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We present a robust initialization scheme that estimates parametervalues for the numerical solution of
a two-point boundary value problem. The two-point boundary valueproblem formulation stems from the
optimization of a cost functional subject to the dynamics of a simplified lateral aircraft model and other con-
straints. Leveraging regular perturbation methods, initial parameter estimates are analytically determined
and used to initialize a gradient descent optimization routine which is shown to rapidly converge over a range
of initial aircraft positions and heading angles. Additionally, the velocity of the aircraft is optimized to ensure
the trajectory of the aircraft terminates within a desired region in both time and space.
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I. Introduction

Over the next several decades, it is predicted that the number of commercial aircraft in operation will increase
rapidly posing significant challenges for the current air traffic management system [6]. Next generation air traffic
management system concepts [9,11] (termed NextGen) have been proposed to accommodate this increase in air traffic
while simultaneously guaranteeing safety, addressing environmental concerns, and avoiding congestion and delays.
The system may include substantial improvements in automation resulting in a significant reduction in the manual
work-load currently imposed upon human air-traffic controllers. Human air-traffic controllers are envisioned to re-
main an integral part of the system, however, automation will enhance the ability of air-traffic controllers to focus
their attention more on critical tasks and less on tasks thatcan be accomplished by intelligent algorithms and code.
For example, currently, aircraft follow fixed paths betweendestinations utilizing a set of path primitives. However,
these paths may not be optimal for a number of reasons including congestion, delays, off-nominal operation, weather
conditions, and fuel and environmental constraints. Algorithms that rapidly compute optimal trajectories in real-time
would be beneficial.

It has been envisioned that NextGen will extend the current concept of an aircraft trajectory to four dimensions
or 4D (three spatial, one temporal) and may include multipleRequired Time of Arrival (RTA) constraints at way-
points along the entire path [3]. This extension has been termed Trajectory Based Operations (TBO) and represents
a paradigm shift to a more strategic approach in which individual aircraft trajectories are planned, generated, and
executed in 4D. This will enhance the predictability of aircraft locations throughout the flight phases, enabling more
efficient use of the airspace and, ultimately, increasing overall capacity. TBO also includes the concept of Controlled
Time of Arrival (CTA) windows [11] in which there exist requirements at a number of waypoints specifying the min-
imum and maximum time of arrival. It is envisioned that CTAs may change over time due to a number of factors
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including traffic congestion, weather, and inability to follow a given reference trajectory precisely. In the case of the
latter, a new trajectory may be required and a correspondingfeasibleCTA window if the previous one is deemedin-
feasible. The new trajectory, termed guidance trajectory, may need to be continually updated based on current aircraft
position data. The guidance trajectory may be displayed to the pilot in order to guide the aircraft from its off-nominal
position back to the reference trajectory to comply with tactical objectives and constraints.

In order to rapidly compute optimal trajectories given a CTAwindow and current aircraft position, this paper
proposes a robust initialization scheme that estimates parameter values for the numerical solution of a two-point
boundary value problem. The two-point boundary value problem formulation stems from the optimization of a cost
functional subject to the dynamics of a simplified lateral aircraft model and other constraints. Leveraging perturbation
methods, initial parameter estimates are analytically determined and used to initialize a gradient descent optimization
routine which is shown to rapidly converge over a range of initial aircraft positions and heading angles.

The main ideas are illustrated in Fig. 1.

Requirements

- arrival time windows

- way points

- max and min V

- max and min bank angle

Initial Data

- A/C positions

- non-optimal trajectories

  holding patterns etc.
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- recompute at each time 

  step

recompute

Initialize 2pt Bnd Val Prob

- initialize with asymptotic

  approximations

Iterate 

- initialize gradient once

- use Broyden’s method 

  (gradient free) until

  convergence

Generate Trajectory

Figure 1. Block diagram depicting the main components of the algorithm.

An advantage of using this approach is that it enables a number of more complex optimization problems to be
posed and solved in a reasonable amount of time. One such problem is the merging of multiple aircraft given multiple
CTAs and separation assurance constraints. It is shown in simulation that separation can be optimized while satisfying
multiple CTA requirements.

The remainder of this paper is organized as follows: In Section II, we present the problem formulation. In Section
III, we discuss the asymptotic approximation of the solution to the optimal control problem. In Section IV, we present
the computation of feasible regions in both time and space. The purpose of this computation is to enable a flight
controller to choose (and change on thefly) a desired CTA window for one or more aircraft. In Section V, we present
several examples illustrating the algorithm, including a multiple aircraft merging problem with separation assurance.
We also present an example where the optimally generated trajectories are fed into an adaptive backstepping lateral
control system. A damaged aircraft is simulated and is shownto exceed the separation assurance bound triggering the
re-computation of all optimal trajectories. Conclusions are given in Section VI.

II. Problem Formulation

Consider the following nonlinear dynamical system

~̇x= f (~x,u, t) (1)

wherea ~x : [t0,∞) → R
n denotes the state of the dynamic system andf : Rn ×R

m× [t0,∞) → R
n is a sufficiently

smooth map guaranteeing the existence and uniqueness of solutions. Here,t0 ≥ 0 denotes the initial time andn andm
denote the dimensions of the state and control input, respectively. The solution of (1) through the initialdata (~x0, t0)
is denoted by~x(t;~x0, t0,u) where we have explicitly shown the dependence on the controlinput u. We assumeu is
piecewise continuous satisfying

Umin ≤ u(t)≤Umax (2)

aIn the general 12-state aircraft dynamical equations,x typically denotes the position in inertial coordinates. Hence, to avoid notational confusion,
we utilize the vector overbar notation to indicate an arbitraryn-dimensional state vector.

2 of 14

American Institute of Aeronautics and Astronautics



The optimal control problem [5,8,13] may be loosely stated as follows: Let the cost functional be defined by

J(u) = φ(~x(t f ), t f )+
∫ t f

t0
L(~x(t),u(t), t)dt (3)

whereφ : Rn×R→ R is theterminalcost andL : Rn×R
m×R→ R is therunningcost. We seek an optimal control

and trajectory, call themu∗ andx∗, respectively, that minimize (3) subject to the control being a piecewise continuous
function satisfying the constraints in (2), and the trajectory being a solution of (1) through the initial (known) data
(~x0, t0) and satisfying the final state constraints

F(~x(t f ), t f ) = 0

In the case of lateral trajectory optimization we take a simplified model considered in Michelinet al. [16]. The
states are:

~x
d
=







x

y

ψ







wherex denotes the position,y denotes the position, andψ denotes the heading angle of the aircraft. The dynamics
are given by

~̇x=







ẋ

ẏ

ψ̇






=







V cos(ψ)

V sin(ψ)

u






(4)

We note that number of optimization algorithms for lateral trajectories (4) have been presented in the literature [4, 7,
16,18]. However, most of them consider the minimization of fuel or minimum arrival time. These optimization costs
may not be useful for CTA window applications where timing iscritical for the proper sequencing of multiple aircraft.
Instead, we consider the following running cost where we setφ = 0 (no terminal cost)

L(~x,u, t) =
1
2

u2 (5)

and impose the following final state constraints:

y(t f ) = 0

ψ(t f ) = 0 (6)

The costate equation becomes

λ̇ = −∂H
∂~x

=







0

0

−λ1V sin(ψ)+λ2V cos(ψ)







This yields (using (4)):
λ̇3 = λ1ẏ−λ2ẋ (7)

Integrating (7) we obtain
λ3(t) = λ1y−λ2x+c

wherec is an arbitrary constant that will be determined laterb

Also from (7) we conclude thatλ1 andλ2 are constants. The transversality condition yields

λ T(t f )v~x(t f ) =
[

λ1(t f ) λ2(t f ) λ3(t f )
]







vx(t f )

0

0







Sincevx(t f ) 6= 0 (perturbation at the final time) we find

λ1 = 0 (8)

bThis constant will later be adjusted to guarantee that the final heading angle is equal to the desired final heading angle.
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Hence, using (8) in (7) we have
λ3(t) =−λ2x+c

The stationarity condition yields:
∂h
∂u

= u+λ3 = 0

Solving for the control, we obtain
u(t) = λ2x(t)−c (9)

The above holds subject toUmin ≤ λ2x(t)−c≤Umax. Outside of these bounds, we appeal to the Pontryagin minimum
principle.

Remark 1 It is interesting to note that optimal control law (9) for thenonlinear system given in (4) subject to the cost
functional given in (3) islinear in the statec.

Substituting the control law (9) into (4) we obtain

ψ̇ = λ2x(t)−c

Differentiating both sides we obtain:
ψ̈ = λ2ẋ= λ2V cos(ψ) (10)

III. Asymptotic Approximation of the Optimal Trajectory

We consider an asymptotic approximation to the solution of (10) with initial dataψ(t0) = 0 andψ̇(0) = f (t).
Specifically, we consider:

ψ̂(t;λ2) = w0(t)+ εw1(t)+ ε2w2(t)+O(ε3) (11)

whereε = λ2V. Note thatwi(t) is independent ofλ2 for eachi = 0,1,2. At this point, we do not knowλ2, V, andc.
Substitution of the candidate asymptotic approximation (11) into (10) yields:

ẅ0+ εẅ1+ ε2ẅ2+O(ε3) = ε
(

cos(w0)−sin(w0)w1ε +O(ε3)
)

(12)

Balancing order by order [10], we obtain

O(1) : ẅ0 = 0

O(ε) : ẅ1 = cos(w0)

O(ε2) : ẅ2 = −w1sin(w0)

(13)

Integrating the O(1) equation twice yields:
w0(t) = a1t +a2 (14)

wherea1 anda2 are arbitrary constants. Similarly, integrating the O(ε) equation twice yields:

w1(t) =− 1

a2
1

cos(w0)+a3t +a4 (15)

wherea3 anda4 are arbitrary constants.
Before proceeding with the O(ε2) equation, we present a list of integral relations that will be used throughout the

remainder of this paper.

cTechnically speaking, the control law is an affine function.
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f0
d
=

∫

sin(w0)dt = − 1
a1

cos(w0)

f1
d
=

∫

cos(w0)dt = 1
a1

sin(w0)

f2
d
=

∫

sin(w0)cos(w0)dt = − 1
2a1

cos2(w0)

f3
d
=

∫

cos2(w0)dt = 1
2a1

(

w0+
1
2 sin(2w0)

)

f4
d
=

∫

t cos(w0)dt = t
a1

sin(w0)+
1
a2

1
cos(w0)

f5
d
=

∫

sin2(w0)dt = 1
2a1

(

w0− 1
2 sin(2w0)

)

f6
d
=

∫

t sin(w0)dt = − t
a1

sin(w0)+
1
a2

1
sin(w0)

f7
d
=

∫

sin(2w0)dt = − 1
2a1

cos(2w0)

f8
d
=

∫

sin(2w0)dt = − 1
2a1

cos(2w0)

f9
d
=

∫

t sin2(w0)dt = t f5− 1
2a1

(

a1t2

2 +a2t − 1
2 f7

)

f10
d
=

∫

cos(w0)sin2(w0)dt = 1
3a1

sin3(w0)

f11
d
=

∫

cos3(w0)dt = f1− f10

f12
d
=

∫

t cos2(w0)dt = t f3− 1
2a1

(

a1t2

2 +a2t + 1
2 f7

)

f13
d
=

∫

t2cos(w0)dt = 1
a1

(

t2sin(w0)−2 f6
)

f14
d
=

∫

cos2(w0)sin(w0)dt = − 1
3a1

cos3(w0)

f15
d
=

∫

cos(w0)sin(2w0)dt = 2 f14

f16
d
=

∫

t cos(w0)sin(w0)dt = t f2+
f3

2a1

f17
d
=

∫

t2sin(w0)sin(w0)dt = t2 f0+ 2
a1

f4

(16)

Using (16), we compute

w2(t) =− 1

8a4
1

sin(2w0)+
a3

a2
1

t sin(w0)+
2a3

a3
1

cos(w0)+
a4

a2
1

sin(w0)+a5t +a6 (17)

wherea5 anda6 are arbitrary constants.
Boundary Conditions: At the initial time, we have

ψ(0) = w0(0)+ εw1(0)+ ε2w2(0)+O(ε3) = ψ0

This yieldsw0(0) = ψ(0); w1(0) = w2(0) = 0. Hence, using (14),(15), and (17) we get

a2 = ψ0 (18)

− 1

a2
1

cos(a2)+a4 = 0 (19)

− 1

8a4
1

sin(2a2)+
2a3

a3
1

cos(a2)+
a4

a2
1

sin(a2)+a6 = 0 (20)

At the final time, we have

ψ(t f ) = w0(t f )+ εw1(t f )+ ε2w2(t f )+O(ε3) = ψ f = 0
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Using the above in (14), (15), and (17) we obtain

a1 =
−ψ0

t f
(21)

a2 = ψ0 (22)

a4 =
t2
f

ψ2
0

cos(ψ0) (23)

a3 =
1
t f

(

1

a2
1

−a4

)

(24)

a6 =
1

8a4
1

sin(2a2)−
2a3

a3
1

cos(a2)+−a4

a2
1

sin(a2) (25)

a5 =
1
t f

(

−a6−
2a3

a3
1

)

(26)

The three term approximation in (11) together with the constants defined above ensure that the boundary conditions
are satisfied foranyλ2 andV.

Approximating y(t): We next consider the ˙y equation in (4). In the following, we shall approximate the solution
for which bothψ(t f ) = ψ f andy(t f ) = yf while ignoring the boundary condition onx(t f ). Expandingψ about the
O(1) approximation and then integrating yields

y(t) =V
∫ t

t0

(

sin(w0)+cos(w0)
(

εw1+ ε2w2
)

−sin(w0)
ε2w2

1

2
+O(ε3)

)

dt (27)

Define

I1(t) =
∫

sin(w0)dt (28)

I2(t) =
∫

w1cos(w0)dt (29)

I3a(t) =
∫

w2cos(w0)dt (30)

I3b(t) =
∫

w2
1sin(w0)dt (31)

I3(t) = I3a(t)−
1
2

I3b(t) (32)

It follows that
y(t) =V (I1(t)− I1(t0))+ εV (I2(t)− I2(t0))+ ε2V (I3(t)− I3(t0))+y0 (33)

Expressions forI1(t), I2(t), andI3(t) are obtained using (16):

I1(t) = f0 (34)

I2(t) = − 1

a2
1

f3+a3 f4+a4 f1 (35)

I3a(t) = − 1

8a4
1

f15+
a3

a2
1

f16+2
a3

a3
1

f3+
a4

a2
1

f2+a5 f4+a6 f1 (36)

I3b(t) = − f14

a4
1

− 2

a2
1

(a2 f16+a4 f2)+a2
3 f17+2a3a4 f6+a2

4 f0 (37)

We further define

p0 = yf −y0

p1 = I1(t f )− I1(t0)

p2 = I2(t f )− I2(t0)

p3 = I3(t f )− I3(t0) (38)
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At the final time, we have

Fy(λ
(y)
2 ,V) = λ (y)2

2 V3q3+λ (y)2

2 V2p2+λ (y)2

2 V p1− p0 = 0 (39)

where we have usedε = λ (y)
2 V. We have replacedλ2 by λ (y)

2 to indicate that settingλ2 = λ (y)
2 as defined in (39)

guarantees thaty(t f ) = yf .

We solve forλ (y)
2 :

λ (y)
2 =

√
V p2±

√

V(p2
2−4p3p1)+4p3p0

2V3/2p3
(40)

Approximating x(t): We next consider the ˙x equation in (4). Expandingψ about the O(1) approximation and
then integrating yields

x(t) = V
∫ t

t0

(

cos(w0)−sin(w0)
(

εw1+ ε2w2
)

−cos(w0)
ε2w2

1

2

)

dt+O(ε3)

≈ V
(

K1(t)−K1(t0)− ε (K2(t)−K2(t0))− ε2 (K3(t)−K3(t0))
)

+x0 (41)

where
K1(t) =

∫

cos(w0(t))dt = f1(t) (42)

K2(t) =
∫

w1(t)sin(w0(t))dt

=
∫

[

− 1

a2
1

cos(w0(t))+a3t +a4

]

sin(w0(t))dt

= − 1

a2
1

f2(t)+a3 f6(t)+a4 f0(t) (43)

K3(t) = K3a(t)+
1
2

K3b(t) (44)

K3a(t) is given by:

K3a(t) =
∫

w2(t)sin(w0(t))dt

=
∫

[

− 1

8a4
1

sin(2w0(t))+
a3

a2
1

t sin(w0(t))+2
a3

a3
1

cos(w0(t))+
a4

a2
1

sin(w0(t))

+a5t +a6

]

sin(w0(t))dt

= − 1

8a4
1

f8(t)+
a3

a2
1

f9(t)+2
a3

a3
1

f2(t)+
a4

a2
1

f5(t)+a5 f6(t)+a6 f0(t) (45)

K3b(t) is given by:

K3b(t) =
∫

w2
1(t)cos(w0(t))dt

=
∫

(

1

a4
1

cos2(w0(t))dt−2
r

a2
1

cos(w0(t))+ r2
)

cos(w0(t))dt (46)

Note that:
∫

cos3(w0(t))dt = f11(t) (47)

∫

r cos2(w0(t))dt =
∫

(a3t +a4)cos2(w0(t))dt

= a3 f12(t)+a4 f3(t) (48)
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∫

r2cos(w0(t))dt =
∫

(

a2
3t

2cos(w0(t))dt+2a3a4t cos(w0(t))dt+a2
4cos(w0(t))

)

dt

= a2
3 f13(t)+2a3a4 f4(t)+a2

4 f1(t) (49)

Substituting (47-49) into (46), we obtain

K3b(t) =
1

a4
1

f11(t)−
2

a2
1

(a3 f12(t)+a4 f3(t))+a2
3 f13(t)+2a3a4 f4(t)+a2

4 f1(t) (50)

At the final time, thex-position is found by using (41) witht = t f :

x(t f ) =V
(

K1(t f )−K1(t0)− ε
(

K2(t f )−K2(t0)
)

− ε2(K3(t f )−K3(t0)
))

+x0 (51)

Defining

q0 = yf −y0

q1 = K1(t f )−K1(t0)

q2 = K2(t f )−K2(t0)

q3 = K3(t f )−K3(t0) (52)

(53)

It follows that:
Fx(λ2,V) =Vq3ε2+q2Vε −Vq1+q0 = 0 (54)

Computing the Control Law: Thus far, we have constructed an asymptotic approximation of the solution to
(10) given by (11) that satisfies the initial and final conditions,ψ(t0) andψ(t f ), respectively, for anyλ2 andV such
thatε = λ2V is small in the asymptotic sense. Onceλ2 andV are determined, the control law is computed as follows.
Differentiating the approximate solution at timet = 0 and using (9), we obtain

c = λ2x0− ˙̂ψ(0)

= λ2x0−
(

ẇ0(0)+ εẇ1(0)+ ε2ẇ2(0)
)

where

ẇ0(0) = a1

ẇ1(0) =
1
a1

sin(a2)+a3

ẇ2(0) = − 1

4a3
1

cos(2a2)−
a3

a2
1

sin(a2)+
a4

a1
cos(a2)+a5

Givenc, thelinear control law (9) is obtained. Hence, we only needλ2 andV.

IV. Feasibility Regions

An approximate solution to the problem specified in Section II must simultaneously satisfy (39) and (54):

Fx(λ2,V) = Fy(λ2,V) = 0

If there exists a real numberλ2 andV ∈ [Vmin,Vmax] that satisfies the above, the approximate trajectory guarantees that
x(t f ) = xf , y(t f ) = yf andψ(t f ) = ψ f . However, given a desired final time and initial aircraft position and heading,
it is not clear whether a feasible pair(λ2,V) exists. It is to be emphasized again that the motivation of the proposed
approach is to enable an air-traffic controller to dynamically specify an arrival time for an aircraft that may change
depending on conditions on the ground and in the air.

Our approach to this problem is as follows:

Step 1: Specify Initial and Final Data

1. Specify initial A/C data:(t0,x0,y0,ψ0)
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2. Specify final A/C data:(t f ,xf ,yf ,ψ f )

3. Specify bounds on velocity:[Vmin,Vmax] and finalxf : [xfmin,xfmax]

Step 2: Estimate Bounds on Feasible CTA Windows

• Given an initial aircraft position and heading it may not be possible to reach a desired final position by
the desired final (arrival) time. This may be due to (1) limitson the maximum and minimum velocities,
(2) limits on the maximum and minimum turn rates (bank angle), and (3) there does not exist an optimal
solution with respect to the cost functional.

For example, suppose an aircraft is heading due east at(t0 = 0(s),x0 = 0(nm),y0 = 0(nm),ψ0 = 0(rad))
and the desired final data given by(t f = 150(s),xf = 16(nm),y0 = 0(nm),ψ0 = 0(rad)). Suppose further
that the velocity bounds areVmin = 150(kts) andVmax= 300(kts). At V = Vmax and with heading angle
pointed straight at the target(ψ(t) = 0), the final positionx(t f ) = 300· t f = 12.5(nm) < xf = 16(nm).
Hence, given the initial data, it would not be possible to achieve any arrival times less than 192 seconds.
If a flight management system requires the ability to specifyCTA windows, then (dynamic) bounds on
[t fmin t fmax] which guarantee optimality would be helpful. In Fig. 2., we show four different aircraft posi-
tions. Given the data in Step 1, feasible CTA windows are rapidly generated and shown in brackets.

0 2 4 6 8 10 12 14 16

−5

−4

−3

−2

−1

0

1

2

3

4

5

[62.8319,458.0076]

[31.4159,458.0076]

[15.708,458.0076]

[62.8319,458.0076]

y 
−

 n
m

x − nm

Figure 2. Time of arrival windows for four aircraft. The diamond deno tes the final way point with corresponding bounds inx and y indicated by dashes.
Numbers enclosed in the brackets denote the estimated minimum and maximum arrivaltimes for which a search may be performed.

• The CTA bounds are dynamic in the sense that at every time step, the initial data changes. To elaborate

further, consider a single aircraft trajectory. Definet(opt)
0 ∈ [t0, t f ) to be the time where the optimal tra-

jectory commences. That is, the time for which an optimalu∗ is applied in (4). Denote this interval as

Topt = [t(opt)
0 , t f ]. For timest ∈ [t0, t

(opt)
0 ), we assume the aircraft is flying a non-optimal trajectory. This

could be, for example, a holding pattern or a straight flight segment. t(opt)
0 is updated at every instant

aircraft data is made available. Dynamic bounds on the CTA windows may be calculated whenevert(opt)
0

changes.

V. Examples

Example 1 (Optimal Trajectories for a Single Aircraft) We take as the initial conditions x0 = −500(m) and y0 =
−500(m) and simulate forty equally spaced initial heading angles between−135 and+135 degrees. The velocity
used was fixed at800 km/hr or 431.9654knots. The asymptotic solutions are shown in Fig. 3. Next, weleverage
Broyden’s method to rapidly converge to the optimal solutions. This is shown in Fig. 4.

Example 2 (Optimal Merging of Multiple Aircraft with Time of Ar rival Windows) In this example we consider
the problem of merging four aircraft. The problem is to determine, for each aircraft an optimal CTA window and
velocity with a separation constraint (radius). To generate CTA windows, the algorithm in Steps 1-2 is applied. Fig.
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Figure 3. 40 initial heading angles between−135and +135degrees are simulated. For each simulation, parameters were obtained using theinitial guess via
the three-term asymptotic expansion. As the initial heading angle deviates from the final heading angle, the asymptotic solution becomes less accurate.
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Figure 4. Optimal trajectories with 40 initial heading angles between−135and +135degrees are simulated. For each simulation, parameters were obtained
via a search using Broyden’s method.

10 of 14

American Institute of Aeronautics and Astronautics



5., depicts the corresponding feasible arrival time windows and velocities. A search is performed to choose CTA
windows and velocities such that separation assurance constraints are satisfied. Fig. 6., depicts the resulting optimal
trajectories. The separation assurance constraints are represented by dotted circles around each aircraft.
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Figure 5. For each aircraft, an initial search regime[t fmin t fmax] is computed. Then, time of arrival windows and corresponding velocities arecomputed for
each aircraft. The air-traffic controller is able to select time of arrival windows for each aircraft.
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Figure 6. Optimal merging of four aircraft. Separation assurance constraints are represented by dotted circles around each aircraft. A search was performed
over the feasible CTA windows and velocities shown in Fig. 5.

Example 3 (Tracking of Optimal Trajectories with an Adaptiv e Controller and Re-planning) We consider the fol-
lowing lateral aircraft dynamics [1,2]:

[

ṗ

ṙ

]

=

[

fp

fr

]

+

[

Lδa Lδr

Nδa Nδr

][

δa

δr

]

(55)

and
[

β̇
φ̇

]

=

[

fβ
0

]

+

[

sinα −cosα
1 tanθ cosφ

][

p

r

]

(56)

11 of 14

American Institute of Aeronautics and Astronautics



where
fp = 1

Ix(IxIz−I2
xz)
(L0IyIz+N0IyIxz)

fr = 1
Iz(IxIz−I2

xz)
(L0IyIxz+N0IxIy)

fβ = q̄S
mV(βCYβ cosβ +sinβ (CD0 +αCDα ))− T cosα

mV sinβ
+ g

V (sinα cosα sinβ +cosα sinφ cosβ −sinα cosα cosφ sinβ )

Lδa = q̄Sb
Ix(IxIz−I2

xz)
(IyIzClδa

+ IyIxzCnδa
)

Lδr = q̄Sb
Iz(IxIz−I2

xz)
(IyIzClδr

+ IyIxzCnδr
)

(57)

and

L0 = q̄Sb
[

βClβ +
b

2V (pClp + rClr )
]

N0 = q̄Sb
[

βCnβ +
b

2V (pClp + rClr )
]

The aerodynamic coefficients, obtained from [17], are assumed to satisfy

Cl = Clβ β +Clp p+Clr r +Clδα
δα +Clδr

δr

Cn = Cnβ β +Cnp p+Cnr r +Cnδα
δα +Cnδr

δr

CD = CD0 +CDα α
CY = CYβ β

(58)

A description of the notation used above is provided in Table1.

Table 1. Nomenclature: Notation description

Notation Description Notation Description

θ Pitch angle CD Drag coefficient

φ Roll(bank) angle CY Side force coefficient

ψ Yaw angle Cn Yaw moment coefficient

α Angle of Attack Cl Roll moment coefficient

β Side slip V Aircraft velocity

p Roll rate S Wing area

q Pitch rate T Thrust force

r Yaw rate m Mass of aircraft

CL Lift coefficient g Gravitational constant

c̄ Wing aerodynamic chord b Wing span

xE, yE, h Earth coordination values Ix, Iy, Iz, Ixz Moment of inertia w.r.t each axis

In Fig. 7, we simulate the tracking of an optimal trajectory by an adaptive backstepping controller [12,14,15,19]
applied to the system dynamics given in (55-56). Stability analysis and details of its implementation are beyond the
scope of this paper. Initial and final data was provided to theoptimization algorithm as discussed in Section IV. In
this case, proper tuning of the controller yielded accuratetracking of the optimal trajectory.

Next, we simulated failure by changing an aerodynamic coefficient in one of the aircraft models. This resulted in a
deviation from the trajectory and violation of the separation assurance constraint is observed around 7.5 (s). At this
time, we re-computed the optimal trajectories for all aircraft and applied the same optimization routine to determine
the new CTA windows and corresponding velocities. This is shown in Fig. 8.
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Figure 7. Tracking of Optimal Trajectory using an Adaptive Backstepping Controller.
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Figure 8. Tracking of Optimal Trajectory using Adaptive Backstepping Controller. Failure is simulated in one of the aircraft. This resulted in violation of the
separation assurance constraint and initiated a re-optimization of the trajectories, CTA windows, and velocities of each aircraft.

VI. Conclusions

We presented a robust initialization scheme that estimatesparameter values for the numerical solution of a two-
point boundary value problem. The two-point boundary valueproblem formulation stems from the optimization of
a cost functional subject to the dynamics of a simplified lateral aircraft model and other constraints. Leveraging
perturbation methods, initial parameter estimates are analytically determined and used to initialize a gradient descent
optimization routine which is shown to converge over a rangeof initial aircraft positions and heading angles. Using
this approach, we were able to rapidly estimate CTA windows and corresponding aircraft velocities. Future work
includes the extension of this technique to multiple waypoints with multiple CTA windows that are computed online.
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