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Popular Summary 

The Brewer-Dobson circulation (BDC) is the mean transport circulation in the 
stratosphere. It consists of an upwelling branch in the tropics, poleward flows from the 
tropics to the extratropics, and downward flows in the extratropics. The BDC plays a 
crucial role in the distribution of important stratospheric trace gases, such as ozone and 
water vapor. Therefore changes in the strength of the BDC under global warming could 
have significant impact on stratospheric ozone depletion and recovery. For example, all 
climate models that are used by the World Meteorological Organization to predict ozone 
evolution in the 21 st century project a strengthening of the BDC that leads to ozone super­
recovery in the mid-latitudes. On the other hand, ozone changes could also affect the 
strength of the BDC. 

This work investigates an outstanding question: whether and how changes in the Brewer­
Dobson circulation are connected to climate change in the troposphere, in particular, the 
annular modes. The annular modes are the leading variability in the extratropical 
troposphere, which describes a seesaw pattern of circulation fluctuations between the 
polar and middle latitudes. Using simulations from the Goddard Earth Observing System 
Coupled Chemistry Climate Model (GEOS CCM), we found the strengthening of the 
BDC in the summer Southern Hemisphere is strongly correlated with a shift of the 
Southern Hemisphere Annular Mode (SAM) toward its positive phase for the last 4 
decades of the 20th century. This relationship is only present in model runs that simulate 
the stratospheric ozone depletion. Therefore it is concluded that the BDC-SAM 
relationship is driven by Antarctic ozone depletion. The ozone hole significantly cools 
the Antarctic stratosphere in late spring/early summer, which leads to a delayed 
breakdown of the polar vortex: strong circumpolar eastward flows that usually shift to 
westward winds in late spring. The prolonged persistence of stratospheric eastward flow 
enhances upward propagation of tropospheric waves into the stratosphere and strengthens 
the BDC. The increased wave flux in the stratosphere in turn drives a SAM trend toward 
its positive phase. Our results also show that the BDC-SAM relationship is robust on the 
interannual timescale. 
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Abstract 

14 The Brewer-Dobson circulation (BDC) is the mean meridional mass circulation in the 

15 stratosphere and the Southern Annular Mode (SAM) is the prime variability pattern of the 

16 Southern Hemisphere extratropical troposphere. Motivated by previous studies showing 

17 that both the strength of the BDC and the SAM have the largest trends in the austral 

18 summer in the recent past, this paper investigates the relationships between the BDC and 

19 the SAM using coupled chemistry-climate model simulations. The model results show 

20 that the strengthening of the BDC in the Southern Hemisphere during November-

21 February (NDJF) is strongly projected onto the high index of the SAM. The BDC-SAM 

22 relationship is driven by Antarctic ozone depletion, which increases stratosphere-

23 troposphere interactions through a delayed Antarctic vortex breakup. The prolonged 

24 persistence of stratospheric westerlies enhances upward propagation of tropospheric 

25 wave activity into the stratosphere and strengthens the BDC. The wave flux and westerly 

26 anomalies in the stratosphere in turn drives a SAM trend toward its high index. Model 

27 results also show that the BDC-SAM relationship is robust on the interannual timescale. 

28 
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28 1 Introduction 

29 

30 The stratospheric mean meridional circulation, or the so-called Brewer-Dobson 

31 circulation (BDC), plays a crucial role in the distribution of ozone and other important 

32 trace species in the stratosphere [Brewer 1949; Dobson 1956]. The BDC consists of an 

33 upwelling branch in the tropics, poleward flows, and downwelling branches in the 

34 extratropics [Andrews et al., 1987]. The forcing of the BDC is from Rossby and gravity 

35 wave breaking in the extratropical stratosphere, which deposits westward momentum in 

36 the atmosphere that drives a poleward flow [Holton et al., 1995]. Because of mass 

37 continuity, poleward flow in the extratropical stratosphere induces rising motion in the 

38 tropics and sinking motion in the mid-to-high latitudes. 

39 

40 Butchart and Scaife [2001] were the first to predict a strengthening of the BDC in 

41 response to greenhouse gas (GHG) increase. Because an enhanced BDC has significant 

42 impacts on stratospheric transport, ozone recovery, and stratosphere-troposphere 

43 exchange, the strength of the BDC under global warming has been extensively 

44 investigated. Numerous middle-atmosphere model simulations have confirmed that an 

45 increase in the BDC is a robust model response to climate change [e.g., Butchart et al., 

46 2006]. Model results indicate that the acceleration of the BDC is caused by a stronger 

47 stratospheric wave forcing with contributions from both model resolved waves and 

48 parameterized gravity waves [Butchart et al., 2006; Li et al., 2008; Garcia and Randel, 

49 2008; McLandress and Shepherd, 2009]. Several studies have linked the increase in the 

50 stratospheric wave driving to GHG increase, sea surface temperature change, and 
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51 stratospheric ozone depletion [Butchart and Scaife, 2001; Li et al., 2008; Garcia and 

52 Randel, 2008; Omen et al., 2009]. 

53 

54 Despite extensive studies of the BDC, there are still some outstanding dynamical 

55 questions. One important issue is whether and how changes in the BDC are connected to 

56 climate change in the troposphere, in particular, the annular modes. The annular modes 

57 are the leading variability in the extratropical troposphere at intraseasonal, interannual, 

58 and decadal timescales [Thompson and Wallace, 2000; Thompson et al., 2000]. When 

59 the zonal-mean zonal wind in the stratosphere is weak westerly, the annular modes are 

60 coupled with the stratospheric circulation through active wave - mean flow interactions. 

61 During these active seasons, wind variability associated with the annular modes can 

62 modulate Rossby wave propagation into and within the stratosphere, and hence can 

63 modulate the strength of the BDC. On the other hand, increased wave - mean flow 

64 interactions in the stratosphere can affect tropospheric variability reflected as changes in 

65 the annular modes [Hartmann et a!., 2000]. Previous work on the relationship between 

66 the annular modes and the BDC has focused on their interannual variations. For 

67 example, Limpasuvan and Hartmann [2000] and Hartmann et al. [2000] found that a 

68 high index of the Northern Annular Mode (NAM) is associated with a poleward shift of 

69 the tropospheric jet and a stronger polar vortex, which decreases the refractive index and 

70 leads to a reduction of the stratospheric wave drag and a weaker BDC. But this 

71 relationship appears to hold only on the interannual timescale [Hu and Tung, 2002]. In 

72 the Southern Hemisphere (SH), Fogt et al. [2009] found that the spring stratospheric 

73 wave driving is significantly correlated with the summer Southern Annular Mode (SAM), 
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74 suggesting a close relationship between the BOC and SAM on the intra- and inter- annual 

75 timescale. 

76 

77 At present, the relationship between the annular modes and the strength of the BOC over 

78 the decadal timescale is poorly understood. The motivation of this paper is the similar 

79 seasonality of the trends in the SAM and the BOC in the late 20th century, which suggests 

80 that the long-term trends in the SAM and the BOC could be closely related. The SAM is 

81 the dominant pattern of variability in the SH troposphere, which describes the 

82 fluctuations in geopotential height, temperature, zonal wind, and surface pressure with 

83 opposite signs in high and middle southern latitudes [Thompson and Wallace, 2000]. 

84 Observational studies have identified a significant trend of the SAM toward its positive 

85 phase (or a high index) during the late 20th century, characterized by a strengthening of 

86 the Antarctic polar vortex and a poleward shift of the tropospheric jet with the largest 

87 seasonal trend occurring in the austral summer [Thompson and Solomon, 2002; Marshall, 

88 2003]. Similar seasonality in the trend of the BOC has been reported in a number of 

89 coupled chemistry-climate model (CCM) investigations [Butchart et al., 2006; Li et al., 

90 2008]. Li et al. [2008] further showed that this seasonal structure in the BOC trend is 

91 mainly caused by large increases in the SH downwelling during the austral summer. In 

92 addition, previous studies have found that Antarctic ozone depletion has a significant 

93 impact on the seasonality of the trends in the SAM [Cai and Cowen, 2007; Periwitz et al., 

94 2008] and the BDC [Li et a/., 2008; McLandress and Shepherd, 2009; Oman et al., 

95 2009]. 

96 
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97 The purpose of this paper is to investigate whether and how trends in the SAM and the 

98 BDC are related in the austral summer by examining simulations from the Goddard Earth 

99 Observing System (GEOS) CCM. We focus on the BDC-SAM relationship over the 

100 decadal timescale, but we also address their link on the interannual timescale. The model 

101 and simulations used in this paper are described in the next section. Results are presented 

102 in Section 3. Conclusions and discussions are given in Section 4. 

103 

104 2 Model and Simulations 

105 

106 This study uses simulations with version 1 of the GEOSCCM. Details of the model can 

107 be found in Pawson et al. [2008]. The model is an extension of the GEOS-4 General 

108 Circulation Model with a comprehensive stratospheric chemistry module. It uses a flux-

109 form semi-Lagrangian dynamical core and the physics are adapted from the NCAR 

110 CCM3. The stratospheric chemistry module is from the Goddard Chemical Transport 

111 Model [Douglass et al., 1996]. The model chemistry is coupled with the physical 

112 processes through the radiation code. The model has 55 vertical levels with a top at 0.01 

113 hPa. Simulations used in this study were performed with a horizontal resolution of 2° 

114 latitude by 2S longitude. 

115 

116 For this study, we present results from three simulations of the latter half of the 20th 

117 century (1960-2000). The first two experiments PI and P2 are a two-member ensemble 

118 simulation (with different initial conditions) forced with observed, time-dependent sea 

119 surface temperature and sea ice amounts from HadISST, and the CCMVal REF1 scenario 

120 of GHGs and ozone-depleting substances (ODSs) [Eyring et al., 2005]. The mean of PI 
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121 and P2 in this study is denoted as P 12. The third run C160 is identical to the first two 

122 except that the halogen concentrations are fixed at 1960 levels. The purpose of C160 is to 

123 separate the impacts ofGHG and ODS. 

124 

125 Eyring et al. [2006] evaluated simulations of temperature, trace species, and ozone for the 

126 period 1980-1999 from PI and twelve other CCMs. Pawson et al. [2008] assessed 

127 ozone-temperature coupling in PI and P2. Overall PI and P2 results agree well with 

128 observations in terms of the stratospheric thermal structure and trace gas distributions. 

129 Long-tenn stratospheric temperature trend and ozone depletion in PI and P2 are in 

130 reasonable agreement with observations. As with other CCMs, GEOSCCM has biases. 

131 One that is relevant to this study is that the Antarctic vortex is too persistent [Pawson et 

132 al., 2008; Hurwitz et al., 2009]. This will be discussed in Section 4. 

133 

134 3 Model Results 

135 

136 A key factor to understand the relationship between the trends in the BDC and SAM is 

137 their seasonality. This is illustrated by comparing the seasonal structure of trends in the 

138 net SH downward mass flux and the Antarctic geopotential height in the P12 simulations, 

139 which represent the seasonality of trends in the BDC and the SAM, respectively (Fig. 1). 

140 Here and for the rest of this study, the trend is calculated by a linear least-squares 

141 regression. The statistic significance of the trend is calculated using a two-tailed 

142 Student's t-test with the degrees of freedom reduced from a lag-1 autocorrelation of 
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143 regression residuals [Santer et al., 2000]. The net hemispheric downward mass flux has 

144 been widely used as a measure of the strength of the BDC and is calculated by 

pole _ 

145 2n f apcoscpw*dcp 
'PI 

146 where w* is the residual vertical velocity, p is the density, a is the Earth's radius, and CPt 

147 is the southern turnaround latitude where the tropical upwelling changes to extratropical 

148 downwelling [Butchart et al., 2006]. The SAM characterizes the seesaw pattern of 

149 geopotential height changes between Antarctica and the middle latitudes, and thus the 

150 seasonal structure of the trend in the Antarctic geopotential height can illustrate the 

151 seasonality of the trend in the SAM [Thompson and Solomon, 2002]. Figure 1 shows that 

152 the net SH downward mass flux at 30 hPa (la) and the Antarctic geopotential height at 

153 850 hPa (1 b) have the largest and statistically significant (95% confidence level) trends in 

154 the austral late spring and summer (November - February). The increase in the net SH 

155 downwelling indicates an acceleration of the southern BDC, whereas the falling of the 

156 geopotential height indicates a trend of the SAM toward its positive phase. If we 

157 calculate the trends for the seasonal mean net downward mass flux, then both the summer 

158 (December-February) and winter (June-August) trends are statistically significant, but the 

159 summer trend is about 113 larger than the winter trend. Similar seasonal structure in the 

160 net SH downward mass flux is found in other lower stratosphere levels. For the 

161 geopotential height change over the Antarctic troposphere, Figure 1 b shows smaller but 

162 statistically significant decreasing trend in April. This seasonal structure in the P 12 

163 simulations agrees well with Thompson and Solomon [2002] who identified substantial 

164 decreasing trend in the tropospheric geopotential height over Antarctic in the austral 

165 summer and fall using radiosonde data. 
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166 

167 Figure 2a shows the seasonal evolution of the Antarctic geopotential height trend for the 

168 period 1960-2000. In the stratosphere, the geopotentia1 height within the polar cap 

169 decreases from October to May with the largest drop in late spring and early summer 

170 (statistically significant at the 95% confidence level). This large decrease in the 

171 stratospheric geopotential height from November to February is caused by a strong 

172 cooling in the Antarctic lower stratosphere that peaks in November and extends to 

173 February (Fig. 2b, recall that, assuming constant surface pressure, geopotential height 

174 represents the vertical integral of temperature Z(p) = - f RT(p) dIn p ). During 
psurj g 

175 November-January, the geopotential height decrease extends from the stratosphere to the 

176 surface (Fig. 2a). These features agree very well with observations [Thompson and 

177 Solomon, 2002]. The cooling in the Antarctic lower stratosphere also produces a large 

178 westerly shift of the circumpolar flow in the stratosphere that is coupled with an 

179 enhanced westerly flow throughout the troposphere from November to January (Fig. 2c). 

180 

181 Several observational [Thompson and Solomon, 2002] and modeling studies [Cai and 

182 Cowen, 2007; Perlwitz et al., 2008] have suggested that the large summer SAM trend is 

183 related to Antarctic ozone depletion. Strengthening of the BDC during the austral 

184 summer in the recent past has also been largely attributed to Antarctic ozone depletion 

185 [Manzini et al., 2003; Li et aI., 2008; McLandress and Shepherd, 2008]. In our 

186 simulations the role of Antarctic ozone depletion in driving trends in the BDC and the 

187 SAM can be clarified by comparing the P12 and Cl60 results. Again, C160 is same as 

188 P 12 except that the halogen loading is fixed at 1960 levels, and therefore has no Antarctic 
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189 ozone hole. Without ozone depletion there is no significant trend in the 30 hPa net SH 

190 downward mass flux in December-February (Figure 3a) when the P12 simulations show 

191 the largest increase (see Fig. la for comparison). The trend in the Antarctic geopotential 

192 height at 850 hPa in Cl60 (Fig. 3b) also has totally different seasonal structures from that 

193 in P12 (see Fig. lb). The lower tropospheric geopotential height over Antarctica actually 

194 increases (although not statistically significant) in late spring and early summer in Cl60 

195 (also see Fig. 4a), due to GHG-increase induced tropospheric warming (Fig. 4b). 

196 Comparing temperature changes in the Antarctic stratosphere between Cl60 and P12 

197 reveals that the strong lower stratosphere cooling and the significant middle stratosphere 

198 warming is driven by the ozone hole (Figs. 4b and 2b). Figure 4c shows that in Cl60 the 

199 circumpolar flow does not have a significant trend from November to February in the 

200 troposphere and stratosphere, in contrast to the strong westerly accelerations in the P12 

201 simulations. These different changes between the P12 and Cl60 simulations clearly show 

202 that the large summer SAM and BDC trends are driven by Antarctic ozone depletion. 

203 

204 The connection between Antarctic ozone depletion and the strengthening of the BDC in 

205 the SH is well understood [e.g., Li et al., 2008]. Ozone hole cools the Antarctic lower 

206 stratosphere, increases the meridional temperature gradient in the sub-polar region, and 

207 strengthens the westerly circumpolar flow. As a result, the breakup of the Antarctic polar 

208 vortex is delayed from late spring to early summer. A direct consequence of the delayed 

209 polar vortex breakup is that the stratospheric planetary wave activity emanating from the 

210 troposphere can penetrate higher and stay longer in the stratosphere, causing an 

211 acceleration of the BDC. It should be noted that an underlying assumption of the above 
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212 argument is that the strengthening of the southern BDC can be accounted for by increases 

213 in the planetary wave forcing. Therefore we first need to verify whether this is indeed the 

214 case in the P 12 simulations in order to apply the delayed polar vortex breakup mechanism 

215 to explain the seasonality of the BDC trend. 

216 

217 Figure 5 compares the evolution of the November-February (NDJF) 30 hPa net SH 

218 downward mass flux and the contributions from model resolved waves and parameterized 

219 gravity waves calculated from the downward control principle [Haynes et al., 1991]. We 

220 choose NDJF because the net SH stratospheric mass flux increase and the lower 

221 tropospheric Antarctic geopotential height drop are largest during this four-month period 

222 (see Fig. 1). Figure 5 shows that the actual net SH mass flux agrees very well with the 

223 wave-driven mass flux from the downward control analysis. Model resolved waves and 

224 parameterized gravity waves account for, respectively, 72% and 28% of the net SH 

225 downward mass flux at 30 hPa, consistent with previous studies [e.g., Butchart et al., 

226 2006]. The long-term and interannual variations of the mass flux driven by EP-flux 

227 divergence are in very good agreement with the actual mass flux with a correlation of 

228 0.97. We conclude that the strengthening of the SH extratropical BDC is mostly due to 

229 increase in the stratospheric planetary wave forcing. 

230 

231 Figure 5 also shows that the change of the net SH downwelling during NDJF is not a 

232 linear trend. There is an abrupt change around 1980 and the trend for the period 1981-

233 2000 is much larger than that for the period 1960-1980. We found that the NDJF net SH 

234 downwelling is highly correlated with the October Antarctic total ozone (r=0.90) (Fig. 6), 
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235 which suggests that the strength of the southern summer BOC is strongly affected by the 

236 severity of Antarctic ozone depletion. Similar temporal structures are also found in the 

237 evolution of the Antarctic geopotential height during NOJF in both the troposphere and 

238 the stratosphere (Fig. 6). The time series of the 30 hPa and 850 hPa geopotential height 

239 are highly correlated with each other (r=0.78), and they are both strongly correlated with 

240 the October Antarctic total ozone (r=0.89 and 0.59, respectively) and the 30 hPa net SH 

241 downward mass flux (r=0.78 and 0.62, respectively). Thompson and Solomon [2002] 

242 identified strong correlations between Antarctic ozone depletion and the falling of the 

243 tropospheric and stratospheric geopotential height in the southern high latitudes using 

244 observational data and argued that these correlations suggest a significant impact of the 

245 ozone hole on the SAM trend. Our P12 results support their argument and also reveal a 

246 possible linkage between the BOC and SAM through their close connection with the 

247 Antarctic ozone hole. 

248 

249 The relationship between the changes in the southern extratropical BOC and SAM in the 

250 P12 simulations is investigated by comparing the trend of the residual circulation with the 

251 regression (or covariance) of the residual circulation on the SAM index. We follow the 

252 method of Thompson et al. [2000] to define the SAM as the first empirical orthogonal 

253 function (EOF) of the 850 hPa geopotential height southward of 20oS. The EOFs are 

254 calculated using NOJF mean time series for the period 1981-2000 and the standardized 

255 leading principal component time series are used as the SAM index. The calculated 

256 SAM index using this method is very similar to the inverted 850 hPa Antarctic 

257 geopotential height (see Fig. 6). Results presented in the following are not sensitive to 
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258 the definition of the SAM pattern and index. For example, we can use the circumpolar 

259 upper tropospheric zonal wind as the SAM index and obtain the same results. We focus 

260 on the 20-year period 1981-2000 because changes in the BDC and SAM are much larger 

261 than those in the period 1960-1980 (Fig. 6). 

262 

263 The linear trend of the residual vertical velocity in NDJF between 1981 and 2000 in P 12 

264 is shown in Fig. 7a as a function of latitude and pressure. In the stratosphere, trend in the 

265 residual vertical velocity demonstrates an accelerated BDC with enhanced downwelling 

266 in the southern high latitudes (dashed contours) and increased upwelling in the mid-

267 latitudes (solid contours). Very similar spatial patterns are found in the SAM regression 

268 map (Fig. 7b), showing that an anomalously strong BDC is associated with a high index 

269 of the SAM. The nearly identical patterns in Figs. 7a-b illustrate that the long-term 

270 change of the strengthening of the BDC is highly projected onto the trend of SAM toward 

271 its high index. The trend in the residual vertical velocity that is linearly congruent with 

272 the SAM index, obtained by mUltiplying the covariance with the linear trend of the SAM 

273 index, can be used to quantify the relationship between trends in BDC and SAM 

274 [Thompson and Solomon, 2002]. The SAM index has a linear trend of 0.90/decade for 

275 the period 1981-2000 in the P12 simulations, thus it can be inferred that more than 80% 

276 of increases in the Antarctic downwelling and mid-latitude upwelling are linearly 

277 congruent to the SAM index. Furthermore, almost all the tropospheric trend in the 

278 residual vertical velocity is linearly projected onto the SAM. 

279 
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280 Although the BOC does not show a significant linear trend in NOJF in Cl60 (Fig. 3a), it 

281 is still worthy to examine whether the interannual variations of the BOC are related to 

282 those of SAM in C160. Figure 8a shows that the linear trend in the stratospheric residual 

283 vertical velocity is not statistically significant and does not resemble the SAM regression 

284 map. However, the SAM index regression map in Cl60 (Fig. 8b) has a nearly identical 

285 pattern to that for P 12 (Fig. 7b). The magnitude of the regression coefficients is smaller 

286 in Cl60 than in P12, because the trends of the BOC and SAM in P12 yield larger 

287 covariance. When the covariance between the residual vertical velocity and the SAM in 

288 P12 is calculated using detrended data, the resulting regression coefficients have nearly 

289 the same magnitude as those in Cl60 (figure not shown). The similar regression patterns 

290 in P12 and Cl60 illustrate that, regardless of ozone depletion, a high SAM index is 

291 associated with anomalously strong polar downwelling and mid-latitude upwelling in 

292 austral summer on the interannual timescale. Without ozone depletion, this relationship 

293 only holds as year-to-year variability in C160. The impact of the Antarctic ozone hole is 

294 to drive a long-term trend in the BOC that is strongly congruent with the year-to-year 

295 SAM variations. 

296 

297 In order to understand why trends in the southern BOC are strongly reflected in the SAM 

298 index in the P12 simulations, we need to find out the cause for the acceleration of the 

299 BOC and its connection with the SAM. We have already shown in Fig. 5 that the 

300 strengthening of the BOC in the austral summer is mostly due to increase in the 

301 stratospheric planetary wave driving. Thus the question is how the enhanced planetary 

302 wave driving is related to the SAM. To answer this question, we examine the linear 
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303 trends in the NDJF zonal mean temperature, zonal wind, eddy momentum and heat flux 

304 between 1981 and 2000 and their SAM regression maps (Fig. 9). Temperature changes 

305 in the summer Antarctic stratosphere are marked by a vertical dipole structure (Fig. 9a) 

306 that has been reported in many model simulations [e.g., Mahlman et al., 1994] and has 

307 been confirmed in radiosonde and reanalysis data [Randel and Wu, 1999]. The strong 

308 Antarctic lower stratospheric cooling increases the meridional temperature gradient and 

309 enhances the stratospheric westerlies over the high latitudes (Fig. 9b). In NDJF, a 

310 westerly shift of the SH stratospheric flow indicates a delay of the polar vortex breakup, 

311 which prolongs the period of weak westerlies in the lower stratosphere and increases the 

312 upward propagation of planetary wave activity into the stratosphere. This is illustrated in 

313 Fig. 9c showing a large increase in negative northward meridional eddy heat flux (an 

314 approximation of the vertical component of the EP flux) in the stratosphere poleward of 

315 about 50oS, which increases westward momentum deposition and strengthens the BDC. 

316 The westerly accelerations of the zonal wind in the SH high latitude stratosphere is 

317 coupled with increased westerlies in the troposphere centered at 600 S (Fig. 9b). The 

318 tropospheric zonal wind trend is characterized by a dipole structure, indicating a 

319 poleward shift of the tropospheric jet. This poleward shift is maintained by a similar 

320 displacement of the eddy meridional flux of zonal momentum in the upper troposphere 

321 (Fig.9d). 

322 

323 The SAM regression maps of the temperature, zonal wind, and eddy heat and momentum 

324 flux are presented in Figs. ge-h. Nearly identical patterns are found between the 

325 regression maps and the linear trends, indicating that trends in the tropospheric and 
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326 stratospheric circulations and wave activities are strongly projected onto the positive 

327 phase of the SAM. MUltiplying the regression maps with the linear trend in the SAM 

328 index and comparing, we found that nearly all trends in the troposphere are congruent 

329 with the SAM index. More important for the purpose of this study, most of the 

330 stratospheric trends (about 80%) are congruent with the SAM index. 

331 

332 Figures 10a-d show that the in the C160 simulation that does not include ozone depletion, 

333 linear trends of the NDJF zonal wind, and eddy momentum and heat flux are not 

334 statistically significant. Although Cl60 simulates statistically significant temperature 

335 changes due to GHG increase, it does not reproduce the strong Antarctic lower 

336 stratosphere cooling and middle stratosphere warming. Comparing with the P12 results 

337 (Figs. 9a-d) clearly demonstrates that the trends in the P12 simulations are driven by the 

338 ozone hole. However, the SAM regression maps in Cl60 are very similar to those in P12, 

339 but with smaller covariance (Figs. 10 e-h). When we remove the trends in the P12 results 

340 and calculate the regression, we find that the regression coefficients have nearly the same· 

341 magnitude in P12 and C160. This similarity indicates that the relationship between 

342 interannual variations of the summer stratospheric circulation and SAM are robust, with 

343 or without ozone depletion. 

344 

345 Our model simulated austral summer circulation changes and the SAM regression maps 

346 are in broad agreement with those calculated using the National Centers for 

347 Environmental Prediction (NCEP) Reanalysis 2 data. Figure 11 shows that the major 

348 features of the SH summer climate change agree qualitatively very well between the 
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349 NCEP Reanalysis and the P12 runs, including the Antarctic lower stratospheric cooling, 

350 the strengthened circumpolar flow, and the enhanced stratospheric wave flux. There are 

351 no direct observations of the BDC (or the residual vertical velocity), but the increases of 

352 eddy heat flux in the mid-high latitude stratosphere in the NCEP Reanalysis (Fig. llc) 

353 support the modeled strengthening of the BDC. Figure 11 also shows that the trends 

354 resemble the regressions onto the SAM index, supportive of the BDC-SAM relationship 

355 in our model simulations. However, GEOSCCM over-predicts the trends and the 

356 covariances with the SAM index. In the next section, we discuss why the BDC-SAM 

357 relationship is amplified in the simulations. 

358 

359 The above analyses suggest that the key to understand the BDC-SAM relationship in the 

360 austral summer is to link the circumpolar westerly anomalies and enhanced wave activity 

361 in the stratosphere to a high index of the tropospheric SAM. There is growing 

362 observational evidence that such stratospheric anomalies induce tropospheric variability 

363 reflected as a positive phase of the annular modes [e.g., Baldwin et al., 2003; Thompson 

364 et al., 2005; Fogt et al., 2009]. Therefore a possible mechanism to explain the link 

365 between the ozone hole, the strengthening of the BDC, and the SAM trend is this: the 

366 ozone hole increases the stratospheric wave driving and strengthens the BDC through a 

367 delayed vortex breakup, which in turn forces a SAM trend toward its high index. One 

368 way to test this hypothesis is to remove the SAM variability that is linear congruent with 

369 the stratospheric wave driving, and check the relationship between the SAM residual and 

370 the ozone hole. If the SAM residual is correlated with the ozone hole and has a 

371 significant trend, this would suggest that other processes in addition to stratospheric wave 
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372 driving are involved in linking the ozone hole with the tropospheric SAM trend. We 

373 found that after removing the part of SAM index that is congruent with the NOJF 30 hPa 

374 mass flux, the SAM index residual does not have a statistically significant trend and is 

375 not significantly correlated with the October total column ozone (r = -0.14 after removal 

376 of trends) for the 1960-2000 period in the P12 runs (similar results are obtained for the 

377 period 1981-2000 with r = -0.20). In comparison, as can be inferred from Figure 6, the 

378 NOJF SAM index is highly correlated with October total ozone (r = -0.52 after removal 

379 of trends) and has a statistically significant trend. These results appear to support our 

380 hypothesis that Antarctic ozone depletion forces a summer tropospheric SAM trend 

381 almost entirely through changes in stratospheric wave driving. 

382 

383 4 Discussion and Conclusions 

384 

385 The relationship between the BOC and the SAM in the austral summer is investigated 

386 with GEOSCCM simulations. In P12 that simulates ozone depletion, the southern BOC 

387 accelerates and the SAM has a trend toward its positive phase during NOJF in the latter 

388 half of the 20th century, and the strengthening of the BOC is strongly projected onto the 

389 high index of the SAM. In contrast, in Cl60 that does not simulate ozone depletion, 

390 neither the SAM nor the BOC has a significant trend during NOJF. These model results 

391 clearly demonstrate that Antarctic ozone depletion drives the BOC-SAM relationship on 

392 the decadal timescale. We suggest that the ozone-hole induced delay of the Antarctic 

393 vortex breakup is the key to link the strengthening of the BOC with the SAM during the 

394 austral summer. The delayed onset of easterlies in the Antarctic lower stratosphere 
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395 prolongs the period for dynamical stratosphere-troposphere interactions. A direct 

396 consequence of the persistent stratospheric westerlies is to strengthen the summer BDC 

397 by allowing more tropospheric planetary wave activity entering the stratosphere, as 

398 shown in Figs. 9 andil. On the other hand, the enhanced stratospheric wave driving 

399 forces a SAM trend toward its high index. In summary, the BDC-SAM relationship is a 

400 result of increased stratosphere-troposphere coupling driven by ozone depletion. 

401 

402 Although the Cl60 simulation does not produce statistically significant trends in the BDC 

403 and the SAM during NDJF, it reproduces the same interannual relationship between the 

404 BDC and the SAM as that in the PI2 simulations. And now the question is what drives 

405 the year-to-year variability of the summer SAM and BDC. Fogt et al. [2009] 

406 investigated intra-annual relationships between the Antarctic total column ozone, the 

407 SAM, and the stratospheric wave activity in the latter half of the 20th century using 

408 observations and the same GEOSCCM simulations analyzed in this study. They found 

409 that, in addition to the well-known negative correlation between the spring Antarctic 

410 ozone and the summer SAM, the spring stratospheric wave driving also plays an 

411 important role in determining the interannual variability of the summer SAM. The results 

412 of Fogt et al. [2009] suggest, based on the positive correlation between the summer SAM 

413 and BDC identified in this study, that the stratospheric wave activity (or BDC) in spring 

414 could significantly affect the wave activity in summer, and is important in driving the 

415 interannual BDC-SAM relationship. This is confirmed by the high negative correlation 

416 between the early spring BDC and the summer SAM (r = -0.56 between October 30 hPa 

417 SH mass flux and the NDJF SAM index), and between the early spring BDC and late 
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418 spring/early summer BDC (r = -0.55 between October and December/January 30 hPa mss 

419 flux) in the P12 simulations (correlation is calculated after removal oflinear trends). 

420 

421 We suggest that the mechanism by which the spring stratospheric wave activity affects 

422 the interannual variability of the summer BDC and SAM is the same as that explaining 

423 how ozone depletion drives the decadal variations of the summer BDC and SAM, i.e., 

424 through its impact on the persistence of the Antarctic vortex leading to changes in 

425 stratosphere-troposphere coupling. Hurwitz et al. [2009] showed that the Antarctic polar 

426 vortex breakup date is highly correlated with the spring stratospheric wave driving in the 

427 NCEP and ERA40 reanalysis data and in the simulations with a newer version of 

428 GEOSCCM. This relationship results from a I-month lag correlation between the mid-

429 latitude wave driving and the polar stratospheric temperature [e.g., Austin et al., 2003]. 

430 Anomalously weak eddy heat flux in early-middle spring leads to an anomalously cold 

431 polar stratosphere in late spring and a delayed vortex breakup, which extends the period 

432 of active stratosphere-troposphere dynamical coupling and causes a stronger summer 

433 BDC and SAM. However, it should be emphasized that the decadal trends of the summer 

434 BDC and SAM cannot be attributed to long-term changes in spring stratospheric wave 

435 driving. In the Pl2 simulations the BDC in October does not have a statistically 

436 significant trend (Fig. la). Waugh et al. [1999] found that in the NCEP reanalysis data 

437 the SH eddy heat flux at 100 hPa in early spring increases from 1979 to 1998, which 

438 cannot explain the prolonged persistence of the Antarctic vortex during this period. 

439 
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440 It is interesting to compare the interannual BOC-SAM relationship identified in this paper 

441 to the BOC-NAM relationship reported in previous studies. Limpasuvan and Hartmann 

442 [2000] and Hartmann et al. [2000] found that a higher NAM index is associated with a 

443 weaker stratospheric wave driving, and hence a weaker BOC, in the NH high latitudes 

444 during the NH winter. This is opposite to the positive correlation between the BOC and 

445 SAM during the austral summer. The different relationships between the BOC and the 

446 annular modes in the NH and SH are due to the different seasonality of the SAM and 

447 NAM. The NAM is actively coupled with the stratosphere circulation in winter, whereas 

448 the SAM's active season is in late spring [Thompson and Wallace, 2000]. In the NH 

449 winter a high NAM index is associated with a stronger Arctic vortex and stronger 

450 circumpolar westerlies which decrease the refractive index and reduce wave activity 

451 entering polar stratosphere [Limpasuvan and Hartmann, 2000; Hu and Tung, 2002]. But 

452 in the SH summer a high SAM index is associated with a colder Antarctic lower 

453 stratosphere, which delays the breakdown of the Antarctic vortex and strengthens the 

454 BOC. From the above argument one expects that the BOC-SAM relationship would 

455 reverse during the austral winter, and this is confirmed in the GEOSCCM simulations 

456 (figure not shown). 

457 

458 There are no direct observations of the BOC, and hence the modeled BOC-SAM 

459 relationship could not be directly verified. Stolarski et at. [2006] found indirect evidence 

460 of a strengthened BOC from the observed ozone increase just above the ozone hole in the 

461 austral summer in satellite measurements, which supports our findings. More 

462 importantly, that the ozone-hole causes a delayed Antarctic vortex breakup leading to 
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463 increases in stratospheric wave flux, which is the key to understand the BOC-SAM 

464 relationship, is reasonable represented in the model simulations compared with the NCEP 

465 Reanalysis data. However, it is also apparent that the model over-predicts the BOC-SAM 

466 relationship and the austral summer climate change. 

467 

468 As briefly mentioned in Section 2, GEOSCCM has a "cold pole" bias in the spring 

469 Antarctic stratosphere, a common problem in middle atmosphere models [Eyring et al., 

470 2006]. Because of the cold bias, the modeled Antarctic vortex is too persistent and 

471 breaks up about two weeks later than observed [Hurwitz et aI., 2009]. Fogt et al. [2009] 

472 found that, as a consequence of the later than observed Antarctic vortex breakup, 

473 GEOSCCM amplifies troposphere-stratosphere coupling and SAM persistence, and 

474 hence over-predicts the spring ozone summer SAM relationship. These model 

475 deficiencies have important implications for the simulated BOC-SAM relationship 

476 reported in this study, because this relationship is driven by stratosphere-troposphere 

477 coupling. Therefore, while the simulated BOC-SAM relationship qualitatively agrees 

478 with the reanalysis data, this relationship is amplified in our model simulations. More 

479 generally, results presented here and those in Fogt et al. [2009] and Hurwitz et al. [2009] 

480 indicate that a too persistent model Antarctic vortex leads to over-predictions of the 

481 impacts of the ozone hole on the austral summer climate change in the late 20th century, 

482 which also implies that the model would unrealistically amplify the ozone recovery 

483 effects on climate change in the 21 st century as well. Therefore, as pointed out by Fogt et 

484 al. [2009] and Hurwitz et al. [2009], improving the model presentation of the persistence 
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485 of Antarctic vortex is critical to correctly predict the interactions between ozone 

486 depletion, ozone recovery, and climate change in the troposphere and stratosphere. 

487 

488 Finally, the mechanism by which increased stratospheric wave activity drives a SAM 

489 trend, or more generally the mechanism for the stratospheric variability to affect the 

490 tropospheric circulation, is not clear. Currently there exist several hypotheses, including 

491 downward propagation of wind anomalies driven by eddy-mean flow interactions 

492 [Christiansen, 2001], amplification of tropospheric response to lower stratospheric wind 

493 anomalies [Song and Robinson, 2004], and increases of tropospheric eddy phase speed 

494 leading to a poleward displacement of the subtropical wave breaking zone [Chen and 

495 Held, 2007]. There is growing evidence that the stratosphere has impacts on the 

496 troposphere and understanding its dynamical mechanism is certainly an important 

497 research issue. 

498 
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640 Figure Captions 

641 

642 Figure 1: Seasonal cycle of linear trends in the period 1960-2000 for (a) 30 hPa net SH 

643 downward mass flux, and (b) 850 hPa Antarctic (65°S-900S) geopotential height in the 

644 P12 simulations. Shading indicates that trends are statistically significant at the 95% 

645 confidence level. 

646 

647 Figure 2: Linear trends plotted as function of month and pressure in (a) Antarctic 

648 geopotential height (65°S-900S), (b) Antarctic temperature (65°S-900S), and (c) 

649 circumpolar zonal wind (55°S-700S) in the P12 simulations. Shading indicates that trends 

650 are statistically significant at the 95% confidence level. 

651 

652 Figure 3: Same as Fig. 1, but for the Cl60 simulation. 

653 

654 Figure 4: Same as Fig. 2, but for the Cl60 simulation. 

655 

656 Figure 5: Time series of the NDJF mean net SH downward mass flux at 30 hPa (black). 

657 The red and blue lines are the wave-driven mass fluxes calculated from the downward 

658 control principle. The red lines show the results from model resolved waves (EP-flux 

659 divergence) only. The blue lines show the results including both resolved waves and 

660 parameterized gravity waves. The thick curves are 7-year running average mean. 

661 
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662 Figure 6: Time series of (upper panel) October Antarctic total ozone; (middle panel) the 

663 negative of the NDJF mean net SH mass flux at 30 hPa; and (lower panel) NJDF mean 

664 geopotential height at 30 hPa (green, left axis) and 850 hPa (blue, right axis). Thick 

665 curves are 7-year running average mean. 

666 

667 Figure 7: (a) Linear trends of the NDJF residual vertical velocity in the period 1981-2000 

668 as a function of latitude and pressure. Shading denotes that trends are significantly 

669 different from zero at the 95% confidence level. (b) NDJF residual vertical velocity 

670 regressed on the standardized SAM index. 

671 

672 Figure 8: Same as Fig. 7, but for the Cl60 simulation. 

673 

674 Figure 9: Upper panels show linear trends for the period 1981-2000 as a function of 

675 latitude and pressure for the NDJF mean (a) temperature (K/decade), (b) zonal wind (ms-

676 l/decade), (c) northward meridional eddy heat flux (Kms-1/decade), and (d) meridional 

677 eddy flux of zonal momentum (m2s-2/decade) in the P12 simulations. Shading denotes 

678 the 95% confidence level. Lower panels are the SAM regression maps for the NDJF 

679 mean (e) temperature (K/std SAM), (f) zonal wind (ms-1/std SAM), (g) eddy heat flux 

680 (Kms-1/std SAM), and (h) eddy momentum flux (m2s-2/std SAM). 

681 

682 Figure 10: Same as Fig. 9, but for the Cl60 simulation. 

683 
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684 Figure 11: Same as Fig. 9 but calculated from the NCEP Reanalysis 2 data. The dark and 

685 light shadings denote 95% and 90% confidence levels, respectively. Note that the NCEP 

686 data are only available below 10 hPa. 

687 

688 
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691 Figure 1: Seasonal cycle of linear trends in the period 1960-2000 for (a) 30 hPa net SH 

692 downward mass flux, and (b) 850 hPa Antarctic (65°S-900S) geopotential height in the 

693 P12 simulations. Shading indicates that trends are statistically significant at the 95% 

694 confidence level. 
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700 Figure 2: Linear trends plotted as function of month and pressure in (a) Antarctic 

701 geopotential height (65°S-900S), (b) Antarctic temperature (65°S-900S), and (c) 

702 circumpolar zonal wind (55°S-700S) in the P12 simulations. Shading indicates that trends 

703 are statistically significant at the 95% confidence level. 
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720 Figure 5: Time series of the NDJF mean net SH downward mass flux at 30 hPa (black). 

721 The red and blue lines are the wave-driven mass fluxes calculated from the downward 

722 control principle. The red lines show the results from model resolved waves (EP-flux 

723 divergence) only. The blue lines show the results including both resolved waves and 

724 parameterized gravity waves. The thick curves are 7-year running average mean. 
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729 Figure 6: Time series of (upper panel) October Antarctic total ozone; (middle panel) the 

730 negative of the NDJF mean net SH mass flux at 30 hPa; and (lower panel) NJDF mean 

731 geopotential height at 30 hPa (green, left axis) and 850 hPa (blue, right axis). Thick 

732 curves are 7-year running average mean. 

733 

734 

38 



734 

1 (a) Trend: W*(10'4 ms·l /decade) 

i \ \ \ • /,:/' . 

~~dJu ~1O ':I¥f"": &! ',' .::: : . 
0, ::":~'~,::; .. ' .... : ~ : 
~ ...: ...... 
~ ...... ,,' : q 
~ ........ . () 

&: ..... . 
100 

1000 '----'----'---'---'--'---'---'--J..~____'_'_____' 1 000 '----'--.J--~-'--~--'---'-.__L__'____''___'___' 
-80 -70 -60 -50 -40 -30 -20 -80 -70 -60 -50 -40 -30 -20 

735 Latitude Latitude 

736 

737 Figure 7: (a) Linear trends of the NDJF residual vertical velocity in the period 1981-2000 

738 as a function of latitude and pressure. Shading denotes that trends are significantly 

739 different from zero at the 95% confidence level. (b) NDJF residual vertical velocity 

740 regressed on the standardized SAM index. 
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750 Figure 9: Upper panels show linear trends for the period 1981-2000 as a function of 

751 latitude and pressure for the NDJF mean (a) temperature (K/decade), (b) zonal wind (ms' 

752 I/decade), (c) northward meridional eddy heat flux (Klns'l/decade), and (d) meridional 

753 eddy flux of zonal momentum (m2s,z/decade) in the P12 simulations. Shading denotes 

754 the 95% confidence level. Lower panels are the SAM regression maps for the NDJF 

755 mean (e) temperature (K/std SAM), (1) zonal wind (ms,l/std SAM), (g) eddy heat flux 

756 (Kms,l/std SAM), and (h) eddy momentum flux (m2s'2/std SAM). 
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760 

761 Figure 10: Same as Fig. 9, but for the C160 simulation. 
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766 Figure 11: Same as Fig. 9 but calculated from the NCEP Reanalysis 2 data. The dark and 

767 light shadings denote 95% and 90% confidence levels, respectively. Note that the NCEP 

768 data are only available below 10 hPa. 
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