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Abstract 

This paper presents an extended Kalman filter using an attitude parameterization 
that is advantageous for attitude estimation of spinning spacecraft. The parameters 
are the angular momentum components in an inertial reference frame, the angular 
momentum components in the body frame, and a rotation angle. To avoid the 
singularity of the 7x7 covariance of this state vector arising from the constraint that 
the magnitude of the angular momentum vector is the same in the inertial and body 
frames, the Kalman filter employs the nonsingular 6x6 covariance of a reduced 
error state. Three of the components of this six-component error state are the usual 
infinitesimal attitude error angles, so the usual 3x3 attitude covariance matrix is a 
submatrix of the 6x6 covariance. The performance of the resulting filter is 
compared with that of a quaternion-based filter. 

Introduction 

Attitude estimation is often more difficult for spinning spacecraft than for three-axis 
stabilized spacecraft. Many conventional state vector elements for representing the 
spacecraft attitude and its time rate of change vary more rapidly in the spinning 
case, and gyro rate measurements are often lacking, requiring Euler’s equations for 
modelling the attitude dynamics. This paper employs an angular-momentum-based 
representation that is advantageous for this application [l]. The seven parameters in 
this representation are the components of the angular momentum in an inertial 
reference frame, the angular momentum components in the body frame, and a 
rotation angle. The parameters are subject to the constraint that the magnitude of 
the angular momentum vector is the same in the inertial and body frames. 

This paper presents a new derivation of this parameterization and develops an 
extended Kalman filter (EKF) employing it. The constraint causes the covariance of 
the seven-component state vector to be singular, in parallel with the singularity of 
the four-component quaternion representation of attitude [2, 31. To avoid this 
singularity, the Kalman filter employs the nonsingular 6x6 covariance of a six- 
component error state. Three of the components of the six-component error state are 
the usual infmitesimal attitude error angles, so the usual 3x3 attitude covariance 
matrix is a submatrix of the 6x6 covariance. 

This new filter has been fully developed and incorporated into the attitude ground 
support system used for spinning spacecraft at the NASA Goddard Space Flight 
Center. A more conventional EKF based on the quaternion and body rotation rate 
has been developed for comparison. Numerical tests using simulated data patterned 
after the Space Technology 5 (ST5) spacecraft show that these two filters and the 
filter reported in [2] have very similar performance. 
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Angular-momentum-based attitude parameterization 

The angular momentum in the spacecraft body frame, L,, and the angular 

momentum in an inertial reference frame, L, , obey the equations of motion [4] 

L, = N, - a,, x L, and L, = N, = A i I N B  (lab) 

IL,I=ILIIIL' (2) 

a,, = J-?L,-LinJ 9 (3) 

as well as the constraint 

where A,, is the inertial-to-body attitude matrix. The angular velocity is given by 

where the spacecraft moment of inertia tensor and the angular momentum of any 
moving parts (reaction wheels, steerable antennas or solar arrays, fuel slosh, etc.) 
relative to the spacecraft are denoted by J and L,,, respectively. Spacecraft 
dynamics is commonly modelled by (1 a) and kinematics by 

&I = --b,,XIA,/ 3 (4) 

where 

0 -v3 v2 

[vx]= v3 0 (5) 
[-yl v1 -:] 

denotes the cross product matrix. A quaternion or some other lower-dimensional 
representation of A,, is often integrated rather than (4), but this distinction is not 
important for this paper. An alternative formulation uses (1 b) and 

L,= A&, Y (6 )  
in place of (la). Both of these formulations have the disadvantage for application to 
spinning spacecraft that many components of the state vector are fast variables. 

The formulation in this paper is based on the observation that the attitude matrix, 
which can be the most general rotation taking the unit vector f,, =L,/L to 

i, = L,/L , can be expressed as 

A,, (XI = &, , c, )RBI  , c, 1 2 (7a) 
where 

R(e,@) = + (1 - cos@)ee* - sin@[ex] (7b) 

is the matrix representing a rotation by angle @about axis e, and RBI is any specific 
rotation taking f,, to i, . We choose this to be the minimum rotation 



Multiplying (7a) on the left by RBI R;, or on the right by R;, RBI and using some 
matrix identities gives 

('1 = RBI R(Ll 9 e) = R(L, , c)RBz  Y (8) 

where 
the seven-component state vector 

= 6, + c, . This is our parameterization of the attitude matrix in terms of 

x = p ,  L'I q. (9) 

The dynamics are given by (1 a), (1 b), and a scalar differential equation for {. 
Reduction to a six-component error state 

A straightforward Kalman filter implementation would use the 7x7 covariance 
P, E E { ( A X ) ( A ~ ) ~ >  of the error vector Ax = x -E, where X = E{x) is the 
expectation of x. As pointed out in [2], the constraint of (2) means that this 
covariance is of rank six, in the same way that the unity norm constraint of the four- 
component quaternion representation leads to a rank-deficient covariance matrix 
[3]. In the present case, the covariance matrix must have a null vector X,,II, 

PxXnull = 0 1 x 1  7 (10) 
that is orthogonal to all the vectors representing physically possible errors in x. The 
six physically possible errors are a variation in {, two independent variations of L, 
perpendicular to e, , two variations of L, perpendicular to e,, and simultaneous 

length-changing equal-magnitude variations of L, in the direction of E, and of 

L, in the direction of E,. Thus the normalized null eigenvector of P, must be 

which is a vector of errors violating the norm constraint of (2). 

We seek a 7x6 matrix S with a Moore-Penrose pseudoinverse [SI S+ such that 
T S+S = 16x6, SS+ = Ilxl  - x,ullx,,ull, and S+X,~,~ = O S x l .  (12abc) 

Note that S and S+ must be functions of expectations rather than true values, which 
are unknown by the estimator. The six-dimensional error vector 

Ay = S+Ax (13) 

(14) 

has a nonsingular 6x6 error covariance Py given by 

pY E E{(AY)(AY)~ 1 = s+< (s+ iT . 

SPYST = SS+P,(S+)TST = SS+P,(SS+)T= P, 

Because of (10) and (12b), the 7x7 error covariance P, can be recovered by 

(15) 



and the seven-component error vector, which must be orthogonal to xnull, by 

Ax = 17x7Ax = (SS' + x,,,,~,x~,,~~)Ax = SAY . (1 6)  

Having AL, as part of Ay would require three rows of Sf to be [I3x3 03x3 O,,,] , 
and (12c) could not be satisfied. For Ay to contain AL, , 6, would have to replace 

of L, in x as in [2 ] .  An analogous situation holds with L, and L, interchanged. 

We choose instead to retain (9) by letting the three attitude error angles in the body 
reference frame, A 8  , be the fxst three components of Ay, for then the upper left- 
hand corner of Pr is the usual 3 x 3  attitude error covariance. The expression for A 8  
as a function of Ax is found by computing the first-order increment AA,, of 

A,, (x) with variations AL, , AL, , and A{ , and using the relationship 

[A9x]=-(AAB,)AiI.  (17) 
This gives, after considerable algebra, 

A@= - L-' L, X [ALB - A,,(x)AL,]+[A{- L-'w*(AL, + AL,)]L, , (18) 
where 

w + L, . L,)-'(L, x L,) = ( L ~  + L, . L, )-'(L, x L,) . (19) 

Interpreting (1 8) as a relation of time variations of 8 , L, , L, , and { gives 

o,, = -6' L, x[L, - ABI(x)LI]+[<-C1 w.(L, + L,)]L, . (20) 

After substituting (l), (20) reduces to the dynamic equation for 

< = (1 + L, *L,)-'[(L, +L,)*o,, + L-'(L, x L,)-(N, + N,)] . (21) 

The upper three rows of Sf are given by (18). A natural choice for the lower three 
rows to satisfy (12c) gives 

2, ] (22) s+=[ '3x1 
E-'{- [t , x] - t , W T }  E-' { [E, x] A,, (X) - t , W  T }  

13x3 A,, (XI 

and 

The pseudoinverse of S+ is 



Kalman filter formulation 

A Kalman filter for the seven-component state vector x uses (1) and (21) to 
propagate the state estimate between observations. The filter update for a 
measurement z = h(x) is given by [6] 

x(+) = x(-)+ Kx[Z-  h(-)], (25) 
where the arguments (-) and (+) denote estimates before and after the update, 
respectively, Z denotes the measured value, h(-) z h(x(-)) , and K, is the Kalman 
gain. The gain is given by 

K, = P,(-)H,’[H,P,(-)H,’ + RI-’, (26) 
where the measurement sensitivity matrix is 

H, dh(x)/ax (27) 
and R is the measurement error covariance. The covariance is updated by 

P,(+> = (17x7 - K x H , ) q - ) ,  (28) 
To avoid using the singular covariance matrix, we substitute (1 5) into (26), giving 

K ,  = SKY,  (29) 
where Ky is updated by 

K y  = Py(-)Hy’[HyPy(-)Hy’ + R]-’ 

H y  E H,S = [dh(x)/dx](dx/dy) = dh/dy. 

(30) 

(3 1) 

with 

The matrices S and Sf are always assumed to be evaluated with the pre-update 
estimates. Substituting (15) into (28) and using (12a) gives 

Py(+> = - KyHy>Py<-> 9 

x(+) = x(-) + SKY[Z - h(-)] , 
The state update is given by 

(32) 

(33) 

Defining AG and AYL as the first three rows and last three rows of K y [ Z -  h(-)] , 
respectively, we find after some algebra that (24) and (33) give 

lEr(+)r =lE,(+)r +EB(-).(AyL x AG). (34) 

The update violates the norm constraint of (2) in second order, in parallel with the 
quaternion case [3]. Normalizing the updated angular momenta, 

(35ab) 
n tB = E,/& and Er = E r / E r  , 

and then redefining the angular momenta by 
n n 

E E J T  - ( L , + L , ) ,  E,=EE,,  and E r = E E r .  (35cde) 

restores the constraint while preserving the Euclidean norm of E. 



The matrices Fy and Gy in the covariance propagation equation 

Py = F ~ P ~  + P ~ F ~ T  + G ~ Q G ; ,  (36) 

are most easily computed directly from the equations for the reduced state vector y. 
To first order in the errors, the attitude error vector obeys the dynamic equation [7] 

A ~ = A C O , , - ~ B , , ~ A ~ .  (37) 

-w, + A , , ( w L , l  = A[N, --a,, x L, l+ jlBI(wJ, + AB,(X)AIA;,(X)NBl 

The angular momentum errors obey the dynamic equation 
d 
dt 

= [E,X]ACOB, - [ i B , X ] [ A L ,  + AB,(F)ALz] + 2AN,- [N,x]Ae , (38) 

using Ai,(x) = Ai,(X)(Z3x3 + [ A e x ] ) .  From (3), (16), (23), and (24) we have 

AmB, = ; J - ' { [ t , x ] A e  +[AL,  + AB,(I)AL,]) - J-'ALint. 
Then 

with 

and 

These and 

with 
~ = [ ' l n t  03x3 0 3 ~ 3 1  Qat  

are the matrices needed'for the covariance propagation. Note that Qrnl may be non- 
zero even for a nominally rigid spacecraft. 

Neither S+ nor the singular covariance P, appears in our Kalman filter, which uses 
(30), (32), (33), and (36); and S only appears in (33). It may be desirable to 
compute P, to exhibit the covariance of L, and L ,  , however. 



Filter implementation 

The spinning spacecraft EKF has been implemented in MATLAB as a subsystem of 
the Multimission Spin-Axis Stabilized Spacecraft Attitude Ground Support System 
that has supported NASA Goddard Space Flight Center missions for many years. 
The new EKF subsystem adds the capability to solve for a time-dependent attitude 
history and could be used for real-time applications, if needed. The software 
comprises a driver, an EKF main routine, and subroutines for time propagation, 
measurement sensitivity matrix computation, and filter updates. The driver 
processes sensor data and presents it to the filter as vector observations. After 
discarding bad data points, the EKF main routine calls the propagation subroutine 
to integrate the state vector and its covariance to the next observation time, using a 
4*-order Runge-Kutta integrator with an appropriate time step. The EKF main 
routine obtains the spacecraft ephemeris and geomagnetic field and computes 
torques due to gravity gradients and any residual constant spacecraft magnetization 
at each integration step [4]. Then the sensor residual and the sensitivity matrix are 
computed, and the state and covariance are updated. 

Singularity avoidance 

It is clear throughout the development of this filter that the spacecraft angular 
momentum must be nonzero, but it is easily seen that the algorithm is also singular 
when LE and L, are 180' apart. The software checks for this singular condition and 
redefines the inertial reference frame so that LI is always greater than a user- 
specified distance from -LE in the modified frame, transforming all reference 
vectors along with L,. Recopstructing the usual attitude is only a matter of keeping 
track of these reference frame rotations, which are all handled internally and are 
totally transparent to the user of the software. 

Vector measurement model 

It is easier to calculate the sensitivity matrix for a vector measurement directly from 
the six-component y than from the seven-component x. For this model, z = vB and 

h(x)=A,,(x)v,  ~ ( 1 3 x 3 - [ A 9 ~ ] ) A B , ( Z ) ~ ,  = V B + V B X A 9  , (42) 

(43) 
where 

- 
V B  = AB,(P)VI. 

It follows from (23) and the rightmost part of (3 1) that 

Hv = [[JBX1 o,,,]. (44) 

Testing 

Several tests were performed to compare results from the filter described in this 
paper, the filter presented in [2], and the Unit Vector Filter OJVF) [9] that has 
supported many three-axis stabilized spacecraft at Goddard Space Flight Center 
over the past 12 years. For application to spinning spacecraft, the UVF has been 
modified to estimate the quaternion and rotation rate rather than the gyro biases, to 



use dynamics propagation rather than gyro propagation, and to include a J- 
dependent term in the linearized dynamics matrix used for covariance propagation: 

(45) 
.-=[ 03x3 J 1 ( [ J o x ] - [ a , x ] J )  ' 1 - [ @ X I  -I 

Simlation parameters 
The tests exercised all the key features of the filter using simulated data based on 
parameters from the ST5 series of spinning spacecraft [8]. These are small (25 kg) 
spacecraft in highly eccentric orbits with apogee and perigee altitudes of 4500 km 
and 300 km, respectively, period of about 136 minutes, and inclination 105.6". The 
spacecraft spin at 26 revolutions per minute (rpm), nominally about the z axis. The 
sensor complement is a threeaxis magnetometer (TAM) and a slit Sun sensor that 
detects a Sun pulse and the Sun elevation angle from the nominal spin plane once 
per spin. The Sun elevation measurement and known slit azimuth angle are 
combined into an observed Sun unit vector for the EKF. The EKF processes 8 TAM 
measurements per second, the rate at which they are telemetered to the ground. The 
moment of inertia tensor for the fully deployed configuration of ST5 has been 
simplified to be axially symmetric, 

Jtme = diag([O.8,0.8,1.12]) kg m2 . (46) 
A single cold gas microthruster is used to perform attitude and trajectory 
maneuvers. The environmental torque models were turned off for the simulation. 

Six tests were performed, each 20 minutes in length and ending about 3 minutes 
before the spacecraft passes perigee. The initial attitude and rate errors were 45" 
and 1.0 deglsec on the z (spin) axis and 10" and 0.1 deglsec on the transverse axes 
in all the tests. The sensor noise in both the truth model and for EKF tuning are 
Gaussian with standard deviations of 0.1" for the Sun elevation, 0.0007 sec for the 
Sun pulse time, and 0.2 ,UT per axis for the TAM. The process noise is taken to be 

Q,, = 10-6rad2 I sec x diag([l, 1,3]) (474 
and 

Q = 0.1 ~ e c - ~  x JEKF Q,, JEKF (47b) 
where J E ~ F  is the inertia tensor modeled by the EKF. This is equal to the true inertia 
tensor for the first four simulations. The details of the tests are described briefly 
below, and the results are summarized in Table 1 .  
Tests 1-3: Torque-free rotation with nutation 

The first three tests simulate simple torque-free motion with nutation angle of 0,2", 
and 4", respectively. Figure 1 shows the attitude errors relative to the truth model 
for the 4" nutation test. It can be seen that the new filter performs quite well, and 
that the combination of Sun sensor and magnetometer data will provide excellent 
attitude determination performance for ST5. 
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Figure 1 : Attitude errors for 4" nutation, perfect inertia modelling, and no slew. 

Test 4: Attitude reorientation 

This tests the ability of the filter to follow a large 360" attitude reorientation slew 
over a 20 minute time span. The slew was simulated with zero nutation. The results 
in Table 1 show that the slew is tracked very well, with attitude estimates equally 
accurate as those for the maneuver-free tests. 



Tesis 5 & 6: Inertia tensor mismatch 
These test the ability of the filter to deal with a mismatch between the true inertia 
tensor and the filter's knowledge of it. The EKF in Tests 1-4 used the true inertia 
tensor of (46). For tests 5 and 6, the filter used an inertia tensor close to the actual 
value predicted for the ST5 spacecraft 

0.630 -0.100 0.005 

(48) 
0.005 0.007 1.220 

Other than this, Tests 5 and 6 are the same as Tests 3 and 4, respectively. Figure 2 
shows the attitude errors relative to the truth model for Test 5, with 4" nutation and 
no maneuver. Comparison of this figure with Figure 1 clearly shows the importance 
of accurate inertia modelling for spinning spacecraft. 

Table 1 summarizes the results of the six tests. The last three columns give the root- 
mean-square attitude errors for the three algorithms: the new algorithm presented in 
this paper, the closely related algorithm of [2], and the Unit Vector Filter. The 
statistics were collected over the last 18 minutes of each test, with the first two 
minutes omitted to eliminate the effects of initialization transients. The pointing 
errors are slightly smaller for the new filter, but the difference is barely significant 
except for the tests with mismodelled inertia. The new filter appears to be more 
tolerant of inertia mismodelling than the other filters. The differences may very 
well be due to differences in the process noise tuning, though, rather than to the 
fundamental superiority of the new algorithm. Each 20-minute simulation required 
about 25 sec for the new filter, 35 sec for the filter of [2], and 18 sec for the UVF. 
The absolute times are platform-dependent, but the relative times are significant. 

Test number and description RMS error (deg) 

New [2] UVF 

~ 6 

No maneuver, perfect inertia, 0 nutation 0.146 
I I I NO maneuver, perfect inertia, 2" nutation I 0.148 
I I 

No maneuver, perfect inertia, 4" nutation 

360" slew, perfect inertia, 0 nutation 

No maneuver, mismodelled inertia, 4" nutation 

0.148 

0.147 

I 360" slew, mismodelled inertia, 0 nutation I 2.31 

0.169 I 0.168 I 

4.05 I 3.88 I 
Table 1. Attitude errors for the six tests of the three filtering algorithms. 



Figure 2. Attitude errors for 4" nutation, mismodelled inertia, and no slew. 

Conclusions 
The new spinning spacecraft EKF has been shown to perform well under several 
test scenarios. Its initial convergence is very robust, and its attitude accuracy is 
about 10% better than either a conventional quaternion-based filter or an earlier 
filter implementation using momentum-based attitude parameters. This improved 
performance may result from a superior expression for process noise, facilitating 
filter tuning, or from improved covariance propagation. Additional development 
and testing will search for further improvements in the new filter. Regardless, this 
work has succeeded in providing two powerful filters for attitude determination of 
spinning spacecraft, adding a significant new capability to the attitude ground 
support system at the NASA Goddard Space Flight Center. 



Ongoing work is investigating how to determine sensor biases,’ scale factors, 
misalignments, and time-tag errors, either along with the attitude state or in a 
parallel utility. Several types of biases are already estimated as part of the current 
batch-method spinning spacecraft attitude ground support system, where the spin 
vector is assumed to be constant for the entire batch. However, it may be useful for 
early mission support to be able to determine the biases before the nutation has 
fully damped out and the motion is a simple principal axis spin. 
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