could 
have occurred. 
date_time_max: The latest time that the event could 
have  occurred. 
evidence: The evidence item that the event came 
from. Since the case being processed may contain 
multiple sources of evidence, this allows these 
multiple sources to be incorporated into a single 
timeline. This can be useful in cases where multiple 
computers or devices are involved, or even the 
analysis of a computer system with multiple hard 
disks. 
plugin: The time extractor that was used to recover 
the event, e.g. ‘Registry’. 
type: The type of the event, e.g. File Created, Key 
Last Updated, URL Last Visited. This is currently 
determined by the author of an extractor. 
path: The object that the event relates to, e.g. a file or 
URL. 
provenance: The data that was used to produce the 
event. As previously discussed this includes the file 
that the event came from, and any further details that 
assist in directly accessing the relevant raw data, e.g. 
the offset within the file. 
keys: Optional, additional details about an event. 
 

The fields stored are similar to those used in 
existing tools such as Zeitline, log2timeline and 
Aftertime. The specific details of what is stored and 
the reasoning for some of the differences from 
existing formats are discussed in the following 
paragraphs. 

Event ID: The event ID uniquely identifies each 
low-level event. This is necessary for the later high-
level event reconstruction as will be discussed in 
Section 5.3.  

Maximum and Minimum date/times: This allows 
times that are stored on disk imprecisely to still be 
used to generate low-level events, for example file 
access times on FAT file systems record only the date 
of the access not the precise time. Storing a 



   

maximum and minimum is more technically accurate 
than simply rounding the access time to midnight, 
since in reality there is a 24-hour period in which that 
access could have taken place. Dates and times are 
stored in UTC as Unix Time (seconds since 1st 
January 1970). However, fractional numbers are 
permitted, meaning that precision is not lost when 
times are recovered from files that record times with 
more detail than Unix Times, e.g. Windows 
FILETIME (100-nanosecond intervals since 1st 
January 1601). 

Keys: The keys field is implemented as a Python 
dictionary. It is used to store any further relevant 
information that does not fall under the fields 
outlined previously. The data stored will depend on 
the type of the event. File related events may capture 
the file size and user ID, whereas URL accesses may 
contain page title and visit type. This is similar to the 
log2timeline concept of ‘extras’.   

As discussed above, many of these fields can be 
mapped directly to other low-level timeline 
generators such as those detailed in Section 3. This is 
a useful property as it should be relatively simple to 
allow low-level events to be imported from other 
tools. However, such imported events would have the 
limitation of not preserving as much provenance 
information, therefore not allowing full traceability 
back to the raw data. 
 
5.2.7. Backing store for the low-level timeline 

While internally in PyDFT, low-level events are 
implemented as a Python class, it is also necessary to 
have a backing store for the low-level timeline. It is 
worth noting that early versions of the low-level 
timeline generation tool kept the data in memory 
only, but the timeline quickly became too large, 
causing disk paging and resulting in the associated 
performance problems. Existing low-level timeline 
tools have implemented a variety of different means 
of storing timelines. It is common to export the 
generated timelines to disk in CSV form. This has the 
advantage of allowing commands such as grep to be 
used to query for specific events [6].  

However, this tool uses SQLite as a backing store 
since it is necessary to conduct multiple advanced 
queries on the data set and it has been found to offer 
performance benefits to using a flat file structure 
(although PyDFT can also export low-level timelines 
to several other formats). SQLite is discussed as a 
backing store option in [7], but is described as having 
the limitation of requiring an investigator to have 
knowledge of SQL in order to search for particular 
events. As will be seen in Section 5.3, in this 

implementation, this is not the case, and therefore not 
a limitation. 

The SQLite database in this implementation 
comprises three tables; info, events and keydata. The 
info table contains metadata such as the version of the 
timeline tool that produced that database and the time 
of its creation. The majority of data is stored in the 
events table, with data from the keys field being 
stored in the separate keydata table. This structure 
results in some duplication of data, but as the 
database is not subject to updates, this is not 
problematic. 
 
5.2.8. Summary 

The low-level events are extracted from inside 
files using an ‘extractor manager’. Events are 
converted into a standard format for a low-level event 
and added to a timeline. This timeline is stored as a 
SQLite database which can be used for further 
queries. In addition to fields such as dates and times 
of the event, the event type, and path to which the 
event relates, the provenance of the data is also 
stored, which can contain details such as the offset of 
the raw data from which the event was generated.  

 

5.3. Reconstruction of high-level events 
5.3.1. Overview 

The previous section described how a low-level 
timeline is generated and events added to a SQLite 
database. This section discusses how this timeline is 
automatically processed to produce high-level, 
human-understandable events.  

Some previous work has proposed neural 
networks for automated event reconstruction [11]. 
However, the approach in this paper searches for 
patterns of events in the low-level timeline based on 
pre-determined rules. The approach is based on a 
plugin framework where each plugin is a script that 
detects a particular type of high-level event. Each 
‘analyser’ script contains criteria that specify the low-
level events that should be present if that high-level 
event occurred, and searches the entire timeline for 
low-level events that match within a specified period 
of time. An analyser is made up of a number of 
components, which are discussed in the following 
sub-sections. 

 
5.3.2. Basic event matching using test events 

One of the limitations of using a SQLite database 
to store low-level events discussed in [7] was that 
knowledge of SQL is necessary to query the 
database. It is not certain that this is a limitation, but 
in any case, SQL knowledge is not necessary in this 



 

implementation due to the use of ‘Test Events’. This 
means that in order to find a low-level event in the 
timeline it is simply necessary to construct a low-
level event that has the properties of the one that 
needs to be matched. A method can then be called on 
an event in the low-level timeline to determine if it 
matches the ‘test event’ that has been constructed. 
During execution of the matching method, each of 
the fields of a low-level event are compared, but 
exact matching is not necessary. The matching is 
implemented in such a way that regular expressions 
can be specified in any of the fields in a test event. If 
a field is not specified then it is not evaluated as part 
of the match. This allows test events to be 
constructed as shown below, which matches any file 
creation on the file system that has the extension .doc 
or .docx. Dates and times are not compared during 
matching since it is desirable to match events 
anywhere in the timeline. 
 
test_event = PyDFT.Core.LowLevelEvent.LowLevelEvent() 
test_event.provenance_source = “File System” 
test_event.type = “Created” 
test_event.path = “\.docx?$” 

 
The remainder of this simple analyser searches the 

entire timeline for events that match, builds 
appropriate high-level events, and adds them to the 
high-level timeline. 
 
for each_event in timeline: 
    if each_event.Match(test_event): 
        # Create high-level event 
        # Add high-level event to high-level timeline 
 

5.3.3. Matching multiple artefacts 
In addition to building a high-level event from a 

single low-level event, it is possible, and often 
preferable to use multiple low-level events. This 
approach means that one or more ‘test events’ are 
constructed and these act as triggers. The timeline is 
searched as before and if any of the test events are 
matched then a working hypothesis that a particular 
high-level event occurred is created. At this point a 
new low-level timeline is created in memory by sub-
sampling the timeline within a period defined in the 
analyser, for example 10 seconds either side of the 
trigger event. This timeline is then searched for all of 
the low-level events that would expect to be seen for 
this high-level event. Events that are matched within 
this period are added to a list of supporting artefacts 
(similar to complex events consisting of atomic 
events in [8]). If they are not found then they are 
added to a list of contradictory artefacts. This 
approach can be thought of as ‘temporal proximity 
pattern matching’ for low-level digital events.  

Whether a high-level event is created or not based 
on a trigger alone depends on the specific analyser. 

Some may create a high-level event with only one 
low-level event matched, whereas others may require 
several low-level events to be present.  

This ‘reasoning’ is stored within the high-level 
event and there are three additional fields, (trigger, 
supporting and contradictory). Each of the three 
fields store: ‘Reasoning Artefacts’ which contain: the 
ID of the low-level event that matched, a description 
of the reason, and the test event that caused the 
match.  

There are different ways in which analysers that 
use multiple artefacts may be constructed. Some 
specify a static set of test events at the start of the 
analyser. For example, a ‘Firefox Installation’ 
analyser creates two test events, one for creation of a 
Firefox executable and another for the creation of a 
Mozilla Firefox folder in Program Files. Other, more 
complex analysers dynamically create new test 
events based on data extracted from the trigger event. 
For example, a ‘USB Connection’ analyser first 
searches for an entry in the setupapi.log, then builds 
an additional test event using the serial number of the 
USB device extracted from the trigger event. This 
means that only low-level events related to the trigger 
are matched. This is shown in Section 6.2.  

Currently, there are 22 analysers implemented. 
Some examples of which include: ‘User Creation’, 
‘Windows Installation’, ‘Google Search’, ‘YouTube 
Video Access’, ‘Skype Call’ and ‘USB Connected’. 

 
5.3.4. High-level event format 

The structure of a high-level event is similar to 
that of a low-level event and some fields are inherited 
from the same superclass.  
 

id: A unique identifier for each high-level event. 
date_time_min: The earliest time that the event could 
have occurred. 
date_time_max: The latest time that the event could 
have occurred. 
evidence_source: The evidence item from which the 
event came. 
type: The type of the event, e.g. ‘USB Connected’ or 
‘Program Installed’.  
description: A human readable description of the 
event. 
category: Since many analysers may be run, a 
category can be applied to each event for easy 
filtering. 
device: The device that the event occurred on. For 
example, a photograph may be stored on a computer 
and contains EXIF data indicating it was taken with 
an iPhone. If the event being reconstructed was 
‘Photograph Taken’, then the ‘device’ would be the 



   

iPhone, but the ‘evidence_source’ would be the 
computer. This is interesting as it can produce 
timelines for devices that are not necessarily in the 
possession of the investigator. 
summary: This is not yet implemented but allows for 
short summaries of documents, websites etc. to be 
included in the event. This may assist in future 
searching and filtering of events. 
files: When the high-level timeline is generated, files 
that are associated with an event are copied to a 
folder within the case path for previewing or further 
analysis. This field contains multiple entries and 
maintains an index of copied files. 
keys: This field allows additional details about an 
event to be captured, e.g. USB Connection events 
store VIDs, PIDs and Serials.  
trigger_evidence_artefact: This stores the reasoning 
artefact for the low-level event that triggered the 
search for additional low-level events. 
supporting_evidence_artefacts: This is a list and 
stores all the additional reasoning artefacts that were 
found. 
contradictory_evidence_artefacts: This is also a list 
and stores all the additional reasoning artefacts that 
were searched for but not found within the 
timeframe.  

5.3.5. High-timeline output 
The main output from the tool is currently XML, 

since it has not yet been necessary to move the high-
level timeline into SQLite. Example XML output for 
an event is shown later. However, in addition to the 
XML, other formats are also exported in order to take 
advantage of some existing visualisation software. 
Examples are shown later in Section 6. 

In addition to the representations of the entire 
high-level timeline that are saved, optionally, 
individual HTML reports are also created for each 
high-level event. This allows more detail to be 
displayed since the references to low-level events 
stored in high-level events are simply IDs. In the 
HTML reports of individual high-level events, the 
low-level event ID is accessed and the event’s full 
details displayed. This is shown in Figure 1. Also, 
optionally included in the HTML report are any other 
low-level events that occur within a set time period 
around the high-level event, which may assist with 
‘temporal proximity’ analysis as described in [6]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: HTML event report of a Bing search showing trigger and 
supporting artefacts. 

Other output includes a full log of all actions 
performed during the timeline generation and 
analysis, including any errors or warnings. 

 
5.3.6. Summary 

High-level events can be created by scanning the 
complete timeline for low-level events that match 
specific criteria. This is achieved by creating test 
events that are low-level events with the properties 
that it is desirable to match. The ‘reasoning’ of the 
high-level event is preserved since the low-level 
events that were matched, and any test events that did 
not match are recorded within the high-level event. 
Since the IDs of the low-level events are captured, it 
is then possible to use this to obtain the low-level 
event provenance, which ultimately links back to the 
original data in the disk image, e.g. a file and an 
offset within it. 

 



 

6. Results 

This section demonstrates a small sample of the 
high-level events that can be reconstructed using the 
developed system. 
6.1. Google searches 
This simple example illustrates the detection of 
Google searches. Several searches were conducted on 
a test system and the times noted. The notes recorded 
were: 
- 11:28:30 Google search for ‘how to hack wifi’,  
- 13:48:15 Google search for ‘hack wifi password’  
 

The corresponding HTML reports from PyDFT are 
shown in Figure 2. 

 

 

 

 

 

 

 

 

 

Figure 2. The HTML reports for the two Google searches 

In this case a specific low-level event is directly 
mapped to a high-level one, but this still succeeds in 
filtering the data to that which you are interested in. 

 

6.2. USB device connection 
This example shows that the connection of a USB 

device that occurred at 13:52:45 is automatically 
detected and there are several supporting artefacts. 
Figure 3 shows an extract of the high-level event as 
XML. The time 1329313992 converts to 13:53:12, 
which is shortly after the actual connection. 

 
The supporting artefacts that were identified for 

this event are described below but not shown as XML 
due to space constraints. The first is the trigger event, 
and those that follow were matched from test events 
dynamically generated to contain the serial number 
extracted from the setupapi log.  
 

• “Setup API entry for USB found (VID:07AB 
PID:FCF6 Serial:07A80207B128BE08)” 

• “Setup API USBSTOR entry found” 
• “USBStor details found in Registry” 
• “Windows Portable Device entry found in 

Registry” 
 

6.3. Visualisation 
Since the number of high-level events is 

significantly smaller than the number of low-level 
events, it is possible to use existing visualisation tools 
to effectively visualise the history of a computer 
system. Figure 4 shows the visualisation software 
TimeFlow being used to visualise the automatically 
reconstructed high-level events.  

In the time period of the sequence of high-level 
events shown in Figure 4 (which takes place over 
approximately 5 minutes), in the equivalent low-level 
timeline, there are 2,894 low-level events during this 
time. This would be difficult to visualise in a useful 
manner, particularly when this is scaled up to the 
entire history of a disk. 
 

!
 

Figure 3. The XML representation of a ‘USB Connection’ high-level 
event  
 

 
Figure 4. Timeflow visualisation of three events: creation of hack-wifi.docx on local drive, connection of USB, and creation of hack-wifi.docx on E: drive 

 



   

6.4. Performance 
While many factors can affect the time taken for 

timeline generation and analysis, some example 
figures are provided in Table 1 to show that the time 
taken is in the region of what is acceptable for digital 
forensic tools, which are often left to run overnight 
for keyword indexing, searching or hashing. All of 
these numbers are produced on between 2.2 and 
2.8GHz Core 2 Duo machines, with 4-8GB of RAM. 
It should be noted that at this stage no attempts have 
been made to optimise code for performance, or take 
advantage of multiple CPUs. 
 
Table 1. Example times for timeline generation and analysis. The 
first is from a small, test VM, others are from ‘real world’ systems. 

Volume size Approx. time 
system in use 

Low-events 
produced 

Time for low 
generation 
(hh:mm) 

20GB 2 months 0.6 million 0:15 

100GB 2 years 1.2 million 0:42 

250GB 5 years 1.6 million 1:05 

Volume size Number of 
analysers  

High-events 
produced 

Time for 
analysis 

20GB 19 666 0:28  

100GB 19 2704 1:10 

250GB 17 3902 1:14 
 

Based on all performance data collected so far, the 
timeline analysis takes approximately 2 minutes per 
analyser, per 1 million events. 

7. Evaluation 

The results section has shown that a ‘temporal 
proximity pattern matching’ approach is feasible as 
an automated event reconstruction technique. Whilst 
results have shown it may be feasible, many more 
‘analysers’ need to be written to further test this 
hypothesis. Development of more ‘analysers’ and 
‘time extractors’ will also further test the 
appropriateness of the low-level and high-level event 
formats that are currently in use. However, the 
flexible ‘keys’ field has accommodated all new low 
and high-level events so far. In addition, while not 
presented in full here, use of the maximum and 
minimum times for high-level events are extremely 
useful and will be discussed in detail in a future 
paper. They may also provide flexibility for more 
advanced event reconstruction, such as techniques 
that use restore points to determine that an event 
occurred between two dates [12].  

Regarding low-level time extractors, it should be 
noted that there are currently some gaps in the scope 
of extraction of dates and times from a disk. For 
example, Windows Vista/7 Event Logs, Recycle Bin 

and Prefetch time-extractors have not yet been 
implemented. However, since the developed system 
is plugin based, this is simply due to time restrictions, 
rather than any technical barrier.  

It has also been shown that preserving the 
provenance of inferred high-level events is possible, 
including the low-level events that support the 
inference, as well as the location of the raw data that 
was initially used to create the low-level event. 
However, it is difficult to evidence the assertion that 
this is a desirable property without studies of analysts 
investigating scenarios using multiple methods. 

The performance of the prototype has also been 
demonstrated, and this is considered to be within 
acceptable timeframes for forensic analysis tools. 
However, there is currently a possible performance 
bottleneck since each additional analyser searches the 
entire timeline linearly looking for patterns. Adding 
new analysers therefore increases the time taken. 
However, there are many opportunities for 
optimisation, e.g. the prototype has not yet been 
adapted for multi-core systems. Work is also 
underway investigating whether further secondary 
indexing of the SQLite database can improve 
performance of searching the timeline, therefore 
reducing this impact.  

A fundamental assumption is that the clock on the 
system being investigated is correct. This assumption 
has two main problems: one is that it is not currently 
possible to apply a generic clock offset (i.e. after 
checking the BIOS time of the machine) which 
would be applied to all times in the timeline. 
However, this is a fairly minor update to the 
LowLevelTimeline class that will soon be 
implemented. Secondly, there is no mechanism for 
detecting deliberate manipulation of the clock. 
However, whilst this is a related topic, it is believed 
to be a separate research area, and there are several 
examples of previous work on the subject. 

An area that requires significant development is 
testing of this prototype. While many individual time 
extractors have been developed using Test Driven 
Development and are quite robust, holistic validation 
of the accuracy of the low-level timeline is still in 
progress, as is validation of the accuracy of the high-
level timeline output. The former can be partially 
addressed by comparing existing timeline generation 
tools with the low-level output, assuming similar time 
extractors/input modules are selected. This may be an 
interesting area to explore for both tools, since they 
have been developed independently and may offer 
real dual-tool verification. The latter (high-timeline 
output) can be tested either through comparison with 



 

reality (thorough documentation of actions performed 
to a test system), or by comparing the automatically 
inferred results to those from a traditional, full 
forensic examination. It is deemed likely that a 
combination of these approaches will offer the most 
thorough testing strategy. 

8. Future work 

Initial future work involves increasing the number 
of analysers in order to further test the hypothesis that 
such ‘temporal proximity pattern matching’ is 
effective. This may also require additional low-level 
event extractors to be developed, as there are some 
notable exceptions. This development may also 
include formalising the types of low-level event that 
can be used. It may also be interesting to explore 
inputting data from other tools into the timeline, 
although as explained earlier, this introduces 
limitations to the full provenance of reconstructed 
events.  

It is also necessary to continue testing the 
framework against ‘real world’ data (some examples 
of which were included in Section 6.4), since these 
more extensively test the robustness and scalability of 
the framework than small data sets developed for 
testing individual extractors and analysers.  

The complexity of the analysis scripts can also be 
explored further. With a framework in place that 
allows low-level events to be easily queried simply 
by building a low-level event with the required 
properties, it may be possible to investigate more 
advanced inference methods. For example, using 
Bayesian networks to attribute probabilities to 
different low-level events that need to be present in 
order to infer that a high-level event occurred, or 
considering how the order in which low-level events 
occur affects high-level event reconstruction [13]. 

Perhaps most interestingly, moving from hundreds 
of thousands of low-level events to a few hundred, 
human understandable, high-level events may open 
up new possibilities for visualisation of data from 
digital forensic investigations and enable the 
development of tools with much greater analysis 
capabilities. 

9. Conclusions 

This paper has shown that it is possible to use 
pattern matching to automatically reconstruct high-
level, human-understandable events. It has also 
shown that using such high-level events makes useful 
visualisations much more feasible. However, the 
importance of maintaining details of how any 
inference is performed should be re-iterated, 

preferably with provenance that links back to the raw 
data from which low-level events were obtained. 

It must also be stressed that this sort of automated 
approach is not intended as a replacement for a full 
forensic analysis by an experienced, trained analyst. 
It is hoped that with further development, such a 
technique could be integrated into the digital 
investigation process and help speed up analysis by 
performing pre-processing of disks while they are 
waiting to be analysed. Using such pre-processing, 
when an analyst receives a disk image for 
examination, it could be accompanied by a summary 
of the automated analysis, with areas of potential 
interest already highlighted, along with sufficient 
information such that all the results could be quickly 
verified against the raw data. This would allow more 
time for advanced analysis of areas of the disk that 
are non-trivial to examine. Such an approach may 
also be of particular use in cases where a large 
number of machines have been seized and it is 
necessary to identify disks that need to be prioritised 
for examination over others.  
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