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ABSTRACT 

We propose a model for the jetting activity that is commonly observed in the 
Sun's corona, especially in the open-field regions of polar coronal holes. Magnetic 
reconnection is the process driving the jets and a relevant magnetic configuration 
is the well-known null point and fan separatrix topology. The primary challenge 
in explaining the observations is that reconnection must occur in a short-duration 
energetic burst rather than quasi-continuously as is implied by the observations 
of long-lived structures in coronal holes, such as polar plumes, for example. The 
key idea underlying our model for jets is that reconnection is forbidden for an 
axisymmetric null-point topology. Consequently, by imposing a twisting motion 
that maintains the axisymmetry, magnetic stress can be built up to large levels 
until an ideal instability breaks the symmetry and leads to an explosive release 
of energy via reconnection. Using 3D MHD simulations we demonstrate that 
this mechanism does produce jets with high speed and mass, driven by nonlinear 
Alfvbn waves. We discuss the implications of our results for observations of the 
solar corona. 

Subject headings: Sun: corona Sun: magnetic fields 

1. Introduction 

High spatial and temporal resolution observations from space missions such as SOH0 
and TRACE have shown that the Sun's photosphere is never topologically simple and the 
corona is never quiet. The photosphere exhibits a constantly evolving, multipolar flux dis- 
tribution on scales ranging from the "salt-and-pepper" or "magnetic carpet" (e.g. Harvey 
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1993; Schrijver et al. 1997; Schrijver & Title 2002) to active region complexes. The corona 
exhibits brightenings and jets on a vast range of scales, including explosive events (Brueck- 
ner & Bartoe 1983; Innes et al. 1997; PQez & Doyle 2000); SOHO/EIT micro-jets (Gurman 
et al. 1998) and white light polar jets (Wang et al. 1998; Wang & Sheeley 2002): cool jets 
entwined with the ubiquitous TRACE "moss" (de Pontieu et al. 1999); EUV "blinkers" (Har- 
rison et al. 2003); and spicules/macrospicules (Yamauchi et al. 2004). It  has been argued 
that the multipolarity of the photospheric field is the key to understanding all of this activity 
including CMEs, and that reconnection between interacting flux systems is the underlying 
physical process (e.g. Antiochos 1987, 1998; Karpen et al. 1996). 

The simplest type of fiux system interaction in the solar corona is that between the 
closed field of a small bipole and a large-scale background open field. This type of topology 
is ubiquitous on the Sun and has been seen since 'the earliest Skylab observations as X-ray 
bright points in coronal holes (e.g. Golub et al. 1974). The best evidence for reconnection 
in this topology is the discovery of X-ray jets by the Soft X-ray Telescope (SXT) on Yohkoh 
(Tsuneta et al. 1991). Solar X-ray jets are transitory brightenings with apparent collimated 
motions (Shibata et al. 1992; Shibata & Murdin 2000). Their observational properties have 
been thoroughly studied with SXT (Shibata et al. 1994; Canfield et al. 1996; Shimojo et al. 
1996: 1998; Shimojo & Shibata 2000b). The new X-range observation provided by the X-ray 
telescope (XRT; Golub et al. 2007) on Hznode, is providing new insights in this phenomena 
(Cirtain et al. 2007; Savcheva et al. 2007; Shimojo et al. 2007). X-ray jets jets can have 
velocities above 1000 km/s, reach heights of a solar radius or more, and have kinetic energies 
of order ergs. 

These observation strongly suggests that impulsive magnetic reconnection between the 
closed field of the bipole and the external open field is the driving mechanism for the jets 
(Shibata et al. 1997; Shimojo & Shibata 2000a). Numerical simulations of jets have been 
carried out in 2D (Yokoyama & Shibata 1995, 1996; Miyagoshi & Yokoyama 2004; Isobe et al. 
2007), 2.5D (Karpen et al. 1998; Archontis et al. 2007) and 3D (Archontis et al. 2005, 2006; 
Isobe et al. 2006), but the latter have focused primarily on the interaction between closed 
field structures. Recently, Moreno-Insertis et al. (2008) developed a 3D MHD numerical 
simulation of an X-ray jet, based on the interaction of a twisted emerging flux tube with the 
coronal open field. Although their model agrees well with the observed thermal properties 
of jets, the extended length of the emerging flux tube causes the generation of a jet that has 
far more translational symmetry than is observed. Their model may not be able to account 
for the 3D helical structures frequently observed in jets (e.g. Shimojo et al. 1996; Canfield 
et al. 1996; Wang et al. 1998; Jiang et al. 2007). 
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a fully 3D geometry. The difficulty is that whereas 2D flux surfaces can exchange relative 
positions only by reconnection, 3D field lines are free to move around each other. Conse- 
quently, if we consider the motion of a small bipole through an open-field region, it is not 
clear that sufficient reconnection will occur to account for the large inferred masses of t,he 
observed jets. 

The second difficulty is the fundamental problem faced by all reconnection models for 
explosive solar activity: thc rcconncction must stay "off" until a largc amount of free energy 
has been built up, then stay "on" until a substantial fraction of this energy has been released. 
The first requirement is especially challenging for the solar corona, because current sheets 
generally form at the separatrix surface between flux systems as soon as the flux systems 
begin to interact. Reconnection, of course, acts to destroy any such current sheet. If the flux 
system interaction is due to flux emergence or photospheric motions, the separatrix current 
sheets will build on slow photospheric time scales and dissipate via reconnection well before 
they contain sufficient energy to account for coronal hole jets. For example, in Parker's 
classic theory for coronal heating (Parker 1983), current sheet formation is postulated to 
occur readily as a result of slow footpoint stressing, but these sheets lead to a quasi-steady 
heating rather than a large mass motion. A very similar quasi-steady reconnection has been 
postulated to account for long-lived coronal hole plumes (e.g. Wang 1998; Wang & Muglach 
submitted). The challenge, therefore, to obtaining a short-duration jet rather than a long- 
lived plume is to build up a strong current sheet before inducing reconnection. In the next 
section we propose a mechanism for achieving this result. 

2. A Mechanism for Explosive Reconnection 

Figure 1 shows the fundamental magnetic configuration of our model: a vertical dipole 
embedded in a vertical, uniform background field. This is a typical assumption for jets 
(e.g. Shibata et al. 1992; Shibata & Murdin 2000) and also the basic magnetic configura- 
tion postulated in models for plumes (Wang 1998) and models for solar wind heating and 
acceleration (Parker 1958; McKenzie et al. 1995). As is well-known, the topology consists 
of two flux systems separated by a hemispherical separatrix surface, the so-called fan, which 
contains a magnetic null point (e.g. Lau & Finn 1990; Antiochos 1998; Priest et al. 1994). 
Note that this is a true null - all three components of the field vanish. Intersecting the fan at 
the null are two singular field lines, the inner and outer spines. For the axisymmetric config- 
uration of Fig. 1, the null occurs exactly at the apex of the fan, but it should be emphasized 
that the topology is unchanged even if the syst)em is non-axisymmetric. For example, if the 
background field has a tilt, thereby breaking the axisymmetry, the fan, spines, and null are 



topologically unchanged 

Assume that, as a result of either footpoint motions or flux emergence, stress has been 
injected into the closed field inside the fan of Fig. 1. Note that since the external field 
is open, any stress there would simply propagate away with the solar wind. Now let us 
freeze the photosphere and consider how reconnection would occur in the two-flux system 
of Fig. 1. The intersection of the fan with the photosphere defines a closed circle on the 
photosphere that bounds all the positive flux closing across the polarity inversion line and 
into the negative spot. Any reconnection requires a change in this separatrix curve, but if 
the system is to remain axisymmetric, the separatrix curve can change only by expanding 
or contracting. This is not possible, however, because the net flux inside this curve must 
vanish. As long as the flux a t  the photosphere remains fixed, the position of the separatrix 
curve is also fixed, thereby, forbidding any reconnection irrespective of whatever current 
sheets form in the system. Kote that this conclusion holds only for a two-flux system. 
For an axisymmetric four-flux topology, which must have multiple separatrix curves on the 
photosphere, reconnection occurs readily (e.g. Antiochos & Devore 1999; MacNeice et al. 
2004). 

The result that reconnection is forbidden in an axisymmetric null point topology is a 
central idea underlying our model for coronal jets. We conjecture that if the topology of Fig. 1 
is stressed by a strongly 3D perturbation, then reconnection will occur quickly, releasing any 
stresses before they build up to large levels. This would be the situation in polar plumes. 
But if the system is stressed by a motion that keeps the system close to axisymmetric, then 
we expect that a large free energy will build up until the system spontaneously breaks the 
symmetry, most likely via an instability. In this case, we conjecture that a large fraction of 
the free energy will be released in a burst of reconnection. In order to test our conjectures we 
perform simulations, described below, in which we drive the field of Fig. 1 by an axisymmetric 
twist motion at the photospheric boundary. The simulations, however, are fully 3D so that 
even though the initial field and driving are axisymmetric analytically, the numerical system 
contains 3D perturbations and is free to adopt a 3D configuration if energetically favorable. 
As shown below, this system does produce the large burst of reconnection required to account 
for coronal jets. 

3. The model 

The numerical simulations reported in this paper were performed in a Cartesian do- 
main, with x and y the horizontal axes and z the vertical axis, using the equations of ideal 
magnetohydrodynamics (MHD) with the magnetic forces expressed in the Lorentz rather 



than the conservative form: 

aP 
- + v (pv) = 0 at 

where p is the plasma density, B and v the magnetic and velocity fields, P the plasma 
pressure, U the internal energy density, and po = 4n- the magnetic permeability. The plasma 
is assumed to follow the ideal gas law, i.e., P = pRT, with T the plasma temperature and R 
the gas constant. The internal energy density then obeys the relation U = P/ (y  - l ) ,  where 
y = 513 is the ratio of specific heats. 

3.1. Initial Conditions 

Our aim is to simulate the dynamics of the magnetic field in the highly conducting, 
low-pressure plasma of the inner corona. Consequently, we neglect gravity in the MHD 
equations, and assume initially uniform values for the coronal mass density ( p  = 1) and 
thermal pressure ( P  = The gas constant is R = lov2 and thus initially temperatures 
are uniformly T = 1 in the simulation domain. The homogeneity of the MHD equations 
allows us to scale our results for arbitrary mass, length, and time constants, each of which 
we choose to set to unity. The adiabatic sound speed then is c, = 0.13. For the weak open 
background field, we assume a uniform vertical field B, = -B,e, with B, = 1. Its associated 
Alfvkn speed is c~ = 0.28, and the plasma beta (ratio of thermal to magnetic pressure) is 
/3 = 0.25. We add to this background the closed magnetic field of an embedded dipole of 
strength mo ( p o m o / 4 ~  = 25), that is oriented vertically and positioned below the bottom 
coronal boundary at (0, 0, zo = -1.5). The resultant total vertical magnetic field is: 

porno 2(z - 2 0 ) ~  - (x2 + y2) 
B,(x, Y,  2) = - - B",. 

47r (x2 + y2 + (2 - ~ 0 ) ~ ) 5 / ~  

This axisymmetric configuration at the bottom boundary (z = 0) consists of an intense 
positive magnetic polarity surrounded by weak negative fields as shown in Fig. 1. The total 
flux in this positive polarity is = 30, its maximum field strength is IBI,,, ==: 14, its 
maximum Alfvkn velocity is c~ = 3.9, and its minimum beta is j3 ==: 1.3 x The polarity 
inversion line is located at radius Rpil = 1.6 from the center of the positive flux (located at 
the origin of our coordinate system). 



The superposition of the uniform negative vertical magnetic field and the concentrated 
positive dipole field produce a magnetic null point (B = 0) located on the symmetry axis 
x = y = 0 at height z, = ( , ~ ~ r n ~ / 2 . r r B , ) ~ / ~  +zo = 2.2. The field lines passing through the null 
form the well-known spinelfan topology of the magnetic field (Cowley 1974; Parnell et al. 
1996; Longcope 2005), as shown in Fig. 1. In this axisymmetric geometry, the spine lines are 
vertical lines positioned along the symmetry axis, while the fan lines form a dome-shaped 
axisymmetric fan surface. For the simple fields assumed here, the fan surface is a section of 
a sphere satisfying 

for all points (zF, y ~ ,  zF) on the fan. The intersection of the fan with the bottom boundary, 
the separatrix curve, is simply a circle of radius 7°F - 3.4. As discussed above, the net 
magnetic flux within this circle vanishes exactly. 

3.2. Boundary  Condit ions 

We drive our initially axisymmetric configuration by imposing slow twisting motions at 
the bottom boundary of the domain, restricted to lie within the fan circle and also to follow 
the contours of B, so as to leave its surface distribution unchanged in time. The imposed 
tangential velocity vL(z ,  y, z = 0) is given by: 

where the magnitude of the twisting motions, vo = 3 . 7 ~  lop5 for t E [tl, t,] and B, E [Bl, B,]. 
Note that vo vanishes at all other times and surface locations. We set tl = 100 and t, = 1100, 
to allow a brief period of relaxation of the initial state before switching on the motions. The 
cosine time profile allows a gradual acceleration from rest and deceleration to rest of the 
imposed flows. We also set B1 = 0.1 and Br = 13, so that only the positive polarity flux 
is rotated. The resultant spatial profile has an approximately solid-body rotation of the 
positive flux near the axis, with a smooth but stccp falloff t,o zcro near t,hc polarit,y inversion 
line, as shown in Fig. 2. Our objective is to accumulate slowly a large amount of free energy 
in the magnetic field, while delaying as long as possible the buildup of strong currents near 
the fan surface. The maximum velocity of the imposed twisting motions is about 1% of the 
local Alfvkn speed. 



We assume that the bottom boundary is closed by imposing a reflecting condition on the 
vertical velocity and zero gradient on all other quantities. The side boundaries are similarly 
closed and reflective, but free slip with regard to the tangential velocity. The top boundary 
is open with zero gradient conditions on all variables. We performed several tests to establish 
that thc top arid sidc bourldarics arc sufficicntly far that they do not influence significantly 
the system evolution. 

3.3. Numerics 

We advance the MHD equations (1) in time using the Adaptively Refined Magnetohydro- 
dynamic Solver (ARMS). ARMS is based on flux-corrected transport algorithms described 
in Devore (1991). The time-dependent equations are solved on a dynamically solution- 
adaptive grid administered by the adaptive mesh toolkit PARAMESH (MacNeice et al. 
2000). PARAMESH divides the mesh into a hierarchy of sub-grids that cover the compu- 
tational domain, allowing variation of the resolution within each sub-grid. It manages the 
relat,ionships among thc grids at diffcrcnt lcvcls, particularly at refinement jumps occurring 
in the domain, imposes conservation constraints at such jumps, interpolates and projects 
the physical variables onto the various levels of grids, and balances the workload across the 
parallel compute processors assigned to the job. 

We start with the nonuniform mesh as shown in Fig. 3. The total domain covers 
[-12, +12] x 1-12, +12] x [0, 241. The finest resolution is restricted to a central volume where 
the critical topological structures are found. This sub-volume, delimited by [-7.5, +7.5] x 
[-7.5, +7.5] x [0, 13.51, is discretized by a 160 x 160 x 144 uniform grid. The resolution there 
is equal to 0.09375. Outside this inner volume the resolution decreases by successive factors 
of two until the coarsest grid is reached at the top of the domain. The total number of grid 
blocks thus obtained is 7960, corresponding to about 4.1 x lo6 grid cells. This is more than 
a factor of four smaller than the number required by a globally uniform mesh at the highest 
refinement level. 

This initial grid refines and derefines adaptively during the simulation. For the sim- 
ulations presented here, we set the adaptation criterion to be based on the ratio of the 
magnitude of electric current density relatively to the magnitude of the magnetic field. At 
sufficicntly high valucs, thc grid rcfinss, whilc at sufficicntly low valucs, thc grid dcrefincs, 
up or down to the prescribed limiting grid levels for the simulation. At each refinement 
(derefinement) of the mesh, the block and cell sizes are divided locally by 2 (0.5). At its 
peak, the number of grid blocks in the simulation below is approximately double the initial 
count, which is orders of magnitude less than the corresponding globally uniform mesh at 



the highest refinement level 

The adaptive meshing adjusts the grid to resolve as finely as possible the thin current 
layers that drive and control the reconnection process. Although the resistive MHD terms are 
not included explicitly in the equations, numerical diffusion provides an effective resistivity 
in the model. The diffusion is particularly important where the gradients of the magnetic 
field are strong, i.e. at current sheets, and induces magnetic reconnection when the sheets 
reach the grid scale. This diffusion is minimized, and the onset of reconnection delayed, 
by maximizing the grid resolution in those regions. In the present simulation, we allowed 
a maximum refinement of three additional grid levels, or a factor of eight times the finest 
initial resolution. Thus, the smallest grid spacing reached in the current sheets is 1.2 x 

4. Results 

The primary result from our simulation is that the imposed slow boundary motions 
eventually lead to explosive dynamics and to a burst of energetic reconnection. Figure 4 
shows the magnetic configuration (white and blue field lines) and the plasma density (yellow 
isosurface) a t  several times during the evolution. After some initial twisting of the closed 
field, the axisymmetry breaks down, leading to a large amount of reconnection between the 
closed and open fluxes. Note that the initially closed field lines, plotted in blue in Fig. 4, 
eventually become open, whereas some of the open field lines, plotted in white, become 
connected to the main positive polarity. This reconnection transfers energy and helicity 
from the closed to the open field and generates a jet. Plasma is accelerated upward and 
ejected through the top boundary and, hence, out of our simulation domain. 

The time profile of the magnetic energy (see Fig. 5) shows three main phases to the evo- 
lution. Energy build-up: from t = 0 to t - 920 the magnetic energy increases smoothly 
as a result of the imposed boundary motions, but the system remains close to axisymmetric. 
Energy release: between t N 920 and t - 1240, the system undergoes a violent rearrange- 
ment in which a kink-like instability occurs that breaks the symmetry and allows copious 
reconnection to  take place. The reconnection leads to the generation of a torsional Alfvkn 
wave that drives upward plasma motions. Energy relaxation: after t N 1240 magnetic re- 
connection continues slowly, allowing the system to relax back down to a near-axisymmetric 
equilibrium that has much less twist than was injected by the boundary motions. This final 
state resembles the initial one, except that it does contain residual twist on low-lying field 
lines near the photospheric polarity inversion line. We discuss each of these evolutionary 
phases in more detail below. 



4.1. Energy build-up 

Since our system has low plasma beta throughout the evolution, the main contribution 
to the total energy is the magnetic energy. In order to minimize the effects of the boundaries, 
we selected the simulation box size to be substantially larger than the size of the enclosed 
bipole, consequently, the bulk of the total magnetic energy is due initially to the energy of 
the background field that occupies the bulk of the volume. This energy can be estimated as 
approximately equal to VB:/87r 2 548, where V is the volume of the simulation box minus 
the volume enclosed by the fan. Since we measure the total initial magnetic energy to be 
552, the contribution of the closed field is clearly small, but of course, most of the free energy 
is injected into this closed field. 

During the first 100 time units no boundary driving motion is applied in order to allow 
the system to relax to a numerical equilibrium. Note that for the size scales and AlvBn 
speeds given above, 100 time units corresponds to approximately one Alv6n crossing time in 
the open-field region and 25 Alfvkn times in the closed dipole region. Figure 5 shows that 
the kinetic energy stays vanishingly small, indicating that the system does achieve a robust 
numerical equilibrium. 

Starting at t = 100, the photospheric twist is turned on; resulting in an almost linear 
increase of the magnetic energy (Fig. 5). The energy injection can be determined precisely 
by computing the Poynting flux (B x vl) x B/po at the bottom boundary. It is evident 
from Fig. 6 that the Poynting flux profile follows the cosine shape of the time profile of the 
twisting motion. By integrating in time the Poynting flux, we find that 61 energy units 
have been injected in the numerical domain. The amount of free energy available (defined 
thereafter as the energy injected by the twisting motion) corresponds, therefore, to 11% of 
the total magnetic energy of the initial potential field. 

In addition to energy, the twisting motions inject magnetic helicity into the system. The 
flux of helicity through the bottom boundary can be determined by computing the helicity 
density defined correctly in Pariat et al. (2005): 

with r = x - x'. Figure 6 shows that the total amount of helicity injected is about 1282. 
Given that the magnetic flux in the positive polarity spot is approximately equal to 30, and 
assuming a uniform twist for this flux, we derive that number of turns required to yield the 
injected helicity is equal to 1.4. This value agrees precisely with the the number of turn that 
we measure for the the twisted field lines at the time of the instability. 

Although the boundary motions inject substantial energy and helicity to the system, 



they impart negligible kinetic energy. As evident from Fig. 5 ,  the kinetic energy shows no 
sign of increase throughout the energy build-up phase. On the other hand, the geometry of 
the system is clearly affected by the twist. Note that the initial potential field is purely 2D 
in that it has no azimuthal component. The effect of the twist is to generate azimuthal field 
and, thereby, increase the magnetic pressure inside the closed field region. This causes the 
closed field to expand outward in order to minimize its energy and to achieve a new force 
balance with the external field. Figure 7 shows the temporal variation of the height of the 
null point during this phase. We see that the height increases by a factor of almost 3. We 
also note that the expansion is primarily in the vertical direction. This is due to the vertical 
background field, which resists any horizontal deformation, but allows for free expansion in 
the vertical. As a result, the closed field region adopts an increasingly columnar geometry 
and begins to resemble a twisted flux tube. Of course the topology is not truly that of a 
twisted flux tube, because the structure has an end where it turns inside out, nevertheless, 
if the geometry becomes sufficiently extended, we expect that some of the physics of flux 
ropes will begin to apply. 

Figure 7 also shows the evolution of the current density in the system. Since the plasma 
beta is small initially, and continues to decrease with increasing twist, the currents in the 
corona are almost completely field aligned, so that the field is force-free to a good approx- 
imation. Current flows up one leg of a field line and down the other so that there is no 
net current flowing in the corona. The currents close by flowing across the field on the bot- 
tom boundary, the photosphere. Note that there must be cross-field currents at the bottom 
boundary in order to maintain the magnetic stress there. This type of current structure is 
common to any low-beta system driven by footpoint motions (e.g. Antiochos & Devore 1999; 
MacNeice et al. 2004). 

An important issue is the motion and deformation of the null point. Since the Lorentz 
force vanishes at athe null, its position changes only as a result of velocities generated by gas 
pressure gradients or by viscous effects. Although we do not explicitly include viscosity in 
the simulation, some numerical viscosity must be present, but it stays small, because the 
null region is very well resolved during the initial evolution. Consequently, the null moves 
primarily as a result of gas pressure. Furthermore, the upward magnetic expansion deforms 
the null region into a disk-like shape. As can be seen in Fig. 7, a weak current sheet forms in 
this null-disk. This current is small compared to the large force-free currents due to the twist, 
nevertheless, it is significant and highly localized to the null disk. Note that since the plasma 
beta is large here, this current need not to be field-aligned and can close completely in the 
corona. The evolution of the null region in our simulation is the axisymmetric analogue to 
the classic translationally-symmetric current-sheet formation model described by Syrovatskii 
(1981). 



The key difference between the axisymmetric and the translationally-symmetric systems 
is that we do not see any evidence for reconnection in the former, even for the large deforma- 
tion evident in Fig. 7.  The simulation confirms our arguments in Sect. 2 that reconnection 
cannot occur in an axisymmetric null-point system. It should be noted that this result holds 
even though our numerical system is not axisymmetric numerically. The symmetry is only 
in the analytic formulation of the initial field and drivers, we do not enforce it numerically. 
The axisymmetry is clearly broken by our simulation box with its square boundaries, and 
by the discretization on the Cartesian numerical grid. These departures from axisymmetry 
are small. because the boundaries are far and the system is well-resolved numerically, but 
they are definitely present. We conclude, therefore, that for twists below a certain limit, the 
system is stable to small, but finite 3D perturbations. 

4.2. Energy Release 

4.2.1. Initial Kink-Like Instability 

As a result of the continued twisting and increasing vertical elongation of the dipolar 
field, the system eventually becomes unstable and collapses into a complex, highly 3D config- 
uration. Once the system becomes 3D, it immediately undergoes violent reconnection with 
the external field, releasing a major fraction of its free energy and generating a large jet of 
plasma. We discuss the evolution in detail below. 

It is evident from Fig. 4 that between t = 920 and t = 940 the axis of the magnetic 
structure starts to writhe. We believe that this instability is a form of the kink-mode. At 
the most basic level, the kink instability can be considered as simply the tendency of a flux 
tube to lower its energy by increasing its length. The total magnetic energy of a twisted 
flux tube can generally be broken up into the energy of the axial and the energy of the twist 
components. For fixed tube radius and fixed axial and twist (poloidal) flux, any stretching 
that increases the tube length will increase the energy in the axial field, but decrease the 
energy in the twist component. Therefore, the instability for kinking, or more generally, for 
axial stretching, becomes energetically favorable whenever the energy in the twist component 
begins to approach that in the axial. 

In the particular simulation presented in this paper, the instability occurs when the 
number of turns within the magnetic structures reaches approximately 1.4 turns (Note the 
number of turns of the green field line around the inner spine in Fig. 7; bottom left panel). 
By this time (t  = 920), 1230 helicity units have been injected into the corona and the total 
magnetic energy is equal to 610, which implies a free magnetic energy - 10% of the initial 



magnetic energy. This is significantly larger than the energy of the initial closed field as 
estimated above. In order to determine the sensitivity of the instability to these values, 
we performed several ~imulat~ions using different sets of parameters that affect the amount 
of injected twist. We changed independently the intensity of the twisting motion vo (see 
Eq. 4a), the duration of the twisting motion t,, the intensity of the inner dipole mo and also 
the radial profile of the twisting motion (we used a sinusoidal profile). The results of these 
different simulations are displayed in Fig. 8. 

Note that no instability occurs if the injected free energy is below 51 units, the twisting 
angle under 2 . 6 ~  (the field lines have 1.3 turns around the inner spine), and the helicity 
lower than 1080. It is not possible from this coarse parameter study to determine an exact 
instability threshold for our physical system, but it is clear that a threshold does exists above 
which the magnetic configuration becomes unstable. Below this threshold our simulation 
appears to maintain a stable equilibrium for many Alfvhn crossing times, even though the 
numerics do introduce 3D noise to the system. The existence of such a threshold is the 
most compelling evidence that an ideal kink-like instability is the physical mechanism for 
the observed writhing. Note. however, that this ideal instability does not directly drive the 
jet; nor is it likely to release much energy, although this claim needs to be tested with a 
truly non-resistive code. It is primarily the reconnection allowed by the breaking of the 
axisymmetry. that is responsible for the strong dynamics in our model. 

4.2.2. Reconnection Driven Dynamics 

Once the axisymmetry is broken, reconnection dominates all subsequent evolution. The 
system's behavior is physically similar to that of a resistive kink, as in the classic Kadomtsev 
(1975) theory for tokamak disruptions, in that the feedback between an ideal and a resistive 
mode produces an explosive burst of energy release. In our case, the bulk of the energy release 
is due to the propagation of a nonlinear torsional Alfvkn waves out the top of the simulation 
box. These waves are produced by the interchange reconnection of a highly twisted closed 
field line with an untwisted open field line. Since the initial twisted field line is force-free, 
the twist is distributed uniformly along that field line. As a result of reconnection the open 
and closed lines exchange sections, resulting in a new pair of open and closed field lines. 
Each of these post-reconnection lines consists of a twisted and untwisted section and, hence, 
is far from force balance. Kote that since twist is a measure of helicity, it must be conserved 
under reconnection. In order to re-establish force balance the twist propagates from the 
twisted to the untwisted section in both reconnected field lines. In the new closed field 
line this results in a nonlinear Alfvhn wave that bounces back and forth between the two 



photospheric footpoints. but in the new open field line the wave simply propagates out the 
top of the box and is lost to the system. We saw this type of evolution in our previous 
translationally-symnietric calculations (e.g. Karpen et al. 1996, 1998). The only difference 
in this case is that one of the flux systems is open, allowing a large fraction of the helicity 
to escape the simulation volume. The outwardly propagating nonlinear Alfvkn waves can be 
seen in Fig. 4. They appear as kinks in the blue field lines that used to be closed, but are 
opened by reconnection. 

As the waves propagate out their pressure gradients push the plasma, resulting in the 
extended jet of upward moving material evident in Fig. 4. A vertical cut through this jet, 
Fig. 9, indicates that the jet extends to the top of the simulation box. The right panels 
in Fig. 9 show the vertical velocity distribution at several times in the simulation. The 
collimated column of mostly-vertical high velocities tends to be cespatial with the location 
of higher plasma density. Although the initial plasma acceleration is due to the slingshot 
effect in the reconnection region, itself, this process is not the main driver of our extended 
jet. The well-known "jets" associated with reconnection regions can be seen during the 
initial stage of the energy release (at t = 980 and t = 1040) as diverging flows from the 
reconnection point in Fig. 9). Note that these reconnection-region jets are directed both 
upward and downward, whereas our extended, coronal-hole jet is directed only upward. As 
discussed above, the extended jet is driven primarily by the release of the closed-field twist 
onto open field lines, resulting in continuous upward momentum deposition by nonlinear 
MHD waves. 

The maximum plasma velocities in the simulation reach 0.28, roughly the Alfvkn velocity 
c~ in the open field. and occur in the reconnection-region jets. Such velocities are predicted 
by almost all models of reconnection. The velocities of our extended polar jet range between 
0.18-0.27 (0.65-0.9cA), which are clearly supersonic. The jet propagates near the speed of the 
torsional Alfvkn wave, approximately the local Alfvkn velocity. We should note, however, 
that since gravity is not included in this simulation, the upward velocities are somewhat 
o v c : r c s t i ~ r t  in tho rnotlcl. 011  thc other hc1ntl, tho gas prassurc tliffc~rc~nce betwcr:n closed 
field and open-field plasma is also not included, and this would have the effect of enhancing 
the upward velocities. 

A key feature of our model jet is that it has an enhanced density compared to the sur- 
rounding plasma. This results is evident in Fig. 4, which plots the plasma density isocontour 
p = 1.25, i.e., a density higher by 25% than the initial uniform density. The jet is clearly 
evident as a region of increased density. The plasma density in the jet reaches nearly twice 
the initial density, while the temperatures are enhanced by a factor of approximately 1.4. 

' Polar jets on the Sun exhibit much higher densities than surrounding open-field material, 



because they involve the release of high-density closed-field plasma onto open field lines. In 
our simulation the initial density and temperature are uniform throughout, and since the 
closed field region expands substantially, the density and temperature of the closed-field re- 
gion actually drops below the surrounding open-field plasma. This verifies that the driver of 
the jet in our simulation cannot be gas pressure. The density enhancements in our jet are 
due to the compression of open-field plasma by the sideways expansion of newly reconnected 
open field. The compression of the plasma follows the magnetic field oscillations and, hence, 
the jet adopts the helical shape of the Alfvkn wave (see Fig. 4). This helical structure for 
the jet is an important prediction of our model and should be evident in multi-viewpoint 
observations (Patsourakos et al. submitted) 

Another important property of the jet is that it has a great deal of fine-scale internal 
structure. This can be seen in Fig. 9 which shows a 2D cut (the x = 0 plane) of the electric 
currents and vertical velocities in the simulation box. Note that at any instant the high- 
current regions take on an '.Eiffel tower" or "inverse Y" shape. For the grids used in this 
simulation we find that the width of the jet structure is approximately 20% of the size of 
the closed field region, but structures clearly develops down to the scale of the grid. 

As the reconnection progresses, the outer spine flux migrates with the continued writhing 
of the closed field. Observed from the side, therefore, the jet appears to  show a drift. The 
jet moves a length scale of order the closed magnetic field in a time scale of 100 time units. 
The velocity of this drift is approximately 5 x .v 0.2c.4, about one fifth to one tenth 
of the upward velocities found in the jet itself. We emphasize that this drift is not a real 
material motion. It is only a phase velocity due to the migration of the reconnection region 
to different flux surfaces. Again the situation is similar to the translationally symmetric case 
where we saw that reconnection led to the formation of a large loop-like volume of filled with 
thin current sheets down to the grid scale (Karpen et al. 1996). Reconnection in this open 
field case leads to the formation of a large volume filled with fine-scale currents and upflows. 
This small-scale structure for the jet is another prediction of our model. 

4.3. Energy and helicity budgets 

The previous section focused on the detailed dynamics during the energy release phase 
of the simulation, because the dynamics are critical for comparing the model with jet ob- 
servations. In this section we consider the evolution of global quantities such as energy and 
helicity, which are critical for understanding the general properties of the model and for 
determining its implications for the solar wind. 



4.3.1. Energy Evolution 

We note from Fig. 5 that the photospheric motions inject approximately 60 units of free 
magnetic energy into the corona (see Sect.4.1). During the release phase, a total of 55 energy 
units are lost in less than 200 time units (from - 820 at t = 1000 to - 765 at t = 1200), 
so that only 5 units of the free energy (less than 10%) remain in the system. Most of the 
energy losses are due to the magnetic energy, which decreases by 51 units, see Fig. 5 ) .  The 
internal energy decreases by 5 units, while the kinetic energy experiences a net gain of only 
1 unit between t = 1000 and t = 1200. but undergoes large variations (of order 5 energy 
units) during this evolutionary phase. 

Note that although the decrease in total magnetic energy is only 8.2% of the maximum 
magnetic energy, it corresponds to more than 83% of the stored free energy! We conclude, 
therefore, that the kink-like instability and series of reconnections that take place during 
the dynamic phase are extremely efficient at releasing the injected free magnetic energy and 
converting it to other forms. Since our simulation neglects gravity and solves the ideal MHD 
equations, there are only three modes of conversion for the magnetic free energy: Alfv6n 
waves that escape out the top, plasma kinetic energy, and numerical dissipation. It should 
be noted that the energy that is dissipated by the numerical diffusion, whether magnetic or 
kinetic, is lost to the system and does not appear as heat (internal energy). Consequently, 
our simulation tends to underestimate the plasma temperature, but since the system is low 
beta, we do not expect this to have a significant effect on the evolution. Furthermore, a 
proper treatment of the temperature would require accurate calculation of radiative losses 
and field-aligned thermal conduction, which is beyond the scope of this paper. 

It is evident from Fig. 5 that the kinetic energy undergoes a sharp increase just after the 
start of the instability. This increase of 5 energy units is due to  the acceleration of plasma 
during the kink-like instability, the reconnection, and the nonlinear Alfv6n wave driving 
of the jet. The kinetic energy then decreases either by plasma transport through the top 
boundary or by numerical dissipation. 

In order to track the amount of energy transported away, we computed the energy flux 
through horizontal planes ( z  = const.) in the simulation box by integrating the kinetic flux 
density 1/2vZpc2 and the Poynting flux density -((v x B) x B) . eZ/po, over these horizontal 
planes. The fluxes along with their time integral are shown in Fig. 10. We see from this 
figure that, as expected, the magnetic flux through the bottom boundary decreases smoothly 
to zero by the end of the driving (t = 1000), but that large impulses of magnetic and kinetic 
energy flux occur high in the sinlulation domain during the energy release phase. 

A substantial fraction of the free magnetic energy is used to generate the torsional waves 



and is transported away by the waves. In Fig. 10 (top row), we note that 14 energy units 
are ejected in the form of Poynting flux. This is the magnetic energy transported within the 
jet. In our simulation this energy is simply lost to the system, but on the Sun, available to 
drive the solar wind. The nonlinear wave can transport the energy in the upper corona and, 
when dissipated, can accelerate the solar wind (Cranmer & van Ballegooijen 2005). Our 
results, therefore, support the models which argue that reconnection between small bipoles 
and open field is responsible for heating and accelerating the wind (e.g. Axford & McKenzie 
1992; Fisk et al. 1999) 

The jet also expels 2.5 energy units in the form of kinetic energy (see Fig. 10, bottom 
row), some of which originated in the reconnection sites and some driven by the waves. In 
total, the jet expels approximately 20 energy units, which represent 113 of the injected free 
energy. The amount of kinetic energy dissipated within the numerical domain is approx- 
imately 2.5. We find, therefore, that about half the free magnetic energy is lost through 
numerical dissipation. In principle, this energy would be available for plasma heating, but 
as emphasized above, an accurate treatment of the plasma energetics would require full 
inclusion of additional energy loss mechanisms. 

4.3.2. Helicity Evolution 

In addition to energy, a key global quantity is magnetic helicity, because this is expected 
to be conserved during reconnection (Woltjer 1958). In his seminal paper, Taylor (1974) 
argued that "unrestricted" reconnection would result in the final equilibrium state being that 
of a linear force-free field. Our system, however, does not undergo unrestricted reconnection, 
because the reconnection is confined to the separatrix boundary between the open and closed 
flux systems (e.g. Antiochos et al. 2002). For this open system in which helicity can escape, 
the Taylor state corresponds to the initial potential field, so this theory is not expected to 
apply directly. 

Nevertheless, it is interesting to note from Fig. 4 that the closed field flux does experi- 
ence, at least, two reconnections. The first and last panels of the figure show that almost all 
the closed flux returns to its initial closed state and the open back to open. This requires 

that all the flux undergo an even number of interchange reconnections during the evolution. 
Thc only significant diffcrcncc bctwccn the initial and final states is that thc amount of 
helicityltwist contained in the closed-flux domain is much lower than the amount injected. 
Field lines are far less twisted in the final panels of Fig. 4 than just before the trigger of the 
instability. 



In order to quantify the helicity loss we plot, as above, the helicity flux at several heights 
in the simulation box (see Fig. 11). All the helicity is injected into the closed field region 
only, but we find that due to interchange reconnection most of this helicity is transferred 
from the closed to the open and, thereby, ejected. Figure 11 shows that approximately 1150 
units of helicity exit the top open boundary, which is about 90% of the helicity injected 
through the bottom boundary. The bulk of the remaining helicity stays in the system in 
the form of the weakly twisted closed-field lines deep within the embedded dipole. It seems 
unlikely that the low-lying closed flux near the polarity inversion line can come into contact 
with open flux and release its helicity. In fact, it is surprising how much of the helicity 
does escape. Releasing 90% of the helicity requires extreme distortions of the topology so 
that flux from well inside the initially closed region comes into contact with open field and 
reconnects. 

It is also interesting to note that in spite of the copious reconnection in the system, 
and the substantial numerical diffusion, the simulation conserves helicity to a high accuracy. 
In previous 2.5D simulations with fixed numerical grids (MacNeice et al. 2004), we found 
that helicit,y is conserved only if the number of grid points were sufficiently large. It is not 
possible to have equivalently dense grids in this fully 3D simulation; therefore, our results 
show the importance of using an adaptive mesh, as in our simulation here, for the proper 
treatment of 3D reconnection. 

4.4. Relaxation 

The relaxation phase of the evolution t 1180 to - 1500 is characterized by a slow 
reconnection that attempts to return the fan and spines to their current-free state in Fig. 1. 
However, the system cannot return to a true potential field, because there is still some 
residual twist on low-lying field lines near the PIL. This twist is on flux far from the open 
field region; consequently, it cannot be released via reconnection and propagation out the 
top. The low-lying non-potential flux quickly achieves a near force-free equilibrium after 
the impulsive release phase, and shows minimal evolution thereafter, except for a very slow 
dissipation of the currents due to the numerical resistivity. Since we resolve the structures 
very well nunlerically, the effective Reynolds number is large (over lo4). so the amount of 
dissipation of these volumetric currents during the relaxation phase is negligible. 

The effect of the long-lived volumetric currents is to force the existence of a current sheet 
at the separatrix. It is evident from Fig. 4 t,hat by the end of the simulation the system is 
not in an axisymmetric state. In fact, once the symmetry is broken in our simulation, it is 
effectively impossible for the system to return to an axisymmetric state. But for the flux 



distribution on the photosphere, the axisymmetric state is the only one that has no stress a t  
the separatrix. We conclude, therefore, that current sheets at the separatrix are essentially an 
inevitable consequence of the embedded bipole topology of Fig. 1. Kote that this conclusion 
must hold for the Sun, as well. Every embedded bipolar region in a coronal hole (or elsewhere) 
will have a current sheet at its separatrix, which has important implications for plasma 
heating and energization. 

Figure 12 shows the current and velocity structure a t  the separatrix late in the relaxation 
phase of the simulation t = 1360. We note that a current sheet is clearly evident on the 
fan surface and that strong current lines are present along the spines. The topology closely 
resembles the model presented in Antiochos (1996) for a stressed 3D null point. As a result 
of the stress, the inner (blue field-line bundle in the figure) and outer (white) spine lines 
are displaced from each other and the fan breaks up into an inner (blue field lines) and an 
outer (white field lines) surfaces that no longer line up, as in the initial potential state. This 
mismatch of the fans implies that a current sheet is present, which is strongest along a line (a 
finite-length null line) joining the two spines (see Antiochos 1996. for details). An isosurface 
of very low field strength is plotted in Figure 12,  clearly showing that the null point has 
deformed to an extended linear structure lying between the two spines. 

Figure 12 also shows that magnetic reconnection is occurring at this "null-line" current 
sheet. We note the classic stagnation point flows with outflowing velocities of order the 
Alfvh speed, that are associated with all reconnection models (e.g. Sweet 1958; Parker 1957; 
Petschek 1964). Note also, the importance of having an adaptive grid in order to resolve the 
reconnection region. We find that the reconnection resembles the Sweet-Parker configuration, 
which has an extended current sheet. The effect of the reconnection is to attempt to bring 
the two spines back into alignment (Antiochos et al. 2002), but as stated above. this is not 
possible due to the stress remaining in the system. We expect, therefore, that the system 
will eventually settle into a quasi-static equilibrium similar to that of Figure 12, but with 
a smaller current sheet that is supported by gas pressure. Of course, any motion at the 
photosphere will resht in further reconnection at this current sheet and continued heating 
of the plasma near the fan and spines, which may play an important role in heating the solar 
wind and in the formation of plumes (e.g. Wang 1998). We conclude, therefore, that our 
model may be important for understanding not only jets, but much of the activity observed 
in coronal holes. 



5. Discussion 

5.1. Conclusions 

We performed a 3D Cartesian MHD numerical simulation of the interchange reconnec- 
tion between closed and an open fields using the Adaptively Refined Magnetohydrodynamic 
Solver (ARMS). We assumed the simplest possible multipolar topology of an axisymmetric 
bipole in a uniform background open field, and drove the system with a slow axisymmetric 
rotation at the photosphere. The main results and implications of our simulation are the 
following: 

1. Reconnection cannot occur in an axisymmetric null-point topology. As long 
as the system stayed close to axisymmetry, the photospheric motions drove a slow 
build-up of free energy in the corona with no evidence for any energy loss, even though 
current sheets appeared at the separatrix surface, 

2. A kink-like instability can trigger fast energy release in an embedded bipole 
topology. Beyond a certain critical twist/ helicit y, the approximately axisymmet- 
ric system became unstable to a 3D kink-like mode that broke the symmetry and 
immediately induced reconnection. The system, therefore, exhibits the "switch-on" 
characteristic required for explosive energy release in the corona. 

3. 3D reconnection is extremely efficient at releasing the free energy stored 
in an embedded bipole topology. Approximately 83% of the free energy was 
liberated by reconnection, with roughly one third converted to nonlinear Alfv6n waves 
that propagated out the top of the simulation domain and the rest dissipated in fine- 
scale currents sheets that formed throughout the volume. Almost all the helicity, 
N 90% was ejected. 

4. A high-speed (Alfvenic), massive jet is generated by impulsive reconnection. 
Interchange reconnection transferred the twist from closed to open field lines, thereby 
producing a large flux of nonlinear torsional Alfvkn wave that compressed, heated, and 
accelerated plasma upward. This jet mechanism has been previously called magnetic 

twist jet (Shibata et al. 1997). Reconnection is the key mechanism that generates the 
jet in our model. 

5. Current sheets persist at the open-closed field interface long after the im- 
pulsive energy release. The presence of long-lived residual twist deep in the closed 
field region implies that current sheets and the accompanying reconnection must per- 
sist at the separatrices in the system, the fan and spines. The topology of these current 



sheets resembles that proposed in Antiochos (1996) and the reconnection is strikingly 
similar to the classic Sweet-Parker model. These long-lived current sheets may play an 
important role in heating and accelerating the wind. 

5.2. Application to polar jets 

X-ray jets, defined as transitory X-ray brightenings in the corona with apparently colli- 
mated motions, were discovered by the Soft X-ray Telescope on Yohkoh (Tsuneta et al. 1991; 
Shibata et al. 1992; Shibata & Murdin 2000). Recently X-ray jets have received increased 
attention, because the X-ray telescope on Hinode has found that the jets are an order of 
magnitude more frequent than previously believed (Cirtain et al. 2007). They are especially 
common in corona holes, where they are believed to be due to the interaction between open 
and closed field (e.g. Shibata et al. 1992). Previous sin~ulations (Yokoyama & Shibata 1995, 
1996; Miyagoshi & Yokoyama 2004; Archontis et al. 2005, 2006; Isobe et al. 2006, 2007; 
Moreno-Insertis et al. 2008) have demonstrated that evaporation flows can explain many of 
the properties of X-ray jets, but this mechanism cannot account for the helical structure and 
Alfvknic velocities observed in some polar hole jets (Patsourakos et al. submitted). The 3D 
MHD simulation presented in this paper is the first to demonstrate clearly that the release 
of magnetic twist onto open field lines by magnetic reconnection leads to the generation of a 
high velocity jet. Unlike earlier 2D simulations Shibata & Uchida (1985, 1986), reconnection 
plays the central role in the generation of the jet in our model. 

Although the purpose of this paper was to demonstrate the basic mechanism and not to 
compare the simulation directly with observations, it should be noted that the parameters 
for the sinlulation are compatible with typical solar values. Assuming a coronal density of 
10-l3 kg m-3 and a pressure of lop3 Pa implies a temperature of 1.2 x lo6 K. Taking the 
uniform field in the coronal hole to be 5 G and assuming a unit length of 10 Mm, implies 
that the embedded polarity region has a diameter of 33 Mm, a maximum field intensity 
/B 1 of 69 G and a flux of 1.5 x lo2' Mx. For these parameters the Alfvkn speed in the 
corona is equal to 1.4 x lo3 km s-I, the time unit is equal to 2 s, and the energy unit equals 
2.5 x 1021 J .  The total amount of free energy injected is thus of 1.5 x J. Therefore, our 
magnetic twist jet has a velocity up to 1200 km s-I. A total energy of order of 5 x J 
is ejected through the top boundary, - 314 of it being transported away by the nonlinear 
Alfvkn wave. The temperature within the jet is approximately 1.7 x 10% and the density 
approximately 2 x 10-l3 kg m-? These values lie within the range of observed properties of 
jet, except that our jet tends to be under-dense and somewhat cool, primarily because of the 
neglect of joule heating in the simulation. We expect that if the large amount of energy lost 



by dissipation had been included as a heating term in the model, the temperatures would 
have reached observed values. Furthermore, our model reproduces several classic geometrical 
features observed in jets, including the "inverse-Y/Eiffel tower'' shape, the drift of the jet 
axis, the 3D helical structures (Patsourakos et al. submitted), and the recent observation of 
Alfvkn wave within polar hole jets (Cirtain et al. 2007; Savcheva et al. 2007). 

A critical issue for the model is obviously the assumption of axisymmetry. Of course, 
magnetic structures on the Sun are always fully 3D. The key role of the axisymmetry in 
our model is to suppress the reconnection until a large amount of free energy has built up, 
and then to release it explosively via a quasi-ideal instability that induces reconnection. 
We claim that even for a fully 3D system, as long as the magnetic configuration is not too 
distorted from that of Fig. 1, this basic physical process will still occur. This conjecture will 
be explored in future work. 

E.P. wish to thank Mark Linton, Igniacio Ugarte-Urra and Fernando Moreno-Insertis 
for useful discussions. This work was supported, in part, by the NASA HTP, TR&T, and 
SR&T programs. 
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Fig. 1. 31) view of the initial magnetic configuration. The distribution of the magnetic field 
intensity IB/ at the z = 0 bottom (photospheric) pla.ne is color-shaded; [purple; blue; cyan; 
green; yellow; red] c:orrespond to field intensity equal to [12.5;10;7.5;5;2.5:0] respectively. 
The black dashed circle on this plane corresponds to the polarity inversion line (PIL). Field 
lines belonging to the inner connectivity (closed) doriiairl are plotted in cyan, while those 
belonging to the out,er connectivity (open) donlain are displayed in white. 



Fig. 2. Radial profiles of the vertical magnetic field B, and the angular velocity 62 at the 
bottom boundary (photospheric) plane. 

Fig. 3. 2D vertical slice of the initial mesh in the (.cz) plane. with x E [-I2 : +12] and 
z E [0 : 241. The mesh in y is identical to that in x. Each block consists of 8' grid cells. 



Fig. 4. Evolution of the magnetic configuration. The 2D horizontal plane displays the 
distribution of /BJ at the hottonl boundary (as in Fig. 1). The field lines are plotted starting 
from fixed position at the bottom boundary along the y axis. The white ones initially 1:)elong 
to the open connectivity domain whereas the blue ones are in the closed connectivity domain. 
The yellow isocontours correspond to mass density. 1) = 1.25. 
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Fig. 5. Evolution of the kinetic (solid line) and the magnetic (dashed line) energies during 
the simulation. The two vertical lines a t  t = 920 and t = 1240 separate the three evolutionary 
phases. 



Fig. 6. Injection of energy and helicity through the bottom (photospheric) boundary 
( z  = 0). Left: Poynting flux (dashed curve) and total rnagnetic energy injection (solid 
curve) estimated by integrating the Poynting flux. Right: Magnetic helicity flux (dashed 
curve) and total helicity (solid curve) estimated by integrating this flux . 





Fig. 7.  Evolution of the magnetic config~irat~ion during the initial phase. At each time: 
upper panel: evolution of the inner fan (blue field lines) and t,he null point (red isosurface). 
The 2D filled contours on the bottorn plane show the distribution of the magnetic field /B/  
at the bottom (photospheric) boundary (with a color shading similar t o  the one in Fig. 1).  A 
green field line indicates the number of turns of the magnetic field within the inner polarity. 
Bottom left: vertical 2D distribution of the electric current /jj on the y = 0 plane. [purple; 
blue; cyan; green; yellow; red] correspond to current intensity of respectively [l; 0.8; 0.6; 0.4; 
0.2; 01. The lower horizontal slice displays the distribution of (B( .  Bottom right: vertical 
2D distribution of the magnetic field component B, on the (3-z) plane at y = 0 (component 
perpendicular to the plane). [purple; blue; cyan; green; yellow; red] correspond to algebraic 
field intensity (positive indicated field toward the observer) of respectively 1-4; -2.4; -0.8: 
0.8; 2.4; 41. The lower horizontal slice represent the distribution of Ivl. [purple: blue; cyan; 
green; yellow; red] correspond to velocity intensity of respectively [0.25; 0.2; 0.15; 0.1; 0.05; 
01. The arrows show the direction of the velocity field v. Bottom right panel: evolution 
of the altitude of the null point during the sin~ulation. 

Fig. 8. Scatter plots of the twist angle 19: magnetic helicity, and free energy a t  the time of 
the instability or a t  the end of the simulation (if no instability occurred). The twist angle 
0 is the maximurn angle of rotation of the field lines around the inner spine: 8=2~.\~,,,.,. 
Each cross correspond to the result of a particular run. The boxed crosses correspond to 
runs in which an instability occurred. Left: free energy as a function of the twist angle 8. 
The dashed horizontal segments correspond to the margins of error. Right: helicity as a 
function of the free energy. The threshold values for an instability to occur are indicated by 
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Fig. 9. At each time: left: vertical cut (in tlie (yz) plane a t  a = 0) of the vertical 
component vZ of the velocity field. [purple; blue; cyan; green: yellow; red] correspond to 
the algebraic v, values (positive values for upflows) of respectively [0.28; 0.17; 0.06; -0.06; 
-0.17; -0.281. The field lines are piloted starting frorrl the bottom boundary along the y 
axis at  fixed position: white field lines initially belongs to the open connectivity domain 
whereas the blue ones are in the close domain. Right: vertical cut (in the (yz) plane a t  
x = 0) of the total current density. [purple; blue; cyan; green; yellow; red] correspond to 
current intensity of respectively [I; 0.8; 0.6; 0.4 ;0.2; 01 
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Fig. 10. Flux (left column) and time integrated variations (right column) of the 
magnetic energy (top row) and kinetic energy (bottom row) through horizontal (xy) 
planes a t  z = 0, 10, and 13. 



Fig. 11. Flux (left) and time integrated variations (right) of the magnetic helicity through 
horizontal (xy) planes at at z = 0. 10, and 13. 
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Fig. 12. Configuration at t = 1360. Top: vector velocity field in the (yz) plane x = 0. 
The color shading depends of the intensity of Ivl: [purple: blue; cyan; green; yellow; red] 
code respectively for [0.25; 0.2; 0.15; 0.1 i0.05; 01. Bottom left: distribution of the current 
density j in the (yz) plane a t  J: = 0. Bottom right: magnetic field topology. The blue 
field lines locate the position of the inner spine and fan surface. The white field lines map 
the position of the outer spine and fan surface. The red isosurface delimits the volume of 
very low magnetic field (IBI < 0.2). In each panel the bott'om horizontal slice represents the 
distribution of the magnetic field IBI (with a color shading similar to the one in Fig. 1). 




