Source of Acquisition NASA Goddard Space Flight Center

1 2 1

1

	Current Way	Vision for New Way
Method to develop new algorithms	Custom	Open source building blocks
Interoperability	Low	High
Time to create & implement new algorithms/service chains	Months	Minutes
Cost to create & implement new algorithms/service chains	High	Low
Data storage and transfer requirements	High: Store/archive and transfer all sensor data	Modest to Low: Filter and transfer only needed features; archive virtual products
Ease of finding and reusing existing algorithms	Difficult	Easy with automatic discovery

And the local

How We Would Like to Do It

- The previous slides depicted a sensor webs that operated in slow motion and were manpower intensive to coordinate images and assemble finished science products
- The following slides are how we would like to do this same or similar processes
 - Discovery of data availability and algorithm availability
 - Automatic tasking of sensors
 - Easy specification of algorithm service chain
 - Automatic execution of service chain
 - Automatic delivery of finished science product to desktop
- First experiments being conducted under auspices of Opengeospatial Consortium (OGC) Webservices Phase 4 (OWS-4) testbed

Vice Ambresis, Pl	Wildfire Research and Applications Partnership
Channel Wildfire Scanner Specifications Jhannel 1: 0.42 - 0.45 um Jhannel 2: 0.45 - 0.52 um Jhannel 3: 0.52 - 0.60 um Jhannel 4: 0.60 - 0.62 um Channel 5: 0.63 - 0.69 um Channel 6: 0.69 - 0.75 um Channel 7: 0.76 - 0.90 um Channel 8: 0.91 - 1.05 um Channel 9: 1.55 - 1.75 um Channel 10: 2.08 - 2.35 um Channel 11: 3.60 - 3.79 um (VIIRS M12) Channel 12: 10.26 - 11.26 um (VIIRS M15) OV: 42.5 or 85.9 degrees (selectable) rotital Res.: 3 - 50 meters (altitude dependant)	General Atomics Altair UAS Also compatible with the GA Mariner, Predator-B & Cessna Caravan C208.
 Targeting input from NIFC, MODIS Rapid Resonance of the second second	sponse, and GOES. generation for both imagery and fire e Earth interface within ca. 4 minutes. and CEOS-LPV. eb implementation in concert with MODIS

Conclusion

- Integrating sensors with open source, interoperable reusable science services facilitates the vision of Global Earth Observing System of Systems
- Creating these open services, lowers the cost of performing science analysis and creating new methods
- With the OGC or similar standards, any set of sensors can become a virtual sensor web
- Data volume is greatly reduced since only virtual products stored and desired products produced ondemand

PEL – Business Processing Execution Language
SS Decision Support System
RIM Enterprise Business Registry Information odel
OS – Sensor Observation Service
SW – Catalog Services For the Web
PS – Sensor Planning Service
MSEC – Goddard Mission Services Evolution enter
/CS – Web Coverage Service
/L – Instrument Markup Language
VCTS – Web Coordinate Transformation Service
AS – Sensor Alert Service (Pub/Sub)
VFS – Web Feature Service
VMS – Web Map Service

Advantages of SOA for Space Sensors Networked standardized interface connections, loosely coupled - Components connected at run-time Enables discovery of services Hides details of how service performed (encapsulated implementation) Fault tolerant . Since connection occurs at run-time, if service not available, a component can find or "discover" an alternative service and if unavailable, can connect to another instance of the service if available Troubleshooting is easier because information is provided at component and services level Highly reusable - Standardized, networked "plug and play" interfaces Scalable Interactions between services and clients independent of location and numbers Sustaining engineering for constellation simplified - Can initiate new instance of service or alternative service and then disconnect old services Taken from: Hartman, Hoebel; "Lightweight Service Architectures for Space Missions", SMC-IT 2006, Pasadena, Ca 25

