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Abstract. This paper introduces a parallel implementation of an agent-based 

model applied to electricity distribution grids. A fine-grained shared memory 

parallel implementation is presented, detailing the way the agents are grouped 

and executed on a multi-threaded machine, as well as the way the model is built 

(in a composable manner) which is an aid to the parallelisation. Current results 

show a medium level speedup of 2.6, but improvements are expected by incor-

porating newer distributed or parallel ABM schedulers into this implementa-

tion. While domain-specific, this parallel algorithm can be applied to similarly 

structured ABMs (directed acyclic graphs). 
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1 Introduction 

Agent-based models (ABMs) have been used for diverse applications in many do-

mains for their ability to capture the actions and interactions of the agents composing 

a complex system so that the overall behaviour of the system can be assessed [1]. This 

paper describes an ABM applied to the electricity domain. The aim of the project this 

work belongs to is to develop a planning tool for optimal investment strategy of elec-

tricity distribution networks over large areas and long planning horizons. A mix of 

renewable energy, energy storage and other new technologies are compared with 

traditional practices to assess their impact on the operation of the distribution net-

work.  

Traditionally, electricity has been generated at large centralised power stations and 

then distributed to consumers over a wired network. The introduction of renewable 

energy systems at various levels within the transmission/distribution system adds 

complexity to the system due to injection of electrical power in locations that were 

not initially designed to receive power, mismatches between time of availability and 

time of demand and reduced control over the phase of generated power. Ergon Energy 

[2], the industry partner in this project, provides electrical power to approximately 

700,000 customers over an area exceeding 1,000,000 km
2
. The Ergon network con-

sists of approximately 150,000 km of power lines and 1,000,000 power poles, togeth-



er with associated substations and transformers, and has a total asset value of 

AU$10.6B. Ergon are using the software presented in this paper to support network 

infrastructure investment decisions, looking for the most appropriate combination of 

technologies and practices to reduce overall costs.  

An Ergon user interacts with the software by selecting nodes within the network 

structure to be analysed against various scenarios, observing the impact these changes 

within the network might have on the overall system. A user may analyse a single 

network topology against a range of user demand predictions or, inversely model user 

demand predictions against a range of potential network configurations. Initially the 

system represented the infrastructure of the distribution grid, the attachment points to 

the transmission grid, solar and wind renewable energy sources as well as emergency 

diesel generation and the different types of consumers. During development it was 

recognised that battery storage and the demands of electric vehicles will be needed. 

This tool is therefore being built to answer a wide range of questions, which can 

arise as time passes, taking into account both the technical and economic constraints 

of the system, and doing so in an integrated manner. Consequently, the tool was built 

in a composable manner to ensure its flexibility and extensibility. The wide range of 

physical asset types within the system, the wide range of potential configurations 

within each asset type, the need for communication of deep, complex issues between 

the software engineers and domain experts and a desire for flexibility into the future 

all indicated that an ABM approach had desirable characteristics. ABM was chosen as 

the modelling technique mainly because the evolution of the electricity grid is un-

known due to the many new technologies being employed; in this case the past is no 

predictor of the future. Also, the ability to describe the agents at various scales, both 

over space and time, was important to capture the different system characteristics 

accurately and dynamically.  

As the model grew, adding more agents of varied types, the simulation slowed 

down, leading to the need for parallelization. A parallel implementation of the agent 

scheduling was done to speed up the execution time and because the structure of the 

model could be broken down into independent tasks with known common patterns. 

This paper presents this parallel implementation using a fine-grained shared memory 

parallelism performed on a multi-core computer, detailing the technical implementa-

tion dependent on the overall tool architecture. 

The first part of this paper describes the overall architecture of the tool, built in a 

composable manner, which defines the requirements of the implementation. Then, the 

description of the parallel implementation within that software framework is given 

and performances of the parallel implementation are discussed. 

2 ABM planning tool architecture 

This section briefly describes the overall architecture of the ABM planning tool to 

provide an understanding of the constraints on the agent-based model, which in turn 

influences the parallel execution of the agents. 

 



2.1 Composition of the model using plugins 

Because the tool was built with the need for evolution in mind, so that many ques-

tions could be answered and these in an integrated way, a composable approach was 

taken. For this, OSGI (formerly Open Services Gateway Initiative) [3], a specification 

that enables writing modular software, was chosen as the underlying technology for 

the software. As described by its community of users, it “reduces complexity by 

providing a modular architecture for today's large-scale distributed systems as well 

as small, embedded applications”. This specification has been used by the Eclipse 

Community, whose plugins are OSGI bundles [4]. The tool presented in this paper is 

built using Eclipse plugins which are our unit of modularity. 

The breakdown of the software in plugins is done over different layers. First, one 

main plugin is defined, called MODAM (MODular Agent Model), which can be seen 

as the core of the whole framework. It contains the schemas that define the different 

extensions, which are used by the different plugins to support interconnection [5]. It 

also contains the schedulers (sequential and parallel), and ensures the automatic crea-

tion of the objects and agents from the plugins using factories.  

The different plugins contributing to the creation of the ABM are defined accord-

ing to their logical meaning. A plugin can be defined for a given analysis type, for 

example the amount of electricity a solar panel can produce. Within each of these 

logical units further breakdowns can be performed, to contain different logical or 

functional units. So far, 3 types of functional units have been distinguished within a 

logical one. These can be seen through the different extensions that are defined in the 

MODAM plugin: asset factory, agent factory and data provider. Details about the 

software architecture can be found in [6]. Using solar panels as an example, the asset 

factory creates the solar panel assets with their physical characteristics (capacity, 

derate factor…), the agent factory the behaviour of the solar panel according to a 

photovoltaic (PV) output model dependent on the weather conditions, and the data 

provider reading the weather information at the location of the solar panel, being an 

input to the PV model.  

A distinction has been made between assets and agents; this is further explained 

below.   

2.2 Integration of assets and agents over separate layers 

When looking at an implementation of an agent in an ABM, it is normally mainly 

defined through its behaviour in relation to its environment and other agents, using 

only the characteristics that are required to determine the agent’s action. That is, the 

object’s characteristics and behaviours are combined in one single class and only the 

necessary attributes are modelled. Also, the agents are often instantiated in a central 

class where the relationships amongst given agents are set, as well as their scheduling 

for the simulation. Such an approach can be sufficient when building a model that has 

well-defined boundaries. However, when planning on extending the functionality of a 

model, such an approach can be restraining, as reuse is limited because of this tight 

coupling and access to the code is required to extend the model. 



For our ABM implementation, a distinction has been made between the character-

istics and the actions of our agents. Fig. 1 shows a schematic representation of the two 

distinct layers that compose our model implementation: the asset and the agent layer. 

In the context of this paper, an ‘asset’ is the object that contains the physical aspects, 

and an ‘agent’ holds only the behaviour. The two are however linked, and the behav-

iours can be informed using the asset’s characteristics.  

Fig. 1 shows that the different elements composing the simulation are coming from 

different factories that are in separate plugins. Often there is a one-to-one relationship 

between an asset and an agent, but it is not required. Indeed, as shown on the figure, 

an agent representing the behaviour of a single asset can be built combining multiple 

behaviours – this is the case for a premise agent, which is the combination of elec-

tricity consumption and demand-side management behaviours which can come from 

two distinct plugins and modified as more information becomes available to define 

the behaviour. It is not necessary to load both behaviours for all scenarios. This archi-

tecture also supports the loading of alternative behaviours, for example consumption, 

against a single implementation of demand-side management. Conversely, a single 

behaviour can be assigned to a group of assets, which is the case when doing a load 

flow analysis for example. 

Finally, it can be seen that while many plugins have been used to implement the 

model, only one integrated network graph has been created and it runs as one single 

agent-based model – the one on the Agent Layer. 

 

Fig. 1. Schematic representation of the ABM architecture. 

3 Parallel ABM for the electricity distribution grid 

Having defined the structure of the agent-based model implementation, this section 

describes its parallel implementation, which is a fine-grained parallelism on a single 

shared memory computer. The following sections describe the different aspects relat-

ing to the parallelization of the agent-based model execution: 



 Ordering of the agents at simulation setup 

 Parallel execution of the agents at runtime 

It should be noted that the application presented in this paper is not a generic solu-

tion for parallel ABM; it is related to the specific case study presented here. However, 

because the nature of the problem is a graph structure, whose execution benefits from 

parallelisation, it can be applied to other applications of similar nature. Also, a dis-

tributed ABM could be built on top of this implementation, but this is outside of the 

scope of this paper. 

 

3.1 Ordering of the agents at simulation setup 

Because of the dependence of some agents on other agents that define their rela-

tionships and interactions, the ordering of the agents’ execution is extremely im-

portant. Due to the way the agent-based model is built, this ordering needs to follow 

the architecture constraints. This means that two types of ordering needed to be con-

sidered: ordering within the same plugin, and ordering across plugins. 

Because plugins can be used independently of one other, it was necessary to have 

agents ordered within the plugin in which they are defined. This ordering is handled 

within the code where the developer has access to the agents themselves through their 

relationships to one another. Because it is a graph structure, this was handled using 

‘Before’ and ‘After’ attributes, to define a strict partial order over the agents. A par-

tial order is a transitive relation that is irreflexive and antisymmetric, i.e. corresponds 

to a directed acyclic graph which is what is represented in our system. 

The second type of ordering regards those agents that are dependent on other 

agents defined in another plugin. This cannot be defined in advance in either plugin, 

since it is possible for the plugins to be developed independently so neither one 

knows about the other. This type of ordering is a bit more sophisticated as it requires 

ordering agents from at least 2 sets, where within each of these sets, agents are also 

ordered. For this, partial ordering of the agents is again used. An example of this is 

given in Fig. 2. It shows 3 plugins, 2 of which can be run in parallel (Plugin A and B) 

with the third one requiring having its agents called after both of them. In each of 

them we have 3 agents; plugin A and C have their agents ordered sequentially, and 

plugin B has 2 agents that are ordered sequentially (b1 and b2) and one that can be 

called anytime (b3). The ordering between plugin B and plugin C means that all 

agents in plugin B must finish their step methods before any agents in plugin C can 

start.   

The ordering of the agents is set through an argument in the command line, using 

“-order” and a combination of the plugins. In the example given in Fig. 2, the order-

ing argument looks like: 

-order = (td(PluginA) || bu(PluginB)); PluginC 

Where bu stands for bottom up, and td for top down ordering; || shows that PluginA 

and PluginB are to be ordered in parallel, and the semi-colon (;) is to show sequential 

ordering. 

 



 

Fig. 2. – Example of ordering of agents within plugins and amongst plugins. 

3.2 Parallel execution of the agents at runtime 

Given the nature of the problem, each agent in the graph has to wait for one or 

more agents to be executed before it can proceed with its own action. A barrier to 

efficient and speedy processing is therefore a blocking condition where an agent is 

waiting on others’ execution. Indeed, early versions of our parallel ABM treated each 

agent as a separate task, but profiling showed that this resulted in too much overhead 

synchronising between hundreds of thousands of small tasks.  

So, in order to speed up the execution of the ABM, the partial order from the pre-

vious section is broken down into many small independent groups on which the calcu-

lations are performed. The size of these groups can be varied by the user using the 

parameter –ThreadGroupSize on the command line. Then these groups of agents can 

be executed in parallel on n threads, specified by the Java command line argument –

Threads. Details of these two phases are as follows: 

1. Setting up of the queue - Grouping is done at the beginning of a simulation, and 

whenever new agents are created, by traversing the partial order, using a depth-first 

search. These groups are defined and queued in a linear order, with each group re-

cording any previous groups that it depends upon. Mathematically, the groups form 

equivalence classes over the agents and the partial order over the groups is derived 

from, or is an abstraction of, the partial order over the agents. These group sizes are 

less than or equal to the number specified by ThreadGroupSize, depending on the 

configuration of the graph – e.g. when an agent has multiple parents. 

2. Execution of the agents – Execution is done repeatedly for each time step. Within 

each time step, it is also repeated until the whole graph has been executed. 

(a) Depending on the number of threads (n), the n first available groups of agents, 

or task, in the pool are executed in parallel. The calculations are performed 

within each of these groups and assigned to the top node that can be used in the 

next task.  

(b) As soon as a thread becomes free, it accesses the next available task in the pool 

and checks its dependencies to see if they have finished processing. If they 

have, the step method of the group of agents is executed. 

Fig. 3 illustrates this algorithm using a small extract of a network with two main 

branches – one starting with a feeder line L1 and another one with the feeder line L2, 



that then join at a bus B4. Under that bus, 5 houses are represented, some of which 

have solar panels installed.  

 

Fig. 3. Small extract of a distribution network, implemented with a parallel ABM. 

Following the description above, each agent would have been ordered during the sim-

ulation setup in the module manager, indicating the order in which the agents need to 

be run. This ordering can be either top-down or bottom-up depending on the user’s 

instructions. 

From this ordering, the pool would have been created, first placing the agents at the 

leaves of the branches, i.e. those that do not have any dependency on other agents. 

From the example given in Fig. 3, with a ThreadGroupSize of 1, agents PV1, PV2, 

PV3, PV4, H1, H6 and H7 would be at the beginning of the queue followed by H2, 

H3, H4, H5, and so on. With a ThreadGroupSize of 4, we would have at the top of the 

pool, [PV2, H3], [PV3, H4], [PV4, H5], H6 and H7, followed by B5, and then [S6, 

L5, L4, S2] and [S7, L6, S4]. These groups contain fewer agents than 4 because they 

all impact on B5 which has multiple parents. 

Following this, depending on the number of threads (n), the n agents are taken from 

the queue and their step method executed. As the agents’ execution is finished, the 

thread is freed and the following task within the pool is then executed. 



4 Results and Discussion 

Following the parallelised implementation described above, simulations were per-

formed on an i7-2600 CPU (4 cores + hyper threading) machine. The test case was for 

a medium-size town in Queensland, containing 75,910 assets of different natures 

(premises, lines, transformers…), and each asset had exactly one agent in this exam-

ple.  Parameter sweeps were performed and showed that using n+1 threads (where n 

is number of cores) and ThreadGroupSize=1000 would give the fastest runs. Using 

group sizes of 1000, Fig. 4 shows the relative speed up obtained for numbers of 

threads varying from 1 to 10. The ideal (dashed) line shows the ideal performance if 

each of the available processors were fully utilised; from 4 to 8 cores, the slope is 

lower because hyper-threading typically gives less speedup than real hardware cores 

[7]. It can be seen here that a speed up of 2.6 could be attained when using 8 threads 

(green line). It can be noted on this graph that there are 3 additional series titled start, 

step and stop. These correspond to the three phases that have been distinguished with-

in a step method of an agent execution; step corresponds to the calculations that are 

performed after obtaining the information (start) that is required to perform its deci-

sion and before it is sent (stop) to the next agent or stored in memory when requested 

by an agent. The step series shows the most improvement, which is the most im-

portant as it requires the most computing. 

 

 

Fig. 4. Relative speedup of the parallel implementation of ABM model for the electricity grid. 

The speedup obtained here is application-specific, as it depends on the relations be-

tween the agents and the granularity of their step methods. Our current scheduling 

algorithm, which is an NP-hard scheduling problem, gives medium speedup levels. It 

is however an improvement from other tested algorithms. There is on-going research 

to further improve the speedup. 



An important point is the deterministic execution of the code. The outputs of the 

simulation are identical whether the simulation is run in parallel or sequentially which 

is an important feature. In some other implementations of parallel ABMs, determin-

ism is not required, and even sometimes not desirable. In this case determinism is 

essential because of the impact of order of agent execution, which can be defined as a 

directed acyclic graph. 

The i7-2600 CPU with 4 cores and hyper threading is being used to test the parallel 

algorithms due to the ability to constrain the entire execution environment. The full 

system is run on an SGI Altix XE Cluster with 128 nodes and 1924 x 64bit Intel Xeon 

Cores with a maximum 101.8 TeraFlops using single precision mode and 15,264 Gi-

gaBytes (GB) of main memory. Unfortunately, exclusive access to the cluster for 

experimentation purposes is not possible. 

5 Related Work 

Many applications are available to support the development of agent-based models 

([8]; [9]). More recently, some of them have been further developed to support paral-

lel and distributed ABMs, as the need for faster execution times and support of larger 

and larger models has arisen. This is the case for D-MASON [10], which is the paral-

lel and distributed version of MASON, or Repast-HPC (High Performance Compu-

ting) [11] for Repast Simphony. Other platforms such as JADE [12] which is a mid-

dleware for distributed multi-agent application based on peer-to-peer communication 

architecture are also available. Most research on parallelizing ABMs has focussed on 

distributed computers, but there has been some research on multicore implementa-

tions, such as the study of spatial interactions by Gong et al. [13].  They achieve high 

speedups from 1-32 cores, but do not ensure determinism, so all their agents can be 

executed in parallel (with a small amount of locking required to ensure data integrity), 

which is essentially an embarrassingly parallel scenario.  In contrast, we preserve 

determinism and our applications typically have complex and deep dependency 

graphs between agents that constrain the possible parallelism.  

MASON was initially selected as the ABM engine for our software platform for its 

ease in separating the engine (which we were interested in) from the rest of the plat-

form as well as for its execution speed. However, it was later replaced by our own 

implementation of a scheduler in Java. At the time the tool was being developed, D-

MASON was not available and its availability has only recently come to the 

knowledge of the authors of this paper. Consequently, the work presented here has not 

been tried using D-MASON. D-MASON implements distributed ABMs rather than 

the shared memory parallelism discussed herein. This fine-grained parallelism is de-

signed to speed up the simulation of networks of closely connected agents with fre-

quent communication, while distributed ABM approaches are more suited for loosely 

connected sets of agents with less communication. Distributed ABM is complemen-

tary to the methods presented here. A combined approach will be tested in the future. 



6 Conclusion 

A parallel implementation of an agent-based model for planning the electricity grid 

has been presented. This implementation, which is application-specific, was based on 

the structure of the agent-based model, reduced to a directed acyclic graph. Agents 

were ordered, and then grouped respecting the ordering, to be executed in parallel 

over different threads. Results showed a relative speedup of 2.6, using an i7-2600 

CPU (4 cores + hyper threading) machine, which further research will aim at improv-

ing. While this fine-grained shared memory parallelism is specific to the structure of 

this ABM, it can be applied to other ABMs with similar agent structures. 

This application was built using the MODAM framework [6] which aims to answer 

diverse questions applied to the electricity grid. This software framework, which sup-

ports flexible and extensible models, was presented to provide an understanding of the 

structure of the model. This framework has two schedulers (sequential and parallel) 

which have been implemented in-house. The use of other schedulers from distributed 

and parallel ABM tools, such as D-MASON and Repast-HPC, will be investigated in 

future research to see if the speed of the simulations can be further improved. 
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