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Assimilation of precipitation in a global modeling system poses a special challenge 
in that the observation operators for precipitation processes are highly nonlinear. In 
the variational approach, substantial development work and model simplifications are 
required to include precipitation-related physical processes in the tangent linear model 
and its adjoint. An ensemble based data assimilation algorithm "Maximum Likelihood 
Ensemble Smoother (MLES)" has been developed to explore the ensemble represen- 
tation of the precipitation observation operator with nonlinear convection and large- 
scale moist physics. An ensemble assimilation system based on the NASA GEOS-5 
GCM has been constructed to assimilate satellite precipitation data within the MLES 
framework. The configuration of the smoother takes the time dimension into account 
for the relationship between state variables and observable rainfall. The full nonlinear 
forward model ensembles are used to represent components involving the observation 
operator and its transpose. Several assimilation experiments using satellite precipita- 
tion observations have been carried out to investigate the effectiveness of the ensemble 
representation of the nonlinear observation operator and the data impact of assimilat- 
ing rain retrievals from the TMI and SSMII sensors. Preliminary results show that this 
ensemble assimilation approach is capable of extracting information from nonlinear 
observations to improve the analysis and forecast if ensemble size is adequate, and a 
suitable localization scheme is applied. In addition to a dynamically consistent precip- 
itation analysis, the assimilation system produces a statistical estimate of the analysis 
uncertainty. 
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Improvement in global precipitation analysis 
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