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Abstract 
A KHz Pulsed Laser Detection System was developed employing the concept of charge integration with an 
electrometer, in the NASA Goddard Space Flight Center, Code 618 Calibration Lab for the purpose of using the 
pulsed lasers for radiometric calibration.  Comparing with traditional trans-impedance (current-voltage 
conversion) detection systems, the prototype of this system consists of a UV-Enhanced Si detector head, a 
computer controlled shutter system and a synchronized electrometer.  The preliminary characterization work 
employs light sources running in either CW or pulsed mode.  We believe this system is able to overcome the 
saturation issue when a traditional trans-impedance detection system is used with the pulsed laser light source, 
especially with high peak-power pulsed lasers operating at kilohertz repetition rates (e.g. Ekspla laser or KHz 
OPO).  The charge integration mechanism is also expected to improve the stability of measurements for a pulsed 
laser light source overcoming the issue of peak-to-peak stability.  We will present the system characterizations 
including signal-to-noise ratio and uncertainty analysis and compare results against traditional trans-impedance 
detection systems.  
 

Keywords: charge integration, electrometer, shutter, KHz pulsed laser, Ekspla, radiometric calibration 
 

1. Introduction 
The traditional double-monochromator based spectral irradiance and radiance responsivity calibration comes 
with two major shortcomings: low radiant power with wide bandpass and difficulty reaching a calibration 
uncertainty less than 1%.  With the development of the continuous-wave (CW) and quasi-CW tunable SIRCUS 
(Spectral Irradiance and Radiance Responsivity Calibrations with Uniform Sources) lasers, detector based 
calibrations are available; and the calibration uncertainty can reach levels less than 0.25%.  But in practical 
implementation, those CW or quasi-CW lasers are expensive and difficult to automate.   
 
Kilohertz pulsed optical parametric oscillators (OPO) based tunable lasers are commercially available, e.g. 
Ekspla NT242 series.  They are much more affordable than the tunable CW or quasi-CW lasers and are fully 
automated over a wide spectral range from 210 nm to 2600 nm.  At present, these systems deploy a kilohertz 
repetition rate with 3 ~ 6 nanosecond (ns) pulse duration which yields an approximate 10-5 duty cycle; in other 
words, its peak/average power ratio is about 10+5.  That makes it difficult to stretch and extend by using fiber 
optics and/or integrating spheres; and theoretically, could cause saturation problems when conventional 
measurement systems consisting of a detector, a trans-impedance amplifier and a digital multi-meter are used [1].  
In practice, the more than 10% pulse-to-pulse power fluctuation in the KHz OPO laser is another drawback 
toward its use as a calibration light source.   
 

Our work here is to develop a KHz pulsed laser detection system, which can overcome the pulse-to-pulse 
fluctuation and the saturation problem caused by the small duty cycle from the KHz OPO laser and to further 
explore the possibility of using the Ekspla laser in our remote sensing calibration work.  This includes BRDF 
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opening and 4 ports for mounting LEDs emitting light at in 405 nm, 565 nm, 735 nm and 850 nm respectively.  
This sphere is shown in Figure 3.  Its short-term output stability is within 0.1%, and is considered an extremely 
stable instrument for characterizing detectors and remote sensing instruments.  Detailed documentation can be 
found in an SPIE proceeding. [2] Figure 4 shows the stability monitor data for the LED light source at 565 nm 
wavelength.  

 

 
Figure 3 LED-based Stable Uniform Light Source with 4 LEDs 

 

 
Figure 4 Short-Term Stability of LED-Based Light Source 

 

The Ekspla NT 242 series KHz pulsed tunable laser is a one box instrument which includes the pump laser and 
the OPO system.  The tunable spectral range is from 210 nm to 2600 nm with a spectral pulse energy distribution 
shown in Figure 5.  The typical linewidth is less than 5 cm-1, which yields the following band-passes in nm: 0.13 
nm @ 400 nm, 0.12 nm @ 500 nm, and 0.32 nm @ 800 nm.  The laser pulses exhibit a wide pulse-to-pulse 
power fluctuation, and this situation is illustrated in the Figure 6 oscilloscope trace.   
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Figure 5 Typical Output Pulse Energy of NT 242 

 

 
Figure 6 Pulse-to-pulse Variation from NT 242 Series Laser 
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The trap detector system was calibrated by NIST in the spectral range from 300 nm to 1100 nm.  The Gershun 
tube located in front of the detector elements enables the trap detector system to work in radiance mode.   
 

The Oriel Merlin system is a digital lock-in amplifier with a chopper controller.  The Si detector head consists of 
a UV-enhanced Si detector and a trans-impedance current to voltage converter.  Its voltage output is read out by 
a lock-in amplifier.  It works in radiance mode as well.   

 
The FRMS is the primary filtered monitoring system in our calibration lab.  Its filter wheel contains 1 opaque 
blocking element and 11 specific bandpass filters focusing on 11 wavelengths of interest to the remote sensing 
community.  The detector used in the FRMS is a UV-enhanced Si detector, and the pre-amp is a traditional trans-
impedance current to voltage converter.  The voltage output is read out by a digital voltage multi-meter (DVM).  
Detailed documentation can be found in an SPIE Applied Optical Journal paper. [3]   
 

4. Measurement Descriptions 
The working procedure of the pulsed laser detection system is depicted in Figure 7.  In each cycle, the 
electrometer makes two measurements.  The first measurement was made with the laser shutter closed, and the 
second measurement was made with the laser shutter open.  The incoming light energy was calculated by 
subtracting the first measurement from the second measurement.  The first measurement is treated as the DARK 
signal of the system. We also define “Window Time” as the time from shutter open to shutter close in units of 
milliseconds (ms).   

 
Figure 7 Working Procedure of the Pulsed Laser Detection System 

 

4.1 Characterizations with CW light source (LED-based stable uniform light source) 
The CW set up is similar to Figure 1 and is shown in Figure 8.  The trap detector was used as the reference 
instrument.  The red-boxed components are all set inside a light-tight enclosure to eliminate stray and ambient 
light.  
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The measurement procedure for Window Time linearity is identical to the CW light source.  In the detector 
responsivity linearity characterizations, the laser power level was changed by using 25% and 50% Neutral 
Density (ND) filters.  This characterization was also used to determine if the traditional measuring instruments 
were experiencing any saturation-induced issues.   

 

5 Measurement Results 
5.1 Characterizations with LED-based stable uniform light source 
Table 1 shows the results of Window Time Non-linearity measurement at a wavelength of 850 nm.  The 
Reference Number corresponds to the Window Time, and the Non-linearity was calculated by comparing the 
Measurement Coefficient to the Reference Number.   
 

850 nm@50 
mA 

Window 
Time 

Reference 
Number 

Measurement 
Coefficient 

Non-
Linearity 

 100ms 1 1 0.00% 
 200ms 2 2.002343425 0.1172% 
 300ms 3 2.997005187 0.0998% 
 500ms 5 4.990355715 0.1929% 
 1000ms 10 9.973954649 0.2605% 
 2000ms 20 19.93891292 0.3054% 
 3000ms 30 29.90320303 0.3227% 
 5000ms 50 49.82745716 0.3451% 
 10000ms 100 99.62442357 0.3756% 

Table 1 Window Time Non-linearity characterization with LED @ 850 nm 
 

 
Figure 11 Window Time vs. Uncertainty with LED 735 nm 

 

Figure 11 shows the relationship between Window Time and measurement uncertainty at a wavelength of 735 
nm. The blue line represents the pulsed laser detection system and the red line represents the trap detector. 
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With the increment of the Window Time, the measurement uncertainty of the pulsed laser detection system 
quickly drops and gradually gets close to that of the trap detector.  These results can also be seen in the noise 
performance comparison between the trap detector (6485) and the pulsed laser detection system (6514) in Figure 
12.   

 

 
Figure 12 Noise vs. Window Time comparison 

 

405 nm 
Power Level 

6514 6485 6514/6485 
Ratio 

Nonlinearity 

150 mA 5.15076E-07 8.40E-08 6.1313 0.135% 
200 mA 7.37144E-07 1.20E-07 6.1262 0.051% 
250 mA 9.62287E-07 1.57E-07 6.1219 0.019% 
300 mA 1.19079E-06 1.95E-07 6.1216 0.024% 
400 mA 1.63532E-06 2.67E-07 6.1170 0.098% 
149 mA 5.14407E-07 8.39E-08 6.1296 0.106% 
249 mA 9.59452E-07 1.57E-07 6.1199 0.051% 
350 mA 1.41261E-06 2.31E-07 6.1170 0.099% 
Average   6.1231  

Table 2 Detector responsivity linearity against trap detector (6485) 
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Figure 13 Detector responsivity linearity with Window Time 1000 ms @ 405 nm 

 
Table 2 and Figure 13 show the measurement results of detector responsivity linearity with the LED at a 
wavelength of 405 nm with the Window Time set to 1000 ms.   

 
From the results above, the LED-based stable uniform light source continues to show its capability to perform 
instrument characterizations.  With shorter integration time, e.g. 1000 ms or less, the shutter is the main source 
of the measurement uncertainty, and this influence will decrease as the Window Time increases which indicates 
that the error from the shutter is in a ± 1ms format instead of a ± 1% format.   

 
5.2 Characterizations with Ekspla NT242 series tunable laser 
The first characterization was the relationship between Window Time and measurement uncertainty shown in 
Figure 14 and 15.  Figure 14 shows the results using the Ekspla laser operating at 565 nm.  The red line is the 
trap detector data uncertainty, and blue line is the uncertainty from the pulsed laser detection system.  The red 
line maintains a relatively flat profile.  The blue line is higher than red line at the beginning, but it gradually 
drops as Window Time increases and at about 3000 ms Window Time, it goes below the trap detector’s 
measurement uncertainty.  The blue line reaches 0.1% when the integration time is at 60,000 ms (1 minute).   
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Figure 14 Measurement uncertainty vs. Window Time @ 565 nm 

 

 
Figure 15 Measurement Uncertainty vs. Window Time @ 460 nm 
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Figure 15 shows results consistent with those in Figure 14.  A comparison between Figure 14 and Figure 15 
shows that both the trap detector and the pulsed laser detection system work better at 460 nm than at 565 nm.  
That can be explained by referring back to Figure 5.  The laser has higher pulse energy at 460 nm than at 565 nm 
which means the measurement uncertainty is wavelength-dependent.   

 
In the detector responsivity linearity measurements, we performed Ekspla laser warm-up monitoring 
measurements to compare how the pulsed laser detection system and other participating instruments responded 
to signal change.  The Window Time was set to 5000 ms, and maintained unchanged during the whole process.  
Figure 16 to 18 show the comparisons between pulsed laser detection system (6514) and the three other 
participating instruments: trap detector (6485A), Oriel Merlin, and FRMS.  In these 3 figures, the red line 
represents the data from the pulsed laser detection system, and the blue line represents the data from one of the 
participating instruments.  

 

 
Figure 16 Ekspla laser warm-up: 6514 vs. trap detector 
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Figure 17 Ekspla laser warm-up: 6514 vs. Oriel Merlin 

 
Figure 18 Ekspla laser warm-up: 6514 vs. FRMS 
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All three measurements show that the pulsed laser detection system and the other three participating instruments responded 
consistently to signal changes; but the three participating instruments did have differing noise performance.  The trap detector 
had the best noise performance among those three participating instruments similar to the pulsed laser detection system with 
Window Time 5000 ms.  The FRMS had the worst noise performance; and the Oriel Merlin was in the middle.   

 

Quantitative measurements for responsivity linearity were performed by using two ND filters, 50%, 25% and their 
combination, to provide three levels of signal change.  When we worked with the Oriel Merlin, two pre-amp gain settings 
(10+5 and 10+6) were used to make the measurements.  Table 3 ~ 6 show the measurement results.   

 

460 nm  6514  
6485A 
(Trap)  

Open 460 nm  1  1  
ND50 460 nm  52.48%  52.40%  
ND25 460 nm  27.86%  27.85%  

ND50+25 
460nm  14.55%  14.55%  

                       Table 3 6514 and 6485A                                                               Table 4 6514 and FRMS 

 
 
                           

 

 

 

 

 

                       Table 5 6514 and Merlin                                                              Table 6 6514 and Merlin 

 
All three participating instruments responded to signal changes proportionally to the pulsed laser detection 
system.  The expected saturation problems were not observed, and conventional measurement instruments seem 
to work responsively with Ekspla laser light source, with relatively higher noise level, compared to with CW 
light sources.  The Ekspla laser can be used as a handy calibration light source with conventional measurement 
instruments, but the measurement uncertainty is dependent on wavelength and instrument type.  If it is a 
picoammeter based instrument, the measurement uncertainty is expected to be 0.25% ~ 1%; if it is a lock-in 
amplifier based instrument, a 0.5% ~ 1% measurement uncertainty is possible; a DVM based instrument can 
reach a 1% ~ 2% measurement uncertainty.  Also, a monitoring system is required as the Ekspla laser exhibits 
the instability over time.   
 

Summary 
The pulsed laser detection system was characterized by using a CW light source and a KHz OPO based Ekspla 
laser.  The pulsed laser detection system demonstrated a solid performance in all measurements.  The pulsed 
laser detection system (with a longer integration time, e.g. ≥5000 ms) and the Ekspla laser can be used in BRDF 
measurements, in-band and out-band characterizations, etc.  The Ekspla laser alone can be used as light source to 
provide characterizations for conventional measurement instruments, with slightly higher uncertainties.  This 

440 nm  6514  FRMS  

Open 440 nm 1  1  

ND50 440 nm 52.17%  52.03%  

ND25 440 nm 27.83%  27.74%  
ND50+25 440 

nm  14.47%  14.42%  

460 nm 6514 
Merlin 

10+6 
Open 460 nm 1 1 
ND50 460 nm 52.375% 52.255% 
ND25 460 nm 27.919% 27.820% 
ND50+25 460 

nm 14.515% 14.494% 

460 nm 6514 
Merlin 

10+5 

Open 460 nm 1 1 
ND50 460 nm 52.44% 52.29% 
ND25 460 nm 28.34% 28.34% 
ND50+25 460 

nm 14.73% 14.80% 
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work can be extended by using a standard InGaAs detector so that the responsive spectral range can be extended 
to 1700 nm for this pulsed laser detection system.   
 

Note: All notations of instrument manufacture names or model numbers in the figures, charts or text of this paper 
do not constitute an endorsement on the part of the NASA/GSFC for these products.  
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