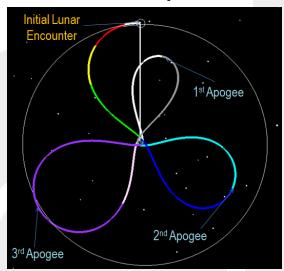
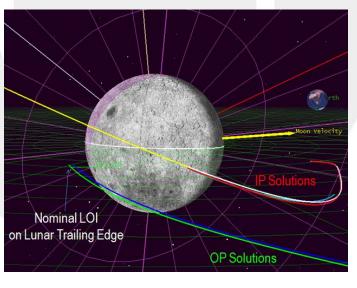


Anthony L. Genova
NASA Ames Research Center

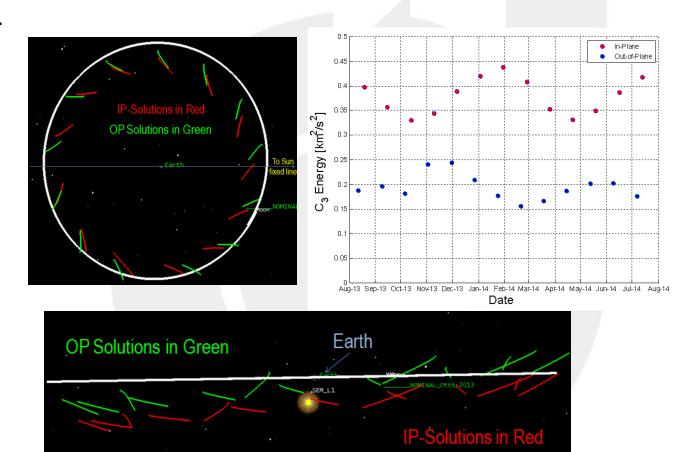
Astrodynamics Specialist Conference, Aug. 4-7, 2014, San Diego, CA 92101

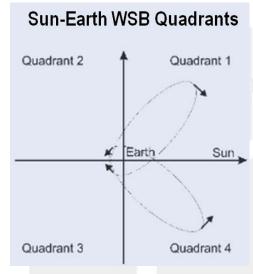
 PURPOSE: Design a Rescue Trajectory for the LADEE spacecraft in case of a missed LOI

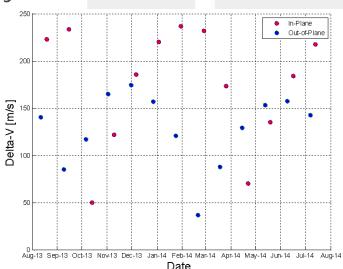


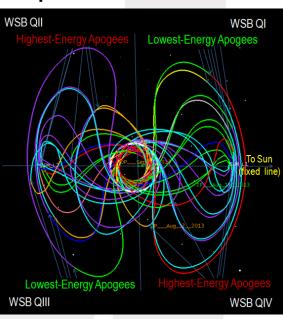

Assumptions & Constraints

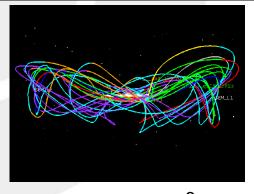
- Primary Software Tool: STK/Astrogator
 - N-body: Earth (30X30), Moon (30X30), Sun (4X0), SRP, Runge-Kutta-Fehlberg numerical integrator with 8th order error control
 - DE421 Ephemeris for both Earth and Moon orbits
- LADEE Nominal Science Orbit
 - Retrograde (157 deg lunar orbit inclination)
 - Circular (altitude for LOI = 250 km)
- Baseline assumption for spacecraft recovery time = 3 days
 - Safe-mode, Comm Loss, et al
- Available Spacecraft ΔV for Recovery to Nominal Mission
 - = 860 m/s (980 m/s reduced ops duration)


- LADEE Nominal Trajectory
 - Minotaur-V limitation
 - LV Injection Accuracy
 - Launch Window Flexibility
- Farside Trailing-Edge Approach to LOI
 - In-Plane (IP) Solutions
 - Out-of-plane (OP) Solutions

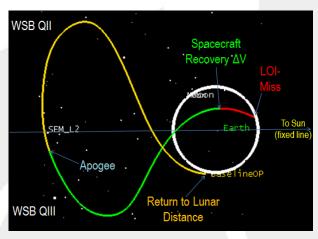


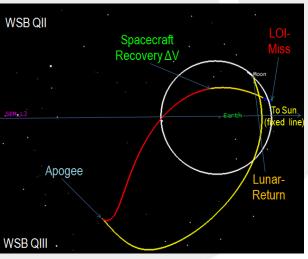

- LADEE Missed-LOI States
 - 1 yr span
 - Propagated to lunar SOI after LOI-miss
 - C3_Earth
 Plotted for both
 IP & OP
 Solutions

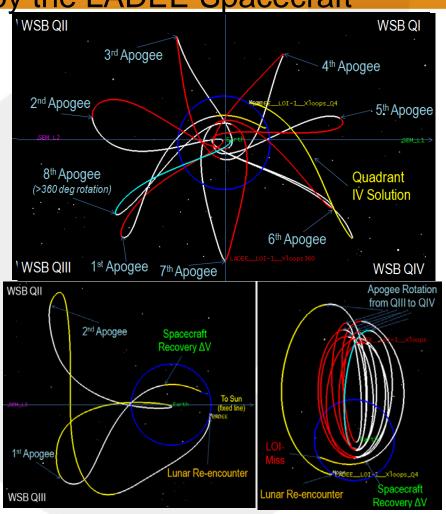


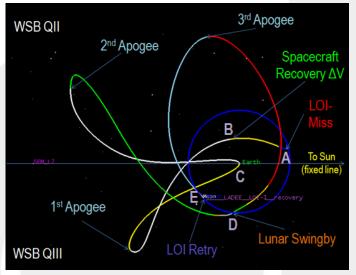


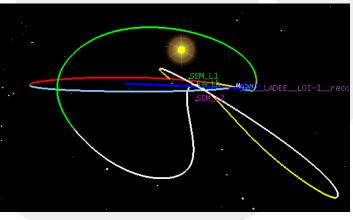
- Sun-Earth WSB
 Quadrant Effects
- Lunar-Return
 Trajectories
 - Lowest RecoveryΔV: apogee inQI & QIII
 - IP & OP Recovery ΔV Difference

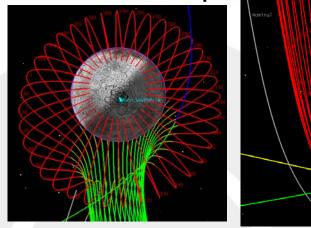


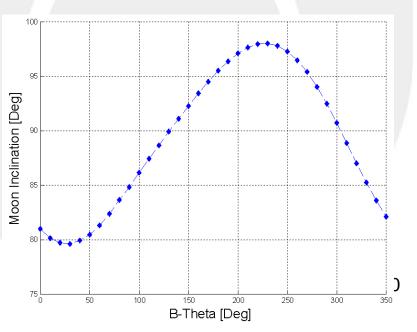


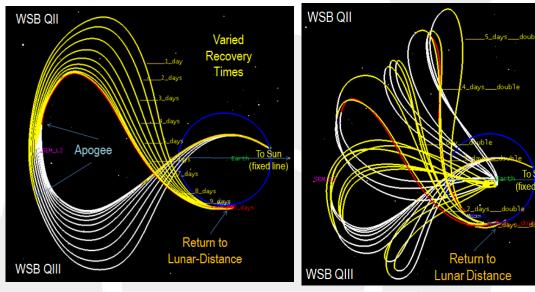

- Single-Loop Solution
- Lunar-Phasing Problem
 - Recovery △V performed 3 days after LOI-miss
 - With no other maneuvers,
 LADEE can reach lunar
 distance, but Moon not there
 - With an apogee maneuver performed, lunar phasing is solved but at added ΔV cost of 359 m/s

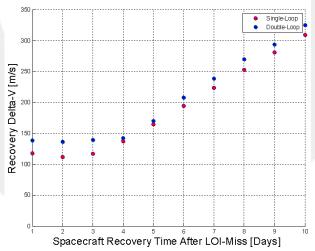


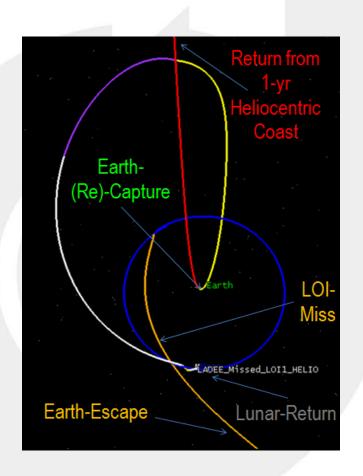

- Multiple-Loops for Lunar-Phasing, Apogee Rotation
- 1st-Attempt Solution w/ 2nd Apogee in QII
 - 80 m/s of apogee ΔV
 - High Arrival V_{inf} at Moon
- 2nd Apogee in QIV
 - Both Earth Inertial & Sun-Earth Rotating Frames
 - 1-yr Recovery Duration

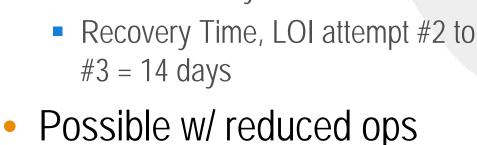

- 2nd Apogee in QII, refined
- Trajectory Sequence
 - LOI-Miss Oct. 6, 2013 (A)
 - 140 m/s Recovery ΔV (B)
 - Close-Earth Pass at 2600 km altitude (C)
 - Lunar-Swingby (D)
 - LOI-retry (643 m/s ΔV) May 15, 2014 (E)
 - Lunar Targeting $\Delta V = 63 \text{ m/s}$
 - Total $\Delta V = 846 \text{ m/s}$

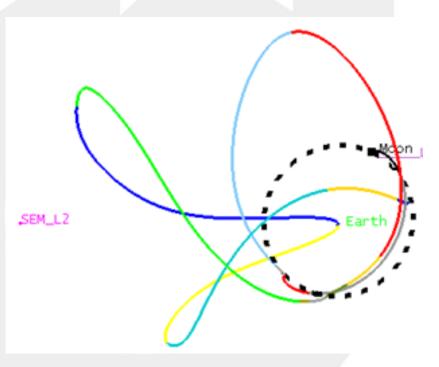



- Effects of Arrival
 Declination on Lunar
 Orbit Inclination
 - 85 deg arrival declination restricts lunar orbit inclination: 79.6 to 98 deg
 - Therefore lunar reencounter used as swingby opportunity (3500 km altitude), not LOI-retry




- Effects of Varying Recovery Time
- Single-Loop
 - 10 day recovery time is lunar-synchronous
- Double-Loop
 - Lunar-Synchronous Recovery Times are more frequent (3 and 10 days)




- Heliocentric Return to Moon via reverse WSB transfer
- Notional Case, >700 m/s, 30 days post-LOI miss to re-encounter Moon
 - Restricted to Elliptical
 Lunar Orbit → insufficient
 for science, but LADEE's
 laser tech-demo possible

- 2 LOI Misses
- Recovery ΔV Budget
 - Recovery $\Delta V = 140 \text{ m/s}$
 - Targeting ΔV
 - At Apogee 1 et al, $\Delta V = 77$ m/s
 - At Apogee 2 et al, $\Delta V = 65$ m/s
 - LOI $\Delta V = 638 \text{ m/s}$
 - Total Recovery $\Delta V = 920 \text{ m/s}$

Conclusions

- Recovery ΔV requirements vary depending on apogee-location in Sun-Earth Rotating Frame (also on IP vs. OP solution type & recovery time)
- Multiple Phasing Orbits allow more time to change period (than single-loop solutions) & solve lunar phasing problem
- LADEE could have performed all recovery ΔV maneuvers performed 3 days after missing LOI with the 1-yr span of LOI states: Aug. 2013 to July 2014
- For the 3-day baseline spacecraft recovery time and LADEE's Baseline LOI
 Case, the spacecraft can recover to its nominal science orbit (w/ reduced
 ops) after missing as many as 2 LOI maneuvers

Applications

- Other Missed-LOI Cases (or other Earth-orbits) that benefit from apogeerotation in Sun-Earth rotating frame
- Elements of trajectory design extended to other systems (e.g., Sun-Jupiter, Sun-Venus, Sun-Mars, et al)

References

- ¹Loucks, M. (2013, Sep. 12). Phasing Loops and the LADEE Trajectory.
 - AstrogatorsGuild.com. Retrieved January 2, 2014, from http://astrogatorsguild.com/?p=814
- ²Biesbroek, R., and Janin, G., "Ways to the Moon?," *European Space Agency Bulletin 103* URL: http://www.esa.int/esapub/bulletin/bullet103/biesbroek103.pdf [cited 13 June 2014].
- ³Quantus, D., Spurmann, J., Dekens, E., and Pasler, H., "Weak Stability Boundary Transfer to the Moon from GTO as a piggyback payload on Ariane 5," *CEAS Space J* (2012) 3:49–59
- ⁴Belbruno, E.A., Miller, J.: Sun-perturbed Earth-to-Moon transfer with ballistic capture. J. Guid. Control Dyn. 16(4), 770–775 (1993)

