
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Fernandez, Melissa Laura, Upton, Zee, & Shooter, Gary K. (2013) Uric
acid and xanthine oxidoreductase in wound healing. Current Rheumatol-
ogy Reports, 16(396).

This file was downloaded from: http://eprints.qut.edu.au/66442/

c© Copyright 2013 Springer

The original publication is available at SpringerLink
http://www.springerlink.com

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1007/s11926-013-0396-1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/19541599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Fernandez,_Melissa.html
http://eprints.qut.edu.au/view/person/Upton,_Zee.html
http://eprints.qut.edu.au/view/person/Shooter,_Gary.html
http://eprints.qut.edu.au/66442/
http://dx.doi.org/10.1007/s11926-013-0396-1


1 
 

SPRINGERLINK HEADER: 

CRYSTAL ARTHRITIS (MH PILLINGER, SECTION EDITOR) 

 

Uric Acid and Xanthine Oxidoreductase in Wound Healing 

 

Melissa L. Fernandez1, Zee Upton1 and Gary K. Shooter1 

1 Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, 60 
Musk Avenue, Kelvin Grove 4059, QLD Australia  

e-mail: ml.fernandez@qut.edu.au 

 

Abstract  

Chronic wounds represent a significant health issue as they are difficult to heal and treatment is 

often complicated, lengthy and expensive. For a majority of sufferers the most common 

outcomes are long-term immobility, infection and prolonged hospitalisation. Therefore, there is 

an urgent need for the development of effective therapeutics that will enhance ulcer healing rate, 

patient quality of life and reduce healthcare costs. Studies in our laboratory have demonstrated 

elevated levels of purine catabolites in wound fluid from patients with venous leg ulcers. In 

particular, we have discovered that uric acid is elevated in wound fluid with higher 

concentrations correlating with wound severity. We have also demonstrated a corresponding 

depletion in uric acid precursors, including adenosine. Further, we have shown that xanthine 

oxidoreductase, the enzyme that catalyses the production of uric acid, is present at elevated 

levels in wound fluid. Taken together, this provides evidence that xanthine oxidoreductase may 

play a role in the formation or persistence of chronic wounds. Here we describe the potential role 

of xanthine oxidoreductase and uric acid accumulation in the wound site and the effect of 

xanthine oxidoreductase in potentiating the inflammatory response. 
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Introduction  

Chronic leg ulcers affect 1-3% of adults aged over 60 years and while studies have shown that 

approximately 50% of leg ulcers heal within six months, many remain unhealed for years[1, 2]. 
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Venous leg ulcers are the most frequently encountered chronic wounds in the clinical setting[3]. 

These wounds represent one of the biggest health issues as they are difficult to heal and 

treatment is often lengthy and expensive. Vulnerable individuals include those 70 years and over 

with impaired mobility, peripheral vascular disease and a sluggish reparative process[4]. 

Currently the most effective treatment strategy for venous leg ulcers involves the application of 

compression therapy to the affected limb. However, up to 30% of chronic venous leg ulcers do 

not respond to compression and remain unhealed, even after a year of treatment[5]. The impact of 

chronic wounds is expected to grow given the ageing population and the increased incidence of 

cardiovascular disease, diabetes and obesity.  

Chronic venous leg ulcers are normally hypoxic in nature owing to poor tissue perfusion[6]. 

Hypoxia triggers a chain of events ultimately resulting in tissue damage that further impedes 

wound closure. This oxygen deficit and cell injury leads to the depletion of intracellular ATP and 

initiates the atypical build-up of purine metabolites[7]. Tissue stores of ATP are catabolised 

sequentially to adenosine monophosphate, inosine monophosphate, adenosine, inosine and 

hypoxanthine, resulting in an accumulation of these metabolites in tissue[7]. Xanthine 

oxidoreductase (XOR), a complex molybdo-flavoenzyme, is subsequently required for the 

conversion of hypoxanthine to xanthine, and finally to uric acid while liberating the toxic 

superoxide radical. We have previously published data that demonstrated a correlation between 

elevated uric acid in wound fluid and wound severity in a cohort of venous leg ulcer patients [8]. 

We also observed decreased levels of purines precursors (sum totals of adenosine, inosine, 

xanthine and hypoxanthine) in wound fluid collected from patients with more severe wounds[8]. 

Previous reports indicate that topical application of purine precursors accelerates wound healing 

in various animal and cell culture models[9-11]. In particular, adenosine has been shown to play an 

important role in stimulating wound healing[12, 13]. Further, we have shown that XOR, the only 

enzyme in humans capable of catalysing the production of uric acid, is present at elevated levels 

in wound fluid and correlates with wound severity[8]. Based on these novel findings, we believe 

the presence of elevated levels of XOR and uric acid may play an important part in sustaining 

inflammation in chronic wounds via three key mechanisms (Figure 1). These mechanisms 

include:  

 Depleting the key precursor purines, inosine and adenosine, that have been shown to promote 

dermal wound healing[9-11]; 
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 Increasing the amount of uric acid and urate crystals in the wound environment that could 

further stimulate the inflammatory response, much like gout; and 

 Releasing excessive levels of reactive oxygen species at the wound site. 

In this review, we will discuss the potential role of XOR and uric acid in delayed wound healing 

by prolonging the inflammatory response. We also propose that XOR may represent a suitable 

therapeutic target for chronic wounds. Inhibition of XOR using specific inhibitors, such as 

allopurinol, could simultaneously target three major contributors that keep chronic wounds in a 

non-healing state - uric acid accumulation, oxidative stress and purine precursor depletion.  

Depletion of purine precursors at the wound site  

Our data indicates an increase in purine precursors in wound fluid collected from patients with 

clinically less severe or healing wounds[8]. This is not surprising given that the purine precursor, 

adenosine, has been shown to play an important role in stimulating wound healing[12, 13]. 

Extracellular adenosine induces biological responses by interacting with one or more of the four 

adenosine cell surface receptors, A1, A2A, A2B and A3. Specifically, the activation of the A2A 

adenosine receptor has also been reported to enhance the rate of wound healing in both healthy 

and diabetic murine wound models[9]. In addition, cells involved in wound healing including 

macrophages, fibroblasts and endothelial cells have been shown to express the A2A adenosine 

receptor[14-16]. The role of the A2A adenosine receptor in wound healing was later confirmed by 

Montesinos et al. 2002[10] using an A2A adenosine receptor knockout mouse model. The lack of 

A2A adenosine receptors in these transgenic mice resulted in disorganized granulation tissue and 

significantly lower blood vessel formation[10]. 

Adenosine has also been shown to be a potent regulator of inflammation[17]. Studies have 

reported that adenosine acts through its receptors to inhibit oxidative bursts and degranulation in 

neutrophils[18] and the release of cytokines from macrophages[19-21]. Adenosine also decreases 

leukocyte recruitment, inhibits neutrophil adhesion to the endothelium and neutrophil mediated 

endothelial damage [22-26]. Activation of adenosine receptors also contributes to the formation of 

granulation tissue and new blood vessel formation. The A2A adenosine receptor suppresses the 

production of thrombospondon 1, an inhibitor of angiogenesis, enhancing vascular vessel 

formation[27]. Therefore, it is likely that the breakdown of adenosine as a result of oxygen 

depletion or cellular and tissue injury has the potential to alter wound healing processes. This is 
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supported by our data that demonstrates reduced concentrations of purine precursors in wound 

fluid from clinically severe, non-healing wounds. Thus, XOR activity may be related to wound 

severity due in part to increased catabolism and depletion of available adenosine. 

Accumulation of uric acid stimulates the inflammatory response 

The role of uric acid in many human inflammatory disorders remains unclear. Elevated levels of 

uric acid have been associated in heart disease, stroke, diabetes and more recently in wound fluid 

from patients with venous leg ulcers[28-30]. Hyperuricemia commonly leads to the formation of 

needle like monosodium urate (MSU) crystals that is dependent on factors including sodium 

levels, pH and temperature[31-33]. The inflammatory effects of uric acid, however, rely on the 

precipitation to MSU crystals and their recognition by immune cells, particularly mononuclear 

phagocytes. There have been a number of proposed mechanisms for MSU associated 

inflammasome activation including activation of TLR (toll like receptors) and sensing changes in 

intracellular potassium (Reviewed in Jin et al., 2012)[34]. The most recent MSU pathway reported 

is the activation of the NLRP3 inflammasome leading to the production of active IL-1β[35]. MSU 

crystals are engulfed by phagocytes resulting in lysosomal damage and rupture. The lysosomal 

contents are sensed by the NLRP3 inflammasome resulting in the activation of caspase 1, which 

processes proinflammatory cytokines such as pro-IL-1β and pro-IL-18 to their active forms[36, 37]. 

Of interest, previous studies have demonstrated elevated levels of IL-1β in wound fluid from 

patients with chronic wounds[38-40]. IL-1β production in response to MSU stimulation leads to 

increased recruitment of neutrophils to the site of inflammation[41]. This observation is in 

accordance with recent studies using inhibitors of IL-1 and animal models with defective IL-1β 

production[35, 42]. Neutrophils infiltrating an already inflamed site will be activated by MSUs. 

MSU-mediated activation releases large amounts of proinflammatory cytokines and ROS while 

delaying neutrophil apoptosis[43], which further exacerbates the inflammatory response[44].   

A recent study demonstrated that uric acid levels in various organs are elevated following cell 

death[45]. Importantly, the study demonstrated that the depletion of extracellular and intracellular 

uric acid inhibits the inflammatory response triggered by sterile cell death. However, this effect 

was not observed in the presence of microbial molecules or sterile irritants in vivo[45]. This 

indicates that uric acid specifically promotes an inflammatory response as a result of cell 

death[45]. Elevated levels of uric acid in the chronic wound environment are likely to prolong 

inflammation. Sustained production of uric acid in underperfused damaged tissues may lead to 
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the crystallisation of uric acid at the wound site, as observed in the case of gout[46]. Indeed, 

wound management clinicians have noted anecdotally the presence of such crystals in wounds. 

Thus, the accumulation of these crystals in an already inflamed area may therefore provide added 

stimulus, further intensifying the inflammatory response.  

Effect of elevated levels of free radicals on the wound environment 

Uric acid has been proposed to act as an antioxidant by scavenging metal ions and oxidants, 

especially peroxynitrite[47-49].  The action of these oxidising agents on uric acid leads to the 

formation of allantoin despite the lack of the specific enzyme (urate oxidase) in humans[50].  

However, the production of uric acid itself is associated with a burst of the toxic superoxide free 

radical which can elicit cellular damage[51].  The accumulation of uric acid at the wound site 

suggests that XOR is also present and active, oxidising hypoxanthine, as well as xanthine, while 

liberating reactive oxygen species (ROS).  

There is growing evidence to suggest that ROS are involved in the pathogenesis of chronic 

venous leg ulcers[52]. This damage is initiated by toxic superoxide radicals that are generated by a 

several enzyme systems, including NADPH oxidases and XOR[53, 54]. Superoxide itself is 

unstable[53] and is rapidly converted to H2O2, either spontaneously or enzymatically by 

superoxide dismutase[55-57].  H2O2 readily diffuses across cell membranes, combining with metal 

ions like iron, and generating the toxic hydroxyl radical[58-60]. Hydroxyl radicals are highly 

reactive, resulting in the oxidation of cellular components[61, 62]. A wound environment rich in 

oxidants may activate redox-sensitive transcription factors, such as nuclear factor-κB (NF-κB) 

and activator protein-1 (AP-1)[57, 63-65]. The activation of these transcription factors up-regulates 

various genes that are involved in the production of pro-inflammatory cytokines, including 

matrix metalloproteinases (MMP)[61, 66]. In addition to the classic oxidants, activated phagocytes 

secrete myeloperoxidase (MPO), a degrading heme peroxidase that catalyses the oxidation of 

H2O2 to form HOCl[67, 68]. At low concentrations this potent oxidant possesses the ability to 

activate latent MMPs, in particular MMP-7, -8 and -9[69, 70], which we have previously shown to 

correlate with wound chronicity[71]. The perpetual expression of pro-inflammatory cytokines, 

exacerbated proteolytic activity and the decrease in levels of growth factors are believed to be 

key factors underlying wound chronicity. 
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Free radicals have a variety of harmful effects at both the cellular and tissue levels. An 

imbalance of ROS at a cellular level leads to an exacerbated inflammatory response resulting in 

the expression of various proinflammatory cytokines such as interferon (IFN), tumour necrosis 

factor-α (TNF-α) and interleukins (ILs); these have been shown to regulate the expression of 

XOR[72-75]. At the tissue level, redox-associated modification of protein thiol groups by ROS, 

such as H2O2, can give rise to a series of intermediate products[76]. Modification of cysteine 

residues may lead to the reversible formation of mixed disulphide bonds within or between 

protein thiol groups, as well as low molecular weight thiols[77]. Similarly, HOCl can modify free 

sulfhydryl groups leading to the formation of disulfide bonds that can cause irreversible protein 

aggregation in vivo[78, 79]. Oxidative modification of thiol groups could alter protein structure, 

impairing protein function, and effecting downstream redox signalling pathways[80]. These 

modifications could potentially decrease cell proliferation, vascularisation and prevent re-

epithelialisation, resulting in prolonged healing times. Therefore, we believe that XOR is an 

overlooked source of ROS production and to some extent may play an important part in 

prolonging the inflammatory process through the liberation of the superoxide radical. 

Topical allopurinol as a treatment for chronic wounds 

Chronic wound care accounts for 3% of the total healthcare expenditure in developed 

countries[81]. However, the total costs to society is the sum of these direct costs plus indirect costs 

associated with loss of productivity, the immeasurable psychological cost of pain and diminished 

quality of life. The demand for wound care is expected to rise over the next decade due to an 

increase in chronic wounds as a direct result of lifestyle related disorders such as cardiovascular 

disease, obesity and diabetes. While there have been vast improvements in community care and a 

surge in the variety of wound dressings available, venous ulcers remain a challenge to treat, 

highlighting the need for improved therapies to improve healing rates. This is largely due to the 

poor understanding of the mechanisms that underlie this condition. Management of chronic 

venous leg ulcers is subjective, predominantly relying on the clinician’s expertise in the field. 

Indeed, this is compounded by the limited treatment options and the absence of specific 

molecular or biochemical tests to guide clinical decision-making.  

Our data indicating enhanced turnover of purine precursors in clinically worse ulcers supports 

the notion that XOR may represent a novel therapeutic target. Allopurinol is a potent inhibitor of 
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XOR and is primarily used in the treatment of gout and hyperuricemia[82, 83]. It is a registered 

medication (>30 years) and  is delivered orally at 200 to 300 mg for patients with mild gout and 

up to 900 mg for those with moderately severe tophaceous gout[84]. A number of studies have 

also reported positive results with the use of topical allopurinol in the treatment of corneal alkali 

burns[85] and in patients with radiation-induced mucositis and dermatitis[86]. Allopurinol is 

therefore an ideal candidate for inhibiting XOR activity.  

The accumulation of uric acid in the wound environment, as demonstrated by our preliminary 

data cannot be assessed in an animal model. Unlike humans many animals species including 

rodents and pigs express the enzyme uricase[87]. Uricase catalyses the conversion of uric acid 

to allantoin and therefore uric acid never reaches the critical concentrations as observed in the 

human disease, gout. Since no clinically relevant animal or in vitro models of chronic venous leg 

ulcers exist, we are currently assessing topical allopurinol in a Phase I safety trial on a subset of 

patients with chronic venous leg ulcers. We propose that topical allopurinol treatment will 

decrease the amount of uric acid and ROS released into the wound environment, while at the 

same time restoring depleted levels of critical purines such as adenosine and inosine. Allopurinol 

was chosen as the preferred inhibitor for future clinical trials in wounds as it is cheap, has low 

toxicity and can be easily monitored using its breakdown product oxypurinol. Topical 

application is the preferred mode of delivery as it is unclear if oral administration of the drug will 

effectively target the wound site due to the poor microcirculation caused by venous insufficiency 

in these patients. More importantly, topical application avoids the complications that high dosage 

systemic allopurinol could provoke in patients with multiple comorbidities as observed in a 

majority of patients presenting to clinics with chronic wounds. Ultimately, we aim to 

demonstrate that topical treatment with allopurinol will prevent sustained inflammation and 

stimulate wound repair, thus reducing the duration of compression therapy. Successful 

completion of this project will lead to the implementation of a targeted evidence-based 

therapeutic for treatment of these chronic recurring lesions. 

Conclusions 

The development of more effective, yet affordable, treatments is particularly important for 

wound care needs. In view of this, there is an urgent need for the identification and development 

of effective novel wound therapies that can be used in the clinical setting to better manage 
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patients with chronic wounds. Chronic wounds are characterised by an amplified and prolonged 

inflammatory phase. Given the nature of these wounds, we believe that inhibition of XOR will 

restore homeostasis at the wound site and enable damaged tissue to return to normal healing. We 

anticipate that the proposed treatment, when used in combination with routine high compression 

therapy, has the potential to reduce healing times, improve patient quality of life and reduce 

healthcare costs.  
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Figure 1 – Proposed Mode of Action of XOR and Uric Acid at the Wound Site – The 

presence of elevate levels of xanthine oxidoreductase (XOR) and uric acid could play a role in 

sustaining inflammation at the wound site by (a) generating excessive amounts of ROS; (b) 

formation of MSU crystals; and (c) depleting key purine precursors that contribute to wound 

healing.  


