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The Solar Dynamics Observatory (SDO) aims to study the Sun's influence on the Earth 
by understanding the source, storage, and release of the solar energy, and the interior 
structure of the Sun. During science observations, the jitter stability at the instrument focal 
plane must be maintained to less than a fraction of an arcsecond for two of the SDO 
instruments. To meet these stringent requirements, a significant amount of analysis and test 
effort has been devoted to predicting the jitter induced from various disturbance sources. 
One of the largest disturbance sources onboard is the reaction wheel. This paper presents 
the SDO approach on reaction wheel disturbance modeling and jitter analysis. It describes 
the verification and calibration of the disturbance model, and ground tests performed for 
validating the reaction wheel jitter analysis. To mitigate the reaction wheel disturbance 
effects, the wheels will be limited to operate at low wheel speeds based on the current 
analysis. An on-orbit jitter test algorithm is also presented in the paper which will identify 
the true wheel speed limits in order to ensure that the wheel jitter requirements are met. 

Nomenclature 
amplitude coefficient of wheel disturbance 
damping of wheel axial mode 
damping of wheel rocking mode 
wheel disturbance input 
harmonic number 
wheel radial force disturbance 
X, Y component of wheel disturbance force 
Z component of wheel disturbance force (axial force, F,- F,,) 
Transfer function from wheel disturbance input to performance output 
Wheel inertial perpendicular to spin axis 
Wheel inertial about spin axis 
stiffness of wheel axial mode 
stiffness of wheel rocking mode 
Wheel mass 
wheel radial moment disturbance 
X, Y component of wheel disturbance torque 
Z component of wheel disturbance torque 
Wheel speed 
Phase angle 
Power spectral density (PSD) 
Reaction wheel disturbance PSD 
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Sz2 = Performance output PSD 
t = Time 
T = Torque 
8,, 8, = Angular rotation about X, Y axis 
, Y = Orthogonal axes perpendicular to wheel spin axis 
Z = Wheel spin axis 

= Performance output 

I. Introduction 

T he Solar Dynamics Observatory (SDO) is scheduled for launch in January 2009. The main science objective of 
this mission is to observe the Sun and increase the understanding of the Sun's influence on the Earth. There are 

three instruments onboard the SDO for achieving its scientific goals: the Atmospheric Imaging Assembly (AIA), the 
Helioseismic and Magnetic Imager (HMl), and the Extreme Ultraviolet Variability Experiment (EVE). Both AIA 
and HMI are sensitive to high frequency pointing perturbations and have tight jitter requirements. The SDO jitter 
performance is defined as the line-of-sight (LOS) motion measured at the instrument detectors. The spacecraft 
attitude control system (ACS) is capable of removing large, slowly varying LOS (or pointing) errors. Both AIA and 
HMI have additional instrument stabilization systems (ISS) to reduce mid-frequency range LOS disturbances. The 
resid~~al LOS motion. after ACS and ISS compensation, measured on the instrument detectors must be less than 0 17  
arcsecond 1 - a for AIA and 0 14 arcsecond 1 - a for HMI. 

One of the largest disturbance sources onboard the spacecraft is the reaction wheel. SDO carries four wheels to 
provide 3-axis pointing stabilization. These wheels also generate large tonal and broadband disturbances due to mass 
imbalances, bearing imperfections, and mechanical noises. The wheel disturbances are difficult to model accurately 
since their frequency and magnitude change with wheel speeds, and since they can interact with wheel structural 
modes to greatly amplify the disturbance level. The wheel jitter allocations from the total AIA and Hbll jitter 
requirements are 70 milliarcsecond (mas) and 62 mas, respectively. The tight jitter requirements necessitate careful 
modeling of the wheel disturbance and validation of the analysis results. The uncertainties inherent in predicting 
wheel disturbances and structural response also motivate the development of a test plan to measure jitter on-orbit 
and adjust wheel operational parameters accordingly. 

Extensive modeling and analysis efforts have been directed in estimating the amount of jitter disturbing the 
science instruments. This paper first describes our approach on wheel disturbance modeling in Section 11. It then 
presents how the disturbance model is used to predict jitter performance by using an integrated modeling 
methodology in Section 111. In order to verify the disturbance models and to validate the jitter performance prior to 
launch, the wheel induced vibration levels were tested by the wheel vendor, and a close-to observatory level wheel 
disturbance test was performed at the NASA Cioddard Space Flight Center (GSFC). This paper provides descriptions 
of the test setup and relevant results from the ground tests in Section IV. Finally, the paper also presents SDO's on- 
orbit jitter test plans and wheel disturbance test algorithms in Section V. 

11. Reaction Disturbance Model 
SDO has four Goodrich E-type reaction wheels onboard the spacecraft for attitude control. These wheels are 

mounted on the four upper bus panels of the spacecraft with the spin axis pointing 60 deg away from the body X 
axis. The maximum torque capability of each wheel is 0.25 Nm with a momentum limit of 70 Nms. The reaction 
wheels are the source of high amplitude jitter disturbance, due to static imbalance, dynamic imbalance, and bearing 
imperfections that introduce tonal disturbances occurring at known ratios of the wheel speed. In addition, the noise 
signature includes a low level broadband noise characteristic that is visible at low wheel speeds. Since the net solar 
and gravitational torques acting on SDO are expected to be low, the wheel speed change will be very slow. As a 
result, the wheel tonal disturbances will dwell on jitter-critical observatory modes long enough to excite them to 
steady state. The modeling assumptions and the wheel disturbance model are described in this section. 

The goal of this section is to present the wheel disturbance modeling methodology used by the SDO analysis 
team. The precise disturbance level is not crucial to this discussion. In order to protect the proprietary wheel 
disturbance data provided by the manufacturer, several plots shown in this section have magnitudes purposefully 
blanked out. 



A. Model Assumptions 
The reaction wheel Induced Vibration (IV) disturbance forces were measured by Goodrich in order to verify the 

imbalance requirements. Figure 1 shows a typical data set for one SDO wheel (post-vibration). The plot shows the 
force in the wheel Y axis, as a function of frequency and wheel speed in revolutions per second (revlsec). Note that 
the forces and torques are defined at the wheel center of mass. The ridge lines fanning diagonally out from the lower 
left comer are referred to as tonal.disturbances. These are wheel dependent disturbances occurring at frequencies 
equal to harmonics of the wheel speed. 
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Figure I Wheel disturbance Induced Vibration (IV) data for one SDO wheel, in the Y axis, as a function of 
frequency and wheel speed 

The IV test data sets could be used to perform the jitter analysis directly. However, the disturbance data were 
taken at a relatively coarse set of wheel speeds, in 60 revolutions per minute (RPM) steps. The tonal disturbances 
from the discrete data sets are unlikely to occur exactly at the frequency of spacecraft structural modes. and 
therefore the peak jitter will be missed. As an alternative, a semi-analytical wheel disturbance model was created 
and tuned to the test data. The model was then used to predict the disturbances at a very fine wheel speed resolution, 
to ensure that the peak response was captured. 

The semi-analytical wheel model consisted of a physical model of the wheel axial and rocking modes, including 
gyroscopic torques on the wheel, excited by external forces. In addition to tonal disturbances, broadband noise was 
another distinct forcing characteristic visible from the test data. Analysis results described later in the paper 
demonstrate that both tonal and broadband disturbances were important. The tonal disturbances were larger in 
magnitude and created the largest jitter response when aligned with the spacecraft modes, but the broadband noise 
was always present and therefore continuously pumped energy into wheel structural modes, producing a continual 
jitter response at all wheel speeds. The semi-analytical disturbance model is diagrammed in Figure 2. It consisted of 
empirical tonal and broadband disturbance models, generated from fits to the disturbance data. The disturbances 
were filtered by an analytical model of the reaction wheel structural modes, which accounted for the dynamic 
amplification of the disturbances at wheel structural frequencies. The model development proceeded by, first, 
identifying the harmonic disturbances and tuning the wheel structural modes, since the higher disturbance magnitude 
produced a higher signal to noise. Then the harmonics were removed from the disturbance data to produce a 
broadband noise model. The tonal disturbance model, wheel structural model, and broadband noise model are 
discussed below. 
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Figure 2 Semi-analytical wheel model consists of empirical tonal and broadband disturbance models, filtered 
by an analytical model of RW dynamics 

B. Wheel Tonal Disturbance Model 
In the reaction wheel frame, the positive spin axis defines the local Z axis, and any two orthogonal vectors 

perpendicular to spin axis form the X and I. axes. The disturbance forces generated in the wheel plane are referred to 
as radial forces (F,, F,), force along the Z axis is the axial force (F,), torques around and Y axes are radial torques 
(hl,, \I,), and the torque around the spin axis is the axial torque (21:). Test data have shown that wheel imbalance 
and bearing imperfections only result in small disturbance torques around the spin axis; therefore, axial torque is 
neglected for the wheel disturbance modeling and jitter analysis. 

The forcing characteristics were modeled by a speed-squared model for the tonal disturbance1: 

'V ", 
dj( t )  = 1 cjiin2 sin (2nhinnt 

k=l 

where d is disturbance input. j is dis t~~rbance input number (for force, j = 1, 2, 3, or for torque. j = 4, 5, 6), k is the 
harmonic number index, .YI is the number of harmonics fo r j th  disturbance input, Clk is the amplitude coefficient for 
kth harmonic of j th  disturbance input, R is the wheel speed in Hz, h,k is the harmonic number (ratio of  frequency of kth 
harmonic of jih disturbance to spin frequency o f  the wheel), and q5,k is the phase angle of  kth harmonic of  jih 
disturbance. Each disturbance component is the sum of sinusoids occurring at various harmonic frequencies, hJkn. 

In Eq. ( I ) ,  the parameters Cii; and hln are determined or calibrated from the IV test data. The procedure will be 
described in Section D. The phase angles #,k are assumed to be random with uniform distribution between 0 and 2.7~'. 

C. Wheel Structural Model 

Figure 3 Schematic of the wheel structural model 

The gyroelastic wheel structural model accounts for elastic deformation of the wheel, shaft, bearings, and case, 
as acted on by gyroscopic forces created by, and applied to, the spinning wheel. This deformation is important to the 
jitter response because it dynamically amplifies the disturbance force, by as much as a factor of  50 for the SDO 
wheels. The wheel structure is modeled by a simplified, but physically meaningful dynamic system (Figure 3). The 
model includes wheel rocking about the two axes perpendicular to spin, and axial displacement along the spin axis. 



Wheel disturbance forces are applied at the center of mass (CM), where they are filtered by the structural modes to 
generate dynamically amplified disturbances. The Goodrich IV data shows no evidence of modes in the lateral force 
data, or in the spin axis torque, so these three axes are modeled as a pass-through of external disturbances directly to 
the spacecraft. 

Note that the offset from wheel CM to wheel mounting interface will cause the lateral disturbance forces to 
create a moment at the interface. The wheel disturbance node in the FE model is located at the wheel CM, so that the 
wheel CM disturbances will cause the correct moments. 

The model parameters for the wheel structural model include the mass IW, inertias of the wheel about the spin 
axis, I,;, and about its perpendicular, I,.,, the wheel rocking mode frequency o, and damping 6, at zero RPM, and the 
axial mode frequency a,, and damping j,. Mass, inertia, and frequency parameters are provided by the wheel 
manufacturer. They can be verified, and if necessary tuned, using the IV data. The damping parameters must be 
extracted from the 1V data to account for any possible amplitude dependence. 

The rocking and axial dynamics can be treated independently. The rocking dynamics are a function of the 
rotational inertia of the wheel perpendicular to the spin axis, I,,, the effective stiffness of the wheel, shaft, bearings, 
and case, IY,,~,~, as well as the effective damping C,,,r, and the gyroscopic torque in tenns of spin axis inertia 1:: and 
the wheel spin rate R2, 

[ I , .  o I,.,. I +  ey o ] [ [ : : J R [ ~  ] +  O ][:]=[;] C~.ock . -I-- 0  6 
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The torques on the spacecraft are computed from the differential angular rotation of the wheel, 

The effective stiffness and damping can be computed from the rocking mode frequency and damping ratio at 
zero RPM. 

As noted, these parameters are provided by the wheel manufacturer but can be tuned during model calibration. 

Figure 4 (left) nutational mode (posigrade): the angular momentum vector tip describes a circle, in the same 
direction as the wheel rotation, (right) nutational mode (retrograde): the tip describes a circle in the opposite 
direction to the rotation 



The gyroscopic terms couple the rocking modes. At zero RPM, there are two orthogonal modes at the same 
frequency. When the wheel spins, the modes couple and split into a nutational and a precessional mode, collectively 
called whirl modes. These modes can be visualized in tern~s of the angular momentum vector H (Figure 4). At zero 
RPM, when a rocking mode is excited, the tip of the vector oscillates in a single plane. As RPM increases, the tip of 
the vector starts to move in a circle. The nutational mode involves the tip moving in the same direction as the spin 
(posigrade motion). This mode increases in frequency as the spin rate rises. The precessional mode involves the tip 
moving in the opposite sense to the spin direction (retrograde), and this mode drops in frequency as spin rate rises. 
Thus the rocking mode splits into two "branches" as spin rate increases (Figure 5y. 

0 5 10 15 20 25 30 35 40 45 50 
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Figure 5 Goodrich E whirl modes start at  60 Hz rock mode. Nutation branch increases with frequency, 
precession branch decreases with frequency. 

The axial force model is not wheel speed dependent, and can therefore be defined simply in terms of a second 
order dynamic model, 

where ILI is the wheel mass, c,, is the damping, k, is the effective stiffness, and the latter two parameters can be 
computed from the measured frequency and damping ratio, 

Similarly to the rock mode, these parameters can be refined during model calibration. 
The wheel gyroscopic terms require careful treatment of disturbance phasing. The radial forces and moments are 

correlated. The static and dynamic forces and torques, in particular, have a known phase. For a positive spin, the Y 
forcelmoment lags the X forceimoment by 90 degrees. For negative spin, the Y forceslmoments lead. For higher 
harmonics, the phase relationship is not known a priori so it must be extracted from the IV data. In the frequency 
domain, the relationship from radial forces and moments to X N  forces and moments is: 



where i=sqrt(-I) and the subscripts on the right hand side refer to the wheel spin direction. The phasing matrix 
can be folded into the analysis model. The disturbance fundamental is caused by static and dynamic imbalance, 
which has physically a +spin phase relationship. so the jitter response is evaluated from Fmd , F,, and I!&,, . For 
higher harmonics, the root-sum-square (RSS) of the +spin and -spin responses should be used. For the SDO wheel 
jitter analysis, the computations were simplified slightly by RSS'ing the +spin and -spin forces and moments prior 
to impinging them on the structural model. This simplification matched the IV data well. 

The approach used for SDO was to evaluate the disturbance forces on the fixed-base wheel model. and apply 
these to the spacecraft structural model. This technique ignored the coupling between wheel and spacecraft 
structural dynamics, which could result in a shift in rocking and axial modes. The alternative of incorporating the 
wheel model into the FEM, and applying the gyroscopic terms to the FEM during the jitter analysis, would be more 
accurate but substantially more coniputationally intensive. In practice, the simplification was unlikely to lead to 
under-predicting the peak jitter since the analysis allowed for a +/-lo% structural mode frequency shift to account 
for modeling uncertainty, and therefore the worst-case coupling between wheel disturbances and observatory 
structural modes should have been captured. 

D. Calibration Procedures for Tonal Disturbances and Structural Illodes 
The reaction wheel disturbance model was calibrated to match the Goodrich IV data. Model parameters such as 

harmonic numbers (h,n) and amplitudes (C,i), and reaction wheel structural modal frequencies were calibrated to the 
induced vibration data. 

All four SDO reaction wheels were tested. both before and after vibration testing. The post-vib data was used to 
calibrate four separate models. The calibration process proceeded by computing the amplitude spectra (AS) of the 
time domain wheel disturbance data to form waterfall data. as shown in Figure 1. The data sets consisted of 50 
seconds of data at a sample rate of 800 samples per second. The intent was to use 5 averages of 10 seconds each to 
reduce noise, but the wheel speed drifted during the test. As a result, a single average of 10 seconds (8,000 samples) 
was used. Since the analysis was completed, a technique for accommodating wheel drift has been developed. 

In order to calibrate the harmonic model, the waterfall data sets were converted to order analysis data, consisting 
of amplitude as a function of harmonic factor h and wheel speed Q. The harmonics were identified as constant-h 
ridgelines. Then, for each harmonic, the disturbance coefficients and wheel structural frequency and damping were 
simultaneously tuned to the data using a nonlinear least-squares technique. 

As an example, Figure 6 plots the torque contours about the Y axis, for one SDO wheel. The dashed lines 
fanning out from the lower left are the identified harmonics, and the solid black lines are the whirl modes as 
predicted by the model. The peak disturbance occurs at several wheel speeds; at high wheel speed (above 35 
revlsec) at the fundamental, at 23 revlsec when the second harmonic crosses the precessional branch, and at 36 
revlsec when the 3rd harmonic crosses the nutational branch. The model captures the whirl mode behavior well at all 
wheel speeds. The broadband noise from 210 to 400 Hz is particularly evident in the data set. The continuous ridge 
lines tracing out the whirl mode branches in the data make it clear that the wheel structural modes are constantly 
excited by broadband energy. Figure 7 shows the comparison between the radial moment amplitude data, in blue, 
and the model fit, in green, for the fundamental harmonic (h=1.0). The prediction is almost exact between three and 
20 revlsec. Below 3 revlsec the data is dominated by noise. Above 20 revlsec, the model over-predicts the 
disturbance amplitude. The effect is due to the technique used at the time to convert the AS into order data, which 
could miss some of the disturbance energy and thus under-estimate the forcing magnitude. An improved order 
analysis method has since been developed that computes order data from power spectra, and which integrates energy 
over several frequency points to reduce this effect. 
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Figure 6 Contour plot of wheel torque (My) Figure 7 Radial moment fit to first harmonic 

Each of the four wheel data sets was calibrated to produce four models, each having radial force, axial force, and 
radial moment coefficients. Between 12 and 23 harmonics from 0.4 to 14.54 times the fundamental were identified, 
depending on wheel and forcing axis. Wheel to wheel variability was significant. The four wheels had many of the 
same lower harmonics (to about 9.0 times the fundamental), but each wheel also had many unique harmonics. 
Above 9.0 times the fundamental, there were significantly more unique harmonics. The forcing levels at common 
harmonics varied significantly between wheels, by up to a factor of 10. 

E. Wheel Broadband Disturbance Nlodel 
Another significant wheel disturbance characteristic was broadband noise. Although typically not as large in 

magnitude as the tonal disturbances, it was present at low wheel speeds and introduced large jitter when amplified 
by wheel structural modes. The procedure for obtaining the broadband disturbance data was: 

Calculate the Power spectral density (PSD) from the time-domain wheel disturbance data (@ti) 
* After wheel tonal disturbances are identified, the PSD (SC,fcu)) associated with the tonal disturbance 

frequencies was zeroed. 
0 Zeroed elements in the PSD data were replaced with local background noise by averaging 10 points 

before and after the zeroed PSD points. 
Repeat above procedure for each set of wheel speed data and for all four wheels 

Figure 8 shows an example of the axial force PSD when the wheel is running at 850 revlmin (RPM). In this plot, 
the PSD raw data and the broadband noise PSD data are shown as a solid line and dashed-dotted line, respectively. 
A simple straight-line + second order filter model (shown as dashed line) was developed for describing the 
broadband noise. However, the second order model parameters varied greatly between wheel speed data sets, so it 
was difficult to extrapolate noise model parameters between the various wheel data sets. As a result, the broadband 
noise data, not an analytical model, was used directly for the wheel jitter analysis. This decision was justified on the 
basis that the energy was spread across a relatively broad frequency band (several frequency samples), in contrast to 
the tonal disturbances which had a very narrow bandwidth. 

In Figure 8 the noise data is obtained after removing the tonal disturbances. There are two large peaks in the 
noise data: one is around 75 Hz which corresponds to the wheel axial mode, and the second one is a broader peak 
between 200 and 400 Hz. The rise at high frequency is not due to test stand modes or wheel structural modes since 
the width of the rise is too broad.   he physical phenomenon which causes the broadband noise is not well 
understood, although it is postulated to be a pseudo-random process such as rattling of the bearings as they travel. 
However, analysis shows that the LOS performance is not sensitive to the high frequency noise; it is most sensitive 
to broadband noise that is amplified by the wheel structural modes (axial and whirl modes). 

A similar PSD plot for the radial moment disturbance at 850 RPM is illustrated in Figure 9. The dominant 
disturbance in the noise data came from the wheel mechanical noise exciting the wheel rocking modes (-48 and -76 
Hz at 850 RPM). Frequencies of these modes vary with wheel speeds as shown in Figure 5. 
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Figure 8 Broadband noise data for axial force 
disturbance 
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Figure 9 Broadband noise data for radial moment 
disturbance 

F. Disturbance Model Validation 
The wheel disturbance model was validated by computing the RMS energy versus wheel speed for the model 

and data, and ensuring that the model over-bounded the energy in the data. The comparison for a typical model is 
shown below. Figure 10 shows the radial force (X and Y axes) compared to the model X axis force. The model 
overbounds the data at most wheel speeds. Below 7 revisec, the X axis force is higher than the data, but the Y axis 
data is lower so the model is accurate to within the measurement noise. At 33 revisec. the h=3 harmonic crosses an 
unmodeled fixture mode that causes an extraneous peak in the forcing data. The axial force plot (Figure 11) shows 
that the model provides a fairly tight upper bound to the measured axial disturbance. The radial moment plot 
(Figure 12) again shows that the model provides an upper bound at all wheel speeds except for a small range 21 
revisec. The results demonstrate that the wheel disturbance model provides a good estimate of the wheel induced 
forcing levels. 
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Figure 10 Axial force energy vs. wheel speed Figure 11 Radial force energy vs. wheel speed 
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Figure 12 Radial moment energy vs. wheel speed 

111. Wheel Jitter Analysis 
The SDO jitter analysis employed an integrated modeling approach where disturbance, structures, controls, and 

performance metrics were combined into one dynamic model to predict the end-to-end LOS performance of the 
system. Figure 13 is a functional diagram of all the sub-system models used in the integrated model. The disturbance 
models were inputs to the system, the structural model was created from the finite element analysis, the ACS model 
used to stabilize the rigid body modes of the structural model, the optical model mapped motions of the optics to 
LOS, and the instrunlent stabilization system (ISS) modeled the LOS motion attenuation from the instrument 
controllers. The outputs from the integrated model were the LOS motion measured at the AIA and HMI charged 
coupled devices (CCDs). 

Motion at focal 
plane 
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LW Model 

Figure 13 SDO integrated model 

Details of the wheel disturbance model are described in the previous section. A brief description of the other 
models used in the integrated modeling analysis, as well as the analysis methods used to predict the LOS motion 
measured at the CCD are provided in this section. For more information on these models and how they are verified 
and validated, see Ref. 4. 

A. Integrated Model Descriptions 
Structural Model: The SDO FEM was developed to provide observatory modal information for use with 

advanced jitter analytical tools. The FEM represented the SDO in an on-orbit configuration: fully deployed, 
instrument covers open, and with 25% of the fuel and oxidizer mass remaining. The FEM included the spacecraft 
primary structure (Propulsion Module, Spacecraft Bus, and Instrument Module), spacecraft secondary structure 
(High Gain Antenna System (HGAS), Solar Array System (SAS) and hardware mounting brackets), and detailed 
instrument models (AIA, HMI, and EVE). Figure 14 shows the SDO jitter model. The normal modes solution of 
MSCMASTRAN was run on the unconstrained FEM, and mode shape and frequency data for a subset of 120 nodes 
was used in the jitter analysis. The model had over 650 modes between 0 and 200 Hz. 



Damping Model: The damping model assumed 
uncoupled modal damping. The scalar damping 
value, used for all modes, was calibrated by test. 
The test article which consisted of the SDO 
structural verification unit was excited using a proof 
mass actuator through a force-gage-equipped 
stinger. Frequency Response Functions (FRFs) 
from input force to 19 accelerometer responses 
were acquired with a DataMax data acquisition 
system. The FRFs were fit with system 
identification tools to produce a total of 88 Single 
Input, Multiple Output (SIMO) state space models 
representing different amplitudes, input locations. 
and accelerometer outputs. The resulting damping 
set was binned into 0.1% damping histograms 
(Figure 15). The damping histogram shows a peak 
at 0.4% damping, with about 5% of the modes 
below 0.3% damping. The baseline damping value 
was set at 0.3%. 

Optical Model: The optical ray trace models 
for AIA and HMI were provided by analysts at the 
Lockheed Martin Solar and Astrophysics Lab 
(LMSAL). 4 linear matrix was created to map the 
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Figure 14 SDO jitter FEiM 

small optical motions to image motions measured Extrapolated damp~ng for 1234 samples all frequencies 
0  25 - -,--- 

on the CCD (e.g. LOS errors) using the ray trace 
models. I 

Control models: SDO features two control I 
systems that influence the pointing of the 
spacecraft: (1) attitude control system (ACS) and 
(2) instrument stabilization system (ISS). The ACS 
consists of a standard proportional-integral- 
derivative (PID) controller and a second-order low- 
pass filter for suppressing the response of low 
frequency flexible modes. For jitter analysis, the 
main purpose of the ACS is to stabilize the three 
rigid-body modes. It does not affect high frequency 
jitter motions. Both AIA and HMI have an ISS that 
further attenuates residual pointing errors around 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9  I 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9  2  

body Y and Z axes (or tipitilt of the LOS vector) 05 darnplng 

from the ACS. The ISS has much higher Figure 15 SDO jitter test damping histogram 
bandwidth than the ACS and does impact the jitter 
performance of the system. The disturbance rejection capabilities of each 1SS were modeled as high-pass filters: the 
AIA model was a second order filter with a comer frequency at 14 Hz, and the HMI model was a fourth order filter 
with a corner frequency at 45 Hz. Both ISS models were verified against the instrument controller test data. 

Uncertainty: There were two types of uncertainties considered in the SDO wheel jitter analysis. The first type 
was the modal gain uncertainty since the magnitudes of most of the high frequency modes were not validated by test 
data. To protect against the modal gain uncertainty, the jitter analysis team required a 100% margin on the current 
best estimate (CBE) jitter when compared to the allocated requirements. The percent margin requirement was 
defined as 

(Reqz;;ent 
% margin requirement = 

The second type of uncertainty was modal frequency. Only the frequencies of primary modes will be matched to the 
test data, and the frequencies of other modes could be in error by 5 to 10% or more. In order to estimate the impact 
of modal frequency uncertainty on the analysis results, the SDO jitter team performed frequency sensitivity analyses 



by either varying the FEM modes or the input disturbance frequencies by +I- 10%. The worst-case result from the 
frequency sweep studies was reported as CBE to guard against frequency uncertainty. 

B. Analysis Approach 
The semi-analytical disturbance model, combining tonal and broadband noise is given by 

h; 
d,(t)  = Z c , ~ o ~  sin ( 2 n h j l 0 t + m j ~ +  Q;(t) 

k=l - 
Random Disturbance 

Tonal Disturbance 
where all tonal disturbance parameters were defined in Section I1 and Q, is the broadband noise component for the jth 
disturbance. 

As discussed in Section [I-E, the forces in and torques about the X axis are 90 deg out of phase with the 
disturbance forces in and moments about the I'axis, so the phase ternls can be written as: 

hn = h k  +%, mjk =44k +./: (10)  

In addition, the radial forces and torques should share the same amplitude coefficient and harmonic numbers, i.e. 
CII;=Gk, C;k=C'5L, bib= h2k, and hJk = hjk. To perform the analysis, the phases 41k in Eq. (9) are modeled as uniform 
random variables, distributed between 0 and 2x1. Assuming all random phases are uncorrelated and taking into 
account the phase relationship stated in Eq. ( l o ) ,  the PSD of the it" wheel disturbances (S,,,) can be written as 

where 

and SO is the PSD of broadband noise data for the ith wheel and the jth disturbance. Recall from Section 11-E the 
-rJ 

broadband noise PSDs were obtained from the data directly after subtracting out the tonal disturbances. The 
frequencies to,k are equal to 2xJhlk. Since there are four wheels on SDO, the PSD matrix for all wheel disturbance 
inputs is block diagonal and can be written as 

p , v ,  O 1 

assuming the phases between wheels are also random and uncorrelated. 

The output performance PSD matrix resulted from wheel disturbances is defined as5 



where G,, is the transfer function matrix that maps the wheel disturbance inputs to pointing performance z (LOS 
jitter). The variance of each component outputs, can be calculated by 

Using the above equation, the RMS pointing error from all wheel disturbances can be calculated without performing 
time-domain simulations. Furthermore, since the broadband noise also excites the wheel axial and whirl modes, an 
increased jitter could occur if one of the wheel structural modes coincides with the spacecraft structural mode. To 
protect against structural mode uncertainty, sensitivity analyses were performed by varying the input frequencies of 
the wheel disturbance PSD by +I- 10% and report the worst case jitter observed from the sensitivity analyses. The 
jitter predictions and various sensitivity analyses were performed using Matlab, Simulink, and Nightsky Systems 
Inc.'s Disturbance-Optics-Controls-Structures (DOCS) Toolbox. 

C. Analysis Results 
There are four AIA telescopes, each with two axes of performance outputs (tip and tilt of the LOS error) which 

result in a total of eight jitter responses. All eight were calculated and the largest was compared against the wheel 
jitter allocation. Figure 16 shows the AIA jitter due to each wheel disturbance component (radial force, axial force, 
radial moment, and broadband noise). The 70 mas allocation and the 100% margin requirement (35 mas) are also 
shown as red dashed and black dotted horizontal lines in the plot, respectively. At low wheel speeds (<400 RPM), 
the broadband noise dominate the jitter response, whereas at high wheel speed (> 400 RPM). jitter responses due to 
tonal disturbances are significantly larger than those caused by the broadband noise. 

After combining all the wheel disturbance sources, the final AIA jitter response is shown in Figure 17. The 
wheel jitter allocation is exceeded for wheel speeds greater than 500 RPM. The 100% margin allocation can be met 
only if the wheel speeds are limited to 300 RPM. Since the broadband noise determines the jitter response of the 
telescope at low wheel speeds. it must be included in the jitter analysis. 

For the HMI instrument, there are two performance outputs for the single telescope. The maximum jitter 
response over the two outputs was again computed and is reported here. Figure 18 and Figure 19 demonstrate that 
the HMI results follow similar trends as the AIA jitter results. However, the HMI jitter response exceeds the wheel 
100% margin requirement even at very low wheel speeds. 

Based on these results, the SDO team decided to conduct validation tests on the ground in order to understand 
the conservatism in the analysis before choosing the most appropriate wheel jitter mitigation strategy. 
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Figure 16 Maximum AIA telescope jitter due to 
different wheel disturbance components 
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Figure 17 Maximum AIA telescope jitter due to all 
wheel disturbance components 
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Figure 18 Maximum HMI telescope jitter due to 
different wheel disturbance components 
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Figure 19 Maximum HMI telescope jitter due to all 
wheel disturbance components 

IV. Ground Validation Tests and Results 
The reaction wheel jitter analysis process was validated by measuring the jitter response of the structure when 

excited by a wheel, and comparing that to a prediction created from a model of the ground test configuration. One of 
the flight wheels was mounted on the SDO Structural Verification Unit (SVU), which is a duplicate of the flight 
structure, with complete wheel electronic integration. A sketch of the setup is shown in Figure 20. The software for 
the wheel test incorporated a simple proportional-integrator controller developed to control the wheel speed using 
the wheel tachometer feedback. The control software was loaded to the SDO Attitude Control Electronics (ACE) 
engineering test unit (ETU). The wheel telemetry, including torque commands. motor current, and tachometer pulse 
counts, was monitored by the NTGSE and the ASIST workstation. The NTGSE is a Bus Controller Simulator (BCS) 
that provides the 1553 interface to the ACE. The ASIST workstation is a PC which, when used in conjunction with 
the BCS, simulates the Single Board Computer (SBC) and the ground station. This computer tool allowed the testers 
to interact with the flight software loaded in the ACE. 

As the flight wheel excited the SVU structure, tri-axial accelerometers mounted at each of the four AIA 
telescopes, the HMI instrument, and the three bus-instrument module interface locations measured the jitter 
vibration levels. All the test data were logged using the Dataphysics system at a sample rate of 1024 Hz. An  
additional tri-axial accelerometer was mounted at the flight wheel housing. The measured accelerations at this 
location provided a high quality wheel disturbance signal at a frequency equal to the wheel speed (e.g. the 
fundamental harmonic), which gave a more accurate indication of wheel speed than the tachometer. 

During the tests, two operating modes were employed. First, the flight software commanded the wheel to ramp 
the speed at a fixed rate of acceleration. A slow acceleration of 0.1 RPMIsec was used to study the jitter at low 
wheel speeds, from zero to 700 RPM, while a faster acceleration rate of 1.0 RPMlsec was used to investigate jitter 
up to 2000 RPM (the faster acceleration was needed to shorten the duration of that portion of the test). Second, the 
flight software commanded the ACE to drive the wheel to a specific wheel speed and hold the speed constant for the 
duration of the dwell speed tests (2-5 min.) The ramp speed tests allowed the test engineers to identify problematic 
wheel speeds that corresponded to large jitter motions observed at the instruments. The test engineers then targeted 
those speed ranges using the dwell speed mode. 
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Figure 20 SVU and flight wheel jitter test setup 

A representative set of the wheel ramp res~~lts  are shown in Figure 21. The blue crosses represent the root-mean- 
square (RMS) acceleration data measured during the tests. the dashed line shows the analytical prediction using the 
disturbance model and analysis described above plus the background noise, and the solid constant line indicates the 
background noise level during the tests. The plots in the top row illustrate RMS accelerations at AIA telescope #3 
during the low acceleration (0.1 RPMIsec), ramp speed test. This test focused on measuring disturbances at low 
wheel speeds (<700 RPM) corresponding to the expected wheel speed operational range on orbit based on the jitter 
analysis results. From Figure 21 and other test data, the results show that our analytical prediction is generally a 
factor of 1.5 to 2.0 larger than the measured accelerations. Based on this observation, the required jitter analysis 
margin on the wheel disturbances was reduced from 100% to 66.7% (the allowable jitter was increased by a factor 
of 1.33). The plots on the bottom row of Figure 21 show the acceleration measurements from the same location 
during the high acceleration (1.0 RPMIsec) ramp speed test. At high wheel speeds (>700 RPM). the analysis 
prediction follows the measured data surprisingly well given the uncertainties in the structural FEM. The flight 
wheel plus SVU jitter tests validated the modeling and analysis approach used for SDO. 
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Figure 21 SVU wheel jitter results: (top) low wheel speed (bottom) high wheel speed 



By lowering the desired margin requirement from 100% to 66.7% based on the ground validation results, the 
maximum wheel speeds allowed to meet the 66.7% margin requirement is about 400 RPM for both AIA and HMI. 
Since SDO experiences small torques on-orbit, it is possible to run the wheels from -400 RPM to +400 RPM and 
still meet the four week momentum unload requirement. Therefore, the current operational plan that minimizes the 
wheel jitter is to limit the wheel speeds to within +I- 400 RPM during the science mode. 

V. On-orbit Validation Test Plan 
Although detailed analysis and assembly level tests were performed in order to obtain good jitter predictions, 

there were still several sources of uncertainties in the system. The structural finite element model will not have all 
the modes correlated to test data at high frequencies (>50 Hz). The performance of the instrument stabilization 
system will not be known exactly but should be close to the analytical model. A true disturbance-to-LOS 
observatory level test will not be available due to the tight schedule of the flight spacecraft, the cost in time and 
manpower, difficulties in creating gravity negation systems, and risks of damaging flight hardware. To protect the 
observatory jitter performance against model uncertainties, the jitter team has devised several on-orbit contingency 
plans in addition to reserve margins on analysis results. 

As discussed in the previous section. the wheel speeds are nominally limited to 400 RPM (out of the -3000 RPM 
momentum limit) in order to satisfy the wheel jitter requirement. This constraint will force the wheels to cross zero 
wheel speed and uses only a small portion of the allowed wheel speed range. Although analysis has shown that the 
jitter performance can be met during zero-wheel-speed crossings, and the Goodrich wheel has been shown to 
achieve its full life limit regardless of zero crossings, the SDO team would still like to avoid this situation in order to 
reduce risk. As a result, once SDO gets on orbit, the team plans to test the wheel-induced jitter, and will try to 
extend the wheel speed limit if possible to eliminate zero-speed crossings. 

The basic methodology behind the on-orbit tests is to slew one wheel at a time in the speed range of interest 
while ensuring that the remaining three wheels stay inside the prescribed nominal range (e.g. +I- 100 RPM). Thus a 
large jitter response can be associated with the slewing wheel. For each test, the speed slew range is limited to 800 
RPhl since the other wheels must remain in the nominal range. The attitude control system's Delta-H and Science 
modes are used to bias the targeted wheel to a prescribed speed outside the nominal range, while the remaining three 
wheels are biased at either extreme of the nominal range. The spacecraft jitter is sensed via the two limb sensors 
within the AIA and the HbII instruments sampled at 225 Hz. The results of the on-orbit tests will identify the true 
jitter-limited wheel speed range. 

To minimize the impact on flight software, the on-orbit jitter algorithm was designed to be as simple as possible, 
and to minimize the effects of tachometer noise feedback to the system. The algorithm for the on-orbit wheel jitter 
tests is summarized in the following: 

a)  implement a digital low pass filter to attenuate the high frequency noise in the measured wheel momentum 
signals from tachometers. 

b) Compute the initial desired momentum bias in the body frame, and invoke the Delta-H and Science modes 
to take the wheel speeds from their current values to their desired values. It is assumed that the wheel 
speeds have reached steady-state prior to start of the wheel jitter test. SDO employs four reaction wheels in 
a pyramid configuration about the body X axis, i.e., there are two pairs of opposing wheels tilted away 
from the X axis towards Y and Z axes, respectively. For example, if we assume that the targeted wheel is 
wheel no. 1, and it is desired to slew that wheel from an initial wheel speed of I+,,, to +v,  + 800, then the 

initial wheel speeds for the other three wheels must be set to [400 -400 4001 RPM, respectively. The 
negative speed corresponds to wheel no.3 which is the wheel that opposes wheel no. 1.  

d) Set the initial value of the slew torque commands to the bias values 

TIc,* = G!<,3 * JV,, 
where T,,<,, represents the torque bias, and N ,  denotes the null vector in the wheel space. The variable T,,", is 

chosen to provide a desired slew rate for the targeted wheel. 
e) At every minor cycle (40 seconds), compute the difference in the current wheel momentum and the 

momentum in the previous cycle for the target wheel. 

~ v d  = wh, (i) - wh,_, (i) 



where index "i" denotes the target wheel, the index "k" refers to the current cycle, and the index "k-I" 
refers to the previous cycle. 

f) If lwdl<= ~vd,,, , apply a delta correction to the slew torque commands to increase the slew rate: 

where T,,,, represents the scale of the torque correction, and is computed as follows. 

where a is scale factor chosen at 0.025. 
g) Stop the experiment when either the target wheel speed reaches its final prescribed wheel speed, or the 

absolute value of the speed of one or more of the supporting wheels reaches the maximum allowed range. 
Both low-pass filtering of the tachometer signals (step (a)) and 40 second interval for computing the wheel 
accelerations (step (e)) are methods recommended to reduce the effects of the tachometer noise. 

The wheel slew algorithm was implemented within the high-fidelity simulation. This simulation includes 
detailed models of components and ACS modes, as well as structural dynamics. The flexible dynamics are 
represented by the finite element model normal modes. Figure and Figure 23 illustrate a simulation run with wheel 
no. 1 (facing -Y side of spacecraft) as the targeted wheel. The wheel was slewed from 2200 RPM to just over 2500 
RPM in about 1500 seconds. Here, the initial speeds for wheels no. 2-4 were chosen as [350 -350 3501 RPM, 
respectively. Note that these wheels remain in the allowable range during the course of the test. Figure 23 illustrates 
the LOS jitter at the CCD of the HMI instrument. Significant excursions, exceeding the HMI wheel allocation of 60 
mas. are observed at wheel speeds of 2300-2400 RPM. 

Figure 22 True wheel speeds Figure 23 HMI line-of-sight jitter 

VI. Concluding Remarks 
This paper describes the reaction wheel disturbance modeling and jitter analysis performed on SDO. It provides 

descriptions of the ground tests conducted for validating the wheel modeling and analysis approach. Jitter 
predictions based on the calibrated models indicate that SDO will have an acceptable level of jitter due to the 
reaction wheels if the wheel speeds are limited to +I- 400 RPM. In recognition of the fact that model uncertainties 
still exist even after extensive model correlation effort, the paper then lays out the jitter test plan to identify the true 
wheel speed limits during the commissioning phase of the mission. 

The SDO jitter analysis highlights the potential importance of the wheel higher harmonic and broadband wheel 
disturbances. Traditionally only static and dynamic imbalance (i.e. fundamental harmonics) levels are specified in 



requirements. For sub-arcsecond pointing missions without isolation systems, the SDO team recommends that 
specifications for higher harmonics and broadband noise levels be developed in order to identify potential jitter 
problems. In cases where such higher order effects are predicted to result in unacceptable jitter, it is possible to limit 
the wheel speed (as in the case for SDO), place wheel speeds in a particular range by irnpleinenting a high sample 
rate jitter sensor', or implement an isolation system to reduce the sensitivity to wheel higher harmonics. The 
approach chosen by SDO is the least risky and costly option since the torque buildup for SDO is expected to be 
small. The team expects the wheel speed limit can be expanded after the on-orbit jitter tests. 
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