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The Moderate Resolution Imaging Spectrometers (MODIS) onboard TERRA and 

AQUA satellites provide global observations of the Earth. It is a whiskbroom sensor that 

simultaneously scans a swath of the Earth 10 km wide at nadir. Due to the viewing 

geometry and the curvature of the Earth, the adjacent scans overlap each other. The 

overlap increases with the scan angle reaching 50% at the edge of scan. This effect, 

called "bowtie" effect, is present in all whiskbroom sensors. This paper discusses a 

gridding procedure which places swath measurements into a regular spatial grid. 

We consider two effects of the MODIS viewing geometry on the quality of gridded 

images. First, because MODIS swath is 10 krn wide at nadir, the view azimuth angle 

changes abruptly at the boundary of adjacent scans. This discontinuity appears as striping 

of the image, which becomes noticeable in certain cases such as sun glint over water or 

snow. This is a real signature of the surface bi-directional reflectance, which should be 

preserved in the measurements. Second, due to bowtie effect, the commonly used method 

of averaging all observations, which cover the grid cell, may cause smearing of the image. 

Taking the above two effects into account, we revised the current MODIS gridding 

algorithm using a scan-by-scan processing contrary to the orbit-by-orbit processing used 
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in the current MODIS gridding algorithm. The new algorithm preserves angular features 

of the measured surface signals and enhances sharpness of the image. 

Abstract 

We have analyzed two effects of the MODIS viewing geometry on the quality of 

gridded imagery. First, the fact that the MODIS scans a swath of the Earth 10 km wide at 

nadir, causes abrupt change of the view azimuth angle at the boundary of adjacent scans. 



This discontinuity appears as striping of the image clearly visible in certain cases with 

viewing geometry close to principle plane over the snow of the glint area of water. The 

striping is a true surface Bi-directional Reflectance Factor (BRF) effect and should be 

preserved during gridding. Second, due to bowtie effect, the observations in adjacent 

scans overlap each other. Commonly used method of calculating grid cell value by 

averaging all overlapping observations may result in smearing of the image. This paper 

describes a refined gridding algorithm that takes the above two effects into account. By 

calculating the grid cell value by averaging the overlapping observations from a single 

scan, the new algorithm preserves the measured BRF signal and enhances sharpness of 

the image. 
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Abstract 

We have analyzed two effects of the MODIS viewing geometry on the quality of 

gridded imagery. First, the fact that the MODIS scans a swath of the Earth 10 km wide at 

nadir, causes abrupt change of the view azimuth angle at the boundary of adjacent scans. 

This discontinuity appears as striping of the image clearly visible in certain cases with 

viewing geometry close to principle plane over the snow of the glint area of water. The 

striping is a true surface Bi-directional Reflectance Factor (BRF) effect and should be 

preserved during gridding. Second, due to bowtie effect, the observations in adjacent 

scans overlap each other. Commonly used method of calculating grid cell value by 

averaging all overlapping observations may result in smearing of the image. This paper 

describes a refined gridding algorithm that takes the above two effects into account. By 

calculating the grid cell value by averaging the overlapping observations from a single 

scan, the new algorithm preserves the measured BRF signal and enhances sharpness of 

the image. 



I. Introduction 

MODIS is a whiskbroom sensor that simultaneously senses ten rows of 1-km detector 

pixels, 20 rows of 500-m detector pixels and 40 rows of 250-m detector pixels as the scan 

mirror sweeps across the track. The MODIS observation footprint grows with the scan 

angle in both along- and across-track direction. As a result, consecutive scans overlap 

when scan angle is greater than zero. At the edge of scan, the overlap can be as large as 

50%. Such a geometrical distortion is called "bowtie effect" which is typical for all 

"whiskbroom" sensors [I  -21. 

The MODIS Level 1A (LlA) processing has tagged each observed spatial element in 

MODIS LIB swath product with location information [I]. However, due to bowtie effect, 

the observed spatial elements are neither fixed in sizes nor in locations. Observations of 

consecutive scans from the same orbit overlap each other, and data from different orbits 

are not aligned. Most of the satellite data users need a uniform representation of the 

surface, especially in the studies involving spatial pattern, time series analysis and multi- 

sensor applications [3-71, which requires gridding of the MODIS swath data and removal 

of geometrical distortions. 

Gridding is defined as allocating geolocated satellite observations into an output 

image in which each grid cell has a fixed size and location. The grid cell value is 

calculated through resampling of the original observations. Commonly used resample 

methods include nearest-neighbor, bi-linear interpolation, cubic convolution and others. 

None of these common methods consider degree of overlap between observations and 

grid cells. MODIS science team has developed an efficient gridding method (MODIS 

L2G algorithm) that counts the observatiodgrid cell overlaps using the concept of 



observation coverage [2]. Observation coverage is defined as the observatiodgrid cell 

intersection area divided by the area of the observation footprint. It is derived using an 

efficient polygon intersection algorithm [8]. The MODIS L2G algorithm tags each grid 

cell with a L2G pointer which contains the location of the overlapped observations in 

swath format granules, the observation coverage of each overlapped observation and 

other supplementary information. It also computes the ratio of the observatiodgrid cell 

intersection area and the grid cell area (cell coverage). In order to reduce the storage 

volume, the observation is not stored for given grid cell if the cell coverage is less than 

certain threshold [2]. The L2G pointer can then be used to grid MODIS swath data. For 

example, one can select the observation with maximum observation coverage as the grid 

cell value. This approach is equivalent to the nearest-neighbor method. On the other hand, 

the MODIS Surface Reflectance Aggregation product (MODAGAGG) uses a weighted 

average scheme. The MODAGAGG algorithm calculates the grid cell value by averaging 

all observations from consecutive scans that overlap with given grid cell, using 

observation coverage as weighting factor. Observations from different orbits are 

aggregated separately to retain sun-view geometry [9]. 

The MODAGAGG product has been used in the MODIS level 3 (L3) science 

products. Performing processing on the orbit per orbit basis, this method, however, does 

not consider the overlap of observations and the view angle discontinuity between 

neighboring scans within a single orbit. During the development of a new Multi-Angle 

Implementation of Atmospheric Correction (MAIAC) algorithm for MODIS, which 

requires accurate gridding of MODIS measurements [6-71, we found that these effects 

can be significant in some special cases. 



In this paper, we will first discuss the view angle discontinuity and the problem of 

observation overlaps (section I1 and 111), followed by presenting an amended gridding 

algorithm for the MODIS swath data (section IV). 

11. View Angle Discontinuity in MODIS swath data 

The MODIS instrument simultaneously senses ten rows of 1-km detector pixels (20 

rows for 500m and 40 rows for 250m detector pixels) producing ten (20 and 40, 

respectively) scan lines in each scan. The sun-view geometry of two adjacent scans is 

shown in Figure 1. The leading edge of one scan is adjacent to the tailing edge of the next 

scan. One can see that at the junction of the two scans, the sensor views the leading edge 

of first scan in the forward direction and the tailing edge of next scan in the backward 

direction. The view azimuth angle (VAZ) changes abruptly at the scan edges, even 

though these pixels are geographically adjacent. The VAZ difference at the scan edge can 

be close to 180' when the view zenith angle (VZA) is close to nadir. It rapidly decreases 

with increase of view zenith angle: at VZA=30°, the difference is about 2", reducing to lo 

and less at VZA245', as shown in Figure 2. 

This small discontinuity of azimuth is usually not visible in the gridded images over 

land or ocean, because the surface Bi-Directional Reflection Factor (BRF) is generally a 

smooth function. However, in some special cases when BRF effect is strong, e.g. near the 

sun glint direction, it can result in noticeable striping of the image. Two examples are 

shown in Figures 3 and 4. Figure 3 shows stripes in the sun glint spot in the Red Sea. The 

top image of Figure 4 shows striping over snow in Greenland with corresponding relative 

azimuth angle pattern shown on the bottom. At the snow reflectance of 0.85-0.95 in red, 

green and blue bands, the discussed BRF discontinuity reaches 0.004-0.006. 



Shown striping of imagery is not related to observational errors; rather it carries a real 

BRF signal, which may be important to some applications and should be preserved 

during gridding. 

111. Observation Overlaps 

Due to bowtie effect, consecutive scans overlap in 1-km bands when VZA is higher 

than 25" (17" for 250m bands) [I], resulting in multiple observations of an area within the 

same orbit. This feature of MODIS should be considered in the gridding. Figure 5 shows 

the geometric relations between the overlapping observations and grid cell. One can see 

that a part of the grid cell is covered more than once. This part will have a higher weight 

if the grid cell value is calculated as a weighted average of all overlapping observations. 

Besides, weighted averaging will smear the image by adding larger area covered by 

different footprints. Figure 5 shows the comparison of images with grid cell value 

calculated by 1) averaging all overlapping observations and 2) averaging overlapping 

observations within a single scan. It can be seen that the image created by the second 

method is slightly sharper than that created by the first method. For a relatively 

homogeneous area, the grid cell value differences are less than 0.001 it the red band with 

reflectance of 0.07-0.1 and less than 0.002 in the Near-Infrared (NIR) band with 

reflectance of 0.2-0.3. However, on the sharp boundaries such as cloud boundary and 

coast line, the differences reach 0.002-0.005 in the red band and 0.007-0.02 it the NIR 

band, or 1-2.5% relative. Therefore, it may be more appropriate to use observations from 

only one scan that fully covers the given grid cell or provides the maximum coverage if 

the grid cell is not fully covered. The latter case is only important for pixels located on 

the scan boundaries, when VZA is less than 25". Nominally, the maximum scan coverage 



of a grid cell is at least 50 percent because the scan gap at nadir is zero [I]. In fact, for 

these not fully covered pixels, the final results are similar to the results of the nearest- 

neighbor method. 

IV. The Gridding Algorithm 

In order to minimize the impacts of view angle discontinuity and of observation 

overlaps, we revised the L2GlMODAGAGG processes to develop a new gridding 

algorithm for MODIS swath data that runs on a scan-by-scan basis. For each scan, the 

algorithm starts with reading the latitude and longitude of observation centers from 

MODIS geolocation products (MOD03). The observation footprint is modeled as a 

convex four-sided polygon with corner locations calculated by bilinear interpolation of 

the neighboring observation centers. Similar method is also used to find the centers and 

corners for 250m and 500 bands. Then the intersection areas between observation and 

grid cell are derived as described in [I-21. The cell coverage and scan coverage (the total 

area of the cell covered by all observations in the given scan) are recorded. Figure 7 

gives the detailed diagram of the processing. For each grid cell, the algorithm keeps the 

current cell coverage and scan coverage information in memory so that the value of scan 

coverage can be compared when a new scan comes. The scan with maximum scan 

coverage will be reported, with specific geometry of this scan. This choice is the main 

difference from the MODAGAGG algorithm, which reports a weighted average from all 

overlapping scans. 

It should be noted that we use cell coverage as a weighting factor instead of 

observation coverage used in MODAGAGG algorithm. Although the difference is not 



significant, using cell coverage as weighting factor is logically more consistent because it 

produces automatic normalization to 100% for fully covered grid cells. 

V. Conclusion 

This paper presented analysis of two effects of the MODIS viewing geometry on the 

quality of gridded images. The fact that the MODIS scans a swath of the Earth 10 km 

wide at nadir, causes abrupt change of the view azimuth angle at the boundary of adjacent 

scans. This discontinuity appears as striping of the image, which becomes noticeable for 

certain cases such as sun glint over water or snow. The striping is a true surface BRF 

effect with the magnitude of discontinuity as high as 0.004-0.006 over snow. The second 

effect relates to the scan overlaps due to bowtie effect which can be as high as 50 percent 

at the scan edge. We showed that the commonly used method of averaging all 

observations, which cover the grid cell, may cause a small smearing of the image. 

We described a refined gridding algorithm that takes the above two effects into 

account. It is based on the scan-by-scan processing contrary to the orbit-by-orbit 

processing used in the MODAGAGG algorithm. The new algorithm preserves the 

measured BRF signal and slightly enhances sharpness of the image. This is achieved by 

calculating the grid cell value by averaging the overlapping observations from a single 

scan, using cell coverage as weighting factor. 
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Scan 1 

Figure 1. The sun-view geometry of two adjacent scans 
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Figure 2. The relative azimuth as a function of row number in MODIS geolocation and 
geometry (MOD03) product. 



Figure 3. The 3B ima 
of MODIS Ll  B top of the atmosphere reflectance, over Red sea, on day 136,2005. 
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-e 4. The effect of azimuth discontinuity: a) a zoom-in of a gridded RGB image 
)IS Ll  B top of atmosphere reflectance over Greenland, on day 184,2004; b) the 
ve azimuth angle pattern. 
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Figure 5. The geometric relations between the overlapping observations and grid cell. 



Figure 6. Comparison of two gridding methods: 1) the grid cell value is calculated by 
averaging all overlapping observations; and 2) the grid cell value is calculated by 
averaging overlapping observations within a single scan. a) The RGB image created with 
method 1); b) the RGB image created with method 2); c) the difference in the red band; 
and d) the difference in the Near-Infrared band. 
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