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The NASA Lander Technology project is leading the development and 

integration of the Lunar Pallet Lander (LPL) concept. The objective is to 

demonstrate precision landing by delivering a payload to the lunar surface 

within 100 meters of a landing target. Potential landing sites are selected near 

the lunar pole where water may be present in permanently shadowed regions 

that could enable future in-situ resource utilization. The LPL is part of a 

sequence of missions aimed at maturing the necessary technologies, such as 

lunar precision landing sensors, that will enable the next generation of multi-

ton lunar payloads and human landers. This paper provides an overview of the 

Mission Design, Guidance Navigation and Control (GNC) algorithms, and 

sensor suite. The results show the LPL simulated trajectory and landing 

precision performance under nominal and dispersed conditions. The landing 

precision simulation confirms the need to rely on high-accuracy navigation 

techniques and sensors such as Terrain Relative Navigation (TRN) and the 

Navigation Doppler Lidar (NDL), currently being developed for space 

applications. The results also demonstrate the ability of the guidance and 

control system to perform a soft lunar touchdown by combining thrust vector 

control during the solid rocket motor deceleration phase, and pulse engine 

control, for the liquid powered descent phase.  

  

INTRODUCTION  

In preparation for future robotic missions to the lunar surface, NASA has performed a number of 

concept studies to identify technology needs for upcoming lunar missions. These studies have spawned 

development efforts in advanced propulsion, navigation and landing, and various other lander subsystems. 

NASA has also independently developed and terrestrially flown lander test beds: Morpheus (led by NASA 

Johnson Space Center) and Mighty Eagle (led by NASA Marshall Space Flight Center).1 Morpheus and 

Mighty Eagle demonstrated vehicle-level integration capabilities using different propulsion architectures, 

navigation and landing systems, ground and flight software, and avionics. The success of these efforts led 

to the establishment of an integrated, cross-agency lander community that now supports industry through 

several funded efforts under NASA’s Advanced Exploration Systems (AES) Lander Technologies 

Project.   

In one of the recent studies, the Lunar Pallet Lander (LPL) concept was introduced, as illustrated in 

Figure 1.  The LPL is a lander capable of delivering a 300kg rover payload to the polar regions of the 

Moon. The rover would be able to perform science or be equipped with an In-Situ Resource Utilization  

(ISRU) demonstration payload. This lander was designed to minimize cost and schedule, with its mission 

terminating once the surface payload was delivered. While still emphasizing simplicity and affordability, this 
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lander design has been further evolved to investigate features potentially extensible to future human landers. 

Also, the LPL will provide power and communications to the payload from transit to lunar landing. Finally, 

lander is not intended to survive the lunar night.   

This paper provides an overview of the LPL mission design, guidance, navigation, and control system.  

The paper is divided into five main sections.  The first section, provides an overview of the mission design.  

Section two, defines the guidance, navigation and control algorithms. Section three, describes the multi-body 

dynamics generalized lander simulation tool. In addition, section four, describes the lander simulated 

performance during a lunar descent. Finally, section five summarizes the key findings and future work.  

  

MISSION DESING  

  

The LPL uses a combination of liquid propulsion and solid propulsion. The solid stage, composed of an 

ATK Star 48AV Solid Rocket Motor (SRM), is used for the breaking burn, and it is jettisoned after SRM 

burnout. The liquid propulsion consists of twelve pulsed thrusters descent engines, 100 lbf each, three on 

each of the four corners of the vehicle, as shown in Figure 1 below. The liquid engines use a hypergolic 

bipropellant: a Monomethylhydrazine (MMH) as fuel, and 25% nitric oxide (MON25) as oxidizer.   

  

  

Figure 1. Lunar Pallet Lander Configuration, without Payload.  

  

The LPL mission design assumes a ride on an Evolved Expendable Launch Vehicle (EELV) class vehicle. 

With the LPL as a primary payload, the mission design is greatly simplified, since the lander can fly into a 

direct descent to the lunar surface. Therefore, after the Trans Lunar Injection TLI burn, provided by the 

EELV, the LPL separates from the upper stage of the launch vehicle, as shown in the mission summary Figure 

2. After system checkout and sun-pointing, the LPL will perform Trajectory Correction Maneuvers  

(TCMs) to “clean” any TLI insertion dispersions. The mission currently budgets a total of 25 m/s of deltaV  
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for all TCMs. After TLI, and any needed TCMs, the LPL cruises for approximately 4 days before initiating 

the breaking burn with the SRM. The LPL trajectory is optimized, to account for SRM performance 

variations due to solid propellant temperature, Figure 3, and navigation uncertainties during the SRM 

burn that could bias the trajectory as much as +-6 km in crossrange and downrange. 2,3  After the solid 

burn is completed, a short coast of 30 seconds allows the vehicle to maneuver to its optimal liquid descent 

burn orientation. The final liquid burn is decomposed on three phases. The first phase uses Apollo’s 

optimal guidance with a target at 200 meters above the lunar surface, and a descent velocity of 10m/s.4 

Then, the second phase is a vertical descent from 200 meters down to 10 meters, with a linear ramp down 

in descent velocity to 1 m/s. A final descent phase is performed at a constant velocity of 1 m/s until 

touchdown.   

  

 

Figure 2. Lunar Pallet Lander Mission Summary.  
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Figure 3. Lunar Pallet Lander Final Descent with SRM Temperature Dispersions  

  

  

  

GUIDANCE, NAVIGATION AND CONTROL  

  

GUIDANCE  

  

The Guidance system’s function is to command attitude, angular rates and engine thrust (applicable only 

to the liquid engines) so that the guidance targets are achieved without violating design constraints. The 

Guidance system depends on navigated inertial position, inertial velocity, attitude, and the current time from 

the Navigation subsystem. The Mission Manager supplies the Guidance system with inputs for event 

notifications and engine status. The remaining inputs to the Guidance algorithms are mission-dependent data 

and constants, which are loaded onto LPL in the form of loadable parameters. Outputs from the Guidance 

system passed to the Control system include the estimate of liquid propellant remaining, as well as 

commanded attitude and angular velocity. Additionally, the Guidance system outputs the recommended 

shutdown command to the DCS engines. Another study14 provides a detailed summary of Powered Descent 

Algorithms.  

The Guidance system is divided into four main areas: Coast Guidance, Braking Guidance, Powered 

Descent Guidance, and Vertical Descent Guidance. Coast Guidance is firstly used in the Pre-SRM mission 

phase, which starts at the time of separation from the ELV upper stage and ends at the beginning of Solid 

Rocket Motor (SRM) ignition. There are also two Post-SRM Coast Guidance phases: one between SRM 

shutdown and ignition of the DCS engines, and one right before the Vertical Decent phase. Braking Guidance 

occurs during the SRM burn. Powered Descent Guidance, using pulsed liquid engines, occurs after the Post-

SRM Coast and lasts until the LPL has achieved a specified target above the landing site. Lastly, the Vertical 

Descent phase begins at the specified target above the lunar surface and lasts until the LPL touches down at 

the target site. During each phase, an appropriate guidance scheme is used, with some phases containing 

multiple guidance schemes to be used for trade studies. Table 1 lists the current choices of guidance 

algorithms to be used through each phase.   

  

Table 1: Guidance Algorithms by Phase  

Phase of Flight  Guidance Routine Option  

Pre-SRM Coast  LVLH Hold – adjusts attitude to pre-determined LVLH pitch angle  

MEDeA – runs MEDeA descent algorithm, predicts starting LVLH pitch 

angle  

  

SRM Burn  

LVLH Hold – holds pre-determined LVLH pitch angle through duration of 

burn  

MEDeA – closed-loop SRM guidance for adjusting commanded LVLH  

pitch   

Post-SRM Coast  Fixed time coast  

  

Powered Decent  

An Optimal Guidance Law for Planetary Landing6  

Augmented Apollo Powered Decent Guidance16  

Vertical 

Alignment  

Optional mode to pitch vehicle vertically  

Vertical Decent  Linear velocity ramp-down, then linear position-velocity controller logic  
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In the Pre-SRM Coast phase, either a fixed known pitch angle relative to Local Vertical Local Horizontal 

(LVLH) frame is commanded, or a predicted required attitude at the start of the SRM burn is calculated and 

commanded by running the Moon Entry Descent Algorithm (MEDeA). The MEDeA, a predictorcorrector 

algorithm for the SRM burn developed by Ellen M. Braden NASA-JSC, is an integrated closedloop guidance 

algorithm that accounts for the variations in the SRM thrust profile while staying within the liquid propellant 

budget.  The SRM’s thrust profile is estimated using curve fits of the projected hot, cold, and nominal 

temperature thrust profiles and an on-board calculated burn time.  Using this estimated thrust profile, the 

SRM’s pitch angle is adjusted during the descent using a numeric predictorcorrector method to achieve a pre-

determined distance from the desired landing site.  At the end of the SRM burn and SRM disposal, a second 

predictor-corrector determines the minimum coast time needed for the vehicle to reach the desired landing 

site within the liquid propellant budget.  The liquid thruster guidance is chosen by the trajectory designer to 

steer out state errors from the SRM burn and meet the mission constraints.  For example, either a minimum 

acceleration guidance or the Apollo guidance could be used for the liquid powered descent portion.   

No guidance attitude is commanded in the Post-SRM Coast phase, and the vehicle is allowed to coast 

freely either using a fixed time or a time calculated by MEDeA. After the Post-SRM Coast, the liquid 

Powered Descent phase starts. In the Powered Decent phase, two analytical algorithms are chosen. The 

first algorithm, developed by D’Souza6, is an optimal closed-loop feedback law which was analytically 

derived using the Euler-Lagrange equations, and assumes a linear acceleration profile. The second 

algorithm, Augmented Apollo Powered Decent Guidance (A2PDG16), is also analytical and allows for a 

wider range of acceleration and trajectory profiles.   

An Optimal Guidance Law for Planetary Landing (D’Souza6), starts with Euler-Lagrange theory and 

solves an analytical expression for optimal control. The Cost index function is defined to minimize  given 

by following equation   

  

  
  

Which is subjected to:  

  
  

Where  is a constant gain and  is the final time. ,  and  are components of acceleration expressed in 

the landing site frame.  and  are position and velocity, respectively. For the above problem, the flat earth 

assumption is applicable and , the gravity vector, is constant. If the objective is to target a final state  and 

, a linear form of analytical control is found given be following equation:   

  

   
 In the above equation,   is the difference between current and the final time.   can be found by  

solving the following quartic equation, as referenced in D’Souza:  

  

  
  

A2PDG, developed by Ping Lu16, assumes that the acceleration over the course of the burn takes the 

form of a quadratic, which is not necessarily optimal but adds an additional degree of control and is near 

optimal. For example, with D’Souza, a linear form of control allows control of the final position and final 

velocity. However, a quadratic form of control enables the control of the final acceleration as well. This 

feature is useful to control the orientation of the lander at the end of the Powered Descent phase. If the 
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acceleration vector is constrained to align vertically to the landing site, then there is no need for a vertical 

alignment phase at the end of Powered Descent flight. Ping Lu presents A2PDG in his paper and gives 

an analytical closed-loop form for thrust direction and magnitude as follows:  

  

  
  

The A2PDG is chosen as a baseline guidance algorithm for results presented in subsequent sections of 

this paper.  

   

  

NAVIGATION  

  

The lander requires highly accurate knowledge of the vehicle’s state during the entire descent mission in 

order for the closed-loop guidance to achieve the 100m precision landing requirement. The guidance 

algorithm outlined above is highly susceptible to navigation errors, and small uncertainties in the knowledge 

of position and velocity will decrease landing accuracy. In order to meet the landing requirements, a robust 

set of sensors is required to support inertial navigation during descent. A baseline sensor suite, outlined in the 

next section, was selected to reduce navigation errors taking into account weight and cost, consistent with a 

NASA class-D mission type.   

  

Baseline Sensor Suite  

The integrated sensor package includes a variety of sensors enabling high accuracy knowledge of position 

and velocity during the descent. At the heart of the navigation system is an inertial measurement unit, with 

requirements on par with the LN200S3. This IMU was chosen due to the team’s prior experience with the 

unit on multiple terrestrial platforms14 and its balance of SWAP, cost, and performance. While this sensor is 

capable enough to adequately support controls requirements in terms of rate and acceleration knowledge, the 

uncertainties from pure integration navigation are beyond the landing requirements. Therefore, additional 

sensors are used to augment the raw inertial measurements. An overview of the sensor suite is provided in 

Table 2. This suite is used to provide measurements of position and velocity to reduce knowledge errors. The 

primary aiding source to reduce state errors come from the use of TRN. While this technology has been 

operational flown on terrestrial vehicles11 and is in development to support future Mars Missions 12,13,14, this 

will be one of the first operational applications of this technology in an extraplanetary landing mission. TRN 

operates by comparing an in-flight image of the planetary surface to a preloaded map. Using computer vision 

algorithms, the sensor is able to provide an estimate of a planetrelative position. This accuracy is limited by 

the fidelity of the onboard map, processing capability, and imaging and lighting characteristics. At this stage 

of vehicle design, the project is focusing on position measurement accuracy requirements to define the TRN 

subsystem.   

  

  

  

  

Table 2: Navigation Sensor Suite  

Sensor  Measurement  Operational 

Constraints  
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LN200S  High Rate Inertial Acceleration 

and Angular Rate  

Entire Mission  

Terrain Relative Navigation  Low Rate Inertial Position   Max Altitude and 

Min Altitude Con- 

  straints   

Navigation Doppler LIDAR  High Accuracy 3-D Ranging and 

Velocity Relative to Surface  

4000m to 30m  

Star Tracker  Inertial Attitude Measurements  Cruise, up to SRM   

Deep Space Network (DSN) 

Update  

Time, Inertial Position and 

Velocity   

Cruise, prior to  

SRM  

  

While this system does vastly improve translational position knowledge, it does have a limitation in 

the vertical axis and is coupled with the inherent instability in the vertical axis due to the effect of gravity 

errors. To provide additional knowledge in the vertical axis and provide a direct velocity measurement to 

the sensor integration suite, the use of NDL14 has been baselined. This system provides a high accuracy 

measurement of both altitude and velocity via the use of multiple laser tracking heads.   

One of the primary drivers of the landing performance is the initial uncertainty in terms of position, 

velocity, and attitude. Additional onboard systems help to limit the initial errors prior to descent. The 

landing vehicle utilizes a star tracker to maintain a high accuracy attitude solution. This sensor will be 

used during the initial descent to constrain attitude errors. Similarly, the vehicle utilizes the Deep Space 

Network to provide a time, position, and velocity update prior to entering the descent maneuvers. Figure 

4 defines the sensor data flow and navigation architecture.  

  

  

 

  

In order to perform system estimation, the individual sensors are all modeled within the six Degrees 

Of Freedom (6-DOF) simulation framework. This framework utilizes error models specific to each sensor 

to capture the primary sensitivities. For the inertial navigation sensor, baseline errors such as bias, scale 

factor, noise, random walk, inter-sensor misalignments, and non-orthogonalities are captured. The star 

tracker error model has heritage to pervious programs utilizing similar hardware modeling attitude error 

independently about sensor roll and pitch-yaw axes. The TRN system is currently modeled as a sensor 

providing an inertial state estimate with errors captured in terms of position accuracy. The NDL altimeter 

  

Figure  4 . Navigation Architecture   
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is modeled as lunar-centric velocity and altitude with errors focused on measurement precision, 

uncertainty, and mounting misalignment. This is necessary to capture the effect of attitude error coupling 

through the rotation of body-frame measurements into the inertial frame for use in the navigation 

algorithms. Modeling these errors within this framework allows for both covariance and statistical Monte 

Carlo-based analysis of the navigation system capabilities. This analysis capable also enables 

understanding of system sensitivities and requirements developments.   

  

CONTROL  

  

Solid Rocket Motor Control  

  

The SRM utilizes thrust vector control for pitch and yaw, while the roll (roll axis aligned with the SRM 

thrust direction) control is achieved with the ACS, 5 lbf pulsed thruster control. The SRM control utilizes a 

classical Proportional Integral Derivative (PID) control algorithm. Figure 5 shows the SRM control response 

performance for a test condition. The control test corresponds to an initial nozzle angle, βo, of 0.5 deg, and 

SRM lateral thrust misalignment, δE, of 1mm and with a lander center of gravity, c.g., offset of 1mm. Arbitrary 

disturbances are also introduced to test the control system at approximately 12 seconds and  20 seconds. 

Figure 5 shows how the SRM control system rejects the disturbances and aligns the thrust vector angle, Beta, 

through the center of gravity of the lander, bringing the control error, Pitch error, to zero.   

   

 

Figure 5. SRM Control Response to Simulated Disturbances  

  

Powered Descent  

  

When using the twelve 100 lbf liquid Descent Engines (DE), the ACS provides control using a phase 

plane algorithm. 10 The phase-plane, shown in Figure 6, is augmented using Off-Pulsing of the main engines 

for increased control authority. Off-Pulsing, which is to purposely turn off selected engines pairs to generate 

a torque on the vehicle, provides larger control authority than the 5 lbf ACS thrusters. Large control authority 

may be needed if there is a large, > 1 cm, offset in the lander center of gravity with respect to the vehicle 

centerline, generating a large torque during powered descent that could easily overpower the 5 lbf ACS 

system.  Large or unexpected center of gravity shifts could be caused by a non-uniform draining of fuel and 

oxidizer tanks on each side of the vehicle, a phenomenon called differential draining. Figure 6, shows that 

for small rate errors, dθ/dt, and angle errors, θ, region in between the blue lines, the control system will not 

fire the 5 lbf thrusters. However, attitude and attitude rate error combinations higher than the blue lines but 

up to the first red dashed line, the ACS takes control and fires the 5 lbf thrusters to reject the disturbance. 

Once the rate and/or the angle errors become large such that they exceed the 5ms red-dash line, then an Off-
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Pulse of 5ms, that is shutting a selected pair of engines for 5 ms, will be applied to produce a counter torque 

to reduce the control error. Similarly, if the rate and angle attitude errors exceed the 10ms dashed line or even 

20ms, an Off-Pulse of the 10ms and 20ms will be applied, respectively.   

  

  

 

Figure 6. Liquid Engine Phase-Plane Control   

  

Using the above phase plane, the power descent control error is shown below in Figure 7. During 

liquid power descent, “Optimal Descent” and “Vertical” flight phases in Figure 7, the control angle error 

is kept within approximately 1 deg, (b), and about 2 deg/sec for angle rate, (c), where X, Y, Z correspond 

to roll, pitch, yaw, and roll axis is co-axial with thrust the vector.   

  

 

Figure 7. (a) Flight Phase, (b) Control Angle Error, (c) Control Rate Error  

  

  

GENERALIZED LANDER SIMULATION TOOL  
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The Generalized LAnder Simulation in Simulink (GLASS) tool was created to be a modular, 

userfriendly, and capable of performing multi-body 6-DOF simulation.  The primary advantage of 

GLASS is that allows the user to generate code in the friendly Simulink environment while having the 

capability of automatically generating flight code in “C” language. In addition, GLASS leverages many 

tools and features available in the Mathworks Simulink environment, such as the Control Design toolbox 

for control development and tuning and the Simulink Test, and Simulink Coverage for unit testing of the 

GNC code, just to name a few. GLASS is built using the latest version of Matlab/Simulink (2018a) in 

order to take advantage of the newest features and improvements of the software.  

While GLASS is currently being utilized for the simulation of landers, it is capable of simulating a variety 

of spacecraft. The core dynamics engine of the simulation can be easily modified to model a new craft. Figure 

8, shows the main breakdown of a generic spacecraft modeling in GLASS. Plant corresponds to the lander 

applied forces and torques typically propulsion and gravity models, while the core dynamics corresponds to 

modeling of the lander Newtonian mechanics, using the Matlab Simscape Multibody 6-DOF simulation 

engine. The Matlab Simscape simulation engine can be applied to any vehicle: landers, ascent stages, 

satellites, rovers, etc. Figure 9, shows how all forces and torques are computed separtely and applied to the 

6-DOF multi-body Simscape dynamic core. This also allows GLASS to model multiple spacecraft within the 

same simulation environment.   

   

 

Figure 8. Six degrees of freedom GLASS tool architecture and models  

  

GLASS is capable of simulating landers in a variety of environments. The current possible environments 

include a flat or spherical-planet mode, and Earth-Moon and Sun-Earth-Moon systems. These modes allow 

the user to choose a level of fidelity appropriate to the design cycle. The Earth-Moon and Sun-EarthMoon 

systems utilize the NASA Jet Propulsion Laboratory’s (JPL) SPICE toolkit to calculate the planetary-

ephemeris data, used by GLASS to drive the positions of the celestial bodies. While currently only 

combinations of the Sun, Earth, and Moon are modeled, other planetary bodies can be modeled as well.  

GLASS is also capable of running different gravity models depending on the desired level of fidelity 

required. The standard gravity model in GLASS is a pure spherical gravity model; however, the user may 

also select a spherical harmonic gravity model.  
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Figure 9. GLASS tool snapshot showing vehicle forces and torques applied to 6-DOF multi-body 

dynamics core.  

  

   

LANDER PERFORMACE  

   

Event Timeline  

  

Before SRM ignition, DSN will be used to determine and upload the vehicle’s navigation state (time, 

velocity and position) and an SRM ignition time. Figure 10 shows the altitude timeline, with SRM ignition 

starting at about 75 km above the lunar surface. SRM reduces most of the orbital tangential velocity, with 

a burnout occurring at about 10 km above the lunar surface. After SRM burnout, a short coast period is 

used to re-orient the vehicle for optimal liquid power descent. The coast time is also used to turn on the 

TRN sensor without any propulsion dynamics, vibrations and plume, to increase the chances of a good 

lunar surface image that can provide the first update the vehicle’s position with respect to the lunar 

surface. Then, at approximately 7.8 km above the surface, the liquid engines fire initiating powered 

descent, lasting all the way until engine-shutdown, a few meters above the surface. At about 2 km above 

the lunar surface, the NDL sensor is turned on, providing altitude and velocity state updates until about 

30 meters above the surface. From previous Apollo missions, it has been observed that at about 30 meters, 

the descent engines may start kicking up lunar dust, and NDL measurements may not be reliable on a 

dusty environment; however further work is needed to refine NDL cutoff altitude. Finally, it is assumed 

that TRN will stop providing position estimates at approximately 500 m above the surface, since TRN 

lunar surface maps may not have enough resolution to determine position, but future work will determine 

precise TRN cut-off altitude.  
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Performance Results  

  

The lander performance was evaluated conducting a 200-case Monte Carlo analysis with dispersions 

that include mass properties, navigation sensor noise parameters, and propulsion performance parameters. 

Figure 11-left, shows the dispersed altitude vs. time, while Figure 11-right, shows touchdown positions 

relative to the landing target. Landing precision is well below the required 100-meter precision, mostly 

due to the combination of TRN and NDL. Without TRN, landing position precision is expected to be in 

the order of kilometers, typical of historic lunar and planetary missions.   

  

  

Figure 11. Altitude profile and Landing Precision.  

In addition, landing velocities are also assessed with dispersed analysis,   critical for achieving a “soft” 

touchdown. Figure 12 shows the dispersed touchdown velocities. Vertical touchdown velocities stay below 

approximately 1.5 m/s, and below the required 2 m/s. Similarly, lateral velocities stay below the required 2 

m/s to avoid lander tip-over.  

  

  

Figure 12. Touchdown Velocity.  

  

Finally, propellant remaining at touchdown is tracked in Figure 13. Most of the cases show at least 

approximately 40 kg of unburned propellant; however, a single case shows a low propellant margin of about 

15 kg. This low propellant margin outlier corresponds to a large dispersed center of gravity offset case, which 

causes the SRM to finish its breaking burn at a higher altitude; and thus, more propellant is used to bring the 
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lander to the surface. To avoid this kind of outliers, future work includes implementation of a guidance 

correction algorithm.   

  

       

Figure 13. Remaining Propellant at Touchdown.  

  

SUMMARY AND FUTURE WORK  

This paper provides a summary of the guidance, navigation, control, and mission design for the Lunar 

Pallet Lander. In addition, the paper shows preliminary dispersed Monte Carlo analysis demonstrating 

that the lander meets the mission precision landing and touchdown velocity requirements. However, to 

meet the mission requirements, the LPL must have accurate position knowledge during descent, which 

can only be achieved with TRN, currently at different stages of development, and with its first inspace 

application planned for the NASA-JPL Mars 2020 mission. Furthermore, to meet the touchdown velocity 

requirements, accurate velocity measurements are needed, which are achieved through use of the NASA-

NDL sensor, currently under development, with expected in-space flight opportunities in the next 2-3 

years. This paper discusses advances in the development of high fidelity lander simulations tool, GLASS, 

which allows in-depth analysis and trade studies on sensors, propulsion, and GNC algorithms. The high 

fidelity lander simulation tool allows us to explore the complex interactions between navigation sensors, 

guidance algorithm, propulsion systems, etc. to bound trade spaces, develop key lander requirements, and 

perform sensor selection. Future work includes increasing lander modeling fidelity, including flexible 

body and slosh dynamics, further refinement of GNC algorithms, and incorporation of sensor alignment 

uncertainties, and accurate sensor cut-off altitudes. Finally, the advance of a lander design with precision, 

autonomous, and soft landing capabilities lays the foundation for future human missions.  
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