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Abstract 31 

In this study, the atmospheric state, precipitation, cloud fraction, and radiative fluxes 32 

from Modern Era Retrospective-analysis for Research and Applications (MERRA) and North 33 

American Regional Reanalysis (NARR) are collected and compared with the ARM SGP 34 

continuous forcing during the period 1999-2001.  For the atmospheric state, the three datasets 35 

have excellent agreement for the horizontal wind components and air temperature.  NARR and 36 

ARM have generally good agreement for humidity, except for several biases in the PBL and in 37 

the upper troposphere.  MERRA, on the other hand, suffers from a year-round negative bias in 38 

humidity except for the month of June. For the vertical pressure velocity, significant differences 39 

exist with the largest biases occurring during the spring upwelling and summer downwelling 40 

periods.  Although NARR and MERRA share many resemblances to each other, ARM 41 

outperforms these reanalyses in terms of correlation with cloud fraction.  Because the ARM 42 

forcing is constrained by observed precipitation that gives the adequate mass, heat, and moisture 43 

budgets, much of the precipitation (specifically during the late spring/early summer) is caused by 44 

smaller-scale forcing that is not captured by the reanalyses.  Both NARR and MERRA capture 45 

the seasonal variation of CF observed by ARM radar-lidar and GOES with high correlations 46 

(0.92-0.78), but having negative biases of 14% and 3%, respectively.  Compared to the ARM 47 

observations, MERRA shows a better agreement for both SW and LW fluxes except for LW-48 

down (due to a negative bias in water vapor), NARR has significant positive bias for SW-down 49 

and negative bias for LW-down under clear- and all-sky conditions .  The NARR biases result 50 

from a combination of too few clouds and a lack of sufficient extinction by aerosols and water 51 

vapor in the atmospheric column.  The results presented here represent only one location for a 52 
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limited time period, and more comparisons at different locations and longer time period are 53 

needed.     54 

 55 
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1.  Introduction 76 

In the past decade, reanalysis datasets have become increasingly common to study a 77 

variety of meteorological and climatological questions. Reanalyses blend observation and model 78 

output to create a systematic long-term description of the climate system. While it is an excellent 79 

strategy to use model output to fill holes in the observing systems and to diagnose variables 80 

unable to be measured directly, reanalyses are not error free due to the limitations of model and 81 

assimilation technology. Because the errors of reanalyses and their underlying models are 82 

relatively unknown, their benefit for answering more complex questions involving the climate is 83 

questionable.  For this reason, reanalyses have been used sparingly to generate forcing which 84 

provides initial and boundary conditions for SCM/CRM studies which can help develop 85 

improvements for GCMs.   86 

 To circumnavigate these issues, extensive work has been done to derive forcing using 87 

constrained variational analysis from observations during Intensive Observation Periods (IOPs) 88 

at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites (Zhang 89 

and Lin 1997, Zhang et al. 2001).  More recently, Xie et al. (2003) evaluated the forcing datasets 90 

derived from ECMWF during three IOPs at the ARM SGP site.  They found that although the 91 

two forcing datasets correlated well, the ECMWF derived forcing was much weaker owing to 92 

limitations in the model predicated surface radiation and precipitation fields.  Unfortunately, 93 

IOPs are expensive to run from a monetary and work-load perspective.  Continuously run 94 

models, however, offer long-term datasets which are valuable from a climate study perspective.  95 

To combine the benefits of long-term model results and high-quality IOP observations, Xie et al. 96 

(2004) developed a continuous forcing dataset using a combination of model (atmospheric state 97 

variables such as temperature, humidity, etc.) from Rapid Update Cycle 2 (RUC-2, Benjamin et 98 
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al. 2004) and surface and TOA observations at the ARM SGP site.  The end result is a forcing 99 

dataset that improves considerably on that derived from the model alone and offers itself as a 100 

good baseline to judge reanalyses.  101 

 This paper documents a comparison of the NCEP North American Regional Reanalysis 102 

(NARR, Messinger et al. 2006) and the Modern Era Retrospective Analysis for Research and 103 

Applications reanalysis (MERRA, Bosilovich et al. 2008) with the ARM continuous forcing 104 

dataset derived at the ARM SGP site during the period 1999-2001. The ARM SGP site is 105 

representative of continental climate in the mid-latitudes, and has been used in the past to 106 

evaluate a variety of model simulations including NCEP ETA (Hinkelman et al. 1999), ECMWF 107 

(Xie et al. 2004), and the NCEP GFS (Yang et al. 2006). NARR and MERRA reanalyses were 108 

chosen for this comparison for a couple of reasons.  First of all, NARR includes assimilation of 109 

precipitation at a high resolution over North America and has shown improvement over the 110 

NCEP Global Reanalysis II for a variety of variables (Messinger et al. 2006).  MERRA has been 111 

included because it features relatively high resolution diagnostics output during the same time 112 

period, and was released within the past year.  As a result, relatively little is known about its 113 

quality.   114 

 By comparing these three datasets, this paper has the primary goal of determining the 115 

biases of the reanalyses at a location which is well observed.  Such activities have been 116 

encouraged by recent studies such as Thorne and Vose (2010) which have sought to understand 117 

whether reanalyses can be used for diagnosing long-term trends.  Determining biases in 118 

reanalyses will also help understand where deficiencies exist in the current underlying model 119 

parameterizations.  Knowing the magnitude, when, and where reanalysis errors exist will shed 120 
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light on whether developing forcing from reanalyses in the well observed mid-latitudes can be a 121 

fruitful effort and aid others who may require reanalysis information for other studies. 122 

This paper is formatted as follows. Section 2 gives a brief summary of the various 123 

datasets used in this study. In section 3, the atmospheric state is compared between the 124 

reanalyses and the ARM continuous forcing during the period 1999-2001.  Cloud fraction, total 125 

precipitation, and radiative fluxes are compared in section 4. A summary of findings and 126 

concluding remarks are provided in section 5.  127 

   128 

2.  Datasets  129 

ARM continuous forcing, NARR, and MERRA reanalysis data sets have been collected 130 

at the ARM SGP site for the period 1999-2001. These three years were chosen because the ARM 131 

continuous forcing dataset is only available during this time period.   To have cloud information 132 

at the ARM SGP site, surface observations from a vertically pointing cloud radar and micro 133 

pulse lidar pair have also been collected along with Geostationary Operational Environmental 134 

Satellites (GOES) observations. All datasets have been processed to identical temporal and 135 

spatial resolutions for comparison in sections 3 and 4. For example, the results from the two 136 

reanalyses are averaged in space to the domain of the ARM forcing, while the hourly continuous 137 

forcing is averaged in time to three hourly increments to match the reanalyses.  138 

a. ARM Continuous Forcing 139 

 The ARM continuous forcing dataset centered on the ARM SGP Central Facility (SCF; 140 

36.6
o
N, 97.5

o
W) is used for this study. Provided from January 1999 to December 2001, this 141 

forcing uses ARM surface and GOES-8 satellite observations as constraints to adjust 142 

atmospheric state variables to conserve the column integrated mass, heat, and moisture through a 143 
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variational analysis approach (Zhang and Lin 1997, Zhang et al. 2001).  The forcing atmospheric 144 

state is provided by hourly Rapid Update Cycle 2 (RUC-2; see Benjamin et al. 2004) analyses 145 

due to the lack of continuous sounding measurements (Xie et al. 2004). A comparison of the 146 

continuous forcing with selected IOPs by Xie et al. (2004) found root-mean-square errors within 147 

1 m s
-1

 for horizontal wind, 0.5 K for temperature, and 0.5 g kg
-1

 for moisture for the 148 

atmospheric column. The forcing represents an average over a circular area approximately 180 149 

km in radius centered on the ARM SCF. 150 

b.  NARR Reanalysis 151 

The NCEP NARR is a long-term (1979-2009) climate dataset with 3-hr temporal, 32-km 152 

horizontal, and 45-layer vertical resolutions over the North American domain (Messinger et al. 153 

2006). It contains outputs of many atmospheric variables and fluxes, and is nicely suited for 154 

diagnosis of synoptic and mesoscale conditions over the ARM SGP site. NARR uses the 155 

operational NCEP ETA model and its 3D-VAR data assimilation technique on a wide variety of 156 

observation platforms, but was principally developed to improve on NCEP reanalysis by 157 

assimilating precipitation accurately.  Studies by Becker et al. (2009) and Bukovsky and Karoly 158 

(2006) found that this statement is generally true for NARR.    159 

c. MERRA Reanalysis 160 

NASA has recently released the Modern Era Retrospective Analysis for Research and 161 

Applications (MERRA) reanalysis dataset based on the Goddard Earth Observing System data 162 

Analysis System Version 5 (GEOS-5 DAS, Bosilovich et al. 2008). This global reanalysis covers 163 

the same time period as NARR (1979-current). MERRA takes advantage of a variety of recent 164 

satellite data streams, for example, the observations from the NASA Earth Observing System 165 

(EOS), to improve the representation of the Earth’s energy and water cycles.  GEOS-5 includes 166 
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the GEOS-5 AGCM and the Gridpoint Statistical Interpolation (GSI) atmospheric analysis 167 

developed jointly with NOAA/NCEP/EMC. Incremental Analysis Update (IAU) technique 168 

(Bloom et al. 1996) is incorporated in the GEOS-5 to minimize the 6 hourly shock from the 169 

observation input. The model has a native spatial resolution of 72-layers in the vertical, and 170 

2/3°×1/2° in the horizontal. In addition to the 6 hourly 3 dimensional analyses at the native 171 

spatial resolution, MERRA also provides 1 hourly 2 dimensional diagnostics at 2/3°×1/2° 172 

resolution and 3 hourly 3 dimensional diagnostics at 1.25°×1.25° resolution on 42 vertical levels.  173 

d. Cloud observations 174 

For several portions of the study, cloud information is used to determine its relationships 175 

with atmospheric state and to determine clear-sky radiative fluxes.  Cloud information comes 176 

from two sources.  Ground-based observations from the ARM 35-GHz Millimeter Wavelength 177 

Cloud Radar (MMCR, Moran et al. 1998) are combined with a Belfort laser ceilometer and 178 

Micropulse Lidar (MPL) to determine cloud bases, tops, and vertical distributions.  While 179 

information is collected at 5-min intervals, it has been binned to one hour cloud fractions (CF) at 180 

the resolution of the forcing in a fashion identical to that described in Xi et al. (2010) and 181 

Kennedy et al. (2010).  This cloud product is similar to The Active Remote Sensing of Clouds 182 

(ARSCL, Clothiaux et al. 2000) cloud product except the original data stream is the MACE PI 183 

product (Mace et al. 2006) which merges the original radar modes differently.  Considering 184 

cloud information is only used at a 1-3 hourly resolution, the differences should between the two 185 

products is negligible. 186 

The second source of cloud information is total cloud fractions derived from VISST 187 

(Visible Infrared Solar-Infrared Split-window Technique) retrieved satellite cloud products 188 

(Minnis et al. 2001) using algorithms developed for the NASA Clouds and Radiant Energy 189 
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System (CERES) project. Cloud properties are retrieved from half-hourly, 4-km 0.65, 3.9, 10.8 190 

(infrared, IR), and 12.0-µm radiances taken by GOES-8.  Cloudy pixels are identified using an 191 

adaptation of the method described by Minnis et al. (2008a).  The areal fraction of clouds (or the 192 

amount when present, AWP) is the ratio of the number of pixels classified as cloudy to the total 193 

number of pixels within a specified area.  Cloud fraction is then calculated at the resolution of 194 

the forcing by considering the quantity of 0.5°×0.5° grid boxes contained within the area of 195 

interest. Once again, this methodology is consistent with that used in the Xi et al. (2010) and 196 

Kennedy et al. (2010) studies. The reader is referred to these publications for additional details 197 

on the process.  198 

 199 

3.  Atmospheric State 200 

 NARR and MERRA reanalyses are first compared to ARM continuous forcing by 201 

evaluating the yearly and seasonal column averaged biases for atmospheric state variables 202 

including horizontal wind components, specific humidity, vertical pressure velocity (omega), and 203 

air temperature (Table 1).  Considering all three datasets take into account analyzed fields from 204 

observations such as upper air soundings and surface observation networks, it is of no surprise to 205 

find that biases are quite small for many of the variables.  For example, biases for horizontal 206 

wind components are less than 0.5 m s
-1

 and for temperature, reanalyses are within 0.13 K of the 207 

forcing.  Although NARR shows good agreement with the ARM forcing for specific humidity 208 

(within 0.04 g kg
-1

), MERRA has a dry bias an order of magnitude larger with values ranging 209 

from -0.17 g kg
-1 

during autumn  to -0.8 g kg
-1

 during winter.  The largest disagreement amongst 210 

the datasets occurs for the vertical pressure velocity with positive biases ranging from 0.07 to 211 

0.54 mb hr
-1

 which are larger than the yearly and seasonal means.   212 
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 Both specific humidity and vertical pressure velocity are crucial for developing accurate 213 

forcing required by SCM/CRM applications.  For example, biases in the humidity field will 214 

directly translate to biases in cloud simulations for these models since stratiform cloud 215 

parameterizations often consider humidity to trigger cloud.  For this reason and for the fact that 216 

vertical velocities are difficult to measure directly, these two variables warrant additional 217 

investigation.  In doing so, it may be possible to investigate whether the reanalyses have issues 218 

within their own parameterizations. 219 

The seasonal variations of RH and omega derived from the ARM continuous forcing and 220 

the NARR and MERRA reanalyses over the ARM SGP site during the period 1999-2001 are 221 

provided in Fig. 1.   As illustrated in Figures 1a and 1b, the RH values derived from ARM and 222 

NARR are in excellent agreement and have a bimodal distribution with peaks in the boundary 223 

layer and in the upper troposphere. Although not shown, this is consistent with the seasonal 224 

variation of radar-lidar derived cloud fraction at the ARM SGP site (Kennedy et al. 2010).  The 225 

decrease in RH during the late summer (August-September) is primarily due to the influence of 226 

large-scale ridging and a lack of baroclinic wave activity over Oklahoma. Some RH differences 227 

between ARM and NARR exist near the top of the troposphere during the summer and in the 228 

boundary layer throughout the year.  The former of these two differences may be an issue with 229 

RUC-2 as there is no physical explanation for a peak at this level during the summer months. 230 

Despite these differences, monthly maximums are present in both datasets, especially during 231 

January and March.  MERRA captures the general shape of RH at the ARM SGP site (Fig. 1c), 232 

but with a ~5% negative bias throughout the year in the upper troposphere except during the late 233 

spring and early summer when convection is most common at the ARM SGP site.  During this 234 

time period, MERRA has a considerable positive bias (~10-15%) compared to ARM and NARR. 235 
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Seasonal RMSE plots (not shown) demonstrate that the largest disagreement between MERRA 236 

and ARM continuous forcing for mixing ratio occur during the spring (MAM) and summer 237 

seasons (JJA) in the boundary layer and upper troposphere. The maximum RH for MERRA 238 

occurs during June when boundary layer humidity is highest. As will be shown later, cloud 239 

fraction in MERRA also peaks in June, suggesting that this may be a byproduct of the convective 240 

parameterization used in the AGCM.  Like ARM and NARR, additional peaks occur during 241 

January and March. It is concluded that the RH values from three different datasets generally 242 

agree during this 3-yr period. 243 

 Contrary to the RH comparison, significant differences exist for the omega field as shown 244 

in Figs 1d-1f.  As illustrated in Fig. 1d, there are two periods of upwelling(cool colors) for the 245 

ARM dataset: one during the late spring from May-June peaking at ~1.75 mb hr
-1

 and the other 246 

in the early fall during September-October with weak upward motion.  Downwelling branches 247 

occur during the late fall/early winter and the late summer in the lower troposphere.  Although 248 

NARR and MERRA omega values are similar to each other, they differ considerably from ARM 249 

data. NARR is characterized by capturing the seasonal pattern of omega, however, with much 250 

different amplitudes than ARM.  For upwelling motion, the largest upward motion in NARR 251 

occurs during March instead of the late spring (May-June) as shown in Fig. 1d.  The upward 252 

motion during the early fall is also much weaker.  Downwelling motion on the other hand, is 253 

notably stronger than ARM with maximum values around ~1 mb hr
-1

. This is most evident 254 

during the summer months when the downwelling branch extends throughout the atmospheric 255 

column.  MERRA (Fig. 1f) shares many resemblances with NARR especially with regard to the 256 

weaker spring upwelling and stronger downwelling during the summer months.  Perhaps the 257 
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most unique feature with MERRA is the upward motion is largest in the lower troposphere near 258 

the surface and just above the PBL.   259 

 To further investigate the RH and omega differences between the three datasets, the 260 

histograms of 3-hourly RH at 925 hPa and omega at 300 hPa for all and non-precipitating 261 

periods are presented in Fig. 2.  For 925 hPa RH, there is little difference between all (Fig. 2a) 262 

and dry (Fig. 2b) conditions.  ARM is characterized by having more values > 80% than NARR 263 

and MERRA, whereas MERRA has a dry bias with more values <35% than the other two. 264 

NARR RH values fall between ARM and MERRA results. For omega, histograms are given with 265 

the y-axis in a logarithmic scale.  Despite having a large positive bias compared to ARM as 266 

shown in Fig. 1e, NARR occasionally produces larger upward motions although the number of 267 

events is very small (Fig. 2c). These upward motions, however, disappear under the dry period 268 

(Fig. 2d), indicating that these upward motions occur under precipitating periods.  It is believed 269 

that these large upward velocities result from spurious grid scale precipitation (SGSP) as first 270 

documented by West et al. (2007).  In brief, the mismatch between assimilated and ETA 271 

modeled precipitation used in NARR introduces spurious latent heating which in turn causes 272 

unreasonable upward velocities usually during times of convection.  Given this only occurred 273 

several dozen times during the 3-yr period, this study agrees with the West et al. (2007) finding 274 

that “SGSP will probably have little or no effect on long-term hydrometeorological averages 275 

prior to 2003”.  This phenomenon is a non-issue in MERRA which has a much smaller tail for 276 

upward velocities. Figures 2c and 2d demonstrate that both NARR and MERRA have more 277 

downward motion than ARM at the 300 hPa level, which is consistent with the results in Fig. 1.     278 

 Determining which dataset is closer to the atmospheric “truth” is a difficult question to 279 

answer, especially without direct measurements of vertical velocity. Therefore it is necessary to 280 
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find other observed parameters that may be related to vertical velocity to evaluate the three 281 

datasets during the 3-yr period.  In this study, it is hypothesized that a more accurate large-scale 282 

relative humidity and vertical motion field will have a stronger relationship with observed cloud 283 

fraction.  This has the added benefit of accessing the validity of cloud parameterizations that use 284 

these variables to predict cloud fraction. 285 

 Correlations were calculated between 3-hr mean RH, omega, and cloud fraction as 286 

determined by the ARM MMCR/MPL data at the ARM SGP site during the 3-yr period. For 287 

omega, correlations are calculated at an observed CF pressure level against 300 hPa omega. 288 

Although not shown, these correlations (Fig. 3b) are higher than those calculated at each level 289 

(i.e. 925 hPa CF correlated with 925 hPa omega) because vertical motion is typically small and 290 

more turbulent at lower levels. Since these RH and omega correlations are calculated from a 291 

point observation (CF derived from ARM radar-lidar) and a forcing domain averaged mean (RH 292 

and omega), these correlations may be lower than reality because clouds might occur elsewhere 293 

in the forcing domain but were not observed by ARM radar-lidar.  294 

As illustrated in Fig. 3a, the vertical distributions of the CF and RH correlations for the 295 

three datasets are nearly identical although values are slightly higher for ARM.  Overall, RH has 296 

a moderate correlation with CF and is characterized by being bimodal, with peak values of 0.5-297 

0.6 at the top of the boundary layer and the upper troposphere.  A larger value at the lowest 298 

levels for MERRA is a result of fewer samples at the first level; unlike NARR, MERRA does not 299 

calculate variables below ground level (i.e., surface pressure less than the pressure level).  300 

Correlations for omega (Fig. 3b) are similar to the findings for RMSE in Fig. 1e where ARM has 301 

the smallest RMSE and the largest correlation (-0.45) at a level of 450 hPa.  MERRA falls 302 

between ARM and NARR with a peak value of ~-0.4 and has a similar vertical distribution to 303 
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those of ARM and NARR although it is slightly bimodal.  In the upper troposphere, however, the 304 

rate of change in the MERRA correlation is much smaller, which results in higher correlations 305 

than those of ARM and NARR.  This is most likely caused by a sampling issue because the 306 

vertical resolution of MERRA is less than those from NARR and ARM above 300 hPa (50 vs. 25 307 

hPa).  308 

 To understand the seasonal variation of RH/omega relationship with cloud fraction, Fig. 4 309 

is produced.  The RH correlations from the three datasets have similar seasonal variations with a 310 

relatively large range, and these results are consistent with the previous findings (e.g., Figs. 1 and 311 

3).  Correlations are highest from late fall to early spring when clouds are more closely linked to 312 

baroclinic wave activity. Correlations then decrease until becoming lowest (<0.2) during the 313 

months of July and August, suggesting that cloud parameterizations that are dependant on RH to 314 

trigger clouds may need to be improved in the future.  315 

 The omega comparison basically follows that for RH except for a few important features.  316 

In particular, ARM correlations (Fig. 4d) have maxima during the months of January-February, 317 

April, and June.  Although NARR and MERRA (Fig. 4e-f) capture the peaks for the winter and 318 

early spring months, they do not have a maximum during June.  This warrants further 319 

investigation.  Given that the ARM forcing is constrained by precipitation, this may suggest that 320 

during the late spring and early summer, precipitation is more likely caused by local forcing (i.e., 321 

isolated thunderstorms developing along weak boundaries with weak synoptic-scale support, 322 

Dong et al. 2010) that can not be captured by the reanalyses.  Like the RH comparison, ARM 323 

correlations are slightly higher (0.1-0.2) than those of NARR and MERRA at any given time and 324 

height. In other words, ARM, NARR, and MERRA all agree on the hour-to-hour variation of 325 

vertical velocity and its relationship to cloud occurrence.   326 
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4. Precipitation, Cloud Fraction, and Surface Radiation  327 

 In this section, the precipitation, cloud fraction, and surface radiation derived from both 328 

NARR and MERRA are evaluated with observations at the DOE ARM SGP site during the 329 

period 1999-2001.   As shown in Fig. 5, ARM and NARR precipitation have excellent agreement 330 

with each other, capturing the monthly variability in precipitation during this time period which 331 

should be expected given the design of NARR to assimilate observed precipitation. This is 332 

certainly not a new finding because it has been documented in Becker et al. (2009) and 333 

Bukovsky and Karoly (2006).  The largest precipitation amounts occur during the month of June, 334 

followed by the earlier spring, and fall months.  For many months, the two lines are nearly 335 

indistinguishable.  MERRA on the other hand, appears to have a negative bias for most of the 3-336 

yr period.  Despite this bias, however, it does capture the monthly variability of precipitation. 337 

Figure 6 shows the scatterplots of the monthly and daily total precipitation for the three datasets. 338 

As demonstrated in Fig. 5 and Fig. 6a, NARR monthly total precipitation has excellent 339 

agreement with ARM forcing with a correlation of 0.99 and bias of -2.8 mm.  MERRA monthly 340 

total precipitation (Fig. 6b), however, has a larger bias of -22.2 mm.  Despite this bias, there is 341 

still a linear trend with a relatively high correlation of 0.86.  Precipitation is also over simulated 342 

on occasion during low precipitation months (<50 mm), hence the intercept of 15.66 mm.  343 

 Reducing precipitation to daily totals leads towards more disagreement between ARM 344 

and reanalyses as noted by the smaller values of slope and correlation.  For NARR (Fig. 6c), 345 

slope is reduced from 0.96 to 0.86 and correlation from 0.99 to 0.91.  Overall, there is a ~ -0.1 346 

mm bias per day.  This panel is similar to the “Great Plains” panel in Fig. 2 from Becker et al. 347 

(2009).  The more significant scattering and values at 0 for one dataset suggest that the 348 

assimilation process might introduce some uncertainty into the original observations either in 349 
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time and/or location.  Becker et al. (2009) found that in general, NARR has less intensity and 350 

higher frequency precipitation than the observations, so some care should be taken in analysis of 351 

individual cases. Daily precipitation correlation for MERRA (Fig. 6d) is reduced to 0.69 with a 352 

bias of -0.73 mm.  353 

Figure 7 shows the CF comparison between ARM radar-lidar, GOES, NARR and 354 

MERRA at the ARM SGP site during the period 1999-2001.  The monthly CF difference 355 

between ARM radar-lidar and GOES observations may be due to the spatial scale difference 356 

(point vs. a 2x2.5
o
 grid box) and remote sensing method (active vs. passive).  The annual mean 357 

CF difference between ARM radar-lidar and GOES observations is within 1% (43% vs. 44%) for 358 

the entire 3-yr period.  This result is consistent with the findings in the Xi et al. (2010) and 359 

Kennedy et al. (2010) studies.  Cloud fraction is characterized by having maximum values during 360 

the late winter and spring (peaking in March), and then having another local maximum during 361 

June when precipitation and upward motion peaks.  CF then decreases to a minimum during the 362 

summer when Oklahoma is typically under large-scale ridging.  Both NARR and MERRA 363 

reanalyses capture the same seasonal variations as the ARM radar-lidar and GOES observations, 364 

but with negative biases.  Of the two, however, MERRA has better agreement with a larger 365 

maximum during June and is overall, within 3-4% of observations.  Correlations and RMSEs 366 

between the reanalyses and observations are also calculated based on a total of 36 monthly 367 

means and are summarized in Table 2. Although NARR has a larger RMSE against both ARM 368 

and GOES observations than MERRA, its correlations are higher, indicating that NARR captures 369 

month-to-month variability better.  Note that the CF correlation between ARM and GOES is 0.91 370 

and the RMSE is 5.8%.  While the CF correlation is highest for NARR against ARM, the 371 

correlation between GOES and MERRA is nearly the same as that between GOES and NARR, 372 
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and the RMSE values for MERRA are much smaller than those of NARR.  This may be a matter 373 

of MERRA incorporating GOES data into its assimilation process.  374 

Comparisons of monthly mean surface fluxes for clear-sky and all-sky conditions from 375 

the three datasets are shown in Fig. 8 and summarized in Table 3.  For detailed discussion, the 376 

reader is referred to the Dong et al. (2006) study which investigated the seasonal variations of CF 377 

and surface radiative fluxes at the ARM SGP during the period 1997-2002. Despite the slightly 378 

longer time period in the Dong et al. (2006) study, the differences between this study (ARM 379 

results) and Dong et al. (2006) are within a few W m
-2

 as listed in Table 3.  380 

 Overall, the reanalyses capture the seasonal variability seen in ARM quite well, albeit 381 

with biases (Table 3).  These biases are smallest for periods of clear-sky which is expected; 382 

surface fluxes in reanalyses are dependant on not only their parameterizations for surface 383 

radiation, but also clouds.  Compared to the all-sky ARM results, the NARR SW-down is 384 

significantly higher (47 Wm
-2

), and LW-down is lower (-9 Wm
-2

), which is consistent with the 385 

negative bias of cloud fraction found in Fig. 7.  Markovic et al. (2009) found similar results for 386 

NARR analyzed at six surface sites within the US and suggested that high biases in mean annual 387 

all-sky SW-down (~40 W m
-2

) were attributed to a negative bias of CF.  The clear-sky 388 

comparisons are nearly the same as their all-sky counterparts, i.e., SW-down is 25 W m
-2

 higher 389 

and LW-down is 13 W m
-2

 lower, suggesting that the impacts of water vapor and aerosols on 390 

radiative transfer in NARR also need to be improved.  Given that NARR is based on the NCEP 391 

ETA model, this is consistent with Hinkelman et al. (1999) which found that ETA had an 392 

average excess of 50 W m
-2

 for SW-down with approximately half of this bias attributed to 393 

deficient extinction.  394 
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The comparisons between MERRA and ARM agree much better than those between 395 

NARR and ARM as shown in Fig. 8 and listed in Table 3.  However, there are a few exceptions.  396 

MERRA has larger biases than NARR for LW-down under both clear and all sky conditions (-20 397 

and -19 w m
-2

).  Compared to ARM and NARR, these negative biases are consistent with the 398 

drier conditions in MERRA as demonstrated in Fig. 1 because atmospheric water vapor is 399 

extremely important for LW-down fluxes (Dong et al. 2006) and is supported by the fact these 400 

biases are largest during the warm season and are nearly the same under both clear-sky and all-401 

sky conditions. 402 

Finally, comparisons of monthly mean TOA fluxes for clear-sky and all-sky conditions 403 

are given in Fig. 9 and are summarized in Table 4.  Reanalysis fluxes under clear-sky condition 404 

have small positive biases within 5 W m
-2

 of ARM (GOES) observations.  As expected, TOA 405 

SW-up fluxes for all-sky condition are highest during months with high cloud fraction, and the 406 

differences between reanalyses and ARM are related to their CF differences. For example, 407 

NARR TOA flux biases (negative for SW-up and positive for LW-up) are consistent with the 408 

year-round negative CF bias.  MERRA biases vary by season depending on the amount of cloud 409 

cover produced.  The peak in SW-up and minimum in LW-up during June are strongly 410 

associated the peak of CF during that month.   Despite this disagreement, biases in MERRA are 411 

noticeable smaller than those of NARR as listed in Table 4.  412 

 413 

5.  Summary and Conclusions 414 

 The atmospheric state, precipitation, total cloud fraction, and surface radiative fluxes 415 

from MERRA and NARR reanalyses were collected and compared with the ARM SGP 416 

continuous forcing dataset during the period 1999-2001.  Key findings are summarized below. 417 
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1.  For atmospheric state, NARR and MERRA reanalyses have small column averaged biases 418 

within 0.5 m s
-1

 and 0.13 K for horizontal wind components and air temperature, respectively. 419 

Specific humidity and RH values from ARM and NARR are in excellent agreement and both 420 

have a bimodal distribution with peaks in the boundary layer and the upper troposphere.  421 

MERRA captures the general shape of RH, but with a ~5% negative bias throughout the year in 422 

the upper troposphere except during the late spring and early summer when convection is most 423 

common at the ARM SGP site.   424 

 425 

2. Significant differences exist for the omega field.  The largest differences occur for upwelling 426 

during the spring months and the magnitude of downwelling during the summer.  Although 427 

NARR and MERRA share many resemblances to each other, ARM outperforms these reanalyses 428 

in terms of correlation with CF.  Given that the ARM forcing is constrained by precipitation to 429 

give the adequate mass, momentum, heat, and moisture budgets, this indicates that some of the 430 

precipitation (especially during the late spring and early summer) is caused by smaller-scale 431 

forcing that is not captured by the reanalyses.  This also suggests that SCMs based on the forcing 432 

derived from reanalyses would not be able to model precipitation adequately during this time 433 

period.  Combined with known issues such as SGSP in NARR documented by West et al. (2007) 434 

and within this study, vertical velocity values in reanalyses should be used with caution.    435 

 436 

3.  ARM and NARR have excellent agreement for monthly precipitation amounts which are a 437 

testament to the improved precipitation assimilation into NARR. NARR has a slight (~3 mm) 438 

bias for monthly precipitation but with more variability for daily precipitation, suggesting that 439 

the assimilation of precipitation may sometimes be mistimed or misplaced.  Despite this, both 440 
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monthly and daily correlations are still high.  MERRA, on the other hand, only captures the 441 

monthly variation of precipitation well and contains considerable negative biases at monthly (-442 

22.2 mm) and daily (-0.7 mm) intervals.   443 

 444 

4.  As found in Kennedy et al. (2010) and Xi et al. (2010), total CF at the ARM SGP site has 445 

good agreement between ARM and GOES satellite observations. From 1999-2001, CF peaked 446 

during the months of March and June before reaching a minimum during the summer months. 447 

Both NARR and MERRA capture this change as evidenced by high correlations (0.92-0.78), 448 

although they have negative biases (14% and 3%, respectively).  MERRA correlations for CF are 449 

highest with satellite observations while NARR correlations are highest with the ARM surface 450 

observations.  This is not surprising given the amount of satellite information being assimilated 451 

into MERRA.   452 

 453 

5.  Surface radiative fluxes within this study agree well with those from Dong et al. (2006).  Of 454 

the two reanalyses, MERRA shows better agreement with ARM observations for all fluxes 455 

except for LW-down.  NARR has significant positive biases for SW-down, SW-up, and LW-up, 456 

and these are attributed due to a combination of too few clouds and a lack of sufficient extinction 457 

by aerosols and water vapor in the atmospheric column.  These results are consistent with 458 

previous studies that have investigated NARR elsewhere in the US and ETA at the ARM SGP 459 

site.  MERRA biases for LW-down are attributed to the negative bias of water vapor within the 460 

atmospheric column. 461 

The results presented here represent only one location within the well constrained 462 

continental mid-latitudes with a limited time period.  However, in a companion study over the 463 
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Arctic region (Zib et al. 2010), similar results were found albeit with smaller biases.  This study 464 

and Zib et al. (2010) have indicated that MERRA generally agrees better than NARR/NCEP 465 

reanalyses with ARM in both the middle latitudes and Arctic regions for CF and radiative fluxes.  466 

A potential avenue of research is expanding this analysis for a longer period using the newly 467 

developed Climate Modeling Best Estimate (CMBE) dataset by ARM (Xie et al. 2010).  It is also 468 

currently planned to expand the ARM continuous forcing from 2001 to present time over the 469 

ARM SGP site, as well as other surface sites.  470 

 471 
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Figure Captions 586 

Figure 1. Monthly means of RH over the ARM SGP domain from 1999-2001 for (a) ARM 587 

continuous forcing, (b) NARR, and (c) MERRA. (d)-(f) are the same as (a)-(c) except for the 588 

omega field. 589 

 590 

Figure 2.  Histograms of 925 hPa RH for (a) all and (b) dry hours.  (c) and (d) are the same as (a) 591 

and (b) except for 300 hPa omega   Note that the y-axis for omega is logarithmic.   592 

 593 

Figure 3.  Vertical correlations of cloud fraction with (a) RH and (b) omega at a 3-hr temporal 594 

resolution.   595 

 596 

Figure 4.  Seasonal correlations of cloud fraction with RH for (a) ARM, (b) NARR, and (c) 597 

MERRA. (d)-(f) are the same as (a)-(c) except for  the omega field.    598 

 599 

Figure 5.  Monthly total precipitation measured over the ARM SGP domain by ARM (black), 600 

NARR (red) and MERRA (blue) during the period 1999-2001.    601 

 602 

Figure 6. Scatterplots of monthly total precipitation for (a) ARM vs. NARR and (b) ARM vs. 603 

MERRA.  (c) and (d) are the same as (a) and (b) except for  daily total precipitation.    604 

 605 

Figure 7.  Monthly mean cloud fraction for ARM (black), GOES (green), NARR (red), and 606 

MERRA (blue) during the period 1999-2001. 607 

 608 

Figure 8.  Monthly mean clear-sky (a) SW-down, (b) LW-down, (c) SW-up, and (d) LW up 609 

fluxes measured by PSPs and PIRs at the ARM SGP site.  (e)-(h) are the same as (a)-(d) except 610 

for all sky conditions.    611 

 612 

Figure 9.  Monthly mean TOA clear-sky (a) SW-up and (b) LW-up fluxes measured by GOES 613 

satellite over the ARM SGP site.  (c)-(d) are the same as (a)-(b) except for all sky conditions.    614 

 615 
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Table Captions 624 

Table 1.  Yearly and seasonal column averaged biases of zonal wind (m s
-1

), meridional wind (m 625 

s
-1

), specific humidity (g kg
-1

), omega (mb hr
-1

), and air temperature (K) for NARR and MERRA 626 

against ARM continuous forcing 627 

 628 

Table 2.   Correlation and RMSE of total cloud fraction from a total of 36 monthly means. 629 

Table 3. Annual mean surface radiative fluxes and their biases compared to ARM continuous 630 

forcing. 631 

 632 

Table 4. Annual mean TOA radiative fluxes and their biases compared to ARM continuous 633 

forcing. 634 

 635 

 636 
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 637 
Figure 1. Monthly means of RH over the ARM SGP domain from 1999-2001 for (a) ARM 638 

continuous forcing, (b) NARR, and (c) MERRA. (d)-(f) are the same as (a)-(c) except for the 639 

omega field.  640 
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 641 
Figure 2.  Histograms of 925 hPa RH for (a) all and (b) dry hours.  (c) and (d) are the same as (a) 642 

and (b) except for 300 hPa omega   Note that the y-axis for omega is logarithmic.   643 

 644 
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 663 
Figure 3.  Vertical correlations of cloud fraction with (a) RH and (b) omega at a 3-hr temporal 664 

resolution.   665 

 666 
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 688 
 689 

Figure 4.  Seasonal correlations of cloud fraction with RH for (a) ARM, (b) NARR, and (c) 690 

MERRA. (d)-(f) are the same as (a)-(c) except for  the omega field.    691 
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 694 
Figure 5.  Monthly total precipitation measured over the ARM SGP domain by ARM (black), 695 

NARR (red) and MERRA (blue) during the period 1999-2001.    696 
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 723 
 724 

Figure 6. Scatterplots of monthly total precipitation for (a) ARM vs. NARR and (b) ARM vs. 725 

MERRA.  (c) and (d) are the same as (a) and (b) except for  daily total precipitation.    726 
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 727 
Figure 7.  Monthly mean cloud fraction for ARM (black), GOES (green), NARR (red), and 728 

MERRA (blue) during the period 1999-2001.  729 
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 752 
Figure 8.  Monthly mean clear-sky (a) SW-down, (b) LW-down, (c) SW-up, and (d) LW up 753 

fluxes measured by PSPs and PIRs at the ARM SGP site.  (e)-(h) are the same as (a)-(d) except 754 

for all sky conditions.    755 

 756 

 757 
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 758 
Figure 9.  Monthly mean TOA clear-sky (a) SW-up and (b) LW-up fluxes measured by GOES 759 

satellite over the ARM SGP site.  (c)-(d) are the same as (a)-(b) except for all sky conditions.    760 
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Table 1.  Yearly and seasonal column averaged biases of zonal wind (m s
-1

), meridional wind (m 783 

s
-1

), specific humidity (g kg
-1

), omega (mb hr
-1

), and air temperature (K) for NARR and MERRA 784 

against ARM continuous forcing  785 

 786 

 787 

NARR YEAR DJF MAM JJA SON 

U (m/s) 0.42 0.38 0.46 0.4 0.41 

V (m/s) 0.04 0.13 -0.22 -0.2 0.29 

Q (g/kg) -0.01 0 0.01 -0.04 0.01 

O (mb/hr) 0.34 0.26 0.22 0.54 0.33 

T (K) -0.06 0.03 -0.09 -0.1 -0.05 

MERRA YEAR DJF MAM JJA SON 

U (m/s) 0.18 0.08 0.12 0.3 0.15 

V (m/s) 0.03 -0.17 -0.3 0.25 0.36 

Q (g/kg) -0.19 -0.8 -0.16 -0.36 -0.17 

O (mb/hr) 0.22 0.07 0.32 0.25 0.25 

T (K) -0.02 -0.13 -0.01 0.13 -0.07 

 788 

 789 

Table 2.   Correlation and RMSE of total cloud fraction from a total of 36 monthly means.  790 

 791 

ρ NARR MERRA 

ARM 0.92 0.78 

SAT 0.9 0.86 

 792 

 793 

RMSE NARR MERRA 

ARM 14.9 9 

SAT 15.6 7.1 

 794 

 795 

 796 

 797 

 798 

 799 
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Table 3. Annual mean surface radiative fluxes and their biases compared to ARM continuous 809 

forcing. 810 

 811 

 Clear Sky All Sky 

  SWDN SWUP LWDN LWUP SWDN SWUP LWDN LWUP 

ARM 246 48 309 393 192 39 332 392 

D06 248   314   195   333   

NARR 269 70 302 401 239 62 323 402 

MERRA 250 43 289 390 211 36 313 392 

 812 

 Clear Sky All Sky 

  SWDN SWUP LWDN LWUP SWDN SWUP LWDN LWUP 

NARR 23 22 -7 8 47 23 -9 10 

MERRA 4 -5 -20 -3 19 -3 -19 0 

 813 

 814 

 815 

Table 4. Annual mean TOA radiative fluxes and their biases compared to ARM continuous 816 

forcing. 817 

 818 

 Clear Sky All Sky 

  SWUP LWUP SWUP LWUP 

ARM 63 272 103 244 

NARR 68 275 85 254 

MERRA 66 277 96 248 

     

 Clear Sky All Sky 

  SWUP LWUP SWUP LWUP 

NARR 5 3 -18 10 

MERRA 3 5 -7 4 

 819 


