ttps://ntrs.nasa.gov/search.jsp?R=20110010261 2019-08-30T20:31:05+00:00Z

Methods for radiometric cross-calibration of imaging sensors with and without overlapping collections

K. J. Thome Biospheric Sciences Branch Goddard Space Flight Center

Introduction

As evident from this conference, there exist numerous methods for on-orbit characterization

- Methods requiring measurements of surface and atmospheric properties at the time of a sensor overpass
- Methods relying on knowledge of the temporal characteristics of the site being viewed
- Cross-calibration methods fall under both categories
 - Relies on knowledge of a source that is common to both sensors
 - Typically near-coincident views
- More recent work has emphasized methods that do not require simultaneous data collections

Talk overview

Discuss SI-traceable approaches that permit cross-calibration

- Describe typical on-orbit cross-calibration methods
 - With overlapping views
 - Without overlapping views
- Sample results
 - Coincident views of same site
 - Reflectance-based method
- Method without overlapping views without on-site measurements
- Highlight expected uncertainties of the methods
- Summary and recommendations

On-orbit cross calibration

Recent years has seen great advancements in approaches for cross-calibration

- Desert site work
 - 1980s using ER-2 flights over White Sands and Sonoran desert
 - 1990s with the North African deserts
- Arctic sites
 - Simultaneous Nadir Overpasses
 - Dome C
- More recent work
 - Lunar views
 - Application or data product approaches
 - In-situ ground measurement methods
- Methods with SI traceability do not require sensor data to overlap in time

Radiance comparisons

MODIS and ASTER offer same platform, same view coincident views

- Upper graph shows ASTER Band 1
 calibration coefficient derived from Railroad Valley data
- Lower graph shows results from multiple sites
- Lower graph also shows in-situ results

MODIS vs. ASTER

Different view of Railroad Valley data sets later in mission

- Previous results showed significant difference between ASTER and other sensors
- Radiance values derived from each sensor's calibration
- Deviation from one-to-one line indicates biases between the sensors

ASTER Image Radiance

Calibration to in-situ

Calibration to SItraceable, ground-based measurments

- Show here the bias relative to an independent, SI traceable approach
- Calibration relative to the in-situ data

Example result

Results shown below are for the sensors in the morning orbit near in time to Landsat 7

- Averages in this case were for coincident dates and test sites
- % difference is from UofA predicted radiance
- Can compare either in absolute sense or relative

Confidence in results

Comparison of reflectance-based results can be used to assess the quality of a data set

- Results show difference between averages
- Similar behavior between sensors gives greater confidence

High resolution sensors

Method applied to results shown at past JACIE meetings for QuickBird, Ikonos, and Orbview

- Ikonos and Orbview agreement is expected since the sensor calibration was altered to match reflectancebased results
- Quickbird results were modified to match ETM+ based on reflectance-based results

When is a difference a difference?

Well known that the multidimensionality of the atsensor radiance can mask calibration biases

- View/solar geometry differences
 - Surface reflectance changes
 - Atmospheric effects
 - Lunar phase effects
- Temporal differences
 - Solar angle
 - Atmospheric changes
 - Lunar phase
- Registration effects
- All successful methods attempt to account for these effects or minimize the sensitivity

Spectral band differences

ETM+ Band 2 Analogs	Α	В	С	D	E	F
A: Landsat-7 ETM+ B2	1	0.996	1.005	0.990	0.988	0.989
B: EO-1 ALI B2		1	1.009	0.994	0.992	0.993
C: Terra ASTER B1			1	0.985	0.983	0.984
D: Terra MODIS B4				1	0.998	0.999
E: Terra MODIS B12					1	1.001
F: Terra MISR B2						1

Uncertainty due to spectral differences should decrease as hyperspectral data of sites is accumulated

Solar irradiance effects

Selection of solar model plays a role in the SWIR

- ASTER results compared to in-situ data and AVIRISbased radiance
- Bands 4 and 5 are especially of interest

Working in reflectance removes this issue

Next step

Next logical step is to combine philosophy of in-situ measurements with invariant site work

- In-situ measurements become basis for a physically-based model
 - Atmospheric
 - Surface
- Allows for an SI-traceable result
- Requires innovative measurement approaches

Basic method

- Key is that measurements to create the models need not be in-situ
- Satellite and airborne-based measurements are a good starting point

Past efforts

- Results have been shown at the last two JACIE conferences using the Dome C site (Mackin and others)
 - Corrections for BRDF
 - Corrections for atmospheric effects
- Work by Vermote with MODIS and AVHRR
 - Surface BRDF model corrected by Terra MODIS
 - Includes atmospheric corrections based on climatological values
- University of Arizona couples automated data with surface models

Summary

Recognize that the material presented is not new or cutting edge

- Cross-calibration methods in general have improved dramatically in recent years
 - Both precision and accuracy
 - Working in reflectance reduces many of the uncertainties
 - Cosine solar zenith angle on radiance
 - Spectral differences
 - Solar model
- Reliance on multi-nation data sets requires further improvements and collaborations
 - CEOS
 - GEOSS

Summary

Several examples exist of recognizing biases <0.5% for intercomparisons

- SI traceability needs to be addressed and included
- Technically overlap is not required if there is SI traceability
 - Reflectance-based method can be used without overlap with 2-3% traceable absolute uncertainty
 - SNO, invariant scenes, lunar have lower uncertainties but accurate traceability to SI is still being developed
- Rapidly approaching the situation where the absolute calibration of the reference sensor is the dominant error source