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Abstract. The Schatten p-norm condition of the discrete-time Lyapunov operator £ 4 defined on matrices
P e R by L4P = P — APAT is studied for stable matrices A € R®*". Bounds are obtained for the norm
of L 4 and its inverse that depend on the spectrum, singular values and radius of stability of A. Since the solution
P of the the discrete-time algebraic Lyapunov equation (DALE) £ 4 P = Q can be ill-conditioned only when either
L or Q is ill-conditioned, these bounds are useful in determining whether P admits a low-rank approximation,
which is important in the numerical solution of the DALE for large n.
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1. Introduction. Properties of the solution P of the discrete algebraic Lyapunov equa-
tion (DALE), P = APAT + Q, are closely related to the stability properties of A. For
instance, the DALE has a unique solution P = PT > 0 forany Q = QT > 0if A is stable
[11], a fact also true in infinite-dimensional Hilbert spaces [18]. In the setting treated here
with A, @, P € R*™™, A is stable if its eigenvalues A\;(A), ¢ = 1,...,n, lie inside the unit
circle; the eigenvalues are ordered so that {A1{A)] > |A2(A)] > --- > |An(A)]. Here A is
always assumed to be stable.

In applications where the dimension n is very large, direct solution of the DALE or
even storage of P is impractical or impossible. For instance, in numerical weather prediction
applications A is the matrix that evolves atmospheric state perturbations. The DALE and its
continuous-time analogs can be solved directly for simplified atmospheric models {6, 23],
but in realistic models n is about 10® — 107 and even the storage of P is impossible. Krylov
subspace [5] and Monte Carlo [9] methods have been used to find low-rank approximations
of the right-hand side of the DALE and of the solution of the DALE [10].

The solution P of the DALE can be well approximated by a rank-deficient matrix if P
has some small singular values. Therefore, it is useful to identify properties of A or () that
lead to P being ill-conditioned. If A is normal then

M(P) . (@) 1= Pl
(P = 2@ T= (@

the conditioning of P is controlled by that of () and by the spectrum of A. In the general case,
the conditioning of ) and of the discrete-time Lyapunov operator £ 4 defined by L4P =
P — APAT determine when P may be ill-conditioned.

THEOREM 1.1. Let A be a stable matrix and suppose that L4 P = Q for Q@ = QT > 0.
Then

(L.1)

Pl 1P~ o < NCallp 1L I 1QN Q7 I, p=o0, (12)
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where || - ||, is the Schatten p-norm (see Eq. 2.2).

Theorem 1.1 (see proof in Appendix) follows from ﬁ;l and its adjoint being positive
operators. Therefore the same connection between rank-deficient approximate solutions and
operator conditioning exists for matrix equations such as the contingous algebraic Lyapunov
equation. We note that Theorem 1.1 also holds for 1 < p < oo if either A is singular or
02(A) > 2; 01(A) is the largest singular value of A.

Here we characterize the Schatten p-norm condition of £,4. The main results are the
following. Theorem 3.1 bounds ||£ 4{|, in terms of the singular values of A. A lower bound
for ||£;*|l, depending on A;(A) is presented in Theorem 4.1, generalizing results of [7].
Theorem 4.2 gives lower bounds for ||£3]|; and HC ' lloo in terms of the singular values of
A. Theorem 4.6 gives an upper bound for ||£;"||, depending on the radius of stability of
A and generalizes results in [20]. Three examples illustrating the results are included. The
issue of whether £ 4 and £;1 achieve their norms on symmetric, positive definite matrices is
addressed in the concluding remarks.

2. Preliminaries. We investigate the condition number x(L4) = ||Lal] ||£3* |, where

-|lisanormon R # xn? induced by a matrix norm on R?*", § eciﬁcé\ll , for MeR # xn?
we consider norms defined by

[IMSllp <p<oo, 2.1

“M”P S#OER}EXT‘ ”S”P ’ B B

where the Schatten matrix p-norm for S € R™**" is defined by

n 1/p
Sl = (Z (ai(S))”) ; 22)
i=1

0;(S) are the singular values of S with ordering 01 (S) > 02(S) > --- > 0,(S) > 0. On
R™*" || - ||2 is the Frobenius norm and || - |lc = 01(-). If S = ST > O then ||S]j; = tr S.
The following lemma about the Schatten p-norms follows from their being unitarily invariant
{1, p. 94].

LEMMA 2.1. For any three matrices X, Y and Z € R"*"™,

XY Zllp < I Xllooll Y llplZllee,  1<p<o0. 2.3)

_ The p = 2 Schatten norm on R**™ is equivalently defined as ||S||3 = (S, S), where
(-, ) is the inner product on R?*™ defined by (Si, S2) = tr S{ Sz . This norm corresponds

to the usual Euclidean norm on R*” since |IS]|3 is equal to the sum of the squares of the
entries of S. As a consequence k3(L4) = 01(La)/0n2(L4), where 01(L4) and 0,2(L4)
are respectively the largest and smallest singular values of £ 4. The adjoint of £ 4 is given by
L4S = LarS =8 - ATSA.

We now state some lemmas about mappings M € R™ *"” and about the spectra of £ A
and A.

LEMMA 2.2 ((15) of [2]). IM[l, < IMIYPIMIIS?, 1<p< oo

LEMMA 2.3. M]|; = IM*]|co-

LEMMA 2.4 (See proof of Theorem 1, [2]). If MS > 0 for all S € R**® such that
S5 >0, then || M|eo = ||IM I}l

LEMMA 2.5 ([13, 14]). The n? eigenvalues of L4 are 1 — A;(A)A;(4), 1 <i,j < n.
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3. The norm of the Lyapunov operator. If A is normal, then £ is normal, and its
conditioning in the p = 2 Schatten norm depends only on its eigenvalues. Therefore when A
is normal,

T 1 1
on2(La)  [Anz(Ca)l ~ 1=|M(4)P7

Negtlle = (3.1)

and

IZalls = 01(L4) = a(£a)] = max |1 = M(A)K; D). 62)

For general A, the following theorem bounds ||£ 4(|, in terms of the singular values of A.
THEOREM 3.1.

I1-03(4)| < max |1 - oA <Lallp £1+03(4), 1<p<Loo. (3.3)

Proof. Note that L avjv] = vjv] — ojuju] , where u; and v; are respectively the j-th
left and right singular vectors of A such that Av; = o;u;. The lower bound follows from

||ujuf||p = HUjU]THp =1 and

ILallp > llvjv] — oFuufllp 2 |llvjvf llp = lofusujllp| = |1 - 03] . (3.4

The upper bound follows from
CaPllp < IPllp + IAPAT|l, < |IPllp + Al Pl,. O (3.5

If A is normal, o;(A) can be replaced by |A;(A)| in Theorem 3.1, and ||[L4ll, £ 1+
[A1(A)|2. If A is normal and (—A;(A)) is an eigenvalue of A, then 1 + |[A;(4)}? is an
eigenvalue of L4 and || Lall, = 1 + [A1(4)].

Theorem 3.1 shows that ||£ 4|, is large and contributes to ill-conditioning if and only
if o1 (A) is large, a situation that occurs in various applications [3, 22]. If 01(A4) > 1 and
[A1(A)| < 1, A is highly nonnormal [8, p. 314 ] and as Corollary 4.8 will show, close to an
unstable matrix.

4. The norm of the inverse Lyapunov operator. We first show that a sufficient condi-
tion for ||£;"||,, to be large is that A, (A) be near the unit circle. The condition is necessary
when A is normal.

THEOREM 4.1. Let A be a stable matrix. Then

-1 1
with equality holding if A is normal.

Proof. To obtain the lower bound, let z; be the leading eigenvectorof A4, Az, = Ay (4)z;,
and note that £ 42,257 = (1—|A1(A4)|?)z12f where (1) denotes conjugate transpose. Either
Rezzfl # 0 or Imz 27 # 0 is an eigenvector of L4, and it follows that [|£3][, >
(1 = |A1(4))?)~L. Finally, if A is normal, then

1y _ p=17 _ - 1 H
£ATI = CA I = Z m_il?z‘izi , (42)
i=1 :
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and H[,Alﬂoo L3 L = (1 = |A(A)?)~L. Using Lemma 2.2 gives czt, < -
|A1(A4)]?)~! when A is normal, and therefore HEAIH,, =(1-|MA)P)L O

‘When A is nonnormal, ||£3"||, can be large without A; (A) being near the unit circle.
For instance, if o (A) is large or more generally if ||A*|| converges to zero slowly as a
function of k, then ||£ ||, is large. We show this fact first for p = 1, c0.

THEOREM 4.2. Let A be a stable matrix. For allm > 1,

o0 m 2(m+1) ’
—1]. KT 4k K0T On (4)
el = z (A*)" 4 Z (4%) T:—U'%—(A—)‘, 4.3)
k=0 o0 k=0 oo
00 m . 2(m+1) A) _
Lo = 157 4% (49T AT A
123 oo ,go (4%) ) kg, (4) = o2(A)
In particular,
. 104)
-1y > 2 aa( _ ) )
”‘CA ”P—l_l_o‘l(A)_Fl_o_’gl(A)v p 1)00 (45)
Proof. The operator £ applied to S € R**™ can be expressed as [18]
LS =3 Aks(4M)T . (4.6)

k=0

Applying Lemma 2.4 gives ||£; |00 = ||£1"I|lco, With the inequality in (4.4) being a con-
sequence of

> T = T
ZAk(Ak) ZAk(Ak)
k=0

k=0

+;\n< 3 a4k (AT)’°> , @D
oo k=m+1

o0

and

el 2(m-+1)
(z Ak AT ) Z An (Alc AT ) Z 2k(A) ____p_(_(__g)_

k=m-+1 k=m-+1 k=m+1
4.8)

where we have used the facts that for matrices W, X, Y € R**"™ with X,Y being symmetric
positive semi-definite, A;(X + Y) > Ai(X) + A (Y) and i(WXWT) > o2 (W)Xi(X)
[17]. Likewise the p = 1 results follow from [|£3*|l1 = [|£7 || O

Lower bounds for 1 < p < oo follow trivially, e.g.,

- Ve | L3 _ _
“‘CAlnp > H ”/}“p”P - ” ,,S/z,llp >n l/p”£A1”007 (4.9)

but give little information when n is large. A lower bound for1 < p < o© dependmg on
01(A) and independent of n is given in Corollary 4.9.

We now relate [| £ ||, to the distance from A to the set of unstable matrices as measured
by its radius of stability [15].

DEFINITION 4.3. For any stable matrix A € R"*"™ define the radius of stability r(4) by

r(4) = min (eI - )7L = oJin, IR(e?, Al (4.10)
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where the resolvent of A is R(\, A) = (\I — A)~L.

If A is normal and stable, then r(A) = 1 — |A;(A)]. However, if A is nonnormal and
if its eigenvalues are sensitive to perturbations, then r{A) <« 1 — |A;(A)|. The sensitivity of
the eigenvalues of A is most completely described by its pseudospectrum [21]. The radius of
stability r(A) is the largest value of € such that the e-pseudospectrum of A lies inside the unit
circle; r(A) being small indicates that the e-pseudospectrum of 4 is close to the unit circle
for small e. The following theorem shows that when r(A) is small, [|£3"||, must be large.

THEOREM 4.4 (Proven for p = 0o in [7]). Let A be a stable matrix. Then

1
-1
{ron ||p2m, 1<p<oo. @.11)

Proof. There exists a matrix E € R™*" with [A\;(4 + E)| = 1 and [|Eljec = r(4).
Therefore there exists a vector z with 27z = 1 such that (A + E)z = e*z for some
0 < 8 < 27 Using ||lzz*||, = 1 arid Lemma 2.1 gives

|Cazz® ||, = || — Bz ET + ¥z ET + e Exz¥ ||
< |Ezz? ET||, + ||lzz¥ ET ||, + || Ezz¥ |,  (4.12)
< E|Z + 2Bl = r?(4) + 2r(4),
and we have

HEZIEszHH,, _ 1 > -1
ILazzH ||, LazzHll, = 2r(A) +r2(A) "

L2 e > O (4.13)

A consequence of Theorem 4.4 is the following lower bound for r(A) in terms of ||£ 3" |l,-
COROLLARY 4.5. Let A be a stable matrix. Then

L-—l -1
1£4 Iy 1<p<oo. (4.14)

1+ 4/1+ 123050 -

Bounds for r(A) are useful in robust stability [12] and in the study of perturbations of
the discrete algebraic Riccati equation (DARE) [19]. In {19, Lemma 2.2] the bound

r(A) >

) > —— I3 (4.15)
" o1(4) + /a3 (4) +II£7 I

was used to formulate conditions under which a perturbed DARE has a unique, symmetric,
positive definite solution. Since the lower bound in (4.14) with p = oo is sharper than that
in (4.15) when o1 {4) > 1, it can be used to show existence of a unique, symmetric, positive
definite solution of the perturbed DARE for a larger class of perturbations {19, Theorem 4.1].
We generalize to Schatten p-norms the conjecture of [7] proven in [20] for the Frobenius
norm. '
THEOREM 4.6. Let A be a stable matrix. Then
1

H-’SZ‘HpSm, 1<p< 0. (4.16)
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Proof. EZII can be expressed as [20, 13],

LM = 51; /0 " R(e®, A)R(e¥, A)H d6‘. 4.17)
Therefore, from Lemma 2.4,
1 2 ) 1 s
13 e = I oo < 5= [ NRESAIE S . @18)

The inequality (4.16) for p = 1 follows from ||£ |1 = ||£,7 Il and 7(A) = r(AT). The
theorem follows from Lemma 2.2. d

As a consequence, any solution of the DALE can be used to obtain an upper bound for
r(A).

COROLLARY 4.7. Let A be a stable matrix and let LA P = Q. Then

rz(A)ng”:, 1<p<oco. ~ (4.19)

Theorem 4.6 can be combined with any lower bound for [|£3'||, to obtain an upper
bound for r(A). For instance, from Theorem 4.2 we get the following upper bound.
COROLLARY 4.8. Let A be a stable matrix. Then

1

2
) R —— 4.20
S gy *20)
Combining Corollary 4.8 and Theorem 4.4 gives a lower bound for ||£3*||,-
COROLLARY 4.9. Let A be a stable matrix. Then
1+02(A
13y > — oA <p<oo. @21

, 1
1421+ 02(4) =0=

5. Examples. We present three examples that illustrate how ill-conditioning of £ 4 leads
to low-rank approximate solutions of the DALE.

EXAMPLE 1. Almost unit eigenvalues. Take A = AzzT where A and z are real, 0 < A <
1 and 272 = 1. The matrix A is symmetric and £, is self-adjoint. The eigenvalues of A
are (X,0,...,0). The operator £ 4 has singular values (and eigenvalues) (1,...,1,1 — A2%).
Therefore ||Lall2 = 1and 1 < ||£4]l, € 1+ A? from Theorem 3.1. The norm of the inverse
Lyapunov operator is

_ 1
Ity = ——5, 1<p<oo, (5.1)
1-X

according to Theorem 4.1. As the eigenvalue A approaches the unit circle, £ 4 is increasingly
poorly conditioned. The solution of the DALE for this choice of A is:

/\2
P=1"%

(2TQz) 22T + Q. 6.2

A “natural” rank- 1 approximation P of Pis P = A2(1—A2)~1(27Qz)2z7. As the eigenval-
ue A approaches the unit circle, if (2TQ2) is nonzero, P is increasingly well-approximated
by P in the sense that || P — P||,/||P||, approaches zero.
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EXAMPLE 2. Large singular values. Take A = oyzT where o > 0 and y and z are real
unit n-vectors. The matrix A has at most one nonzero eigenvalue, namely A = o(y7 z), taken
to be less than one in absolute value. The sensitivity s of the eigenvalue A is the cosine of the
angle between y and z, i.e., s = A/o for A # 0, indicating that )\ is sensitive to perturbations
to A when o is large [8].

Theorem 3.1 gives that 1 + 02 > ||L 4|, > |1 — 02|, showing that || £ 4||,, is large when
o is large. From Lemmas 2.3 and 2.4,

o2
1-x2’

and it follows from Lemma 2.2 that ||£ Y]], < 1+0?/ (1 —2). Alower bound for the p = 2
normis

N2 I = 11£3 oo = 1+ (5.3)

A2 ot
-1 -1, Tl —
N3 M2 2 15 227 ]2 = \/1 T2t o Jork (5.4)
The matrix A is near an unstable matrix when either || is near unity or when ¢ is large
since

) -1 —2i9
” (e’gI - asz) “ =
o0

ge

2
e yz 2|A| o

1= @A=PDE
(5.5

e 1+ >1+

oo

Therefore r(A) < (1 —|A])/o and a lower bound on ||£le|p follows from Theorem 4.4.
When either || is close to unity or when o is large, r(A) is small and k,(L4) is large
The solution of the DALE is
2
o

P=1—7 (zTQz)yyT + Q. (5.6)

When £ 4 is ill-conditioned and (27Qz) # 0, the rank-1 matrix P = 02(1-X2)~1 (27 Qz)yy”
is a good approximation of P in the sense that ||P — P||,/||P||, is small.

EXAMPLE 3. Sensitive eigenvalues. Consider the dynamics arising from the one-dimensional
advection equation, w; -+ w; = 0 for 0 < z < n, with boundary condition w(0,t) = 0. The
matrix A that advances the n-vector w(z = 1,2,...,n,t = tg) tow(z = 1,2,...,n,t =
to-+1) is the n X n matrix with ones on the sub-diagonal and zero elsewhere, i.e., the transpose
of an n x n Jordan block with zero eigenvalue. Adding stochastic forcing with covariance @
at unit time intervals leads to the DALE, £ 4P = @), where P is the steady-state covariance
of w.

Since 01(A) = 1, Theorem 3.1 yields 1 < ||[L4]l, < 2. Further, since ||[La]ly >
Caerel |y = |lere] — ezef|li = 2, where e; is the j-th column of the identity matrix
ll£ally = 2. A similar argument with £ 47 gives ||Lalloc = 2. Calculating £3'] and £7.1
gives ||£3 loo = II£3 l1 = n. Therefore, using Lemma 2.2, ||£ ]|, < n. Also,

_ Li'eieT |2
£, > H_A_I# = ) 5.7

A direct calculation shows that

i —1p2 - k_—i(k4+1)0 ’ n(n +1)
H(e®I - A"z = E A%e = — (5.8
k=0 2
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for any real 6. Since \/n||(eT — A)7!||eo > ||(e?T — A)~1||5. we have r?(A4) < 2/(n+1).
Theorem 4.4 then gives a lower bound for ||£3']|,, 1 < p < oco. Thus as n becomes
large, that is, as the domain becomes large with respect to the advection length scale, £ 4 is
increasingly ill-conditioned. , :

The elements P;; of the solution P of the DALE are

n—1 min (i—-1,j—1) :
P;j = el Pej = Z el A*Q(AT)Fe; = Z Qi—k,j—k - (5.9)
k=0 k=0

Therefore if Q = QT > 0, a “natural” rank-m approximation of P is the matrix P defined
by

3 - _ o
P;= Boj, mom<gjsn (5.10)
10 otherwise.
When Q) is diagonal, P is also diagonal and
Py =ZQkk- (.11
k=1

In this case, each Qxx > 0 and Pis the best rank-m approximation of P in the sense of
minimizing ||P — P}|,. We note that P is associated with the left-most part of the domain
0<z<n.

6. Concluding Remarks. Results about ||£;'], translate into bounds for solutions of
the DALE. For instance, the solution P of the DALE for Q = QT > 0 satisfies

tr P <[|L3 M tr @, (6.1)

and the upper bound is achieved for Q@ = wyw], where w; is the leading eigenvector of
EZ} I. In the p = o0 norm, E;l achieves its norm on the identity. In the p = 2 norm,
C:;l does not in general achieve its norm on the identity, and the question arises whether
it achieves its norm on any symmetric, positive semi-definite matrix. The forward operator
L 4 does not in general assume its norm on a symmetric, positive semi-definite matrix. The
following theorem states that C;l does achieve its p = 2 norm on a symmetric, positive -
semi-definite matrix.

THEOREM 6.1. There exists a matrix S = ST > 0 such that ||[L3'S|]2/||Sll2 =
[Ty

Proof. Theorem 8 of [4] states that the inverse of the stable, continuous-time Lyapunov
operator achieves its p = 2 norm on a symmetric matrix. The proof is easily adapted to
give that C;l achieves its p = 2 norm on a symmetric matrix. We now show that if [I;l
achieves its p = 2 norm on a symmetric matrix, it does so on a symmetric, positive semi-
definite matrix. Suppose that ||£3*S||2/lISll2 = ||£3"]l2 and S is symmetric with Schur
decomposition S = UDUT. Define the symmetric, positive semi-definite matrix St =
U|D|UT. Then ||S|lz2 = ||S*||2 and —St < S < St. The positiveness of the stable,
discrete-time inverse Lyapunov operator mapping implies that —£ 'S+ < L3'S < L£3tsH,
which implies that ||£ ;S| < [|£3'S*||2. Therefore

I£a"Slle _ NE3"Slle  I£5S* ]2
lI51l2 IS+l = ISt

0 6.2)
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Additional information about the leading singular vectors of £3! could be useful for
determining low-rank approximations of P. The power method can be applied to [,;} C;l
to calculate the leading right singular vector and singular value of C;l {7]. However, this
approach requires solving two DALESs at each iteration, which may, be impractical for large
n. If it is practical to store P and to apply £ 4 and £ 4r, a Lanczos method could be used to
compute the trailing eigenvectors of £ 4 L 4r while avoiding the cost of solving any DALEs.

Appendix. Proof of Theorem 1.1. By definition, || P|l, < ||C5 ]|, Q| and it remains
to show that ||P~ |0 < |Lallco 1Q Hlco- Since P = PT > 0, there is a nonzero z € R®

such that
1 zTx trzz? trzz?

A(P) 2T (£2'Q) =z T (£3'Q) zzT - tr ((EAT)"I zmT) Q

1P oo = (A

Let B = L£;(zzT) and note B = BT > 0. Then using Lemma 2.3 and tr BQ >
An(Q) tr B gives

”P—'l” _trﬁATB trLarB 1
T wrBQ T trB A(Q)

<NLarlhll@ Moo = ILalleoll@ Hlow. O
(A2)

Theorem 1.1 holds for 1 < p < oo given some restrictions on A. From [16], A;(P) >
2i(Q) + 0Z(A)Mn(P), and it follows that ||P71||, < ||Q Y|, for 1 < p < co. From
Theorem 3.1, ||Lall, > 1 if either A is singular or 7(A) > 2. Therefore if either A is
singular or 62(A4) > 2,

NP~ Hp < Lallpll@Hlp, 1<p<oo. (A3)
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