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ABSTRACT: 
 
Malaria causes more than one million deaths every year worldwide, with most of the mortality in Sub-Saharan Africa.  It is also a 
significant public health concern in Afghanistan, with approximately 60% of the population, or nearly 14 million people, living in a 
malaria-endemic area.  Malaria transmission has been shown to be dependent on a number of environmental and meteorological 
variables.  For countries in the tropics and the subtropics, rainfall is normally the most important variable, except for regions with 
high altitude where temperature may also be important.  Afghanistan’s diverse landscape contributes to the heterogeneous malaria 
distribution.  Understanding the environmental effects on malaria transmission is essential to the effective control of malaria in 
Afghanistan.  Provincial malaria data gathered by Health Posts in 23 provinces during 2004-2007 are used in this study.  Remotely 
sensed geophysical parameters, including precipitation from TRMM, and surface temperature and vegetation index from MODIS are 
used to derive the empirical relationship between malaria cases and these geophysical parameters.  Both neural network methods and 
regression analyses are used to examine the environmental dependency of malaria transmission.  And the trained models are used for 
predicting future transmission.  While neural network methods are intrinsically more adaptive for nonlinear relationship, the 
regression approach lends itself in providing statistical significance measures.  Our results indicate that NDVI is the strongest 
predictor.  This reflects the role of irrigation, instead of precipitation, in Afghanistan for agricultural production.  The second 
strongest prediction is surface temperature.  Precipitation is not shown as a significant predictor, contrary to other malarious 
countries in the tropics or subtropics. With the regression approach, the malaria time series are modelled well, with average R2 of 
0.845.  For cumulative 6-month prediction of malaria cases, the average provincial accuracy reaches 91%.  The developed predictive 
and early warning capabilities support the Third Strategic Approach of the WHO EMRO Malaria Control and Elimination Plan. 
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1. INTRODUCTION 

 
Malaria causes more than one million deaths every year, with 
most of the mortality in Sub-Saharan Africa.  Normally children 
are the most effected because they lack the partial immunity 
that will only come later in life through repeated infections.  In 
fact, on average more than a thousand children may die of 
malaria every day.  The spread of multi-drug resistant malaria 
has also greatly compounded the problem.  For example, 
chloroquine and sulfadoxinepyrimethamine (commonly called 
SP) are now ineffective for treating falciparum malaria in many 
parts of the world. Over the past decade, however, the 
artemisinin-based combination therapy (ACT) has emerged as a 
new form of treatment that has proven effective in countries 
particularly hard hit by epidemics of malaria. In spite of its 
effectiveness, the cost difference between ACT and chloroquine 
prevents an even broader use.   
 
Malaria is a significant public health concern in Afghanistan.  
Control efforts were largely effective in the 1970s.  During the 
last three decades with continuous social disruption and military 

conflicts, the malaria burden has continued to rise and spread to 
regions where malaria was about to be eliminated.  After the 
establishment of interim government in 2001, National Malaria 
Control Program was reorganized and new strategies were 
adopted for malaria control. These strategies include prompt 
diagnosis and effective treatment, integrated vector 
management, behavioural change communication, and health 
system strengthening. A National Strategic Plan was developed 
for the year 2006-2010.  Global Fund has also provided 
significant support for malaria control in Afghanistan.  All these 
contributed to the significant decline in vivax and falciparum 
cases between 2002 and 2008. 
 
Although using bednet is not a traditional practice, insecticide-
treated bed nets (ITN) have been gradually accepted through 
public awareness campaigns and mobile, subsidized sales.  
Furthermore, free distribution of long-lasting insecticide-
impregnated nets (LLINs) have been adopted in 2008 for high-
risk populations.  It is generally recognized that effective use of 
ACT and LLINs could further reduce the infection rate.  Many 
important efforts and outcomes of the National Malaria and 
Leishmaniasis Control Program concerning malaria are 
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documented in the first issue of the Afghanistan Annual Malaria 
Journal (2009). 
 
Presently, around 60% of the population in Afghanistan is at 
risk of malaria infection (Asha, May 2003). It is estimated that 
the highest incidence (23%) is in the Northeast region of Takhar 
province, followed by Kundoz province (13%). Current malaria 
strata for all 31 provinces in Afghanistan are shown in Figure 1 
(Safi et al., 2009). 
 
 

 
Figure 1 Provincial malaria risk strata. Source: Afghan Ministry 

of public health (Safi et al., 2009) 
 
 
 

2. MATERIALS AND METHODS 

 
2.1 Malaria Data 

Malaria surveillance data was obtained from Afghan Ministry 
of Public Health. The surveillance data was collected through 
village-level, community-based health posts which are part of 
the primary health care facilities that provide limited services 
including malaria clinical diagnosis and treatment for 
uncomplicated case (Islamic Republic of Afghanistan-Ministry 
of Public Health, 2005). The surveillance was based on passive 
case detection, and the parasite species was not differentiated. 
Out the 31 provinces in Afghanistan, we used data from 23 
provinces since they have more complete time series. This 
provincial monthly malaria data spans from 2003 to 2007, 
though some provinces have shorter period (two years or less). 
For each province, the last 6 months of data is reserved for 
prediction, while the remaining is used in calibrating the model 
– or in other words in estimating the model parameters.  
 
2.2 Environmental Data 

This study uses 3 satellite-derived data: precipitation, Land 
Surface Temperature (LST) and Normalized Difference 
Vegetation Index (NDVI). Precipitation data was measured 
from the Tropical Rainfall Measuring Mission (TRMM), which 
is a joint mission between NASA and the Japan Aerospace 
Exploration Agency (NASA GSFC, 2010). We retrieved 
TRMM precipitation with monthly resolution and at 0.25 from 
the GIOVANNI interface (Acker and Leptoukh, 2007).  
 
Both LST and NDVI were measured by Moderate Resolution 
Imaging Spectroradiometer (MODIS) aboard Terra and Aqua 

Spacecraft (NASA, 2009). The MODIS datasets are distributed 
by the Land Processing Distributed Active Archive Center 
(LPDAAC) of the U.S. Geological Survey (USGS). The 
retrieved 8-day LST data was at 1 km spatial resolution with a 
sinusoidal projection, where NDVI is at a monthly resolution. 
These two datasets were re-projected to a geographical 
projection compatible with the other datasets. In addition, the 8-
day LST data was subsequently aggregated to monthly so as to 
synchronize with the malaria data temporal resolution.  
 
For each of the environmental variable, we created the lagged 
variables. The lags were from the previous 1 month up to 4 
months. As we previously mentioned, all data was divided into 
two: fit and prediction dataset. The fit dataset was used in 
estimating the parameters, and the prediction dataset is reserved 
for forecast.  
 

2.3 Modelling Approaches 

In this study we used two modelling approaches: Neural 
Network (NN) and General Linear Model (GLM), specifically 
poisson regression. NN is capable of capturing the nonlinear 
relationship. However, interpretation of predictors’ contribution 
is not as obvious as in linear regression models. In the 
following we will briefly describes the two methods.  
 
2.3.1 Neural Network 
 
This information processing method is inspired by the 
functioning of the brain. NN typically consists of 
interconnected nodes arranged in 3 major layers: input, hidden 
and output. In this study we limited the number of nodes in the 
input layer into 3 in order to reduce the model complexity. The 
input nodes are the environmental variables as previously 
described. The number of nodes in the hidden layer is limited to 
2 for the same reason. There is only 1 node in the output layer 
that represents the level of monthly malaria case. More 
specifically, we employed feed-forward, back-propagation 
neural network. The NN performance was measured by the 
Root Mean Square Error (RMSE) of both the fit and prediction 
dataset.   
 
2.3.2 Linear Regression 
 
Linear regression is a widely used method to predict the risk of 
infectious diseases. We also employed stepwise regression 
method in order to eliminate insignificant environmental 
variable predictors. In each iteration, any environmental 
variable that has p-value greater than 0.05 is further excluded 
from the analysis.  
 
As is the case for any infectious disease, the number of malaria 
cases in any given month depends on the number of cases in the 
previous months. Thus, the autocorrelation terms for the 
preceding four months were also used as input in the stepwise 
regression. In order to account for any possible components not 
represented in the environmental input parameters, we have also 
included sinusoidal terms which consist of one factor for the 
trigonometric functions SINE and another for the COSINE 
component. The monthly malaria case for each province can be 
written as: 
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f(t) is the general trend accounting for factors other than 
environmental in nature such as improvement in public health 
support or population movements. The regression model is thus: 
 

( ) ( )j j
j

C t X t  

 
Where j is the weight for the predictor Xj that was selected 
using stepwise regression.  
 
Again, the regression model is further evaluated using the 
RMSE, as well as the correlation coefficient, R2, for both fit and 
prediction dataset.  
 
 
 

3. RESULTS 

Neural Networks were developed for each of the selected 23 
provinces. All the environmental input combinations, including 
their lags, were explored. The predicted malaria cases in 
general show a good agreement with the data. As an example is 
Takhar province in which the environmental time series profile 
is shown in Figure 2A. The NN outputs, fitted and predicted 
dataset, shows a good agreement with the actual data (Figure 
2B). Here, the inputs to the NN are the previous month case, 
previous month LST and previous month NDVI.   
 
Similarly, linear regression methods can forecast the malaria 
dynamics within acceptable accuracy. Regression output for 
Takhar province is shown in Figure 2C. Selected environmental 
inputs for this model are the current month LST and previous 
month NDVI. As it is the case with other provinces, our results 
showed that precipitation is not a significant predictor for 
malaria. NDVI, on the other hand, seemed to be the stronger 
indicator for malaria in most provinces. This result implies that 
malaria risk in Afghanistan is driven by irrigation, not rainfall.  
 
We show in Table 1 the R2 values for both fitted and predicted 
datasets from the linear regression. As we can see, the R2 values 
for predicted dataset have larger variation compare to the fitted 
dataset. This could be due to the short time series for some 
provinces. If we exclude those provinces with time series 
shorter than 24 months (Kunar, Laghman and Nangarhar), then 
the remaining half (10 provinces) has R2 > 0.5 and the other half 
has R2 < 0.5.  Previously we have shown that for cumulative 6-
month prediction of malaria cases, the average provincial 
accuracy reaches 91% (Adimi et al., 2010).  The developed 
predictive and early warning capabilities support the Third 
Strategic Approach of the WHO EMRO Malaria Control and 
Elimination Plan. 
 
 
 

4. CONCLUSIONS 

We have shown that using remote sensing for malaria risk 
prediction is an achievable goal even in a resource-constrained 
country like Afghanistan.  Assuming the epidemiological data 
gathered by the health posts are reliable, the models can predict 
6-month cumulative cases with high accuracy.  This capability 
can undoubtedly help public health organizations for more 
effective malaria prevention and control effort. Because all the 
remote sensing data used in this study is free and freely 
available, and inexpensive personal computers can be used for 
data processing and modeling, it only takes minimum 
investment to gain such a capability.  It is difficult to foretell 
when all the conflicts in Afghanistan will end, but it should not 
stop the public health organizations from further developing 
and implementing malaria risk prediction systems. 
 

 
Figure 2 Takhar Province: (A) Environmental profiles, (B) NN 

output, and (C) linear regression output  
 
 
 
 
 



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 1 Regression model performance 
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 Province Months of 
Data 

Fit R2 Pred. R2 

Badakhshan 38 0.83 0.74 
Baghlan 33 0.73 0.30 
Balkh 39 0.71 0.04 
Bamyan 36 0.72 0.31 
Farah 32 0.73 0.72 
Faryab 38 0.79 0.03 
Ghazni 34 0.80 0.95 
Ghor 33 0.77 0.67 
Hirat 41 0.88 0.95 
Jawzjan 28 0.64 0.18 
Kabul 33 0.86 0.74 
Kandahar 41 0.89 0.003 
Khost 29 0.85 0.85 
Kunar 20 0.87 0.07 
Laghman 21 0.64 0.03 
Nangarhar 17 0.86 0.02 
Paktika 31 0.94 0.17 
Paktya 28 0.76 0.74 
Samangan 36 0.53 0.01 

Sari Pul 27 0.77 0.13 
Takhar 37 0.92 0.95 
Uruzgan 41 0.07 0.43 
Wardak 30 0.42 0.78 


