
Source of Acquisition
NASA Goddard Space Flight Center

The General Mission A~lalysis Tool (GMAT)
System Test Plan

Darrel J. Conway
Thinking Systems, 111~.

Steven P. Hughes
Goddard Space Flight Cenl;cr

July 12; 2007

https://ntrs.nasa.gov/search.jsp?R=20070038188 2019-08-31T01:09:01+00:00Z

Contents

I Overview

1 Ixitroduction 7
. 1.1 Overview 7

. 1.2 Purpose of this Document 7
. 1.3 Owrview of the GMAT Development and Testing Process 7

. 1.4 System Test Objectives 8
. 1.6 Formal Systenl Testing 9

. 1.6 Items Xot Addressed in Systern Tests 9
1.7 Documeilt Layout . 10

I1 System Test Procedures

System Test Preparation 13
2.1 Test P1-oct:ss . 13

2.2 Test Fn:paration . 13
. 2.3 Updating the Element Lists in the Test Matrices 14

2.4 Updating the Test Case Lists . 17
2.5 Constn~cting the Test Cases . 18

. 2.5.1 Updrtting Script Based Test Cases 18
. 2.5.2 LTpdating the GUI Test Cases 22
. 2.6 Ensuring Complete System Coverage 24

3 Executing Script Driven Tests 27
. 3.1 Script Test Case Manageinent 27

. 3.2 Running the Scripted System Tests 28
. 3.2.1 Procedure 28

. 3.2.2 .4 Note on Ran Frequency 29
. 3.2.3 R. eporting R. esults 30

4 Executing Tests for the Graphical User Interface 31
. 4.1 GUI Test Case Managanent 31

. 4.2 Running the GUI Systetn Tests 32
. 4.2.1 Sa.mple GUI Test Case 33

. 4.2.2 Procc:dure 37
. 4.2.3 R. (!porting Rt!sults 37

. 4.3 Procedural Rulcs 38
. 4.3.1 Test Procedures for All Elenients 38

. 4.3.2 Procedures for Specific Co~ltrol Types 39
. 4.3.3 Usability Testing 41

5 Reporting and Reviewing Test Results 43
5.1 System Tcst Status . - 43
5.2 The System Test Report , . 43
5.3 S t s t R i , , , 44

List of Figures

. 2.1 The Syst,ern Test Su~nmary Page 14
. 2.2 An Object Test Ma.trix 15

. 2.3 The New Element Dialog. 16
. 2.4 A Test Case List 16

. 2.5 The Xew Test Case Dialog 17
. 2.6 A Test Tracking Spreadsheet 25

. 3.1 The Script Test Tracking Sprtradsheet 28

4.1 The GUI Test Tracking Spreadsheet . 32
. 4.2 The OpenGLPlot Sotup Panel 36

Part I

Overview

Chapter 1

Introduction

1.1 Overview

The General Mission Analysis Tool (GhlAT) is a spacc!craft mission analysis tool t,ailored t o support missions
involving groups of spacecraft interacting throughout a modeled tinle period. The potential co~nplexity of
this problem makes GMAT an intricate software system. This comp1exit.y necessitates a rigorous testing
environment to ensure t,hat the system ~ncets its objectives.

GhilAT is designed using an ol)je~%-oriented architecture[GDT] and coded using extensive object-oriented
structures written in C++ The object based approach employed in GMAT's design and implementation
makes t,he system robust and relatively easy to use for experienced a.nalysts. The extent of the object model
implemented to niake GMAT a. complete and robust system dictates a comprehensive ttssting philosophy,
described jn the GILfAT Master Test PlanlMTP]. This document describes one component of the overall
testing strategy, the system testing.

System testing is a. black box form of testing, designed to exercise the CWAT system from the user's
perspective. The syste.nl tests are designed to exercise dl of the user accessible objects in GMAT.

1.2 Purpose of this Document

This document serves as the System Test Approach for the GM-T Project. Prepara.tion for system testing
consists of three major stages:

e The Test Approach sets the scope of system testing, the 0%-erall strategy to be adopted, the activities
to be completed, the general resources required and the methods and processes to be used to test the
release. It. also details the activities, dependencies and effort required to conduct the System Test.

e Test Plaiiniiig details the activities, dependencies and effort required to conduct tlie System Test.

e Test Caslcs documents tlie tests to be applied, the dat,a to be processed, the automated testing coverage
and the expected results.

This document covers the first two of these items, and established the framework used for the GMAT
test case development. The test cases themselves exist as separate components, and are ma,na.ged outside of
and concurrently with this System Test Plan.

1.3 Overview of the GMAT Development and Testing Process

The GMAT development. process identifies several review points for the system. G&IAT development is
conducted as a ~ooperat~ive effort betureen an analysis tcam, typically composed of flight dynamics specialists,

and a. development team co~isisting of tale~ited software developers. New requirements for the system are
defined and written by the a.nalysis team. Mathematical and design specifications are derived from these
recluirements end compiled into a format that can be used to code the new functiona.lit,y. Requirerncnts,
Specifica'~ions, ancl Designs are reviewed by tho development team prior to implementation. This revitm is
typically conducted in an infornial, iterative manner until the specifications axe understood by all involved
parties. The specificat.ions and design documentation are t,hen used to write the software.

During the development process, new features of a component under developnlenit ma.y btr detected that
need further specification. When that happens, the new features arc discilssed and collected together. This
may result in an immediate updat,e to the design docunients, or it nlay result in collectioil of the new feature
implementation for irlclusion in a final updat,e performed when the conlponent is ready for integration. In
either case, the design documt?ntation is updated t o reflect the implementc!tl functionality prior to formal
acceptance of the related components.

During development, the soft~vare undergoes internal testing in t,he development team at both a unit
and an integra.tion level. Unit testing is int,ended to exmcise all of the executal~le paths through the code,
validating that the internal working of the code behaves correctly. Integration testing takes unit tested
conlponeilts and builds those components, either one at a time or collectively, into the systan. From time
to time, the development team will interact with the analysis team during integration testing to confirm
that t.he observed bc:ha.vior of the new code co~lfornis t.o the expectations of the users. Unit testing and
integration testing a.re performed in the course of the developnlent of the software; neither will necessarily
provide test results in a formal manner, though informal commuilications of the component. and integrat,ed
test results are strongly encouragtad.

When the GMAT development team completes integration of new fu~lctionality into the system, that new
functionality is ready for system test. GMAT system testing follows a inore forinal test procedure than unit
or integration testing. New components are exercised both from the GhlAT scxipting language and from
the GMAT Graphical User Interface (GC'I). The test cases c!xercisc?d a,ro documented using the procedures
described later in this document. Test ca.ses are managed using a. traceability matrix that lists all of the!
elements of GPI.&T visible at the user level, and matches those elenzents to test casks that are executed in
system testing. This master traceability ma.trix is used to genexate a spreadsheet of test cases each time
GMAT enters a syste~n test cycle. All tests art? tracked using this sprea,dsheet; fornlal system test is complete
when every test case has been exercised and the results of the tests ha.ve been tabulated and accepted after
review.

1.4 System Test Objectives

At a high levd, System Test intends to prove that

a, The functionality, delivered by the development team, is as specified by the Mathematical and Desigl
Specifications1.

s The software is stable and of high quality.

s The software models spacecraft missions faith.fully.

a, The software interfaces correctly wit,h other systems, specifically MATLAB.

e The softemare user interfaces are stable, complete: and underst,a.ndable by novice and experienced users.

These objectives are addressed through the development of a suitre of test, cases exercised on builds of
the GMAT system. Each mqjor release of GMAT is tested using this suite, and the results of the tests
are collected and reviewd by all interested parties prior to release. This document describes the procedures
follonred for system testing.

'Syste~o t-cst, docs not provide a formal rnectianism for niappiiig tttc systen: requirements to the iruplemexitcd A~nctiouality:
ilxat is Lhe responsibilif,~. oi Acceptance lestiag. ' l h e sysberr~ test valirlalev ~ l l a t the itnpicrtli?uied fuutc1,ioualit~y is correct.

1.5 Formal System Testing

While spstam tests ca.n be performed as soon as new features arc a.vaild>le, there is not a requirement that
they nlust be performed at that time. However, system tests shall be performed prior to each major release
of GMAT to the aerospace conmmunity. Part of the GhIAT release process includes a review of the system
test matrices and results to ensure that the systeni has maintained its integrity for the release. The review
performed at e d l major releae:

0 Checks the System Test nla,trices to ensure full system coverage for User Elenlents, Parameters, Com-
mands, and GUI Widgets.

0 Ensures that the svstern tests have been run for all test ctises.

r Ensures that the data produced from GMAT is consistent with known "truth" data.

0 Ensures that system tests that failed have documented the cause or causes of the failure

0 Ensures that any failures that must be addressc?d for the release have (1) bc!e!en adclrossecl a,nd (2) that
the resulting corredion ha5 beell validated to meet the expected results.

o Ensures tha.t all scripting dements of GMAT have been exercised, alld function corrcctlv.

o Ensures that all GUI eleinc?nt,s of GMAT have been c.xt:rcised, and function correctljr.

o Ensures that the system is stable. Stability in t,his context means th;tt GNAT

- Does not crash
- Produces identical results on reriln
- Produces comparit.ble rmults on all supported plat.forms
- Allocates and releases memory consi$tently, without long term memory artifacts (aka "memory

leaks")
- Produces identical results when configured froin the GUI, from a script file, and when saved t.o

file and reloaded, both into the running instance and into a new image.

0 Ensures that GAL4T performs efficiently, both when esecuting mission sequences, and when saving and
loading missions.

System test review is performed by members of the aldysis and development tea.ms. Detailed testing of
the system numerics and scripting is performed by the domain experts on the analysis team. GUI testing is
performed by the development team.

While the formal test responsibilities are as described in the previous paragraph, both teams are emour-
aged to exercise the features being tested by the ot,hcr t.eam to help identify any a.dditiona1 issues tha.t exist.
For exaniplc?, the analysis team is encoura,ged to crea.te a l l test cases using the GGMAT GUI: and to report
any difficulties encountered when following this approacll. Similarly, the development team is encornaged to
test the GUI in such a way as to produce functional models, to run those models, and to report any resulting
anomalous behavior. This c.ross checking of functionality ensures that the system has been exercised as much
as possible, given the resources a.vaila.l>le for dcvc!lopment of GM-LIT.

1.6 Items Not Addressed in System Tests

The system tests described in this document are used to vrtlida.te tlie stability and a.ccessibility of G&lA4T
components to users attempting to use the system to solve flight dynamics problems. These tests do not
address several key system elements. Those ele~nents are covered by other components of the GiL4;i.T test
suite.

Specifically, t,he tosts clefined in this docu~nent do not address these items:

r Intcrnal data represclnt~tions arid data flow in the GMAT code. These elements are tested in the
GMAT unit and integration test processes.

r Kumsrical fidelity of the models. The detailed nuxnerical testing of the componc?nts are part of the
GM,4T acceptance tests.

r Data range validation. The data range tests are performed as part. of the integration tests.

r R.equiremer~ts Validation. The mapping of GMAT capabilities to the system requirements is xnade and
validated in the GMAT accepta~lce tests.

1.7 Document Layout
The remainder of this document describes the procedures followed to prepare for, conduct, and document
the GMAT system tcsts. Chapter 2 describes the procedured followed when preparing for the system tcsts.
Chapters 3 and 4 docu~nellt the procedures followed when running the test cases. Chapter 5 describes the
data collection and review procedures follo~ed for the system. The Appendices at the end of the document
provide additional information that may be useful during system test.

Part II

System Test Procedures

Chapter 2

System Test Preparation

The GMAT system tests are designed t.o perform a "black boy' examination of GMAT as an assembled
system. The system tests exercise dl of tho elements of the system from both the scripting and graphical
user interface perspect,ives. Traceability matrices we maintained to ensure tha,t the entire system is exercised
upon completion of the system tests. This cliapter describes t,llese matrices: and provides instructions about
how to maintain and extend them.

2.1 Test Process

System testing is performed in three sta.g:c!s: test prepaxation, system testing (consisting of Script basad
Testing and GUI Testing), and test result repor-ting. The test preparation phase, described in this dlapter,
is used t o update the system test cases with tests covering new capabilities of GMAT, and to add or update
existing test wses based on lessons learned from previous testing. Procedures followed when executing t,he
script based are described in Chapter 3. GUI testing procedures are given in Chapter 4. Both of those
chapters i~iclude descriptions of the data collection for individual tests. Chapt.er 5 describes the process of
accumulat.ing the test results so that the status of the system can be evaluated.

2.2 Test Preparation

GhlAT system testing is managed from a set of OpenOffice[OOoJ spreadsheets. The test case structure and
mapping between system functionality and corresponding tests is tracked using the "SysternTest%Ia.trix.ods!'
spreadsheet1. This spreadsheet contains pages identifying detailed GMAT functionality and defined system
test cases, and maps each dement of functionality to one or more test cases.

The spreadsheet includes aa, wmm-ary page: shewn in Figure 2.1, which computes coverage for the elements
ta.bulated on the detail pages. If the tables in the spreadsheet are up to date, then the summary page is an
indicator of the readiness of the system tests. Hence the first task that testers perform when preparing for
system testing is to update the test matrices. Once the test matrices have! been updated, the test cascs are
updated to cover any new functionality in the system. Test preparation is finished when a complete set of
test cases has been developed, covering all of the elenlents in the updated test matrix tables.

To summarize, when a new piece of functionalit,y is added to GAMT that users can access, the test team,
working with the developers and users, updates the test matrices by performing three steps:

1. Identify and add all new elements of the system to t,he test ma.trices.

'hll of the (:MAT test tracking components are co~tfigt!ration co~~trollcd. lntercsted partie5 cat obtain the current versions
of tl~ese t,csLing a1.1il'aclr; by conLacliry one of l t~e C2?vlM.' team leads.

CI-1'-4I'?'ElZ 2. SYSTE"E'\l TEST I~llEI~Ak4~TIOlV

Figure 2.1: The System Test Sulmlilly Page

2. Identify test cases that cover the new elements. This may involve modifying existing test cases or
creating new test cases, depending on the functionality of the new ele~nent.

3. Create or update the test cases as needed to implement the planned coverage identified in item 2.

When these steps have been performed, the coverage matrices are up t,o date, and the test team is ready
to nln the system test by esecuting all of the test cases in t.he matrices. The following paragraphs describe
the procedure for executing these steps.

2.3 Updating the Elernent Lists in the Test Matrices

Figure 2.2 shows an exa.mple of the matricc:~ used to identify GhlAT's implenlented functionality. Separate
ta.bles exist for t,he user accessible Components (Spacecraft, Solvers, Propagators, and so forth), Partmeters
that GMAT can calculate, Coinmands used arllen defining the mission sequence, Graphical User Interface
dements (GuiElemtmts), &nd miscella.neous other configusable elements. These tables capture a. static vitmw
of over? itoni that a user can interact with when running GMAT.

Each t.abl(m lists the config~rrable dements in column A, and constructs, ~vhen appropriate, config-clrat.ions
and subconfig~lrations of those objects in columns B (lal~eled ''Cases?') and C ("Subcases"). Column D,
"Notcs", is used t o illdicate other considerations. Elenlents that are not yet schetluled for testing can be
ent,cred in the tables; when t.hat happens! t,he entry in t,he "Notes" column should be set, to the keyword
'iDEFERB,ED".

2.3. LI'DATIiVG 'I'HE' ELEdVfEI\rT LISTS fX THE TEST I\M.TI?ICES

Figure 2.2: An Object Test Matrix

The first step in updating the test matrices is to ensure that the lists of acca~sible elements are complete,
capturing any new elements and configurat.ions added t o the system since the last time the matrix was
upda.ted. .Testers hare tsro options for performing these uptlates: they can either edit the tabIes by ha.nd,
and check that all related formatting and equations are updated correctly, or they can use the macros built
into the spreadsheet to add the new elements. The prefe,rred approach is to use the macros, because that
approach ensures that the calculatiom performed by the tables are correct.

The summary page, shown in Figure 2.2, for the sprea.dsheet contains four buttons used to add elements
to the test mat-rices: "Add Resourcd', "-4dd Para.meter", "Add Command;:, and "Add GUI Element". When a
user presses one of these buttons, a dialog bos opens t.hat is used to set some basic information for the new
element that is being tested. Figure 2.3 shows an example of this dialog.

I n e n thii dialog is opened: users can change the type of new element being configured using the Eleme~lt
Type conlbo box. This option is provided in case the user selected the wrong button from the summary
pagc. The user enters the na,me of the new elenlent in the ElernenfName field.

RtIany of the elements that are tested cm be exercised more thzm one way; for example, the Impulsive
Burn element ca.n be set to run using Velocity-Kornlal-Binor~nd (VKB) delta-V vectors or a coordinxte
system based delta-1' vector. Ea.ch of these modes should be tested independently, so a separate line should
exist for each on the spreadsheet. The user reserves multiple lines on the spreadsheet by entering the number
of lines required in the "Spreadsheet Lines Xeeded" field.

After setting the data correctly on the new elemelit dialog: the user presses t,he 'OIS' button. TThen
this action is taken, the t>est matrix corresponding to the hype of the new element is updated. New rows
are inserted into the spreadsheet for the new element, and the formulas for tha new rows are set. Finall&

Figure 2.3: The New Eleilleilt Dialog

the fields that are used to calculate the test preparation statistics are updated. If more than one row was
insert.ed, the spreadsheet pa.ge is set to the page containing t,he new element, with the a.ctive cell sdected t.o
the "Cases" field for the new element, so that the user can enter the test cases required for the new ele~nent.
Each test ca,se and subcase should be entered at this time so that t,he elenlent descriptions in the test matrix
reflect t,he capabilities that, need to be tested.

At this point, all of the functionality in GMAT should be represented by rows in the tat matrices. The
next step i s to plan test. cases that cover elenlents of the system thak are not already handled in the t,est
suite.

2.d. UI-DATIL\~G THE TEST CASE LlSTS

2.4 Updating the Test Case Lists

There are two categories of test cases used in system t,est.ing GMAT, designed to exercise the system using
script.ing and the g~a.phicd user interface. When nnem tomponents a.rc? added to GNAT, the test coverage
matrix is updated to exercise those new elements using the procedure described above. This update produces
holes in the system test suite, requiring either an update of the current test cases or the development of new
test cases, depending on the nature of the new components.

The test case lishs are broken into two groups: tests b s e d on script files designed to exercise dl com-
ponents used in modeling a mission, a id user interface t?xc?rcises designed to test the functionality and
conipleteness of the graphical user interface. The test tracking spreadsheet has separate pages for the GUI
and script based test cases. Figure 2.4 shows the page for the script cases; the GGI test case page is similar.

When a test case is added to the test case list using the sprea.dshwt nlacros described below, that test
case name is automatically picked up on the coverage tables. Once this update has been ma.& and the new
test cases liave been added to the system test suite: users of the test matrix spreadsheet edit the mat.rices to
indicate the covered functionality. In summary, the procedure for incorporating a new test case is to perform
these three steps:

1. Test case planning: Identify and name the new test cases, and update the spreadsheet to list these
cases.

2. Test case writing: Write the new test cases, and update any older test cases that need updating.

3. Test Matrix Mapping: Working from the new test cases, fill in the coverage tables for each new or
changed test case to reflect the feat.ures a.ctually covered.

Figxrlru 2.5: The Zcw Tost CLLSC' Dialog

The procedure for adding a test case to the test case list is similar to the procedure for adding a new
element to the test matrices. Test cases are added to the systenl test ma.trices using the "Add Script Testcase"
and "-Add GUI Testcase" bu'itons on the summary page of the spreadsheet. Pressing either of these buttons
opens the New Test Caqe dialog, shown in Figure 2.5.

When a new test case has been ident.ified, a user will open the system test spreadsheet and press the
button for the desired test case type, opening this dirtlog. The user then enters the name of the new test
case. The user enters a summary description of the test, case as wcdl to help track the goal of the test case.

18 CHH4P?IEli 2. SYSTElil TEST T31?.EI?.ln_.1TTOI\i

Finally, the user selects t.he desired frequency for execution of tha test case; cases that call be a.ut,omated
and run frequently, or that test critical features of the system, should be set to run more frequently than
those that are labor intensive or that test ra.rtrIy used GhlAT features.

The user accepts the new test case by selecting t,he "OK button on the spreadshecrt. When this adion is
taken, several things happen in the tables in the spreadsheet. First new test case is added to the appropriate
page of the spreadsheet, along wit.h its descriptions a.nd execution frequency. The status of the test case is
set to "Xot sta.rted, indica.ting that the test case itself is not yet in the system test suite of test cases. The
nt!w test case is added to the column labels of the t.est. matrices on the subsecl~ient paps, and the formu1a.e
in in the spreadsheet are updated to track the new tests.

This step completes the test case planning phase of the preparation process. The next step is to write
the test cases thenlselves.

2.5 Constructing the Test Cases

The steps described so far ensure that there is a plan in place to test every elenlent of G34.4T for a black
box perspective. At this point, the test cases requires for the system test have been identified. Xext the t,est
teani needs to write the test cases, g iv~n the new fundionality of the syst,e~n. The goal for ex11 test case is
to test an i n t e ~ a t e d set of system elen~ents when executing a specified set of goals.

For the script based tests, this usually involves assembling a set of elements together and pelforming
some computations in a mission sequc?nce. The results of the execution of the script are compared to lcnown
good data in order to t-didate that the execution behaved as expected. Additionally, the script basc?cl testing
checks to see that scripting errors are handled gracefully, producing error messages that are clear for typical
GICI;IT users.

GUI based scripts have similar goals. The goals of the GUI test cases ase to ensure that the GMAT
user interface lets users configure all of the elements of the system, that this configuration is reflected in the
internal components of the system, and that the user interface handles anomalous conditions robustly.

The following paragraphs describe t,he approach taken to ensure that these goals are met.

2.5.1 Updating Script Based Test Cases

Script based test cases consist of a script file and validated output files generated from the script. All script,
l)ast.?d tests should be created from the CMAT GUI, so that a.ny related user interface issues can be identified
during the process. Once a scripted test has been constructed, it should be saved with the same file name
as entered in the test case table.

Each script based test should generate output in the form of a. text file: using G3L4T's reporting capabil-
itics. Unless esplicit.ly stated otherwise, the output file nanc should be! the same as the script file name with
the file extension ".reportn. The header comments on the script based tests should indicate the following
information:

The first line of the script should be "%% Id". This ensures that the CVS version information is
stored with the script. This CVS information is the tracking identifier for each system test case.

o The primary elenlents being tested.

r +Any ancillary items tha.t should also be examined in the execution of the test.

o Any dspcndencies that need to be met to run the test successfully. For example, t,he ~~linconoptimizer
requires a GMAT build that includes thc ilfATLAB interfaces, a d i d licenscd MATLAB executable
on the test machine, and a valid licensed copy of MATLA4B1s Optimization Toolbox.

r The name of the olitput files genera.tet1, is their name differs from the standard output file nanlc!.

tf'hether the output data is expect,ed to mat,ch data from previous runs.

2.5. CONS'T17.UCTIiLiG THE TEST C:ASES 19

r Any special steps that shoulcl be t,aken, either prior to the run or after it completes.

A sample script test case is provided here:

I %% $Id: BasicProp.m,v 1.5 2006/10/11 16:37:00 dconway Exp $
2 %% GMAT System Test Script File
3 %
4 % This test case is designed to test the following elements:
a %
a % 1. Spacecraft state specification in Earth MJ2000 Cartesian, Keplerian, and
7 % Modified Keplerian Coordinates.
s % 2. Force models appropriate to LEO, HE0 and GEO orbits.
9 % 3. Basic orbit Propagation.

10 %
11 % The only output file is BasicPropHEOReport.txt, which contains various output
l a % parameters for the HE0 spacecraft. The data in this report should be the same
1 3 % from run to run.
I., %
15 % There are no external dependencies.
10 %
1 % This file has been edited to reduce size, so that it can be used as an example
15 % in the System Test Plan.
19

20 Create Spacecraft LEO;
21 GMAT LEO.DateFormat = TAIModJulian;
2a GMAT LEO-Epoch = 21545;
23 GMAT LEO.CoordinateSystem = EarthMJ2000Eq;
z+ GMAT LEO. StateType = Cartesian;
aa GMAT LE0.X = 7100;
26 GMAT LEO. Y = 0;
27 GMAT LE0.Z = 1300;
sa GMAT LEO .VX = 0;
20 GMAT LEO.VY = 7.35;
so GMAT LEO .VZ = 1;
51

S2 Create Spacecraft HEO;
sa GMAT HE0 . DateFormat = TAIGregorian;
j 4 GMAT HE0.Epoch = 12 Sep 2006 21:28:00.000;
35. GMAT HEO.CoordinateSystem = EarthMJ2000Eq;
36 GMAT HEO.StateType = Keplerian;
87 GMAT HEO.SMA = 43200;
ax GMAT HEO.ECC = 0.8;
a9 GMAT HE0 . INC = 78;
40 GMAT HEO. RAAN = 15;
41 GMAT HE0 . AOP = 35 ;
a GMAT HEO.TA = 120;
1s

.PI Create Spacecraft GEO;
45 GMAT GEO.DateFomat = UTCGregorian;
46 GMAT GEO.Epoch = 25 Dec 2010 00:00:00.000;
-17 GMAT GEO.CoordinateSystem = EarthMJ2000Eq;
45 GMAT GEO.StateType = ModifiedKeplerian;

C'HH41'?IEli 2. SYSTEilI TEST MZEI'AE4TIOX

4 GMAT GEO.RadPer = 42164.5;
ao GMAT GEO.RadApo = 42165.5;
e l GMAT GEO. INC = 0.5;
as GMAT GEO. RAAN = 90;
ss GMAT GEO .AOP = 90;
54 GMAT GEO.TA = 90;
56

56 Create ForceModel LeoProp-ForceModel;
67 GMAT LeoProp-ForceModel.Centra1Body = Earth;
au GMAT LeoProp~ForceModel.PrimaryBodies = {Earth);
59 GMAT LeoProp-ForceModel.Drag = Exponential;
(50 GMAT LeoProp-ForceMode1.Gravity.Earth.Degree = 20;
81 GMAT LeoProp-ForceModel.Gravity.Eaxth.0rder = 20;
an GMAT LeoProp-ForceModel.Gravity.Earth.PotentialFile = c:/GmatDataFiles/gravity/earth/JGM2.grv;
t;a GMAT LeoProp~ForceMode1.Drag.AtmosphereBody = Earth;
6.l

as Create Propagator LeoProp;
i55 GMAT LeoProp-FM = LeoProp-ForceModel;
(5: GMAT LeoProp.Type = RungeKutta89;
8'3

ao Create ForceModel HeoProp-ForceModel;
76 GMAT HeoProp-ForceModel.Centra1Body = Earth;
71 GMAT HeoProp~ForceModel.PrimaxyBodies = {Earth);
72 GMAT HeoProp-ForceModel.Drag = MSISE9O;
73 GMAT HeoProp-ForceModel.SRP = On;
7 GMAT HeoProp-ForceModel.Gravity.Earth.Degree = 4;
76 GMAT HeoProp-ForceModel.Gravity.Earth.0rder = 4;
 ti GMAT HeoProp-ForceModel.Gravity.Earth.PotentialFile = c:/GmatDataFiles/gravity/earth/JGM3.grv;
77 GMAT HeoProp~ForceModel.Drag.InputSource = Constant;
78

79 Create Propagator HeoProp;
80 GMAT HeoProp.FM = HeoProp-ForceModel;

GMAT HeoProp.Type = RungeKutta89;
82

ss Create ForceModel GeoProp-ForceModel;
J.I GMAT GeoProp-ForceModel.CentralBody = Earth;
as GMAT GeoProp~ForceModel.PrimaryBodies = {Earth);
80 GMRT GeoProp~ForceModel.PointMasses = {Sun, Luna, Jupiter, Venus);
87 GMRT G ~ o P ~ o ~ ~ F o ~ c ~ M o ~ ~ ~ . S R P = On;
IIN GMAT GeoProp-ForceMode1.Gravity.Earth.Degree = 4;
su GMAT GeoProp-ForceModel.Gravity.Earth.0rder = 4;
ao

$1 Create Propagator GeoProp;
GMAT GeoProp.FM = GeoProp-ForceModel;

eu GMAT GeoProp.Type = PrinceDormand78;
0.1 Create ReportFile HeoReport ;
~5 GMAT HeoReport.Filename = BasicPropHE0Report.txt;
06 GMAT HeoReport.Precision = 16;
9; GMAT HeoReport.Add = {LEO.AIGregorian, LEO.AIModJulian, LEO.ElapsedSecs, . . .
311 LEO.ElapsedDays, LEO.Earth,SMA, LEO.Earth.ECC, LEO.EarthMJ2000Eq.INC, ...

LEO. EarthMJ2000Eq. RAAN, LEO. EarthMJ2000Eq. AOP, LEO. Earth.TA) ;

2.5. CONSF11,GCTIiVG THE TEST CXSES 21

100

y"l--- . .
,,]2 yy ---------- . (Mission Sequence
,(,a yy-- 1 .

10.1 Propagate LeoProp(LE0, (LEO.ElapsedSecs = 8640.0));
lot Propagate HeoProp (HE0 , (HE0 . ElapsedSecs = 432000.0)) ;
1oa Propagate GeoProp(GE0, {GEO.ElapsedDays = 30.0));

If a script test case fails any of the system test criteria. specified in Chapter 3, the tester creates a t,est,
report summarizi~ig the riature of the failure. A sa.~nple completed report is sliown here:

I $Id: MatlabApsidesCheck.txt,v 1.3 2006/11/23 00:27:43 dconway Exp $
2

3

4 Tester: ---I). Conway------------------ Date : -ll/21/06 --------,-------

ti

7 Platform: -X- Windows, Version: XP, Service Pack 2----
8

3 --- Macintosh, OS X Version: ---------------
10

11 --- Linux, Distribution: -------------------
13

18

J.% Description:

This test validates the PIATLAB interface, including passing of arrays into
MATLAB and receipt of data back from MATLAB.

Script Test Results:

Loads Correctly: [XXl Pass C 1 Fail Bug# ------

Runs Correctly: [XX] Pass [1 Fail Bug# ------
[1 Unable to evaluate

3D Visualization: [1 Pass C 1 Fail Bug# ------
[XX] Not Applicable
[1 Unable to evaluate

Plots : C 1 Pass C 1 Fail Bug# ------
[XXl Not Applicable
[1 Unable to evaluate

Output : CXXl Pass [1 Fail Bug# ------
[1 Not Applicable
[1 Unable to evaluate

Truth Data: [1 Pass [XX] Fail Bug# -511--
[1 Not Applicable
C 1 Unable to evaluate

22 CH'.4P?IEJl 2. SYSTEM TEST PREZ'AR.-4TION

Rerun: [XXl Pass [1 Fail Bug# --,---
[1 Not Applicable
[1 Unable to evaluate

Save and Load: [1 Pass [XX] Fail Bug# -512--
[1 Unable to evaluate

Summary :

Number of passed test elements --4---

Total number of test elements --6---

Test case status [1 Pass [XI Fail

Bugs Reported:

Notes :

1. Truth data file shows a defect in data handling when receiving data from
MATLAB. The MATLAB return only has 6 digits of precision. A bug needs to be
entered into Bugzilla for this defect.

2. Save fails when there are multiple conditions on an If command.

2.5.2 Updating the GUI Test Cases

GVI blued test cases consist of a text fils describing the test. The GUI test cases may include additional
files, depending on the nature of t,he test. For esmple, the script reading GUI test includes a script that
needs to be read. The purpose of the GUI tests is to validate that the build is sta.ble, and that the user
interface panels provide conlplete coverage of the elenlents of the system visible to the user.

The GUI t,est cases forms itre relatively sirnple. They provide, in outline form, g~~idelines for testing the
GUI elements. Detailed illstructions for the GUI tests are provided in Cha.pter 4.

A sanlple GUI test case is provided here:

$Id: ImpulsiveBurnPanel.txt,v 1.4 2006/10/13 19:22:24 dconway Exp $
2

3 Description: This test validates the functionality of the Impulsive Burn
configuration panel.

6 Procedure:
7

s 1. Open GMAT. Create an ImpulsiveBurn resource.
3

10 C 1 Pass C 1 Fail Bug# ------
1 I

1 3 2. Open the panel for the new ImpulsiveBurn.

CONS'T;ttUCTIiVG THE TEST ClASES

I: 1 Pass C 1 Fa i l Bug# --,--,

3. Evaluate the aes the t ic qua l i t i e s of the panel.

C 1 Pass I: 1 Fa i l Bug# ------

4. Evaluate the panel funct ional i ty by exercising these elements:

Axes ComboBox [1 Pass I: I Fa i l Bug# ,-----

Vector Format ComboBox [I Pass [1 Fa i l Bug# -,----

Vector Element 1 Text [I Pass [1 Fa i l Bug# ---,--

Vector Element 2 Text [1 Pass [1 Fa i l Bug# -,--,-

Vector Element 3 Text [1 Pass [1 Fa i l Bug# ------

Origin ComboBox [1 Pass [I Fa i l Bug# -,-,--

5. Evaluate panel save/cancel/restore funct ional i ty .

Cancel 1 Pass I: 1 Fa i l Bug# ------

Apply C 1 Pass C I Fa i l Bug# ------
Save C I Pass C I Fa i l Bug# ------

Restore [1 Pass 1: 1 Fa i l Bug# ---,--

Window Icons [1 Pass 1: 1 Fa i l Bug# ---,-,

6. Evaluate rename funct ional i ty .

I: I Pass C I F a i l Bug# ------

7. Validate t ha t the configured object is correct on run.

C 1 Pass [: 1 Fa i l Bug# ------ '

8. Perform additional experiments with the panel controls .

Summary :

Test case s tatus:

E I Pass [1 Fa i l

Bugs Reported:

CHAF'I'Elfl 2. SYS?IEIL~ TEST I"1tEI'dXk41'I0.V

64 Notes:
85

lj 0

67

155

$9 Tester: ------,---------------------
70

1-1 Date: --,-----,--,----------------

Failed GUI tests provide information about the nature of the failure durect.1~ on the test case form; there
is no supplementary report for GUI test failures.

2.6 Ensuring Complete System Coverage

Once the test cases have been written: all that remains for test proparation is the confirination that the
test cases cover all of the new features of GMAT. This is a,ccomplished by updating the test. matrices based
on the new and revised test cases, Each test case that har been addctd or changed since the last upda.te is
collected and used to update the matCrices. For each pa.ge in the spreadsheet containing an element to t.est
case table, the test tearn needs to update the matrix for these test cases. The test cases are listed across
the top of t,he matrices. Each test case ident.ifies the tested elements by placing an "X': marker in t.he row
corresponding to tha,t element. Updated test cases should be examined to ensure that elements previously
tested a.re stmill tested; if an ele~llnet is no longer tested for a specific test case! the X for that elemexit should
he removed from t,he matrix.

The spreadsheet contains formulas that use these markers to determine if a given element has a corrc
sponding test cnse. Tht? far right side of t,he test ~nakrices tables accumulates this data; every element that
has at least one associated test case receives a coverage value of 1; uncovered dements receive a coverage
value of 0. The far right side of the ta,ble also includes a column labeled "Ronr Count." The row count
column simply counts the number of e1etnent.s on the page.

The summary page examines each table in the spreadsheet alid provides information a,bout the coverage!

completeness of the system tests. Once the covtxrage statistics report t.hat the elements of the system are
covered 10076, t,hc system tests are ready t.o be run. The test team then generakes a new spreadsheet for
each type of system test by pressing the "Creake Script Test Tracker" and "Crea,te GUI Test tracke~~' buttons
on the summary page. These buttons generate single page spreadsheets used to track progress through the
system test. An example is shown in Figure 2.6.

This spreadsheet is used to track and report system test progress. As each syst,ern test is performed, the
entry in the tracking spreadsheet is updated by the test team. Exmina.tion of this spreadsheet provides a
status check on the system test.

The next two chapters provide instrudions about the steps performed when running the system test.s.

........
:. i ; '. , \ 0 . . . ,: : $ g.:;. i....: " : > : , \., : . . ; :: ?;; 3

.: .C <.- < .:,
,; ,; j : : , 3 : . : . > .; - 3 $..5 : .,.: i...: :: ':: : .

................ .r,. <.!...I. ;... . :: i 2. .$. .h ,j., 'i.. ,.: .;.if,, ,$, c.,. ., :,. .::.. .:
(,, . .

Figure 2.6: A Test Tracking Sprezcbheet

CH+4I"I'EJE. 2. SYSTE'hL TEST T3L?,E:f~-iRL4~1OIV

Chapter 3

Executing Script Driven Tests

The tests described in this chapter are designed to exercise all accessible objects in the core GMAT engine: in
as many combinations as is feasible. This object coverage is performed by running GMAT scripts designed
to interact with the a.ccessible objects from the Gra.phical User Interface. Each script produces output.
The system testers examine this output, and, when possible, compare it ~14th the configuration managed
output produced from previous runs of the scripts. The procedure followed %the11 running scripted tests is
documented in the sections of this chapter.

3.1 Script Test Case Management

The System test cases are inanaged from a spreadsheet generated at the coilclusion of the system test
preparation process. Figure 3.1 shows an example of this test. tracking spreadsheet for the script based
tests1, as it looks part~xfay through a test cycle.

The test procedure for script l>ased tests is relatively straightforward. Testers follow these steps when
executiug the system tests:

1. Obtain the latest versions of the scripts and known good results from the system test repository.

2. Identify the tests each tester needs to run.

3. Open GMAT"

4. Run each test following the procedure in 3.2.

5 . As cach test is run, record the summaw results in a. local copy of the test. tracking spreadsheet.

6. \irhen anomalies are found in testing, record them local test case report files.

7. .4t t,he end of each day or when testing is hished, whichevcz occxrs first, ga.ther thc test case reports
generated from the tests and pla.ce them in the folder used to gather the test results.

8. Close GMAT at the end of the test period.

9. At the end of each day or when testing is finished, whichever occurs first, save the local test tracking
spreadsheet with the name <spreadsheet.Name>_:tcs.ter's initids:> in the folder used to gather the
test results.

".l'lte test tracking spreatlshects, uulikc l!~r: tracea.bility itiatrix sj)rca,dshest, call Be saved in either OpenOlfice or Excel
ftsnnal.

'GMLz '~ ' should only be opcr~cd one time for any given testing period. All tests run duricg that test period -- typically a
rrlorriing or afternoon .- should be rur? in the arrie instance of GMtlri'. This helps erisnrr, that the system is si.able over lor~g
periclcls ul rime. LC the sysl;ein js s h u ~ dclwn, eilher by the user or through a syst,err~ crash, that event silould bs n o ~ e d .

Figure 3.1: Tlre Script Test Tracking Sprea(1sfieet

10. Upon colnpletion of all assigned test cases, report that status to the syst,eln test lead.

3.2 Running the Scripted System Tests

By their very na.ture: the GUI based tests described in Chapter 1 follow a relat,ively tlnstruc:tured execution
sequence that mant1at.e~ rnore structured test case documents t o ensure conlplctte system testing. In contrast,
the script based tests follow a liueax execution sequence once the scripts have been written and debugged.
The rest of this chapter describes the procedure follotved for the scripted tests.

3.2.1 Procedure

Each scripted test case has an associs.ted, configilration rnana.g!tf script.. Most script, tpest, cases also have
output (1at.a files used to compare the obtained script. outputs with va.lidated GMAT output files. A tester
follows this procedure to perfornl the associated system test:

1. Open a blank test case report fi16j.

"%'he test. case rcporl. file is ollty ueetled Ibr rtcripl, based lesl,s is ar, snofrtaiy is fr,unci during tt?st.ing. ILL practice, lhe test

. .,. ". (

. .,.:. . .,.
$ '.., . . f i .. .' > 'r : \ ; . .:, .;.. I.. ., 'ii;$:,. i ,., < ,,,... i .,... . : , > , . $ \ ; i... :. . ..,' '' ;, :c 5, '; '. (3, : ,,,. :: <.,; 2 : ->, ; ;;<I. <. .:...:. '.: .> $ 2 .;., ,.:. .;. .i. ,., ,,;, ,$. .$. .$,j,, ?:., ,.: i' ;.::, . *$.).., , ,:.. ,> :., ..:

.. ., . ,

2. Open the script in GMAT.

3. Compare the resources displayed in GMAT with the resources defined in the script.. Enter any anonlalies
in the test case report.

4. Compare t.he mission sequence in the script with the mission sequence displayed in GMAT. Ent.er any
a.nomalies in the test case report.

5. Run the script.

6 . Examine cat:h plot and 3D view t,hat opens. Enter any anomalies on bhe in the test case report.

7. Compase the output results from the run with the known good data. Enter any anomalies in the t,est
case report.

8. Press the run button.

9. Examine each plot rtnd 3D view that opens. Enter any anomalies on the in the test case report.

10. Compase the out.put result,~ from the run with the known good data. Enter any anomalies in the test
case report.

11. Open the script in tho: editor window, and press the "Build ant1 Run" button.

12. Examine each plot and 3D view that opens. Enter any anomalies on the in the test case report.

13. Compare the output results from the run with the known good clata. Eater many anomalic?~ in the test
case report.

14. Save the script to a new file with the name Saved-.:Test case name>.

15. Load the saved script into GMkT.

16. Repeat steps 3 through 11

17. If any anomalies have been found, fill in the header and summary data on the test case report, and
save it wit,h the file name "<test cast:;~-l1.'YE3IMDD.report", where YI?1'MI\;IDD indicate the pa.r,
month and day the test was nin.

3.2.2 A Note on Run Frequency

The script based tests can bo run much more frequently than is feasible for the GUI tests. Scripts t,hat arc!
identified as being run more frequently than at the system test frequency follow a somewhat. abbreviated
procedure fi-om that defined at the system test level. The purpose of the more frequent testing is to help
catch errors in the system prior to f0rma.t system testing. Teh a.bbrevia.ted test procedure performed for
each weekly or monthly test is presented here:

1. Open the script in GMAT.

2. Run the script.

3. Examine each plot and 3D view that opens. Report any anomalies.

4. Compare the output results from the run with the knonn good data. Report any anomalies.

5 . If any anomalies have been found, enter a new anomaly in the bug tracking system.

These tests follow the full system test. procedure when run as part of the system test suite.

case report only ~ ~ a e d s lo St: opmetl ivhen an a:~oon,a.ly is fountl.

3.2.3 Reporting Results

At, the start of the system test process, a cent.ral location was esta1,lished for collection of the test rt:sults.
The final step performed by the system testers is to copy their test case worksheets and local test tracking
worksheet t o this central location. This action is performed each day the system tests a.re run so that the
progress of the system test execution car1 bc evalua;teil. Upon completion of all syst#ern testing by a specific
tester, a final update is made and the system test lead is notified that that tester has completed the assigned
tests. Chapter 5 describes the eonsolidation of the collected test results into a system test report.

Chapter 4

Executing Tests for the Graphical User
Interface

The tests described in this chapter are designed to exercise all of the controls and other elements visible
from the GMAT graphical user interface (GUI). The GMAT GTJ'I is designed to present a consistent, easy
to use interface into the underlying engine so that. users of the system can view, configure, and interact with
the elements of the system during all phases of mission modeling. System testers work with these elements,
using them both to perform the expected tasks and to attempt to perform undesired actions. The former
set of actions exercises the engine to ensure that the system can be configured correctly. The latter tests are
run to ensure that users cannot configure GM-4T incorrectly.

4.1 GUI Test Case Management

The GUI test cases are managed using a test tracking spreadsheet generated at t,he end of test preparation,
described in Chapter 2. Figure 4.1 shows an example of this sprea.dsheet partway through a testing cycle.

The test procedure for GUI based tests requires extensive exercising of the components in the GUI.
Testers follo~v these st,eps when esecuting the system tests:

1. Obtain tlie latest versions of the GUI test cases and a local copy of tlie test case tracking spreadsheet".

2. Identify the tests that the tester needs to run.

3. Open GM.U2.

4. Run each test following the procedure in Section 4.2.

5. As ea.ch ttet is run, record the results of the ttst 011 the test case worksheet retrieved in step 1.

6. When anomalies are found in testing, record them on the test case worl~sheet and t?nt.er them in the
bug tracking database.

7. Close GhlAT at the end of the test period.

8. At the end of each day or when testing is finished, ~liichever occurs first, gather the coinpleted test
case worksheets and place them in the folder used to gather the test results.

''The test tracking sprcdst~oel; is geltecaled t'rorn Ltie Systut "lbst Matrix sprcaclstleet ming a:, OperrOGcc nmcro, ;w drrscri!,i:t.l
irr Sectjot1 2.6.

'GMXZ'~' ~ h o d d only be opened o t ~ e tirrle for any given testing period. All tests run during that test period -- typically a
rr;orrting or aftarnoon - - shou!d be run in the same instance of C4MArL'. 7'kb helps ertsuro that the system is stable over long
periclcls ol rirr~s. IF lhe sysieut is s t ~ u l dcnvrr, eill~r?r l ~ y the user or thrcrugi~ a syst.ertt crah, rhat event silould be nored.

32 C'HH4P TEII I. .b2Y.bCVY1NC TESTS I;'OII THE GIIAI-'HIC-AL LrSElt I-\'TEXfi:4 C?E

Figxre 4.1: Thc GUI Tcst Tracking Sprcadshcet

9. At the end of each day or when testing is finished, whichever occurs first, sa.17~ the local gxi test tracking
sprea.clsheet with the na~ne <spreadsheetNanie>-<tcst(?r's initials> in the folder usecl to gather the
test results.

10. Upon conlpletion of all msigncd test cases, report that status to the system test lead.

The procedure for running a single test case is described next.

4.2]Running the GUI System Tests

By their very ria.ture, the script based tests described in Chapter 3 follow a linear execution scqrience once
the scripts have bt:en written and debugged. In contrast, interactions perfornied using the GMAT GUI are
less structured .-. users can use the controls on the GUI in a seemingly random fashion - - so the test cases for
the GUI include dlowanccs for interacting with the GUI elements by t.he tester in a more free form manner
than the script basecl tests allow.

4.2.1 Sample GUI Test Case
A saniple GUI test case is shown here:

Tester: Date: -,--------------,--------

Description:

This test validates the functionality of the OpenGL panel.
(* indicates sub-panel whose functionality is tested separately)

Procedure:

I. Create and open the appropriate object panel.

Create OpenGL Resource C 1 Pass [1 Fail Bug# ------

Open OpenGL Resource C 1 Pass 1 1 Fail Bug# ,-----

2. Evaluate the aesthetic qualities of the panel.

Panel Aesthetics f 1 Pass I: 1 Fail Bug# ------

3. Evaluate the individual panel elements.

Show Plot Check Box

Collect Data Text Field

Update Plot Text Field

Number of Points to Redraw Text Field

Draw Wireframe Check Box

Draw Targeting Check Box

Draw Ecliptic Plane Check Box

Draw XY Plane Check Box

Draw Axes Check Box

Draw Grid Check Box

[I Pass

[I Pass

[1 Pass

[1 Pass

[1 Pass

[I Pass

C I Pass

[1 Pass

[I Pass

[1 Pass

C 1 Fail

[1 Fail

[1 Fail

[1 Fail

C 1 Fail

[1 Fail

[1 Fail

C 1 Fail

[I Fail

[1 Fail

34 C~HN:4f"1E12 4. EdXECI;'TING TESTS E'OlZ THE GIZAT3HICAL LSE12 IL\~TEXJ '~~C~~

*u

80

63

62

58

54

55

5ij

67

88

;19

60

61

ti"

ti2

B-1

us

NG

(j 7

BY

69

70

71

72

73

74

76

7(i

77

78

79

no

81

82

85

H.5

33

88

87

UJ

89

a0

01

92

93

0.1 4.
US

06

a 7

38

10

Draw Earth/Sun Lines Check Box

Spacecraft L i s t

Selected Spacecraf t L i s t

C e l e s t i a l Object L i s t

Selected C e l e s t i a l Object L i s t

--> (Add) Se lec t ion Button

<-- (Remove) Se lec t ion Button

< = (Remove All) Se lec t ion Button

Show Object Check Box

Orbit Color Se lec t Box

Target Color Se lec t Box

Use I n i t i a l View Def in i t ion Check BOX

Use Perspect ive Mode Check Box

Use Fixed FOV Angle Check Box

F ie ld of View Text F ie ld

Coordinate System Combo Box

View Point Reference Combo Box (see 4a)

View Point Vector Combo Box (see 4b)

View Scale Factor Text F i e l d

[1 Pass [1 F a i l

[1 Pass C 1 F a i l

[I Pass [1 F a i l

[1 Pass [1 F a i l

[1 Pass C 1 F a i l

1: I Pass [1 F a i l

[1 Pass [1 F a i l

[1 Pass [1 F a i l

[1 Pass [1 F a i l

[I Pass [1 F a i l

L: 1 Pass [I F a i l

[1 Pass [1 F a i l

[1 Pass [1 F a i l

C 1 Pass [1 F a i l

[1 Pass [1 F a i l

[1 Pass [1 F a i l

[1 Pass [1 F a i l

[1 Pass [1 F a i l

[1 Pass [1 F a i l

View Direct ion Combo Box (see 4c) [I Pass [1 F a i l

Coordinate System Combo Box [1 Pass [1 F a i l

Axis Combo Box [1 Pass [1 F a i l

Evaluate panel-specif ic f u n c t i o n a l i t y .

a . Se lec t 'Vectory f o r View Point Reference

Vector 1 Text F i e l d [1 Pass [1 F a i l

Vector 2 Text F ie ld C 1 Pass C 1 F a i l Bug# ------

Vector 3 Text F ie ld [1 Pass [I F a i l Bug# ------

b. Select 'Vector' f o r View Point Vector

Vector 1 Text F ie ld [1 Pass [1 F a i l Bug# ------

Vector 2 Text F ie ld [1 Pass C 1 F a i l Bug# ------

Vector 3 Text F ie ld [I Pass [1 F a i l Bug# ------

c. Se lec t 'Vector3 f o r View Direct ion

Vector 1 Text F i e l d C 1 Pass [1 F a i l Bug# -,----

Vector 2 Text F ie ld 1 Pass [: 1 F a i l Bug# ------

Vector 3 Text F i e l d [I Pass [1 F a i l Bug# ------

Use Perspect ive Mode Check Box c 1 Pass C 1 F a i l Bug# -,----
--- s e l e c t checkbox t o check following

Use Fixed FOV Angle Check Box [1 Pass C 1 F a i l Bug# -,----
--- s e l e c t checkbox t o check following

F ie ld of View Text F i e l d [1 Pass [1 F a i l Bug# -,----

5. Evaluate data .

Data elements appeax complete [: 1 Pass r. 1 F a i l Bug# ------

Show S c r i p t 1. I Pass C I F a i l Bug* ------

6. Evaluate panel control .

Tab Key Navigation

Cancel

Apply

OK (Save)

Help [DEFERRED]

Restore

Minimize

C 1 Pass C 1 F a i l Bug# ------

C I Pass C 1 F a i l Bug# ------

C I Pass I: 1 F a i l Bug# ------

C I Pass C 1 F a i l Bug# ------

C I Pass C 1 F a i l Bug# ------

I: I Pass [: 1 F a i l Bug# ------

161

Ida

I LS

134

1 j B

156

257

168

1%

160

I ($1

162

163

Id4

166

168

167

1 HY

1(19

l i 0

l i l

173

178

17.1

115

I76

I 7:

Maximize

Close

CXl+4f'TE'I? 11. EAYL"CC'r1NC TESTS E'OR THE GIZBPHICAL LSEIi ISTEX.E:4C%'

7. Evaluate rename funct ional i ty .

Rename (on resource t r ee)

C 1 Pass C I Fa i l Bug# ------

C I Pass C I Fa i l Bug# ------

C I Pass C I Fa i l Bug# ------

Summary :

Number of passed t e s t elements ------

Total number of t e s t elements ------

Test case s t a tu s [1 Pass [1 Fai l

Bugs Reported:

Notes :

Figure 4.2: The OpenGLPlot Setup f'anel

The test case worksheet sliown here is the t,est case for the OpenGL plot setup panel. The panel, shown in
Figure 4.2, is a fairly complex GUI panel, containing text fields, combo boxes, check boxes, text lists, and
action Buttons which open color selection dialogs. Ea.ch element is included in the test plan workshwt, along
with the standard control processes that need to be exercised, Each test criterion is evaluated using tliis
n~orksheet, and given a pass or fail evaluation.

4.2.2 Procedure

Each GUI test case has a worksheet like the one shown above. A tester follows t.his procedure to perform
the associa.ted system test:

1. Open the test case worksheet.

2. Follow the procedure outlined in the t,est, case.

0 Section 4.3 provides detailed instructions about the process that should be followed when testing
eacli type of GUI element.

e Each item identified in the worksheet is masked as either passing or failing the tc?st. If the itsern
fails, an associa.ted bug is entered or identified in the bug tracking system and listed on the
worksheet.

ARer completing the tests on the worksheet, the tester experiments with the component for an
additional period (typically ten to fifteen minutes), checking to be sure that the component is
stable and behaws correctly when bad data is entered, and when ra.ndorn actions axe taken using
that component.

e Once every item on the worksheet has been evaluated and the final period of usability testing has
been performed, the numn1,er of pars and fail evaluations are counted and recorded in the summary
section of the test case worksheet. Any bugs identified on the worksheet are listed in this section,
and any additional notes that need to be recorded are also listed here3.

3. Summarize the results of the tests.

0 Once every item on the worksheet has been evaluaked, an overall pass or fail evaluation is made
and recorded in t,he summary section. Any bugs identified on the worksheet as(? listed in this
section, and any additional notes that need to be recorded are also listed here.

e Add the tester's nanie and the data thc test was run to the worksht?c?t.

e Sase the completed test case m-orksheet.

4. Update the local test tracking rvorksheet to indicate that the test was run and the results of the run.

5. Save the test tracking worksheet.

4.2.3 Reporting Results

At the start of the ssrstan test vrot:ess. a central 1oca.tion was established for collection of the test results.
The final step pelfornled by the system testers is to copy their t.est case worksheets and local test. tracking
worksheet to this central location. This action is pelfornled each day the system Bests are run so that the
progress of the sy.ut.eni test esecution can be evaluated. Upon completion of all system testing I)? a specific
tester, a final update is made and the system test lead is notified that that tester has completed the assigned
t.ests. Chapter 5 describes the consolidation of the collected test results int,o a system test report.
.-----------------------------

"%'llese data arc collecbed using a;? autottiatiun loo1 to huilcl a status tepo~-l for ~f ie sysi.ert; tests.

38 c'BB4f"IE12 4. E~YECLT"iNG TESTS FOR TlIE GllA13HICAL USE12 INTERJXCYE:

4.3 Procedural Rules

The steps described in the preceding sections lay out the procedures followed when testing the GUI dements
of GMAT. In this sectio11, the criteria that must be evaluated ate defined for these t.est,s.

4.3.1 Test Procedures for All Elements

Aesthetics

Description: Tlzis set of tests verifies platform-specific look and feel of a panel, as extended by the GMAT
GGI Philosophy docunlent[Dove]. Each criterion must be met to pass the a.estht%ics tests.

4 All of the data input fields and bounding boxes can be seen at the panel size displayed when the panel
is first opened, for ail tabs on the panel.

e The blank space surrounding the data area. is not ciistracting, and does not dominate the ap1)earance
of the interface. As a guideline, for pla,tforms that allow control of the surrounding white space, that
region should not consume more than 20% of the t.otal space dedicated to t,he panel when it is opened.

The data area does not appear too crowded; the surrounding blank space is appropriately sized.

* The window ca,nnot be resieed so that the data cannot. be seen.

General Panel Functionality

Description: This is the list of t.est,s associated with basic panel functionality: open, close, rename, minimize,
ok; cancel, help, show script, command summary. Additionally, the behavior of open panels needs to be
consistent with deletion actions taken on the resource and mission trees .. if an object in the tree is deleted,
any open pand associated with that object should close. All of these functions must pass.

e New 0bject.s of the type being tested can be created from the appropriate tree on the R.esource or
Mission panels.

e Double clicking in a new object opens the panel for that object.

e Double clicking in a object tl1a.t has an open panel brings the panel for that object to the front of the
displayed panels.

* R'ew objects can be renamed.

* Default objects, when they esist, can be renamed.

* Default obj~zcts, when they exist, can be deleted.

- The object can be renamed.

- R.eferences to the renamed object are updated in related elements of the system.

R,ena,ming worlcs after rna,king changes to the data on the object pand.

--- The object can be reilamed while the panel is open.

.-- A cllange can be nlade on the panel, and then the object can be renamed before the change is
applied.

--- A change can he made on the panel, the change can be applied, and then the object. can be
renamed.

- For each of the above cases, refererices to the object's name tue updated throughout the system
when the object's name is changed.

Changes made on the pand and a.pplied using tlle OI< button a.ppca on the panel when it is reopened.

Changes made on ths panel and applied using the -4ppl-y button arc? visible in the script when viewed
using the Show Script dialog.

e When you open the panel, make a. minor cha.nge in the panel, and click button to close the panel (on
Windows, this is the small "x" button in the upper right hand corner on the Ma,c, it is the red button
on t,he left side of the frame co~ltrols, and on Liilux, varies ba.sed on the configiration of the Linux
window manager), you are prompted t.o save data before closing. Check that:

- The proinpt. does appear.

- Selecting 'Yes:' updates the underlying data..

- Selecting "Eo" discards the changes.

e Cancelling closes the opened panel without changing the underlying data.

- The object does not diange when you open the panel and press the Cancel button without nialring
any changes.

--- The object does not change when you open the pand, make a minor change in the data, and press
the Cancel button.

--- The object does not change when you open the panel and click the close button in the panel's
fra.me to close the panel, but t.hc panel does close without prompting.

e The panel is minimized when the minimize button on the panel frame is pressed.

0 The panel reopens to previous size when maximize icon on the minimized p a d is pressed

0 The tab key na.vigates the open panel in agreement with style a.nd GUI design philosophy. Savigation
is orderly and sensitjle using the tab key.

Panel Data Element Completeness and Correctness

Description: This set of tests verifies tha.t all data elements that, shonld appear on t,he pa,nel are present on
the panel. It also tests that all elements that sllould appear in "Show- Script" dialog a.ppear there, and that
items that should not appear in show script do not appear there.

Verify that only data elements that occur in the R.aage Test Plan appear i11 show script and that the
user does not see any other object fields.

e Verify that defaults agree with the values in the R a n g Test Plan.

o Press the ''Shour Script'' button, and vtxify tha.t all t?lenlellts on the GUI panel also a.ppeas on the show
script dialog. 'L'erify that these elements match the description in the Range Test Plan.

0 \lerify that all data. elements that appear in Sllow Script also appear on the GUI. (This step validates
t,ha.t all scriptable settings also appear in the GUI.)

4.3.2 Procedures for Specific Control Types

The following table 1)rovides additional guidelines that should be folloured when testing each specific type of
control.

CH-4P'IEJZ 4. EaXECrTll'iG TESTS E'OR THE GlUI'NICAL LiSEIi, 1NTEBEXC:E

Table 4.1: Tests for Data Objects on AIl Par~els

a Set all check buttons to on (checked), hit apply, and show script and
verify that the functionality is indeed turned on for each radio button
and check box-.

Elenient Type
Check Boxes

'fists
a Set all check boxes t,o off (unchecked), hit show script, and verify that

the functionalit,y is indeed turned off for each radio button and check
box.

Radio Buttons

0 For each Combo box or1 the panel, sdect each allowable option, hit
apply and show script and check to see t,hat, the option was correctly
saved.

a For ea,ch radio but.t.011 on pa.ne1, sslect the button, and ensurc that it
activates and all others are deactivated. Hit Apply, and then check
show script to ensure that the configuration was properly saved.

Combo Boxes

I . ~ h b c k to ensure that the combo box is not editable.

e For each combo box on the pa.ne1, ensure that all options that appear
in Range Test Plan appeas in the pull down menu.

r For each text field enter "DNE" and ensure that if GhtlALIT should
reject this string that the string is rejected. (Currently, this is not an
accel>table value for any GMAT field unless the user has created an
appropriate object type and named it DNE, and is using it correctly
in the GUI.)

/ a Perforla all range t t a s as desedhd in Range Test Plan.

I For all numeric fields, enter an allowed numeric value: hit apply and
show script and check that the va.lue was saved.

a If user-defined objects can appear in the coiril)o box, create one object
for all al1ow;tble object types for the particular combo box, and ensure
that it a.ppeaxs in the combo box. Also, hit apply and ensure that
each case appears in show script.

For the panel opened up, perform all tests defined in Sect.ion 4.3.1
a,nd Table 4.1

Action Buttons
a For ea.ch but+t.on ensure that clicliing on the button brings up the

appropriate panel.

a Second Iteni

Select,ion Lists
a First Item

4.3. J'IZ0C.D L,'IML RULES

Table 4.1: (Tcsts for Data. Objects on All Panels ... ccmtinuc3d)

a Second Item

Element Type
Tabbed Panc?ls

4.3.3 Usability Testing

Tests

* First Itsern

The tests described in the preceding pa.ragra-phs a.re ~ n c m t to exercise all of the ele~nents of the graphical user
interface. One important aspect of the interface not covered 11y those tests is the usability of the system:
the GUI may perform error free as designed, and still be difficult to use in practice. Usability testing is
performed to capture information a.bout this aspect of the GGI.

Chapter 5

Reporting and Reviewing Test Resu

This chapter describes the process followed for tracking the state of the system test process and for reporting
the results of the testing.

5.1 System Test Status

The status of the system tests is tra.cked using the Script and GUI test tracking sl)rea.dsheets described in
Chapters 3 and 4. Systeln testers update their copies of these spreadsheet daily during system testing. Once
a week or upon request, the system test lead consolidates these spreadsheets, collecting the test results in
master system test spreadsheets that can be reviewed by interested parties.

5.2 The System Test Report

At the conclusion of system test cycle, the reports generated'during s~s t em test axe consolidated i11t.o a single
document. This document is prepared using the following outline:

A. Esecutive Summary

B. Test Results

C. R.ecommenclations

IT. Script Test Case R.esults

A. Test R,esult Statistics

B. Summary of Failed Tests (if my)

C. Test Results

i. Fa.ranlet,ersinComma.nds Test Case Report
ii. CbPara1ns-Gh~I-4T-GEU-2Body Test Case R,eport

...

111. GUI Test Case Results

A. Test Result Statistics

3. Summary of Failed Tests (if any)

C. Test Results

CIi.4PTER 5. nEl'Ol?T1,Ry'C AXD I(E'/,Ry'm WlSG TEST I X S Z'LTS

i. Mainfra~nc Test Case Worksheet
ii. Resource Tree Test Case l\~orksheet

5.3 System Test Review

The! final step in thc? system test process is to perfonn a review of the test results. In prepara.tion for this
review, each team niernber ancl reviewer reviews the System Test R.eport, highlighting any issues that raise
concerns. These parties the11 nleet and discuss the findings of the system testing. The outcome of this review
is a, list of action items, assigned to specific individuals or teams, and a rc?cornrnenda.tion about the status of
the system for release.

A typical release recom~ncndation will fall into one of three categories: (1) GMAT is ready for release, (2)
GM-AT is ready for release, contingent on specific items being addressed and approved prior to that release,
or (3) G%IAT is not ready for release, and needs to meet specific items a i d be rc?viewed again before rdease
will be approved.

Follo~virzg this review, a sunnnary documenting the findings of t . 1 ~ review is written and provided to all
teltni members and interested parties. Once GhlAT has been released as an open source project, a public
version of this summary is made availal~le with the other project artifacts.

Bibliography

[Black!

[Craig]

1 Dove]

[MTPI

[GUT]

[huglzes]

IIiughes2j

[ma.tlat)]

loo01
[opttools]

Rex Black, "Managing the Testing Process," Sec,ond Edition, Wiley Publishing, 2002.

Rick D. Craig and Stefan P. Jaskiel, "Systematic Software Testing," Artech House, 2002.

Edwin G. Dove, "GUI Philosophy for the General Mission Ana.lysis Tool (GMAT)."

GMAT Test Team, "General Mission Allalysis Tool (GM.4T) Master Test Plan."

GMAT Dc!velopmtant Team, "General Mission Analysis Tool (GM.4T) Architectural Specification."

Steven P. Hughes, "General Mission Analysis Tool (GMAT) Mathenlatical Specification."

Steven P. Hughes, "General Mission Analysis Tool (GMAT) User's Guide."

The Ma.thWorks, Inc, "M-4TLABn, available from http:i/ www.mathworks.com.

0penOfice.org: "OpenOffice9', available from http://www.openoEce.org/.

The hlathJVorks, Inc, "Optimization Toolbox", available from http://www.mathworlis.com.

