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We present a robust initialization scheme that estimates parametevalues for the numerical solution of
a two-point boundary value problem. The two-point boundary value problem formulation stems from the
optimization of a cost functional subject to the dynamics of a simplifd lateral aircraft model and other con-
straints. Leveraging regular perturbation methods, initial parameter estimates are analytically determined
and used to initialize a gradient descent optimization routine which is sbwn to rapidly converge over a range
of initial aircraft positions and heading angles. Additionally, the velodty of the aircraft is optimized to ensure
the trajectory of the aircraft terminates within a desired region in both time and space.
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[. Introduction

Over the next several decades, it is predicted that the nunfb@ommercial aircraft in operation will increase
rapidly posing significant challenges for the current aaffic management system [6]. Next generation air traffic
management system concepts [9, 11] (termed NextGen) havedreposed to accommodate this increase in air traffic
while simultaneously guaranteeing safety, addressing@mwental concerns, and avoiding congestion and delays.
The system may include substantial improvements in auiomagsulting in a significant reduction in the manual
work-load currently imposed upon human air-traffic coendl. Human air-traffic controllers are envisioned to re-
main an integral part of the system, however, automatiohemhance the ability of air-traffic controllers to focus
their attention more on critical tasks and less on tasksdaaatbe accomplished by intelligent algorithms and code.
For example, currently, aircraft follow fixed paths betweksstinations utilizing a set of path primitives. However,
these paths may not be optimal for a number of reasons imgumtingestion, delays, off-nominal operation, weather
conditions, and fuel and environmental constraints. Atbars that rapidly compute optimal trajectories in reatei
would be beneficial.

It has been envisioned that NextGen will extend the currentept of an aircraft trajectory to four dimensions
or 4D (three spatial, one temporal) and may include multipdgjuired Time of Arrival (RTA) constraints at way-
points along the entire path [3]. This extension has beendedrTrajectory Based Operations (TBO) and represents
a paradigm shift to a more strategic approach in which iddial aircraft trajectories are planned, generated, and
executed in 4D. This will enhance the predictability of eaft locations throughout the flight phases, enabling more
efficient use of the airspace and, ultimately, increasirgyalcapacity. TBO also includes the concept of Controlled
Time of Arrival (CTA) windows [11] in which there exist reqeeiments at a number of waypoints specifying the min-
imum and maximum time of arrival. It is envisioned that CTAayrthange over time due to a number of factors

1of14

American Institute of Aeronautics and Astronautics



including traffic congestion, weather, and inability toléa¥ a given reference trajectory precisely. In the case ef th
latter, a new trajectory may be required and a corresporfeémgjbleCTA window if the previous one is deemé&t
feasible The new trajectory, termed guidance trajectory, may neéxe tcontinually updated based on current aircraft
position data. The guidance trajectory may be displayelddgilot in order to guide the aircraft from its off-nominal
position back to the reference trajectory to comply witltitat objectives and constraints.

In order to rapidly compute optimal trajectories given a Ciiladow and current aircraft position, this paper
proposes a robust initialization scheme that estimatesnpeter values for the numerical solution of a two-point
boundary value problem. The two-point boundary value gwbformulation stems from the optimization of a cost
functional subject to the dynamics of a simplified laterati@ift model and other constraints. Leveraging pertuopati
methods, initial parameter estimates are analyticallgmeined and used to initialize a gradient descent optincizat
routine which is shown to rapidly converge over a range didhaircraft positions and heading angles.

The main ideas are illustrated in Fig. 1.

Requirements Initial Data Feasible Times
- arrival time windows - A/C positions - est. arrival time windows
- way points » - non-optimal trajectories » - separation metrics
-maxand minV holding patterns etc. - recompute at each time
- max and min bank angle step

T recompute
Initialize 2pt Bnd Val Prob Iterate
- initialize with asymptotic - initialize gradient once

- use Broyden’s method —> Generate Trajectory
(gradient free) until
convergence

Y

approximations

Y

Figure 1. Block diagram depicting the main components of the algorithm.

An advantage of using this approach is that it enables a nuofmore complex optimization problems to be
posed and solved in a reasonable amount of time. One sucleprabthe merging of multiple aircraft given multiple
CTAs and separation assurance constraints. It is showminaiion that separation can be optimized while satisfying
multiple CTA requirements.

The remainder of this paper is organized as follows: In $adt, we present the problem formulation. In Section
[, we discuss the asymptotic approximation of the solutiothe optimal control problem. In Section IV, we present
the computation of feasible regions in both time and spadee gurpose of this computation is to enable a flight
controller to choose (and change on fly¢ a desired CTA window for one or more aircraft. In Section \& present
several examples illustrating the algorithm, including @tiple aircraft merging problem with separation assueanc
We also present an example where the optimally generatgttiveies are fed into an adaptive backstepping lateral
control system. A damaged aircraft is simulated and is shovexceed the separation assurance bound triggering the
re-computation of all optimal trajectories. Conclusions given in Section VI.

Il. Problem Formulation

Consider the following nonlinear dynamical system

K= f(ut) 1)

wheré X: [to,) — R" denotes the state of the dynamic system &ndR" x R™ x [tp,) — R" is a sufficiently
smooth map guaranteeing the existence and uniquenesaitbasl Heretg > 0 denotes the initial time amdandm
denote the dimensions of the state and control input, régpgc The solution of (1) through the initigata (X, to)
is denoted byX(t; Xo,to,u) where we have explicitly shown the dependence on the coinfpok u. We assume is
piecewise continuous satisfying

Umin < U(t) < Umax (2

an the general 12-state aircraft dynamical equatimgpically denotes the position in inertial coordinatesnkke, to avoid notational confusion,
we utilize the vector overbar notation to indicate an adbojtn-dimensional state vector.
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The optimal control problem [5, 8, 13] may be loosely statedbdlows: Let the cost functional be defined by

tf
I() = @(X(tr) )+ | L(K(D),u(r).de @3)
0
whereg: R" x R — R is theterminalcost and. : R" x R™ x R — R is therunning cost. We seek an optimal control
and trajectory, call thera* andx*, respectively, that minimize (3) subject to the controhigea piecewise continuous
function satisfying the constraints in (2), and the trajegtbeing a solution of (1) through the initial (known) data
(Xo,t0) and satisfying the final state constraints

F(X(tf),tr) =0

In the case of lateral trajectory optimization we take a difiepl model considered in Micheliet al. [16]. The
states are:
X

y
Y

wherex denotes the positioty,denotes the position, anfl denotes the heading angle of the aircraft. The dynamics
are given by

g4

_ X Vcoqy)
X=|y| = |Vsin(y) (4)
1] u

We note that number of optimization algorithms for laterajectories (4) have been presented in the literature [4, 7,
16, 18]. However, most of them consider the minimizationusl for minimum arrival time. These optimization costs
may not be useful for CTA window applications where timingiigical for the proper sequencing of multiple aircraft.
Instead, we consider the following running cost where wepsetO (no terminal cost)

L(X,ut) = %uz (5)

and impose the following final state constraints:

yitr) = 0
Ytr) = 0 (6)
The costate equation becomes
oM 0
oxX .
—A1Vsin(y) + AoV coqy)
This yields (using (4)): )
A3 = A1y —A2x (7)

Integrating (7) we obtain
Aa(t) = Ay — Aox+c

wherec is an arbitrary constant that will be determined [ater
Also from (7) we conclude that; andA, are constants. The transversality condition yields

Wk(tr)
AT(t)wltr) = [Malte) Aalty) Aa(te)] | O
0
Sincevy(t) # 0 (perturbation at the final time) we find
Mm=0 (8)

bThis constant will later be adjusted to guarantee that tte fieading angle is equal to the desired final heading angle.
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Hence, using (8) in (7) we have
A3(t) = —Axx+c

The stationarity condition yields:

Jh
u- u+A3=0
Solving for the control, we obtain
u(t) = Axx(t) — ¢ C)

The above holds subject téhin < A2x(t) — ¢ < Umax. Outside of these bounds, we appeal to the Pontryagin mmimu
principle.

Remark 1 Itis interesting to note that optimal control law (9) for thenlinear system given in (4) subject to the cost
functional given in (3) idinear in the staté.

Substituting the control law (9) into (4) we obtain
P =Axx(t)—c
Differentiating both sides we obtain:
P = Axx = AV coq y) (10)
[ll.  Asymptotic Approximation of the Optimal Trajectory

We consider an asymptotic approximation to the solutionl®f fwith initial datay(to) = 0 and(0) = f(t).
Specifically, we consider:
B(t; A2) = Wo(t) + ewq (t) + 2wa(t) + O(&%) (11)

wheree = AyV. Note thatwi(t) is independent ok, for eachi = 0,1, 2. At this point, we do not know,, V, andc.
Substitution of the candidate asymptotic approximatidyj (tto (10) yields:

Vilp + &V + 2o + O(€3) = £ (cogWo) — sin(wo)wi € + O(&%)) (12)

Balancing order by order [10], we obtain

O1l): wp = 0
O(ge): Wi = cogwo) (13)
O(g?): Wi, = —wgsin(wp)
Integrating the Q1) equation twice yields:
Wo(t) =at+ar (14)

wherea; anday are arbitrary constants. Similarly, integrating theePequation twice yields:
1
wi(t) = @ CogWo) + agt +ay (15)

whereaz anda, are arbitrary constants.
Before proceeding with the @) equation, we present a list of integral relations that wellused throughout the
remainder of this paper.

¢Technically speaking, the control law is an affine function.
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Using (16), we compute

Wo(t) = —

4 [sinfwo)dt = 1 cogwo)
4 [cogwo)dt = & sin(wo)
4 Isinfwo)coswo)dt = - 28, COS'(Wo)
4 o (wp)dt = 2 (wo+ §sin(2wp))
4 Itcogwo)dt = Lsin(wp) + % coswo)
1
4 IsirR(wo)dt = 5 (Wo— 35sin(2wo))
4 rtsin(wo)dt = —5 Sin(Wo) + 5 sin(wo)
1

4 [sin(2w)dt —  — 5 COS2wp)
4 [sin(2w)dt = — 55 cog2wo)

. 2
4 rtsir?(wo)dt = tf5—2%l (%+a2t—%f7)
£ Jeogwo)si(wo)dt = L sir(wo)
4 I CO§(W0)dt = f1—"fo
£ Jtcod(wp)dt = th— ok (% vt + 31y
4 [t2cogwo)dt = & (t?sin(wo) — 2fs)
4 rcof(wp)sin(wo)dt = — 35, €S} (Wo)
4 Jcogdwp)sin(2wp)dt = 2f14
. Jtcogwp)sin(wp)dt = tfy+ 2%
4 [2sin(wo)sin(wo)dt = t2fo+ 2fs

1 . . 2 :
~—7 Sin(2wo) + %t sin(wp) + %3 cogwp) + % Sin(wop) + ast + ag
8ay aj aj aj

whereas andag are arbitrary constants.
Boundary Conditions: At the initial time, we have

Y(0) = wo(0) + ews(0) + £2w2(0) +O(%) = Yy

This yieldswp(0) = @/(0); wi(0) = wo(0) = 0. Hence, using (14),(15), and (17) we get

At the final time, we have

a=Uyo

1
—?cos(ag)+a4 =0
1

1 . 2a3 a4 .
——Sin(2a; — co9 a; — sin(a; =0
83.‘11 ( 2)+ ai S( 2)+a% (2)+36

W(ts) =Wo(tr) + ews(tr) + €2Wo(tr) + O(€3) = Y5 = 0
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Using the above in (14), (15), and (17) we obtain

g = P (21)
ts
a = o (22)
t7
a = —cogyp) (23)
Wy
1/1
az = H<a§a4> (24)
B S, A
ag = S—aéltsm(Zaz) ai’ coqay) + aEsm(az) (25)
1 2ag
a5 = tf(a6a2> (26)

The three term approximation in (11) together with the camist defined above ensure that the boundary conditions
are satisfied foany A, andV.

Approximating y(t): We next consider thg équation in (4). In the following, we shall approximate tloéusion
for which bothy(ts) = s andy(ts) =yt while ignoring the boundary condition odts). Expandingy about the
O(1) approximation and then integrating yields

y(0) =V [ (sinto)-+ osm) (ews + £ —sine) <3 +0(e%) ) (@)
Define
ht) = / sin(wo)dt 28)
L) — / w1 cog(wo)dt (29)
l5(t) = [ wacostwo)dt (30)
I3, (t) = /wﬁsin(wo)dt 31)
l3(t) = |3a(t)—%|3b(t) (32)
It follows that
y(t) =V (11(t) — l1(to)) + &V (I2(t) — l2(to)) + €2V (I3(t) — I3(to)) + Yo (33)

Expressions foly (t), I2(t), andls(t) are obtained using (16):

l1(t) = fo (34)
1
lo(t) = —?fs+ao,f4+a4f1 (35)
1
1 as az au
I (t) = ——f — f 2—f3+ = f f f 36
3a(t) 8l 15+a§ 16+ 3 3+a§ 2+ asfsa+asfy (36)
_ _fu 2 2 2
|3b(t) = —y—?(a2f16+a4f2)+a3f17+2a3a4f6+a4fo (37)
1 1
We further define
Po = Yi—Yo
pr = lu(tf) —l1(to)
P2 = la(tf) —I2(to)
ps = l3(tf) —I3(to) (38)
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At the final time, we have
2 2 2
RO V) =22 V3 + AV V2 + AY Vi —po =0 (39)

where we have used = /\Z(Y)V. We have replaced, by )\Z(y) to indicate that setting, = /\2<y) as defined in (39)

guarantees thaft;) = ys.
We solve forAY):

VP2V (P2 —4pspy) + 4pspo
Ay = T,

Approximating x(t): We next consider th& equation in (4). Expanding about the @1) approximation and
then integrating yields

(40)

Xt) =V t <cos(w0) — sin(wp) (£W1+ £2W2) — cos(wo)EZ;N?L> dt+ 0(83)
to
~ V (Kl(t) —Ki(to) — € (Ka(t) — Ka(to)) — g2 (Ka(t) — K3(to))) +Xo (41)
where
Ka(t) = [ coswo(t))dt = fu(t) (42)

Ka(t) = /Wl(t)sin(wo(t))dt

/ [_alzcos(wO(t» + gt +au | sin(Wo(t))dt
1

- —alifxt) +aafe(t) +asfol(t) (43)
Ka(t) = Kay (1) + 3K, (1) (44)

Kz, (t) is given by:

Kat) = [ walt)sinfwo(t))dt

/’ [_8;11 sin(2wo(t)) + %tsin(wo(t)) n 2:% cogwo(t)) +%sin(wo(t))

+ast +a5] sin(wp(t))dt

1 ag ag y
= ——fg(t)+ = fo(t) + 2= fo(t) + = f5(t fe(t fo(t 45
88.‘1 3()+a% 9()"" a;;, 2()+a§ 5()+a5 6()+a60<) (45)

Ks, (t) is given by:

Kayt) = [ WD) costwo(t))dt

= / <a1‘1100§(wo(t))dt—2;% cos(wo(t))+r2> cogwo(t))dt (46)
Note that:
/ co(Wo(t))dt = f11(t) 47)
/ rcof(Wo(t))dt — / (agt + as) coL (W (t))dt
= agfio(t) +asfa(t) (48)
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/rzcos(wo(t))dt = /(a%tzcos(wo(t))dt+2a3a4tcos(wo(t))dt+aﬁcos(wo(t)))dt
= a3fia(t) + 2aga4 fa(t) + a3 fa(t) (49)
Substituting (47-49) into (46), we obtain

Ka, (t) = ;;11 faa(t) — azf (asfia(t) + aufa(t)) + a5 fra(t) + 2asas fa(t) + a5 fa(t) (50)

At the final time, thex-position is found by using (41) with=t;:

X(tf) =V (Kl(tf) — Kl(to) —& (Kz(tf) — Kz(to)) — 82 (Kg(tf) — Kg(to))) + Xo (51)
Defining
Qo = Yi—Yo
@ = Ki(tf) —Ky(to)
R = Ko(tf)—Ka(to)
a3 = Ks(tf) —Ks(to) (52)
(53)
It follows that:
Fe(A2,V) =Vpe?+qVe -V +go=0 (54)

Computing the Control Law: Thus far, we have constructed an asymptotic approximatidgheosolution to
(10) given by (11) that satisfies the initial and final corafis, ¢(tp) and Y(t;), respectively, for any\, andV such
thate = A,V is small in the asymptotic sense. OnceandV are determined, the control law is computed as follows.
Differentiating the approximate solution at tihe- 0 and using (9), we obtain

c = Axo—{(0)
= A2Xo— (Wio(0) + £ (0) + £42(0))

where
Wo(O) = a
. 1 .
Wy (0) = —sin(ay)+as
a
. 1 az . as
Wy(0) = ——co9q2ay)— — sin(a; — co9 & a
2(0) o §2ap) 22 (2)+al Saz) +as

Givenc, thelinear control law (9) is obtained. Hence, we only needandV.

IV. Feasibility Regions
An approximate solution to the problem specified in Sectlandst simultaneously satisfy (39) and (54):

If there exists a real numba@p andV € [Vimin, Vinay that satisfies the above, the approximate trajectory gtegarthat
X(tr) = x¢, y(ts) = ys andy(t;) = Ys. However, given a desired final time and initial aircraftifios and heading,
it is not clear whether a feasible pdit2,V) exists. It is to be emphasized again that the motivation efpttoposed
approach is to enable an air-traffic controller to dynanhjcgpecify an arrival time for an aircraft that may change
depending on conditions on the ground and in the air.

Our approach to this problem is as follows:

Step 1: Specify Initial and Final Data
1. Specify initial A/C data{to, Xo, Yo, Yo)
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2. Specify final A/C datafts,Xs,Ys, ¥s)
3. Specify bounds on velocityWmin, Vmax and finalxs: [Xf,,, Xfmas)

Step 2: Estimate Bounds on Feasible CTA Windows

e Given an initial aircraft position and heading it may not lmesgible to reach a desired final position by
the desired final (arrival) time. This may be due to (1) linuitsthe maximum and minimum velocities,
(2) limits on the maximum and minimum turn rates (bank angleyl (3) there does not exist an optimal
solution with respect to the cost functional.

For example, suppose an aircraft is heading due edts at0(s),xo = 0(nm),yo = 0(nm), Y = O(rad))
and the desired final data given fy = 150(s),x; = 16(nm),yo = O(nm), Yo = O(rad)). Suppose further
that the velocity bounds aiyin = 150(kts) andVmax = 300(kts). At V = Vimax and with heading angle
pointed straight at the targéty(t) = 0), the final positionx(tf) = 300-t; = 12.5(nm) < x; = 16(nm).
Hence, given the initial data, it would not be possible toiewd any arrival times less than 192 seconds.
If a flight management system requires the ability to spe€if windows, then (dynamic) bounds on
[tt,. Lfmax] Which guarantee optimality would be helpful. In Fig. 2., wew four different aircraft posi-
tions. Given the data in Step 1, feasible CTA windows aredigfgjenerated and shown in brackets.

V [62.8319,458.0076]

N w B ol
T T T

[ A [15.708,458.0076]

| A\ [31.4159,458.0076]

| A\ [62.8319,458.0076]
0 2 4 6 8 10 12 14 16

Figure 2. Time of arrival windows for four aircraft. The diamond denotes the final way point with corresponding bounds inx and y indicated by dashes.
Numbers enclosed in the brackets denote the estimated minimum and maximum arrivéimes for which a search may be performed.

e The CTA bounds are dynamic in the sense that at every time tstepnitial data changes. To elaborate
further, consider a single aircraft trajectory. Deftéoé“) € [to,t7) to be the time where the optimal tra-
jectory commences. That is, the time for which an optinfals applied in (4). Denote this interval as
Topt = 1™, t¢]. For timest € [to,t{°™), we assume the aircraft is flying a non-optimal trajectortyisT

could be, for example, a holding pattern or a straight fliglgrsent. téc’pt) is updated at every instant

aircraft data is made available. Dynamic bounds on the CTiAdwmivs may be calculated whenewg’rpt)
changes.

V. Examples

Example 1 (Optimal Trajectories for a Single Aircraft) We take as the initial conditiong > —500(m) and yy =
—500(m) and simulate forty equally spaced initial heading anglesMeen—135and +135 degrees. The velocity
used was fixed @00 km/hr or 4319654 knots. The asymptotic solutions are shown in Fig. 3. Nextlewerage
Broyden’s method to rapidly converge to the optimal sohsgiorThis is shown in Fig. 4.

Example 2 (Optimal Merging of Multiple Aircraft with Time of Ar rival Windows) In this example we consider
the problem of merging four aircraft. The problem is to detare, for each aircraft an optimal CTA window and
velocity with a separation constraint (radius). To gener@TA windows, the algorithm in Steps 1-2 is applied. Fig.
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0.5F K—\ff—: O  End [
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-1
-0.5 0 0.5 1 15 2 25
X (m) x10°

0 (degrees)

Time (s)

Figure 3. 40 initial heading angles between-135and +135degrees are simulated. For each simulation, parameters were obtained using tirétial guess via
the three-term asymptotic expansion. As the initial heading angle deviates fro the final heading angle, the asymptotic solution becomes less accurate.

4 Optimal Trajectories

0 (degrees)

100

Time (s)

Figure 4. Optimal trajectories with 40 initial heading angles between-135and +135degrees are simulated. For each simulation, parameters were obtained

via a search using Broyden’s method.
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5., depicts the corresponding feasible arrival time windaand velocities. A search is performed to choose CTA
windows and velocities such that separation assurancet@nts are satisfied. Fig. 6., depicts the resulting optima
trajectories. The separation assurance constraints apeagented by dotted circles around each aircraft.

Feasible V regions

450 T "“’EE aal T

400} s@ggge

350, Séggggg

300 Segooes

250 ! ! ] gaegggésggﬁogascn g

V (kts)

100 150 200 250 300 350 400 450
r —t§ T 1
Laf LT ST T '
2 350 LT 80e. g h/C 2
S 300 LLTTTTY I
=o ! ! 1600000808008 0., i, ! | ! 2
100 150 200 250 300 350 400 450
450 [ ¥
400 [
250
< 300
250 [~ |

100 150 200
Arrival Time (s)

[ Feasible Regions I Infeasible Regions [ Selected Arrival Time Windows

Figure 5. For each aircraft, an initial search regime[t; . tima, is computed. Then, time of arrival windows and corresponding velocities areomputed for
each aircraft. The air-traffic controller is able to select time of arrival windows for each aircraft.

muEmnag,

y(om)
<>
¥ (o)

Figure 6. Optimal merging of four aircraft. Separation assurance constraits are represented by dotted circles around each aircraft. A search was performed
over the feasible CTA windows and velocities shown in Fig. 5.

Example 3 (Tracking of Optimal Trajectories with an Adaptiv e Controller and Re-planning) We consider the fol-
lowing lateral aircraft dynamics [1, 2]:

Pl_|f| |la La||% (55)
r fr N5a Na_ a
and _
B fg sina  —cosa p
2| = + (56)
0] 0 1 tanfcosg r
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where

and

= i (Lolylz+N

Olylxz)

- m (Lolylxz+ Nolxly)

z

= an\S/(BCYg cosB +sinf(Cp, + aCp,)) — 5 sinf
+  J(sina cosa sinf + cosa singcosP — sina cosa cospsing)

x(Ixlz—=1%

B (Iy1Ci, +1

I(Ixl—12Z,

Lo =

No =

ﬁ)“y'zcl(Sa +1y1xLas,)

Y1xCns )

GSb|Ci, + % (PG, +1C,)|

GSb|BCn, + £ (PG, +1C,) |

The aerodynamic coefficients, obtained from [17], are asslito satisfy

G = GyB+Gy,p+G,f 4Gy 8 +Cy &
G = CnﬁB+Cnpp+Cnrr+Cn5a5a+Cn5r5r
Cb = CDO+CDaa

G = CyB

A description of the notation used above is provided in Table

Table 1. Nomenclature: Notation description

(67)

(58)

Notation | Description Notation | Description
6 Pitch angle Co Drag coefficient
[0)] Roll(bank) angle Cvy Side force coefficient
1] Yaw angle Cn Yaw moment coefficient
a Angle of Attack G Roll moment coefficient
B Side slip \Y, Aircraft velocity
p Roll rate S Wing area
q Pitch rate T Thrust force
r Yaw rate m Mass of aircraft
C. Lift coefficient g Gravitational constant
c Wing aerodynamic chord b Wing span
Xe, Ye, h | Earth coordination values Iy, ly, I, Iy, | Moment of inertia w.r.t each axi

‘o]

In Fig. 7, we simulate the tracking of an optimal trajectorydn adaptive backstepping controller [12,14,15,19]
applied to the system dynamics given in (55-56). Stabih@lysis and details of its implementation are beyond the
scope of this paper. Initial and final data was provided to tip¢imization algorithm as discussed in Section IV. In

this case, proper tuning of the controller yielded accuraéeking of the optimal trajectory.

Next, we simulated failure by changing an aerodynamic aieiffi in one of the aircraft models. This resulted in a
deviation from the trajectory and violation of the sepapatiassurance constraint is observed around 7.5 (s). At this
time, we re-computed the optimal trajectories for all aaftrand applied the same optimization routine to determine

the new CTA windows and corresponding velocities. Thisdgvalin Fig. 8.
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m  Desired Trajectory
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Figure 7. Tracking of Optimal Trajectory using an Adaptive Backstepping Controller.
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Figure 8. Tracking of Optimal Trajectory using Adaptive Backstepping Controller. Failure is simulated in one of the aircraft. This resulted in violation of the
separation assurance constraint and initiated a re-optimization of the trajectories, TA windows, and velocities of each aircraft.

VI. Conclusions

We presented a robust initialization scheme that estingesmeter values for the numerical solution of a two-
point boundary value problem. The two-point boundary vaglteblem formulation stems from the optimization of
a cost functional subject to the dynamics of a simplifiedridtaircraft model and other constraints. Leveraging
perturbation methods, initial parameter estimates arbyteelly determined and used to initialize a gradient @egc
optimization routine which is shown to converge over a raofg@itial aircraft positions and heading angles. Using
this approach, we were able to rapidly estimate CTA windond eorresponding aircraft velocities. Future work
includes the extension of this technique to multiple wagpowith multiple CTA windows that are computed online.
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