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Abstract 

Exposure to toxic elements is a significant threat to public and individual health worldwide. 

Toxic elements such as heavy metals are associated with increased mortality and morbidity 

in both men and women and are a substantial contributor to neurological deficits and 

developmental delay in children. Analysis of skeletal material yields important information 

regarding exposure to toxic elements in a given population. This project has investigated 

toxic element exposure in 215 adults living in urban South Africa who died between 1960 

and 1999. Exposure to toxic elements, particularly exposure to lead, has significant impacts 

on human health, even at very low levels. To date, little research has been conducted on 

human exposure to toxic elements in adult urban South Africans and a clear gap exists 

regarding toxic element exposure rates during the latter half of the 20
th

 century. Among the 

primary aims of this research is to address this gap in knowledge and to quantify human 

exposure to these elements during the apartheid era. Bone element concentration was 

analysed by ICP-MS to determine the concentration of six elements that are toxic to humans: 

lead, cadmium, manganese, arsenic, antimony and vanadium. The results of this research 

demonstrate clear racial divisions in toxic element exposure in all but one element 

investigated. In the case of lead and cadmium, white males in the sampled population show 

significantly higher bone element concentrations than either black males or black females. It 

is surmised that apartheid-era separation of racial groups in regards to residence, occupation 

and movement within the urban landscape are partly, if not significantly, responsible for 

these differences in toxic element exposure. Lead exposure is strongly associated with 

exposure to traffic in urban Pretoria and Johannesburg, which is evident in both the limited 

environmental data available and the present study. Designated residential areas for white 

individuals were situated in and adjacent to the central business districts of both cities and 

are the areas associated with high traffic. Black residential areas were located on the urban 

periphery, often near industrial areas and mine dumps. The result is a lead exposure pattern 

by which white individuals in the sampled population yield double the bone lead 

concentration of black individuals. The wide divide in socioeconomic strata between the 

black and white population also factors significantly and is an additional result of apartheid 

policy. For arsenic and antimony, black individuals, particularly females, show significantly 

higher bone element concentration than white individuals. These elements are strongly 

associated with acid mine drainage, a form of pollution which results from mining activity. 

The close proximity of black residential areas to mining activities and the heavy reliance on 
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contaminated surface water is likely responsible for higher exposure rates to these elements 

in the black population. This research has established that rates of exposure to toxic elements 

in urban Transvaal were moderate considering the level of industrial and mining activity in 

the region and the notably lax environmental regulations in place during the latter half of the 

20
th

 century. Despite this, bone element levels, particularly that of lead, cadmium and 

manganese are within ranges documented to cause negative impacts on human health. It is 

highly likely, given the bone element concentrations reported here, that these elements 

caused significant and negative health effects in the sampled population and were a clear 

threat to overall public health in urban South Africans.   
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1 Introduction 

 

The analysis of heavy metals and environmental toxins in the human skeletal tissue are of 

great importance not only to archaeologists but to historians, environmental ecologists, 

epidemiologists and forensic researchers. The presence or absence of heavy metals and toxic 

elements in the skeletal remains of past populations offers great insight into the daily lives of 

the population. Understanding the significance of skeletal heavy metal concentrations 

enables researchers to establish the individual life histories, occupation, migration-patterns, 

socio-economic status and health status of members of historical and pre-historical 

populations. Such analysis can also be of great use to modern forensic investigators needing 

to establish the identity of an individual using only skeletal remains (Aufderheide et al. 

1985; Aufderheide et al. 1981; Aufderheide et al. 1988; Corruccini et al. 1987; Handler et al. 

1986; Turner et al. 2009; Wittmers et al. 2002). This project will investigate the 

concentrations of the metals lead, cadmium, vanadium and manganese; the metalloids 

arsenic and antimony; and the essential trace elements (metals) iron, copper, zinc and 

magnesium in human skeletal material from urban South Africans.  

Toxic trace elements and heavy metals cause significant health issues worldwide. Elements 

such as lead, which is toxic to humans in even small quantities, and is stored for decades in 

human bone, are known to contribute substantially to chronic non-communicable disease in 

any given population. Elements such as cadmium, manganese and arsenic can exacerbate 

existing health conditions such as hypertension and kidney disease. These elements are 

known to cause neurological damage with chronic exposure. In a developing country such as 

South Africa, the impact that even low levels of chronic exposure can have on the 

population is substantial, as the effects of exposure to these elements are often made worse 

in individuals with marginal health and nutritional deficiencies. Lastly, many of these 

elements are either stored in bone long enough to become a secondary source of endogenous 

exposure, where they cause health issues that may persist for years, even decades after 

exposure. In this way, it is critical to understand how toxic trace element exposure impacted 

the population in the immediate past, as many individuals born and living during the past 40 

years are still alive and still experiencing the ill effects of exposure. 

In the case of the current investigation, trace element analysis of historical bone fills a 

critical gap in understanding human exposure to toxic elements in urban South Africans in 
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the latter half of the 20
th

 century. Indeed, it is the only way to investigate these exposure 

rates as the more traditional epidemiological and medical investigations into trace element 

exposure rates were simply not conducted on the living population of Pretoria or 

Johannesburg during this time.  

The critical and evidence-based assumption of the present research is that bone tissue is an 

effective post-mortem biomonitor of toxic trace elements and heavy metals in humans, and 

that important information regarding exposure rates, toxicity, health and disease can be 

inferred from the element concentrations in bone. The Pretoria Identified Bone Collection is 

well suited to this research as demographic variables are well documented and because of 

South Africa’s recent history regarding the separation of whole demographic groups both 

socially and physically, the analysis of this collection enables the tracking of trace element 

exposure across the social as well as physical landscape.  

1.1 Toxic elements worldwide: the silent epidemic 

It is estimated that exposure to toxic elements, particularly lead, causes a substantial burden 

of disease across populations worldwide. A substantial portion of this burden comes not 

from outright metal poisoning, but from clinical and sub-clinical toxicity that damages 

individual health and contributes to overall morbidity and mortality in a population. Often, 

toxic metal toxicity exacerbates pre-existing medical conditions or causes health 

complications that may have numerous causes, making it difficult to determine whether 

metal exposure is the root cause of the illness.  

Confounding the matter is the fact that across many parts of the world, the extent to which 

populations are exposed to toxic metals is unknown. For this reason, metal toxicity has been 

called the “silent epidemic” by epidemiologists (Nriagu 1988). In Africa in particular, the 

need for epidemiological research on metal exposure is often overshadowed by more 

immediate and dire public health epidemics such as HIV/AIDS, tuberculosis, malaria and 

malnutrition, resulting in undiagnosed metal toxicity that may have a profound effect on the 

population. Over the last 30 years a growing body of research has demonstrated that low-

level metal exposure may be as damaging to human health as Western-style high-fat, high 

sugar diets – with many of the same physical consequences – and yet without the same level 

of public awareness and concern. Briggs (2003) estimates that as much as nine percent of the 

global burden of disease is caused by exposure to pollution, much of which takes the form of 

toxic metal pollution. Moreover, this percentage is likely greater in developing countries 

such as those in Africa.  
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 Public health and economic impacts of toxic element exposure (or, lead 1.1.1

will make you dumb and violent) 

This research will focus on a small sub-population of urban residents in South Africa, and as 

such it is narrowly focused. However the society-wide implications of toxic metal and 

element exposure are worth discussing as they place individual-level findings into a greater 

social context. Spurious subject headings aside, the role of heavy metal exposure in shaping 

the social, psychological, physical and even economic framework of an entire society is very 

tangible.  

In the weeks leading up the submission of this thesis (Winter 2012-2013), there has been 

much interest in lead exposure by the popular media, following research that has 

demonstrated a very clear association between violent crime and lead exposure. This 

research, which has been conducted over the last decade, is striking and very succinctly 

captures the societal impact of exposure to toxic metals. 

The recent popular interest in the relationship between crime and lead is based largely on 

work conducted over a decade ago by Nevin (2000). Nevin measured IQ and blood lead in 

US children between 1976 and 1991. He reports that a decline in lead in petrol beginning in 

the late 1970s tracked significantly with an increase in children’s IQ over the same time 

period. He found a similar correlation between reduction in lead and a reduction in unwed 

pregnancies and violent crime. Nevin concludes that approximately 90% of the reduction in 

violent crime in the US can be attributed to the reduction of lead in the environment. Figure 

1-1, below, presents one of Nevin’s findings regarding the relationship between leaded 

petrol in the US and rape. The graph is a dramatic indication of the effect of lead on the 

population, in which rate of rape within the US population correlates significantly with the 

reduction of lead in petrol, on a 20-year lag (the approximate time it takes for lead exposed 

children to reach maturity). Other research has shown strong correlations between bone lead 

and anti-social behaviour and delinquency, which will be discussed in greater detail in the 

following chapter.  
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Figure 1-1. Rape and petrol lead in the United States. From Nevin (2000). 

 

The loss of IQ due to lead exposure is a health outcome experienced globally. Fewtrell et al. 

(2004) have estimated that as much as 13% of all mild mental retardation, worldwide, is 

caused by lead exposure. This statistic is of value in and of itself, but is compounded by the 

economic side effects. It is estimated that for each lost IQ point, worker productivity 

declines by as much as 2.4 %, and that in the US alone, the economic gains associated with 

the elimination of lead from petrol was as much as $320 billion (Grosse et al. 2002) .  

Other toxic metals, such as cadmium and arsenic, cause substantial public health burdens as 

well. Both elements cause diabetes and renal failure. Chronic exposure to arsenic is linked to 

cancer, and may affect tens of millions of people worldwide, and is widely considered to be 

one of the most significant environmental causes of cancer globally (Bhattacharya et al. 

2002; Ng et al. 2003). In Asia alone, nearly 50 million people drink water containing arsenic 

concentration above the minimum concentration recommended by the World Health 

Organisation (Ravenscroft et al. 2011). Cadmium causes both kidney disease and 

osteoporosis, much of which occurs at low level exposures (Satarug et al. 2003). 

Osteoporosis in particular is estimated to represent approximately 1% of non-communicable 

disease globally, and in some regions cadmium exposure may play a significant role in its 

onset (Johnell and Kanis 2006).  

Despite its role as an essential trace element, manganese is highly neurotoxic at low levels. It 

is known to cause cognitive impairment and motor impairment in both children and adults. 

At present, there is a worldwide debate as to whether manganese should replace lead as an 

octane enhancer in petrol. The use of an organic manganese compounds, MMT 
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(methylcyclopentadienyl manganese tricarbonyl) as a petrol additive is currently banned in 

many countries, but its use is common practice in many others worldwide, including South 

Africa (Okonkwo et al. 2009). Thus in many regions, environmental lead has simply been 

replaced by another, equally toxic element. Given the significant reductions in the blood lead 

levels of children worldwide following the removal of lead from petrol, it stands to reason 

that the use of MMT may result in a similar “silent epidemic” of manganese exposure, with 

the concomitant social and economic costs (Walsh 2007).  

On a global scale exposure to the elements of interest in this research cause significant 

illness and social and economic disruption. When combined with poverty, deprivation and 

malnutrition, such as that experienced by most of the population of South Africa during 

apartheid, the toxic effects of heavy metal and toxic element exposure may be significantly 

enhanced, causing a greater burden of disease than in developed countries (Briggs 2003). 

Understanding how this exposure is distributed across a given population is critical to 

establishing the scale and scope of toxic element-related morbidity. It is hoped that this 

research will make a contribution to such understanding in South Africa.   

1.2 Toxic elements in South Africa 

The six toxic elements to be investigated within this project are: lead, manganese, cadmium, 

arsenic, antimony and vanadium. Among these, lead, cadmium and arsenic comprise three of 

a group of four elements which Nriagu (1988) refers to as “the big four”. These elements are 

highly toxic to humans, ubiquitous in urban/industrial environments and well-researched in 

regards to their effects on health.  The elements cadmium and arsenic are included in this 

research for the above reasons and because their presence in the urban environment of 

Pretoria and Johannesburg is well documented and because they are associated with the 

mining activities that are prevalent in the region. Manganese is included in this study 

because manganese has been mined extensively in the southern regions of South Africa and 

processed in Transvaal/Gauteng. In addition, manganese has recently replaced lead as a 

petrol additive and environmental manganese levels are expected to increase. By including 

manganese in this study it is possible to yield data that can be used to investigate change in 

human exposure to this element over time. Lead is included in this research for several 

specific reasons. Firstly, the element is extremely toxic to humans in very low environmental 

concentrations. Secondly, South Africa’s late cessation of leaded petrol means lead was 

present in the environment in significant concentrations in the period of interest in this 

project (1960-1999).  

Though mercury is present in the South African environment and may be of some health 

concern to the population (Kootbodien et al. 2012; Papu-Zamxaka et al. 2010; Rollin et al. 
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2009). The analysis of mercury however requires the use of an alternative method to ICP-

MS such as Cold-Vapour Atomic Absorption Spectrometry (CV-AAS) (Tyson and Yourd 

2004). Moreover, mercury analysis requires the addition of pre-treatment steps with 

oxidizing agents and a further reduction stage with sodium chloride or potassium 

borohydride (Morales and Segura 2013). Owing to both time and funding constraints, the 

additional preparation steps and alternative methods required for mercury analysis resulted 

in the decision not to include the element in this research. 

1.3 The use of racial terms in this research 

This research deals extensively with racial differences in toxic element exposure, which 

necessitates the use of terms which characterise an individual solely on the basis of skin 

colour. In many fields, particularly in Anthropology and the social sciences, researchers are 

hesitant to employ the term “race” or to imply that differences in health and health outcomes 

are purely racial. Within anthropology, specifically, there is a push to debunk racially 

delineated public health phenomena. Dressler et al. (2005) discuss this at length, in a review 

of literature regarding racial differences among black and white Americans in regards to low 

birth rate and high blood pressure. These authors argue against common models that attempt 

to explain racial differences in health and health outcomes such as genetic differences, health 

behaviour differences, socioeconomic factors, psychosocial stress and structural 

constructivism. The authors also purport that the processes and effects of racial differences 

in outcomes are too complex to be explained by any one model, and that racial differences in 

health outcomes are more complex than race alone can explain. This is certainly true in 

integrated societies such as Europe or North America. Marks (1996) argues that 

classification of individuals into race categories involves cultural knowledge, as opposed to 

biological knowledge. He further argues that referring to racial issues as such creates a false 

focus on biology rather than social inequity. These researchers are correct in their assertion 

that race is largely a social construct, one that is imposed on individuals by society and at the 

same time one that influences an individual's behaviour because s/he adopts the world-view 

of the social group, or race, to which s/he is assigned.  

Gravlee (2009), concedes that whilst health disparities do exist between individuals of 

different races, he warns against allowing race to become a biological explanation of these 

disparities. Human phenotypes are plastic, and can change between generations of 

individuals of the same “race” or ancestral background, it has been argued, lending credence 

to the concept that race is a cultural construct. Since the mid-1990s, research into the human 

genome has emphasised the stunning lack of genetic variation among and between human 

populations. This has led to the concept of race falling out of favour with anthropologists , 
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and could certainly open this particular project to criticism within the field of 

anthropological theory.  

However the terms “black” and “white” are used throughout this project. It is argued here 

that to do otherwise would be naïve and would overlook very tangible trends in health in 

apartheid South Africa. Certainly this research does not imply, nor place any significance in 

theories that imply, that the differences in health and health outcomes between “races” in 

South Africa are in any way genetic or biological in nature, nor does it imply that the racial 

classification of the South African population was in any way legitimate. The author agrees 

wholeheartedly with the concept of race as one that is both imposed on the individual by 

society and one that shapes the behaviour and cultural construct to which an individual 

identifies, and it is in this sense and this sense alone, that the concept of race is used in this 

research. It is for this reason that, unlike apartheid-era literature and some current literature, 

the terms “black” and “white” are not capitalised. The labels Black and White are politically 

and emotionally loaded and to continue to capitalise them would lend credence to the view 

that they are legitimate political labels.  

In this and subsequent chapters the terms “black” and “white” will be used to distinguish 

between groups. These groups are actually cultural and socioeconomic groups but ones that 

are divided based on skin colour alone. This is because during Apartheid, socioeconomic 

and racial differences within the population were one and the same. In a sense, when 

investigating racial differences in health during Apartheid, researchers are examining two 

distinct populations, as opposed to one diverse national population. Among the lowest 

socioeconomic groups, there was little mixing between races, and no fluidity between 

groups. Even the poorest white individuals were legally allowed to live in white residential 

areas. They did not inhabit the townships or the hostels or the informal settlements 

surrounding the cities alongside black South Africans, no matter what their economic 

circumstances. Similarly, black individuals who may have been relatively prosperous could 

not hope to escape either townships or Bantustans. In this way, race absolutely determined 

residence, access to healthcare, clean water, diet, and other factors in determining toxic 

element exposure and health outcome.  

1.4  Aims and objectives 

Broadly, the overall aim of this project is to establish baseline data regarding human 

exposure to heavy metals and toxic trace elements in humans in Gauteng, South Africa in 

the latter half of the 20
th

 century. It is hoped that this data can serve as both historical 

knowledge in its own right and as comparative data by which to put present-day analyses 

into context.  
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In addition, there are several specific objectives: 

1. To examine and record demographic differences in element exposure between 

individuals of African ancestry and those of European ancestry based on analysis of 

bone element concentration 

2. To examine heavy metal and trace element exposure between African men and 

women  

3. To infer the potential health effects on the studied individuals resulting from toxic 

trace element exposure, given the measured bone element concentrations 

4. To analyse the exposure rates of the studied population in the context of published 

knowledge regarding the state of inorganic pollution in Gauteng, South Africa 

during the latter half of the 20
th

 century – and to compare these rates with those of 

other industrialised regions 

5. To establish how Apartheid policies regarding the movement and residential 

arrangements of Africans and the white population contributed to differences in 

exposure rates to toxic trace elements 

6. To compare the bone-element concentration that is gathered in this research to 

recent studies of element exposure rates in South Africa. 

These objectives will be met by the chemical analysis of cortical bone from 215 individual 

remains from the Pretoria Bone Collection. Analysis was conducted by Inductively Coupled 

Plasma Mass Spectrometry (ICP-MS). Results will be analysed quantitatively to examine 

relationships between elements of interest and to examine demographic patterns in element 

exposure. Specifically, each objective will be met in the following way: 

1. ICP-MS analysis of cortical bone in black and white individuals to establish bone 

element concentration of lead, cadmium, arsenic, antimony, and manganese and 

vanadium. In addition, copper, iron, magnesium, and zinc were measured. Bone 

element concentration was compared between black and white males and black 

males and black females across approximately 40 years. Bone element and age was 

also examined between and within ancestral groups.  

2. Bone element concentration for all elements was measured and compared between 

black males and females.  

3. Analysis of bone element concentration in the study population in the context of 

published data regarding the clinical and subclinical effects of bone element 

concentration on human health. For each individual element analysed, it is 

established which members of the study population were most at risk for negative 

health consequences of element exposure and what those effects were likely to have 

been. In addition, this objective includes the comparison of essential trace elements 
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to infer, as best as possible, likely dietary status and how this may have influenced 

both individual bone element concentration and individual health outcomes. 

Differences in essential trace elements within and between demographic groups are 

explored statistically.  

4. Using bone element concentration to infer rate of exposure, this is analysed 

qualitatively and discussed in the context of inorganic pollution in South Africa 

during the late 20
th

 century. Exposure rates and likely exposure source of the study 

population is compared against what would be expected given pollution levels in 

Gauteng. 

5. By examining the social and political policies of Apartheid, specifically in the 

context of the Group Areas Act, and data regarding the distribution of pollution 

across the landscape during this period, the impact of these policies on toxic trace 

element exposure is discussed.  

6. This objective is met by comparing data on this study population with recent, 

present-day investigations of toxic element exposure in Gauteng. 

1.5  South Africa: Geography, economics and demography 

South Africa is located in the southern-most tip of the African continent (Fig. 1-2). It covers 

an area of 472,281 square miles. It’s population is approximately 50 million in 2012, of 

which 79.4 % are black African, 9.2 % are white, 8.8 % are coloured (mixed race) and 2.6 % 

are Indian or Asian (Statistics South Africa, 2010).  
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Figure 1-2.  South Africa, present day (google maps). 

 

The skeletal remains used in this study come from individuals who were resident in the 

Transvaal Province (encompassing the region now known as Gauteng Province) at the time 

of their death between 1960 and 1998. It is difficult to estimate the population of Transvaal 

during apartheid. In 1989, the population of South Africa was approximately 30 million, a 

number which did not include the residents of four of the homelands (see Section 1.2.4, 

below) which were considered independent nations. The estimated number of black Africans 

living in South Africa as of 1989 was 21 million. The number of white South Africans was 

5.1 million. As black Africans were technically resident in the homelands (even those 

residing in urban areas) they were largely excluded from the census, and the total black 

African population of Transvaal is not clear. In Pretoria and Johannesburg, specifically, the 

total population in 1985 was 4 million in Johannesburg and 2 million in Pretoria. However 

in greater Pretoria, there were approximately 650,000 informal dwellings housing an 

estimated 2.5 million people (Smith 1992). In Johannesburg, the number of informal 

dwellings was similar. The number of black Africans living in Johannesburg by the 1980s 
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was unclear, but by the 1986 census it was estimated that as much as 25% of the population 

of the city was black (Parnell and Pirie 1991).  

The primary industry in the Transvaal, and in South Africa as a whole is mining. Gold was 

discovered on the Witwatersrand in Transvaal in the 1860s and the region was once home to 

the richest gold deposits in the world. In addition to gold, platinum, diamonds and coal are 

the primary minerals mined in the region, but lead, antimony, uranium, manganese, iron, 

vanadium and many other elements are mined in South Africa as well (Beck 2000). The 

country is the wealthiest in Africa, but is classed as a middle income country, primarily due 

to the level of income inequality that characterises it.  

The dependence on mining and associated industries has been a mixed blessing. Whilst 

South Africa’s mineral wealth has brought a certain level of prosperity to some of the 

population, it has resulted in successive governments that have been reluctant to impose 

environmental restrictions on industrial polluters (Van Eeden 2008). During apartheid and 

before, the Anglo American Corporation, founded in 1917 were active in supporting 

government policy that maintained lax control over the mining industry, most of which was 

located in or near Transvaal (Thompson 2001). Coupled with South Africa’s use of leaded 

petrol well after most countries had switched to unleaded petrol, the general view of 

Transvaal is that of a region that is highly polluted. As little environmental monitoring took 

place in the region during apartheid, the level of human exposure to inorganic pollution 

during this time is essentially unknown.  

 European settlement to apartheid 1.5.1

The history of South Africa is a typically colonial one, with Dutch settlers arriving in the 

Cape Colony in 1652 and establishing a trading station for the Dutch East India Company. 

The following hundred years saw the expansion of Dutch settlement, and the establishment 

of the cultural dominance of the Afrikaners or “Boers” in the southern half of the region, the 

Boer expansion included the importation of slaves from the Indian sub-continent and 

Madagascar, as well as neighbouring Mozambique. In 1795, the British conquered the Cape 

Colony, which was regained by the Boers in 1805 and lost again to the British in 1806, 

marking the beginning of nearly 100 years of sparring between the British and the Boers in 

South Africa, with Afrikaners gaining control of the Transvaal and Free States in 1852 and 

1854, respectively, and losing the Transvaal to the British in 1877. The century of tit-for-tat 

between the British and the Afrikaners culminated in the Boer Wars of 1899 -1902, in which 

the British were victorious and South Africa formally became a British colony. During this 

time the native African populations, comprised of distinct tribes and kingdoms, were 

expelled from ancestral lands prompting uprisings against the colonial powers. These 
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uprisings ended with the British defeat of the Zulus in 1879 and the Afrikaner defeat of the 

Venda in 1898 (Thompson 2001).  

In 1906, all of the former Afrikaner republics of South Africa were granted parliamentary 

government by the British, though only white individuals were enfranchised. Four years 

later, in 1910, the Union of South Africa was formed with the union of the Cape Colony, 

Natal, Free State and Transvaal (Beck 2000). After the formation of the Union, African 

reservations were formed, which would later become the basis of the apartheid-era 

bantustans or homelands. In 1913, the Natives Land Act was passed by the newly formed 

government which restricted land ownership by Africans to the reserves, at this time the 

African National Congress (ANC) was formed by black Africans as a response to increasing 

marginalisation (Thompson 2001).  

In the following years, the Union consolidated power within South Africa, removing any 

powers held by the British. Also during this time, South Africans of British descent or origin 

held most of the country’s wealth and power, relegating many Afrikaners to the status of 

“poor whites”, despite the fact that they comprised over 50 % of the population. Many 

Afrikaners worked as labourers or engaged in more “working class” employment, in many 

cases in direct competition with black Africans. Increasingly racist employment practices 

however, resulted in an improvement of the social and economic conditions of the 

Afrikaners, and by mid-century, white poverty had largely been eliminated. This period also 

saw the rise of the so-called “pass-laws”, which by 1930, prevented the free movement of 

Africans within South Africa. In Transvaal in particular, black individuals entering urban 

areas such as Pretoria or Johannesburg, were required to register with authorities within 24 

hours or face jail (Thompson 2001). Despite these attempts to curb African presence in 

urban areas, the population of black Africans in urban areas increased significantly 

throughout the 1930s. The increasing marginalisation of the African population of South 

Africa culminated in the rise to power of the Afrikaner National Party (ANP), which gained 

control of South Africa during the general election of 1948. Thompson (2001) points out that 

during the years leading up to the ascendency of the ANP, race and class were nearly one in 

the same in South Africa, with white individuals relatively well-off compared to the black 

population. In 1951 the wages of white gold miners were nearly 15 times that of black 

miners, despite the fact that both black and white miners did essentially the same work.  

 Apartheid 1.5.2

Among the first acts of the new ANP government was the passage of a number of 

segregation laws including the Population Registration and Group Areas Acts. These acts 

codified racial segregation in South Africa. The former required the official classification of 
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all South Africans into one of four racial groups: White, Coloured, Indian and African. The 

latter enforced strict racial zoning in all parts of South Africa (Beinart 2001). Also at this 

time the Union was officially decentralised into “nations” which gave the white population 

complete control over most of the country and relegated the black and coloured populations 

to one of ten ancestral “homelands” or bantustans, which were essentially reservations. 

Figure 1-2, below is an apartheid-era map of South Africa showing the white union and the 

black homelands. 

 

Figure 1-3.  Locations of the 10 black African homelands or bantustans. The non-marked areas 

were white-controlled regions, including Transvaal (upper right) which included Johannesburg 

and Pretoria. From (Butler et al. 1978). 
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From the 1960s to the 1980s, many of these homelands were granted “independence” from 

South Africa, which viewed them as their own distinct countries. Residents of these new 

“nations” were now denied South African citizenship. As is evident in the figure above, 

many of these homelands were highly fragmented and were separated in many cases, by 

privately owned white land. In some cases the different parts of a homeland could be over 

100 miles apart. The white population was legally barred from investing in homelands which 

relied largely on meagre subsidies from the South African government (Thompson 2001).  

During this period black individuals were allowed in white-controlled areas and cities, but 

they were only considered temporary residents and were only allowed insofar as they had 

legitimate employment. Any black individual who could not provide authorities with the 

requisite documents proving permission to reside in an urban area was arrested. In one year, 

1975-1976, approximately 350,000 such arrests were made. Under the Group Areas Act, 

black individuals who lived in urban areas were forced into suburban townships. In many 

cases, black and coloured individuals were forcibly removed to these townships from other 

parts of the cities. Despite the very permanent nature of these townships, residents were 

officially classed as temporary, nonetheless, these laws were not able to stem the flow of 

rural to urban migration (Beck 2000).  

The forced residence into townships and homelands saw living conditions deteriorate for 

black Africans. Compounding this was the intensified exploitation of black labour. By the 

1970s mining wages for black Africans were less than what they had been in 1911, in real 

wages. As will be discussed in greater detail in Chapter 3, conditions in many townships 

were crowded and extremely poor. A combination of internal rebellion among black 

Africans, recession and changing attitudes among the Afrikaner ruling class led to the slow 

disintegration of apartheid throughout the 1970s and 1980s. In 1984, the Union government 

reformed parliament, creating three racially distinct assemblies – white, coloured and black, 

which met together in certain circumstances. This marked the first time that black Africans 

had been given a role in government. Despite this, living conditions for black Africans 

improved little during this time. By 1986, many of the pass-laws, restricting black migration 

to and residence in urban areas, were repealed. The Group Areas act remained in place 

however, and black Africans were restricted in where they could settle in urban areas. Also 

in 1986 the government repealed many segregation laws, including restrictions on inter-

racial marriage, business dealings and sporting activites. However, increasing government 

resistance, rebellion and violence led to the disintegration of the apartheid government. 

Despite its continued unravelling, and the government’s willingness to engage with the 

ANC, the period between 1990 and 1994 was characterised by violent suppression of strikes 

and uprisings and the political oppression of black Africans. In this four year period alone, 
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there were over 13,500 political killings in South Africa, most of which were perpetrated by 

the government (Thompson 2001).  In spite of its attempts to maintain control, apartheid 

officially ended in 1994 with the transfer of government power from the Afrikaner 

nationalists to the ANC.  

 Post-apartheid 1.5.3

The post-apartheid era and the formation of the new South African Republic has brought 

about many changes, although in many parts of the country little has changed in real terms. 

At the time of the formation of the new republic, South Africa had one of the most unequal 

societies on earth, with white individuals living in affluence and Western-style conditions, 

and black Africans living lives equivalent to most other sub-Saharan Africans – 

impoverished and poorly educated. In 1997, nearly half of the population of South Africa 

lived below the poverty line of US $60 per month. The health of black South Africans also 

remained poor. Though the new government directed some resources towards improving 

healthcare, many urban hospitals, such as Baragwanath, which served Soweto, were plagued 

by corruption, crime (including theft and assaults on medical staff). In addition, the epidemic 

of AIDS was killing nearly 250,000 South Africans per year. The health of urban South 

Africans was believed to be worsened by exposure to air and water pollution, including the 

use of leaded petrol, the mining of coal, acid mine drainage and the burning of kerosene in 

many households (Thompson 2001). Thompson also points out that environmental health 

was very low on the list of priorities of the new government. In addition violent crime was 

rampant during the immediate post-apartheid period. By 1998 South Africa had the highest 

rate of rape in the world and had one of the highest violent crime rates in the world 

(Thompson 2001).  

The post-apartheid period has seen the rise of a black African middle class and greater 

opportunities for black Africans. The end of the Group Areas Act means that black 

individuals are legally free to live wherever they can afford to and the demographic 

backgrounds of many neighbourhoods are changing, though the change is slow.  

 Contributions to anthropology and to public health research 1.5.4

This project provides data regarding exposure to toxic elements in residents of Pretoria and 

Johannesburg during apartheid. As no such analysis was undertaken or published on this 

population during this time, this research has generated important quantitative data that was 

absent from the current body of knowledge regarding pollution and human health in South 

Africa. This data is valuable both as stand-alone information regarding one facet of human 

health during apartheid. It also serves to highlight the way in which political and social 

policies directly affect human exposure to toxic pollution. Lastly, the data presented here 
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also provides significant background information by which to consider present-day trends in 

human exposure to toxic elements in South Africa. 

Chapter 2 provides a comprehensive review of the elements of interest: lead, cadmium, 

manganese, arsenic, antimony and vanadium, as well as four essential trace elements: iron, 

zinc, copper and magnesium. Mean bone element concentrations from 20
th

 century cadaver 

bone or in vivo measurements are presented for a number of modern populations. This 

information is used to place the bone element concentrations reported in this project into a 

wider global context. The process of incorporation of these elements into bone tissue is 

discussed. More importantly, the known health effects of these elements are discussed in 

detail, and wherever possible, the specific bone-element concentration at which health 

effects occur is discussed.  This information allows for the formulation of hypotheses 

regarding the likely effects of toxic element exposure in the study population.  

Along with quantitative analysis of toxic elements in bone tissue, this research presents a 

detailed discussion of the demographic and health consequences of apartheid, which is given 

in Chapter 3. This information is critical to a contextual understanding of how toxic element 

exposure was distributed across the population, particularly between black and white 

individuals. In addition, the health status of black and white individuals differed 

substantially during apartheid, to the extent that black Africans were living in what was 

essentially a developing country and white South Africans were living in a Western 

industrial country. This dichotomy is likely to have played a significant role in the effects of 

toxic element exposure on each demographic group and is an important factor in 

understanding the likely health implications of this exposure across the population.  

The literature is lacking with regards to environmental studies within South Africa. The 

substantial mining industry in South Africa, coupled with the country’s persistent use of 

leaded petrol into the current century, have conspired to make South Africa one of the most 

polluted countries in sub-Saharan Africa. As such, it is important to understand how this 

pollution affected the population and how official Apartheid policy may have exacerbated 

the problem of toxic trace element exposure for some or all of the population. Despite the 

suspicion that the region is highly polluted, little research (relative to other countries) has 

been conducted on toxic element pollution in South Africa. To make sense of human rates of 

exposure to inorganic pollution, it is first necessary to discuss the level and distribution of 

pollution in South Africa, the details of which are presented in Chapter 4. It is also critical to 

establish the likely sources of and pathways of exposure to inorganic pollutants so that 

differences in exposure within the population can be better understood. This research 

includes a discussion of the state of environmental research in South Africa during the latter 

half of the 20
th

 century. Recent studies of pollution in South Africa, specifically Gauteng are 
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also discussed and compared with more historical research, in order to provide a complete 

profile of inorganic pollution in the region.  

A review of the literature regarding human exposure to toxic metals in South Africa yields 

no broad reviews of the state of knowledge. Rather, studies of exposure to inorganic 

pollutants have been piecemeal. Over the last 20 years, a handful of studies have sought to 

quantify toxic metal exposure in South Africa. Whilst these have focused on lead and 

manganese levels in children, some were conducted during apartheid. These studies are 

explored in detail and are very useful as comparative data by which to compare the results of 

this research. Chapter 5 includes a detailed synthesis of the current state of knowledge 

regarding human exposure to inorganic pollution in South Africa, from the earliest 

monitoring in the 1980s to the present day. This synthesis is critical to placing the results 

generated within this project into context within South Africa.  

Chapter 6 includes a detailed description of the materials and methods used in this research. 

A demographic profile of the sampled remains is presented, along with a comparison of how 

the sampled remains compare to the greater bone collection with regards to demography. 

The sampling method is discussed, including both the method used to determine which 

remains to sample, as well as the physical sampling method. Analytical method is also 

presented in this chapter, including early analytical attempts using ICP-AES and the decision 

to use ICP-MS instead. The theoretical aspects of method development are presented, from 

choice of digestion acids to the use of internal standards and quality control. Lastly, the 

statistical methods used to conduct the analysis of results are described, including the 

justification for the use of each statistic, and the parameters applied (including the treatment 

of outliers, data distribution and transformation).  

Results of the analysis of South African bone material are presented in Chapter 7. 

Descriptive statistics, including frequencies and distributions are given for each element. 

Detailed descriptive statistics for each primary demographic group (black males, black 

females, and white males) are presented as well as descriptive statistics for age, decade of 

death and city of residence. Multivariate analysis is used to explore potential relationships 

between individual elements or element clusters are presented, as well as correlation 

statistics for each element within each demographic group.  

Chapter 8 provides a thorough discussion of the results presented in Chapter 7. Each element 

is discussed individually and the demographic trends uncovered in Chapter 7 are discussed 

and the likely reasons behind these trends are explored. The potential health effects of each 

element on the sample population are also discussed. Bone element concentrations reported 

in Chapter 7 are placed into a wider context and compared with data from other countries. In 
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addition, the causative factors behind relationships between elements in the study population 

are explored in detail.  

Finally, Chapter 9 concludes by revisiting the overall aim and specific objectives set forth in 

this chapter and examines how each objective and overall aim was met during the course of 

this research.  
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2 Trace elements and health 

 

A review of the literature regarding health and the element of interest to this research yields 

vast amounts of information. As such, this chapter is certainly not an exhaustive review of 

the literature as to provide such detail is beyond the scope of this project. Rather, this 

chapter will review the major health effects of lead, manganese, arsenic, cadmium, antimony 

and vanadium, and will focus, as much as possible on the most recent research regarding 

these elements and health. The basic biology of bone tissue and the primary roles and 

mechanisms of uptake of each element is discussed in brief. The information presented here 

will serve as the framework for understanding the potential consequences of exposure to 

these elements on the health of apartheid-era residents of urban South Africa.  

Exposure to toxic trace elements such as lead, cadmium, arsenic, antimony and manganese 

are known to cause a wide array of serious health conditions and can even cause death if 

ingested in high enough quantities. Nriagu (1988) has written extensively about toxic metal 

exposure throughout the world and in Africa, has warned of a ‘silent epidemic’ of clinical 

and subclinical metal poisoning affecting millions of people worldwide and particularly 

prevalent in urban regions of developing countries. He writes of the ‘big four’ toxic 

elements: lead, mercury, cadmium and arsenic as the four most nefarious metals in regards 

to their impact on human health, three of which are examined in this project.  For elements 

such as lead and cadmium and arsenic, even low levels of exposure can cause significant 

health effects and can cause illness affecting multiple organ systems within the human body. 

Lead has been associated with renal failure, hypertension, neurological damage, psychiatric 

disorder and psychopathy, as well as osteoporosis, and infectious disease. Cadmium causes 

severe bone pathology. Arsenic is known to cause hypertension, cancer and Blackfoot 

Disease, and manganese is a severe neurotoxin. The potential health consequences of each 

element of interest in this project are discussed in this chapter. In addition, cortical bone 

element concentrations from modern populations worldwide are compared. In all cases, only 

bone element concentrations from non-buried, non-diagenetically altered bone is included.  

Bone concentrations of these elements can vary substantially in modern populations and 

depend on the demographic profile of the population, nutritional status, exposure rate and 

sex. Very high (>200µg·g
-1

) levels of lead have been reported in some occupationally or 

industrially exposed populations, and is very often found in concentrations in parts per 

million in bone tissue in industrial societies, though in some cases even in industrial 

societies, bone lead concentration can be lower, in the range of 2 to 10µg·g
-
1 (Baranowska 

et al. 1995; Jurkiewicz et al. 2005). Background lead from local geology can also result in 
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the uptake of lead and lead is found in very low levels in populations unexposed to lead, 

generally on the order of parts per billion in bone (generally archaeological populations with 

little chance of post-depositional diagenesis) (Patterson et al. 1991).  

Bone is generally not used for the biomonitoring of arsenic exposure in humans, though 

exposure rates can be extrapolated using bone tissue. Arsenic is generally found in very low 

concentrations in the order of parts per billion in cortical bone or can be so low as to be 

undetected by modern analytical equipment. Concentrations of 0.10 to 0.510µg·g
-1

 have 

been reported in an industrial population (Brodziak-Dopierala et al. 2011; Jurkiewicz et al. 

2004; Wiechula et al. 2003). 

Cadmium is also found in relatively low quantities in bone tissue, and range in concentration 

from parts per million to parts per billion. Concentrations of up to 1.5µg·g
-1

 have been 

reported in the bones of individuals living in a highly polluted industrial region (Baranowska 

et al. 1995). Concentrations as low as 0.035µg·g
-1

 have been measured in the skeletal 

remains of North American Indians (archaeological specimens) who were never exposed to 

anthropogenic cadmium (Ericson et al. 1991). 

Manganese is found in concentrations in parts per billion in human bone tissue. Bone 

manganese concentrations of between 0.017 and 0.06µg·g
-1

 have been measured in 

industrially exposed populations (Bocio et al. 2005; Garcia et al. 2001).  

Antimony is found in concentrations in parts per billion in human bone and is not commonly 

monitored in bone tissue. Bone antimony concentrations of 0.07 to 0.1 have  been reported 

in a modern industrial population (Lindh et al. 1980). 

Table 2-1, below gives comparative cortical bone element concentrations from a number of  

modern populations worldwide, and whether or not the individuals studied in each were 

occupationally exposed or living adjacent to an industrial area.  

  



21 
 

 

Table 2-1.  Mean cortical bone element concentrations in modern populations in μg·g
-1

. *Non-occupationally exposed. **Occupationally exposed. 
Ŧ
Industrially exposed. 

ŦŦ
Environmentally exposed. 

§
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0.36* 0.36* 
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Bone tissue is a particularly useful matrix for the study of trace element exposure in animals. 

The relatively low turnover of bone compared to other tissues means that years, even 

decades of exposure to trace elements can be easily measured. In adults, human bone is 

categorized into two types, cortical bone, of which approximately 80 % of the skeleton is 

comprised, and trabecular bone which makes up the remaining 20 % (Ott 1996). In most 

simple terms, cortical bone is characterized by its compactness and density, and trabecular 

bone is considered “spongy” in that it is highly porous (White & Folkens 2005). Bone tissue 

itself consists of collagen and hydroxyapatite, a form of calcium phosphate. Calcification 

takes place by way of cells known as osteoblasts, which deposit hydroxyapatite into tissue 

called osteoid, essentially, pre-mineralized bone matrix. Once calcified, osteoblasts are 

known as osteocytes, which are the cells that maintain bone tissue (White and Folkens 

2005).  

2.1 Bone growth and development 

All bone used in this research is cortical bone, because  it is the primary storage location for 

many heavy metals entering the body and is the primary source of endogenous release of 

these metals back into the blood stream. Bone consists of an organic phase, collagen, and an 

inorganic phase of calcium hydroxyapatite. The inorganic phase is approximately 60% of 

bone, with 30% organic matrix and 10% water and lipids (Clarke 2008). It is thought that 

toxic metals and metalloids are incorporated into bone by supplanting calcium in 

hydroxyapatite (Bronner 1996). These elements have a strong affinity for bone and are 

incorporated by surface exchange, diffuse exchange or ionic substitution with calcium (Dahl 

et al. 2001). 

Cortical bone, particularly in long bones (of which all of the bones in this study derive), is 

dense and solid and extends from the periosteal surface of the bone to the marrow cavity or 

endosteal surface within. Bone growth in cortical bone these takes place in the Haversian 

canals. After new bone formation is complete, the Haversian canal becomes the conduit by 

which nutrients and blood reach cortical bone, which is not as metabolically active as 

trabecular bone (White and Folkens 2005), and are the foci of remodelling activity within 

the bone tissue. After epiphyseal surfaces have fused and longitudinal growth has 

completed, most bone modelling and remodelling takes place throughout the Haversian 

system. Blood vessels, osteoclasts, osteoblasts and nerves are found in the periosteum and 

endosteum. Most bone growth typically takes place along the periosteal surface, which has a 

higher rate of new bone formation than the endosteal surface. For this reason, bones tend to 

become thicker with age and the marrow cavity widens (Buckwalter et al. 1995). 



23 
 

There are two forms of new bone formation, bone modelling and bone remodelling. Bone 

modelling entails the change in shape of new bone as a response to stress placed on the bone 

by the muscles. An example of this would be the increase in bone density and muscle 

attachments commonly seen in individuals who engage in heavy physical labour either 

occupationally or recreationally (through sports) (Buckwalter et al. 1995). The second form 

of new bone tissue formation is remodelling, which is the resorption of existing bone tissue 

and the deposition of new tissue. Remodelling takes place throughout life, and is the form of 

bone growth most likely to result in the uptake and endogenous release of heavy metals. 

During remodelling, osteoclasts first breakdown and resorb existing bone, before osteoblasts 

form new bone. The rate at which this process occurs is relatively stable through adulthood, 

however in older males and especially in peri- and menopausal women the process may 

quicken substantially (Buckwalter et al. 1995).  

  Molecular processes during bone remodelling 2.1.1

Bone remodelling and modelling involves the mobilisation of two types of cell: osteoclasts, 

which resorb bone and osteoblasts, which create new bone. During remodelling, osteoclasts 

secrete hydrogen at a low pH, which breaks down the mineral phase of bone. These cells 

also secrete a substance (containing acid phosphatase, cathepsin K, matrix metalloproteinase 

9 and gelatinase) which digests the inorganic matrix. This process results in the formation of 

a Haversian canal in cortical bone (Clarke 2008). By the end of the resorption phase, these 

canals contain monocytes, osteocytes and cells known as pre-osteoblasts which begin the 

formation of new bone. The process by which bone formation begins and resorption ends is 

not known, however it is theorised that the release of a chemical signal (most likely a 

hormone or growth factor) is responsible. Other studies have suggested that the increase in 

strain within cortical bone (at the microscopic level) as a result of resorption may result in 

the activation of osteoblasts (Clarke 2008).  

Once the formation phase has been activated, osteoblasts synthesize collagen to create the 

bone matrix. Osteoblasts also secrete small vesicles that concentrate calcium, phosphate and 

enzymes that destroy mineralisation inhibitors.  At the end of this phase, an osteon is 

formed. The overall function of bone remodelling is to repair damaged bone (damage in this 

sense means primarily micro-damage, as opposed to fractures etc.) and calcium and 

phosphate homeostasis (Clarke 2008).  

Homeostasis is maintained by the uptake of calcium, magnesium and phosphorus into the 

inorganic matrix of bone tissue. In the absence of other competing elements, calcium 

homeostasis is essentially an isoionic exchange of calcium ions within the matrix (Heaney 

2003). This exchange takes place between calcium ions in extra cellular fluid (ECF) and 
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bone. In heteroionic exchange, the calcium ion in bone is replaced with an ion of another 

element that mimics calcium in the bone matrix (O'flaherty 1998a). Bone remodelling is a 

constant process. The kinetics of mineral release and uptake in bone has been modelled by 

many and varies according to factors which will be discussed in greater detail in the 

following sections. To give an idea of the volumes of elements in question, Heany (2003) 

estimates that the calcium into and out of bone (formation and resorption) is approximately 

6mg/kg (body weight) per day. This is largely based on an estimate of total cortical bone 

turnover rate of approximately 3% per year (Clarke 2008). Though trace elements will 

necessarily be cycled in and out of bone in greatly lower volumes, the overall turnover of 

bone is substantial. This has significant implications for the ability of bone to act as an 

endogenous source of toxic trace elements, a phenomenon which will be discussed in the 

following section.  

 Uptake of heavy metals into bone- mechanisms 2.1.2

As mentioned above, heteroionic exchange is thought to be the primary means by which 

elements such as lead and other elements are incorporated into bone tissue. Research 

involving lead and uranium tracer isotopes suggest several potential pathways by which 

these bone-volume-seeking elements enter the bone: surface exchange, deposition with 

forming bone and slow migration throughout the bone matrix (Leggett 1993). Lead in 

particular appears to follow the same pattern as calcium in regards to uptake into bone, and 

may actually compete with calcium for deposition into bone (O'flaherty 1998b). In addition, 

studies of bone lead in autopsy subjects have shown a significant correlation between bone 

lead/calcium ratio. The lead/calcium ratio was constant between bone types (tibia, iliac crest 

and iliac bone) (Van De Vyver et al. 1988).  

For elements that are not thought to be bone-seeking or easily exchangeable with calcium in 

bone matrix, the information regarding the mechanism of incorporation into bone is less 

clear. For arsenic in particular, there is some data regarding the effect of the element on bone 

cells, but very little is known about its kinetics in bone tissue. The same is true of antimony, 

cadmium and manganese, though each of these metals does interact with bone tissue. The 

protein metallothionein plays a significant role in uptake and metabolism of these metals 

(Bremner and Beattie 1990; Hogstrand and Haux 1991). Thought the physiological 

processes which involve metallothionein are still being studied, it is a known intracellular 

storage location for both essential and toxic elements (George Cherian and Goyer 1978). 

Studies of the protein in mice have demonstrated that in animals genetically altered to 

produce high concentrations, and whilst the uptake and distribution of elements such as 

cadmium remained the same as in normal mice, the excretion rate was increased (Probst et 

al. 1977). Glutathione, a non-essential peptide, may function as a chelating agent for 
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elements such as arsenic and cadmium. Glutathione can be synthesized within the human 

body, but its production is depressed in when nutrition is inadequate (Bray and Taylor 1993; 

Taylor et al. 1996). Subsequently, poor nutritional status affects the human body’s ability to 

metabolise and excrete certain heavy metals (O'flaherty 1998b). 

Many metals and metalloids in the body are protein bound and tend to be chemically labile. 

Whether or not they are incorporated into the bone matrix depends on chemical factors such 

as charge and ionic radius. In addition, the uptake of a given element often depends on the 

presence and concentration of other elements, as some metals inhibit or encourage cellular 

uptake or the body absorbs a toxic element in the absence of an essential element. These 

elements do remain in bone tissue in the same way as lead, however a much lower 

concentrations, as a large percentage of the ingested amount is excreted through urine. For 

this reason, in living populations, exposure to these elements is often monitored by urine 

concentration as opposed to blood or bone, with cadmium as one such element. 

Interestingly, there is very little research that could be located by the author which 

investigates the potential of any of these elements, save lead, to become an endogenous 

source of exposure due to bone turnover. It may be that these elements are found in too low 

concentrations for release from bone to matter, or it may be that this is simply and 

understudied facet of each element’s biokinetics.  

As lead is so toxic at even low concentrations, and because it interacts so readily with bone 

tissue, there is much discussion within the literature about the relationship between bone and 

lead. For this reason, the biokinetics and effects of lead in bone will be discussed in greater 

detail than for other elements, about which there is far less information regarding 

biokinetics. 

 Uptake pathways 2.1.3

For the majority of metals of interest in this study, the primary uptake pathways are 

inhalation and ingestion via which they are incorporated into the bloodstream and 

subsequently, into organ tissues (including bone). Worldwide, contaminated food and/or 

water is responsible for a substantial portion of non-occupational exposure to elements such 

as arsenic and cadmium (Hutton 1987). Lead and manganese are often inhaled, as they were 

common additives to petrol during most of the 20
th

 century and are still present in soil and 

dusts in high-traffic areas worldwide (Frumkin and Solomon 1997; Miguel et al. 1997; Shy 

1990; Walsh 2007).  Exposure sources and uptake pathways specific to urban Gauteng are 

discussed at length in Chapter 4. For some elements, manganese in particular, inhalation 

may be more dangerous to human health due to its more direct introduction to the 

bloodstream (as opposed to being processed in the digestive tract first). Whatever the uptake 
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pathway, once entered into the bloodstream, the mechanisms of element incorporation into 

bone tissue are the same.  

2.1.3.1 Manganese 

Unlike lead, manganese is an essential nutrient, and is both necessary for health and 

detrimental to it in high concentrations (Santamaria and Sulsky 2010). Manganese is thought 

to follow the same kinetic pathway as iron, and whilst manganese is often included in trace 

element studies of bone tissue, as it is in this project, little is written about manganese-bone 

interaction and how bone manganese concentration can be interpreted. Moreover, 

manganese is thought to be essential in bone remodelling, with lower bone remodelling rates 

evident in manganese-deficient animals, and lower serum manganese concentrations evident 

in osteoporotic, postmenopausal humans (Odabasi et al. 2008; Strause and Saltman 1987; 

Strause et al. 1987). It is believed that manganese regulates the formation of the osteoid 

matrix, in that this process is dependent on glycosyltranspherase, a manganese-dependent 

enzyme (Gonzalez-Perez et al. 2012).  

Studies of bone manganese concentration are few in number, but the use of bone tissue as a 

biomonitor of manganese exposure is being studied. (Arnold et al. 2002; Aslam et al. 2008; 

Pejović-Milić et al. 2009; Zheng et al. 2011). Manganese is a bone-seeking element, with 

approximately 50 percent of manganese stored in bone, making bone useful as a matrix for 

studying past exposure (Weiss, 2001).  

2.1.3.2 Cadmium 

Bone cadmium is not a commonly used measurement of cadmium exposure. Bone cadmium 

has been measured in archaeological populations and in a handful of studies in living 

populations (Apostoli et al. 2009; Arnay-De-La-Rosa et al. 2003; Bronner 1996; Garcia et 

al. 2001; Gonzalez-Reimers et al. 2003). Few studies however, have investigated the 

biokinetics of cadmium uptake into bone, despite the long-standing body of evidence that 

demonstrates that cadmium exposure causes significant reduction in bone mass, primarily by 

interfering with osteoblast and osteoclast activity (Akesson 2012; Engstrom et al. 2012a; 

Lindh et al. 1980). Recent research has suggested that different exposure levels of cadmium 

affect osteoblasts and osteoclasts differently, with low cadmium exposure could enhance 

bone resorption by enhancing osteoclastic activity, and inhibit bone formation at high levels 

through interference with osteoblastic activity (Chen et al. 2009a; Iwami and Moriyama 

1993). Cadmium  is thought to supress the metabolism of vitamin D (Chalkley et al. 1998). 

Some limited studies of animal analogues, primarily rats, have shown that cadmium ions can 

be found in osteoblasts a short time after injection into the subject, but few studies have 
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investigated time-dependent kinetics and the possibility of bone turnover releasing low 

levels of cadmium back into the bloodstream (Bawden and Hammarstrom 1975). Levesque 

et al. (2008) examined this in greater detail, and concluded that cadmium may follow the 

same uptake mechanism as calcium and magnesium (Thevenod 2010). This has led to the 

suggestion that cadmium uptake into osteoblasts may increase when calcium and magnesium 

levels are reduced. Cadmium interaction with other elements such as zinc and magnesium, in 

particular, may also affect bone development (Matovic et al. 2010; Noel et al. 2004). It may 

also inhibit uptake of calcium into bone (Kippler et al. 2009). In a study of women living 

near a smelting facility in China, bone density was seen to decrease linearly with cadmium 

excretion, suggesting that cadmium affects bone density in a dose-dependent manner 

(Kazantzis 2004).  

In this research, bone cadmium concentration is considered a means by which to assess 

exposure to and possible health effects of cadmium. Cadmium concentration will also be 

investigated in relation to calcium, manganese, lead, magnesium and zinc concentrations to 

explore potential interactions in bone tissue.  

2.1.3.3 Arsenic 

As with cadmium, arsenic exposure is not generally measured with bone arsenic 

concentration, however the presence of the element in bone can provide valuable data 

regarding exposure, particularly in unburied reference collections such as the Pretoria 

Collection. In archaeological collections arsenic concentration in bone is often disregarded 

due to its affinity for uptake into bone post-mortem due to diagenetic processes (Pike and 

Richards 2002; Rasmussen et al. 2009; Özdemir et al. 2010). Unlike lead, arsenic is not 

commonly measured in vivo and bone is not a common tissue for biomonitoring. 

Nevertheless, arsenic does affect bone tissue, and is incorporated into bone tissue as a result 

of chronic exposure. Arsenic is known to have an affinity for calcium hydroxyapatite, and in 

fact, hydroxyapatite is a commonly used substance for removing arsenic from water sources 

(Boisson et al. 1999; Nakahira et al. 2006).   

Most studies of arsenic in bone concern arsenic trioxide, as this is a commonly used 

treatment for cancer as it causes cell apoptosis. Arsenic is thought to cause premature 

apoptosis of osteoblasts, which inhibits new bone formation (Hu et al. 2012; Tang et al. 

2009). Adeyemi et al. (2010) have investigated arsenic biokinetics and have suggested that 

arsenic, whatever the compound, follows the uptake and absorption pathway of phosphate 

(PO4
-3

) from the digestive tract. Up to 30% of arsenic ingested will incorporate into bone 

tissue (Adeyemi et al. 2010). Once ingested, arsenic tends to be metabolised into one of 

several forms of methylated metabolites of arsenic. Essentially, this is a detoxification 
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response, however methylated arsenic may still be toxic (Tseng 2009). Methylation of 

arsenic is also known to be nutritionally dependant and requires glutathione (O'flaherty 

1998b). 

Measurements of bone arsenic concentration in modern populations have involved bones 

removed from autopsy or biopsy and can be considered analogous to the bone collection 

used in this project. Like lead, bone arsenic concentration appears to increase with age and 

correlates to iron, cadmium and manganese concentration (Brodziak-Dopierala et al. 2011; 

Kuo et al. 2000). Even these studies however, have little comparative material with which to 

juxtapose results, and data regarding modern bone arsenic concentration is often compared 

with archaeological data, which is unwise due to reasons discussed above. In this project, 

bone arsenic concentration will only be analysed against other non-archaeological studies.  

2.1.3.4 Antimony 

There is little data regarding human absorption of antimony. Yet the element is highly toxic, 

and in recent years, has been suspected as a factor in Sudden Infant Death Syndrome (SIDS) 

(Boex et al. 1998). Biomonitoring of chronic antimony exposure is generally conducted 

through analysis of human hair and nail tissue and the biokinetics is largely unknown. 

Despite this, it is known that antimony is incorporated into human bone tissue, and its 

subsequent release, especially in pregnant women, has been associated with neonatal 

antimony exposure. Uptake through the digestive system is thought to be low, due in part, to 

the fact that antimony is an emetic agent and generally causes vomiting and diarrhoea when 

ingested orally, which decreases the amount that is able to be absorbed (Filella et al. 2012). 

Most antimony is therefore generally inhaled in the form of particulate matter associated 

with air pollution. How much antimony is absorbed into the body from inhalation is 

unquantified and unclear. Studies involving the analysis of trace elements in bone do 

occasionally include antimony and as it is toxic, it is included in this research.  

2.1.3.5 Vanadium 

Though vanadium is not widely studied in bone tissue, it is considered a bone-seeking 

element and replaces phosphate in bone apatite (Etcheverry et al. 1984; Facchini et al. 2004). 

Vanadium seems to be preferentially stored in bone as compared to other tissues (Hansen et 

al. 1982). Some studies have reported that up to 85% of vanadium stored in the body is 

found in bone tissue, due in large part to the substitution of VO4
3¯

for PO4
3¯

, which appears to 

occur rapidly (Barrio and Etcheverry 2006).  
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2.1.3.6 Copper, Iron, Zinc and Magnesium  

Heavy metals and trace elements do not act on bone tissue as individual elements. The 

importance of the interaction between metabolic processes, essential elements and toxic 

elements cannot be understated. Deficiencies in essential trace elements may significantly 

increase the absorption and negative effects of heavy metals. In addition, nutritional 

deficiencies can cause negative effects on bone tissue even in the absence of toxic elements. 

The four elements copper, iron, zinc and magnesium are all essential trace elements, and are 

generally not toxic to adult humans, even at higher concentrations. They are included in the 

present research for four reasons:  1) they are indicative of nutritional deficiencies when 

found in very low bone concentrations, 2) they are known to interact with toxic elements in 

bone, 3) some toxic elements follow similar uptake pathways as these elements and bone 

concentrations may be correlated, and 4) they are critical to bone remodelling processes. The 

first reason will not be discussed in great detail in the present research as the focus of this 

project is on toxic elements. However bone concentrations of these elements were measured 

and are reported here, and will be discussed in relation to their impact on bone tissue and 

their interaction with toxic trace elements.  

Iron 

Iron is an essential nutrient that regulates red blood cell production and oxygen transport 

throughout the body. It is present in in the bone matrix and is likely incorporated there as a 

result of heteroionic exchange with calcium ions (Bauminger et al. 1985). Iron is also 

essential to proper bone formation. In animal models, chronic iron deficiency has been 

demonstrated to inhibit bone formation by interfering with osteocalcin levels and inhibits 

osteoclast activity (Katsumata et al. 2009; Roodman 2009). When combine with a low-

calcium diet, a lack of iron results in greater cortical bone density than lack of calcium alone 

(Medeiros et al. 2002; Medeiros et al. 2004). The same appears to be true in humans as well. 

Yanovich et al. (2011) studied female soldiers serving in the Israeli Defence Force, and 

measured both blood iron levels and stress fractures. The authors found that the prevalence 

of long bone stress fractures was higher in women who were also suffering from iron 

deficiency anaemia.  Studies of bone mineral concentration and bone mineral density in 

postmenopausal women also demonstrate a relationship between bone health and iron. Two 

distinct studies have found a positive correlation between iron intake and bone mineral 

density in this population (Harris et al. 2003; Maurer et al. 2005). The results of these studies 

suggest that iron is essential for the uptake of calcium into the bone matrix. It may also be 

the case that iron is necessary for the proper metabolism of Vitamin D, as iron deficiency is 

often associated with vitamin D deficiency (Lawson et al. 1999; Mcgillivray et al. 2007). It 

is known to interact with cadmium, and low blood iron concentration is correlated with 
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increased cadmium absorption, and Vitamin D may be the link. Studies of dietary Vitamin D 

and cadmium, found that cadmium uptake and the negative effect of cadmium on bone were 

increased in Vitamin D deficient animals (Uchida et al. 2010). However the relationship 

between cadmium and Vitamin D is subject to debate (Engstrom et al. 2009). 

Zinc 

Zinc is essential to the human body and is found in bone matrix. Bone is the largest tissue 

repository of zinc in the body (Murray and Messer 1981). Its uptake into bone tissue is likely 

via ion exchange with calcium within bone apatite (Matsunaga et al. 2010). Like lead, it is 

believed that the zinc found in bone tissue can act as an endogenous source, supplying other 

organs and tissues with zinc in times of dietary deficiency (Calhoun et al. 1978; Ohyama et 

al. 2002). Also similar to lead, bone zinc concentration is considered an adequate measure of 

zinc status (Bobilya et al. 1994). 

Several studies have demonstrated that zinc is essential to bone health. The element plays a 

vital role in the activity of osteoblasts, though the mechanism is not yet clear, and zinc 

deficiency is linked to poor bone remodelling and reduction in bone density (Cerovic et al. 

2007; Eberle et al. 1999). In menopausal women, and interestingly, in older men, zinc 

deficiency is linked to a significantly higher rate of bone fracture than in individuals with 

adequate zinc intake (Elmstahl et al. 1998; Gur et al. 2002; Mir et al. 2007).  

Zinc may also interact with copper to decrease bone density. A study of men with a high 

copper/zinc ratio (high serum copper and low serum zinc) had substantially lower bone 

density and mortality rate than men with a lower copper/zinc ratio (Gaier et al. 2012).  

Magnesium 

Magnesium is a serum electrolyte and is critical for human health, and specifically, bone 

health. Magnesium regulates both mineral and bone metabolism, and comprises and is 

necessary for the proper function of osteoblasts and osteoclasts (Sojka and Weaver 1995). 

Within the bone matrix itself, magnesium appears to regulate and inhibit hydroxyapatite 

crystal formation and 60% of the total body store of magnesium is found in bone tissue 

(Palacios 2006). Like other trace elements, magnesium ions are substituted for calcium in 

the bone matrix, though in the case of bone, this occurs preferentially (Laurencin et al. 

2011). In the absence of magnesium, the calcium crystals formed are larger and more brittle 

that otherwise, meaning magnesium regulates the brittleness of bone tissue (Sojka and 

Weaver 1995). Magnesium is essential for the normal metabolism of other essential trace 

elements including calcium, zinc, copper and iron, as well as toxic elements such as lead and 
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cadmium. Deficiency can result in reduced calcium uptake and subsequently, osteoporosis, 

iron accumulation within the body (to toxic levels) (Johnson 2001).  

2.1.3.7 Lead 

Because bone acts as a repository for trace elements to which humans are exposed, it is an 

excellent marker of chronic as opposed to acute exposure (Hu 1998; Hu et al. 1998). As the 

subsequent sections in this chapter will demonstrate, lead in bone is a biomarker by which to 

measure long-term lead exposure, but, more importantly, lead in bone is a significant source 

of lead in itself. This means that lead stored in bone has the potential to be released into the 

blood slowly as natural remodelling processes take place. Bone lead then, can cause clinical 

symptoms of lead toxicity years, even decades after the initial environmental exposure 

(Morrow et al. 2007).  

2.1.3.8 Bone lead uptake and concentration 

It is estimated that 90% of the lead in the human body at any one point in time is stored in 

bone tissue (Barry 1975). Lead appears to be preferentially incorporated into bone matrix 

heteroionically, and at the expense of calcium ions (O'flaherty 1998a). The amount of lead in 

bone varies in relation to the amount of individual environmental exposure, the rate of bone 

turnover, age and gender. In humans with no environmental lead exposure, such as the pre-

Columbian Southwest American Indians from the Pacific coast of North America (Patterson 

et al. 1991). These individuals had no known exposure to lead other than that in the natural 

environment. A mean concentration of 0.013μg·g
-1

 was reported in this population. When 

compared to the bone lead concentrations measured in individuals in Silesia, a highly 

industrial region of Poland, with an average of 3µg·g
-1

 in cortical bone, it is evident that 

anthropogenic sources of lead have had a substantial effect on human bone lead levels 

(Jurkiewicz et al. 2005). Lead levels have been recorded in the same region at over 200µg·g
-

1 in bone (Baranowska et al. 1995).  

These values mean little however, unless placed into the context of human health. It is 

important to understand the threshold at which bone lead concentration is considered 

potentially toxic. Studies of in vivo bone lead concentration have established the link 

between bone lead concentration and a host of associated morbidities. Bone lead levels as 

low as 5µg·g
-1

 have been associated with cognitive impairment in children and adults (Nevin 

2000; Van Wijngaarden et al. 2009; Weisskopf et al. 2004b). Additional research has found 

strong evidence of correlation between bone lead and conditions such as osteoporosis, renal 

disease and hypertension (Nash et al. 2004; Navas-Acien et al. 2008; Raafat et al. 2012).  
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2.1.3.9 Past exposure as a source of future exposure: endogenous lead. 

Among the most insidious aspects of bone lead is its release into the bloodstream years, even 

decades after the initial uptake into bone. Before bone lead biokinetics were fully 

understood, researchers identified a deficit between the amount of lead an individual was 

exposed to and the amount the same individual excreted. Among the first researchers to 

investigate the difference between lead intake and excretion was Kehoe et al. (1935) who 

assumed, in essence, that lead in roughly equalled lead out. Kehoe’s study used a “chemical 

correction” to correct for chemical loss, which was ascribed to analytical factors, but not 

lead uptake into any tissues. With the increasing use of isotopic tracers to track lead kinetics, 

this discrepancy became more apparent. Rather than finding any equilibrium between lead 

intake and excretion, isotope tracer studies demonstrated the existence of lead pools or 

repositories within the body.  By measuring the excretion rate of a specific lead isotope 

(generally radioactive isotopes such of lead), it was clear that lead did not clear the body 

quickly and that some lead appeared to not leave the body at all (Rabinowitz et al. 1976). 

These early tracer studies allowed the development of biokinetic models that could 

determine specific exchange rates and elimination rates of lead in human tissues, including 

bone. 

2.1.3.10 Lead as endogenous lead source and effects on blood lead 

In cortical bone, lead is stored within the inorganic matrix. Unlike lead in blood and other 

tissues, it is not possible to introduce chelating agents into the bone matrix to rid the body of 

bone lead. Lead in bone is released only as a result of natural osteoclastic remodelling, 

which occurs at different rates across an age/sex/health spectrum (Leggett 1993). As bone is 

remodelled, the lead bound in the matrix is released into the bloodstream. This occurs via the 

same mechanism that maintains calcium homeostasis between blood and bone.   

Rabinowitz et al. (1976) developed a three-pool model of lead intake and excretion after 

conducting a lead tracer study which identified a very slow disappearance of tracer lead from 

the bloodstream following cessation of tracer ingestion. The rate of tracer lead disappearance 

recorded by the authors was far slower than would be expected. The authors concluded that 

the slow, continuous release of lead into the blood stream from a bone lead pool must be 

responsible. Other researchers have found similar patterns, along with a “sluggish” response 

of blood to changes in lead source. In other words, a delay was identified between the 

ingestion or inhalation of a lead tracer and the dominance of that tracer in the blood stream 

(Rabinowitz 1991). Essentially, no matter what the acute lead exposure source, endogenous 

lead will generally account for some proportion of blood lead. After exposure to a given 

source, it will persist in the blood stream for approximately a month due to endogenous lead 

pools within the body (Rabinowitz 1998). To account for this when investigating excretion 
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rates, Rabinowitz et al.’s  (1976) three-pool model to explain blood lead concentration vis. a 

vis. external exposure. This model included inhaled lead, ingested lead and bone lead as 

three potential sources of blood lead. The model has been expanded to include differences in 

cortical and trabecular bone, and soft tissues.  

2.1.3.11 Half-life of lead in the body 

In a study of individuals suffering from chronic occupational exposure to lead, Hryhorczuk  

et al. (1985) investigated approximately 60 individuals with chronic occupational lead 

exposure and who were also suffering  from lead toxicity. Patients were removed from 

occupational exposure and administered chelating agents (calcium disodium edentate) to 

remove lead from the blood. The mean blood lead half-life was 619 days. In addition, 

workers with longer exposure periods had longer blood lead-half lives. In patients with renal 

impairment (due to lead poisoning), mean blood lead half- life was 1,907 days. Lastly, the 

authors note two key findings: 1) a positive association between blood lead half -life and age 

of the patient and 2) cessation of chelation therapy – even after acceptable reduction in blood 

lead levels – resulted in a substantial rebound increase in blood lead levels even with no 

return to occupational exposure. In some cases a return of clinical symptoms of lead 

exposure returned. Additional research has reported that endogenous lead is found in higher 

concentrations in blood plasma than in whole blood. This is a critical factor, as it is believed 

that lead in plasma is more diffusible within body tissues and is more dangerous than lead 

bound to red blood cells (Cake et al. 1996). This further suggests that endogenous lead is 

potentially more toxic than exogenous exposure. 

2.1.3.12 Quantifying the contribution of bone lead to blood lead concentration 

Chronic lead exposure creates an internal supply of lead that continues to release lead into 

the body long after environmental exposure has been removed or improved. In this way, lead 

exposure, even acute lead exposure has long term consequences on the health of exposed 

individuals. In an attempt to quantify the exposure risk associated with bone lead, 

Rabinowitz et al. (1991) developed a theoretical model that may allow for the approximation 

of blood lead concentration from bone lead concentration. The equation:  

)12( RRSC 
 

where C is a change in daily bone lead output (µg/day) from a change in bone turnover rate 

(1 unit/day) and where R1 is the initial rate and R2 is the new rate and S is the total skeletal 

lead mass (µg).  Using this value of C to quantify the corresponding change in blood lead 

concentration: 
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where B is the change in blood lead (µg/dL) associated with change in C, RB is the blood 

pool turnover rate (1 unit/day), and M is the volume of the blood pool.  

It is clear that the contribution of bone lead to blood lead concentration is dependent on 

knowing the rate at which bone remodels, and is dependent therefore on bone type, an 

individual’s age and sex and other factors. The above equations are at best, hypothetical. 

However, they do illustrate quite succinctly, the potential of bone to serve as an endogenous 

source of lead within the body, especially in populations with higher rates of bone turnover 

such as children and osteoporotic adults, and older individuals (as evident in Hryhorczuk et 

al). This hypothesis is borne out in the data – women, older individuals, those with higher 

rates of bone turnover do indeed appear to have higher blood lead levels as well, regardless 

of exposure. 

The O’Flaherty Model was devised by Fleming et al. (1999), to test and quantify lead 

kinetics in smelters with occupational exposure to lead. Similarly, to Rabinowitz and others, 

the O’Flaherty Model includes bone as an endogenous source of lead, and the authors 

separate bone into trabecular and cortical bone. But the model also further distinguishes 

between two types of cortical bone: metabolically active and quiescent. In the adult, 

remodelling processes affect lead kinetics in metabolically active bone. In quiescent, the 

authors posit that a slow exchange of calcium and lead ions occurs between bone and blood. 

In trabecular bone, only metabolic processes occur, as there is no quiescent bone. Taking 

into account both processes, (metabolic and exchange), The O’Flaherty model suggests that 

an individual with a tibia lead concentration of 100µg·g
-1 

will experience a continuous 

endogenous lead release of 16µg/dL.  

2.1.3.13 Evidence for bone-turnover related increases in blood lead 

Data gathered from the US Third National Health and Nutrition Examination Survey (US 

NHANES III), conducted between 1988 and 1994 provides the quantitative evidence that 

would support Rabinowitz’ hypothesis. Using NHANES data, Nash et al. examined blood 

lead levels in 2,575 pre- and postmenopausal women and controlled for factors such as the 

use of Hormone Replacement Therapy (HRT) and demographic variables (Nash et al. 2004).  

They concluded that bone density was a significant predictor of blood lead concentration. 

Pre-menopausal women had a mean blood lead concentration of 1.9µg/dL versus 2.7 and 

2.9µg/dL in surgically menopausal and naturally menopausal women. Moreover, women 

undergoing HRT, which is known to prevent an increase in bone turnover rates, had 
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significantly lower blood lead concentration than women not on HRT. Femoral bone density 

was inversely associated with blood lead concentration.  

Silbergeld et al. (1988) conducted a similar study on 2,981 women using NHANES II and 

reported similar results.  In this study, the authors made no correlation between bone density 

and blood lead. Only menopausal status was examined. Notably, both studies using 

NHANES data found that blood lead levels declined with the number of years since 

menopause. The authors do not proffer any explanations for this, but it is not unreasonable to 

suspect that the cause is the decrease in bone lead stores due to bone remodelling. Silbergeld 

et al. also note that increased bone lead may play a causal role in osteoporosis, due to the 

calcium interfering characteristics of lead.  

These findings have been confirmed in more recent studies in Korea. Using the Korean 

NHANES (2008-1009), Lee and Kim (2012a) also found that bone mineral density was 

significantly and inversely associated with blood lead concentration in menopausal women.  

2.2 Exposure pathways: the role of particulate matter in health and 

toxic metal intake 

Exposure pathways often have a role in an element’s toxicity. Inhaled metals can be 

particularly detrimental to human health as they are absorbed into the blood stream faster 

than ingested metals. In adults, who rarely suffer from conditions such as ingested lead from 

paint, inhalation of metals is often the most prominent exposure pathway. There is a 

substantial body of evidence that inhaled air pollution is highly damaging to health, though 

the mechanisms involved, and the determination of which combinations of elements is the 

most dangerous has yet to be determined (Davidson et al. 2005; Harrison and Yin 2000; 

Schlesinger and Cassee 2003). Overall exposure to air pollution is one of the major causes of 

morbidity and mortality worldwide (Lippmann et al. 2000; Ostro and Chestnut 1998; Son et 

al. 2012). Pope et al. (2002) conducted one of the largest studies of the health consequences 

of exposure to particulate matter (PM). The authors studied 50,000 individuals and their 

exposure to PM. They found that for every 10μg/m
3
 increase in PM exposure, there was a 

corresponding 4, 6 and 8% increase in all-cause mortality, cardiopulmonary mortality and 

lung cancer respectively. These results have been reported by many other authors worldwide 

(Laden et al. 2000; Patel et al. 2009; Son et al. 2012). Bell et al. (2009) studied the 

association between hospitalisation and PM  in 106 counties in America over a six year 

period. They report that counties with higher concentrations of PM  had higher rates of 

hospitalisations than other counties, even if the particulate matter concentrations were 

elevated in the short term.  
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The effect of PM on health highlights the fact that toxic metals do not act alone in harming 

human health. Where one element is present, a whole array of toxic and non-toxic elements 

are generally present as well, some mitigating and some magnifying the effects of other 

elements. Generally, toxic elements such as lead and manganese occur simultaneously in 

atmospheric pollution, resulting in a much greater threat to human health than one element 

acting alone.  

2.3 Toxic trace elements and health 

 Lead 2.3.1

Of all the possible environmental poisons humans face, lead is among the most destructive 

to the human body and also among the easiest to identify in skeletal remains. Humans have 

been processing lead for several millennia and the metal has been used in tableware, food 

storage, jewellery, decorations, industrial processes and childrens’ toys to name but a few. 

Since it was first discovered lead has been used substantially in most societies and its use 

continues today (Knudson and Stojanowski 2008). Whilst there is a minimum blood 

concentration considered acceptable in humans, there is no concentration that is considered 

“safe” for humans (Gavaghan 2002). Large-scale studies tracking the health of individuals 

over time has found that lead exposed individuals have higher mortality rates than non-lead 

exposed individuals (Lustberg and Silbergeld 2002; Menke et al. 2006).  

Bone lead concentration is of particular interest to public health researchers as isotopic 

studies have shown that, especially in older individuals, up to 60% of blood lead comes from 

lead that has been sequestered in bone following previous (up to decades) exposure (Barry 

1975; Gulson et al. 1995). This phenomenon may be particularly prevalent in women, for 

whom bone turnover and release of stored lead is higher than in males. Lead may also 

disrupt calcium and vitamin D-3 metabolism, causing differences in lead deposition and 

uptake between men and women (Berglund et al. 1999; Vahter et al. 2007). In almost all 

studies, bone, blood and soft tissue lead concentrations are higher in males than in females. 

Barry (1975) reports that in all soft tissues in males in which mean tissue lead concentration 

is 0.2μg·g
-1

 or greater, mean lead concentration was 30% lower in equivalent tissues in 

women.  

With regards to bone lead and total body lead burden, Barry has calculated that in an adult 

non-occupationally exposed male, aged 20-29, with a tibia lead concentration of 

approximately 7μg·g
-1

 will have a total body lead burden of approximately 63mg. The same 

study indicated that 90% of total body burden of lead is stored in bone tissue, with 70% of 

that in cortical bone. Schroeder and Tipton (1968) estimated that in an adult male, aged 70, 
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with a tibia bone lead concentration of 5μg·g
-1

 the total body burden of lead is as high as 

200mg.   

Among the primary disorders caused by lead exposure is neurological disease. Clinical, 

acute lead poisoning results in peripheral nerve pathology. In severe cases, symptoms 

include psychosis, confusion and loss of consciousness. Long term chronic exposure to lead 

may lead to confusion and memory deterioration and recent research has suggested that lead 

exposure may be a risk factor for the development of Alzheimer’s Disease (Jarup 2003; Loef 

et al. 2011; Prince 1998). Beyond this, long term lead exposure has been linked to 

Parkinson’s disease (Gorell et al. 1999b). Coon et al. (2006) in a case-controlled study found 

an increased incidence of Parkinson’s disease in individuals with high lead concentrations in 

the calcaneus and tibia.  

The relationship between bone lead concentration and bone mineral mobilization has been 

further established in studies investigating bone disease and lead. Adachi et al. (1998) found 

an association between bone lead concentration and osteopoenia and Paget’s disease. In 

addition, lead was found to increase osteoclastic resorption in animal models. Adachi et al. 

(1998) further found that individuals with metabolic bone disease had higher lead 

concentrations in cortical bone than individuals without bone disease. Release of bone lead 

into the blood stream may result in lead being absorbed by the body’s organs, which could 

have serious health implications for ostoeporotic women with past lead exposure 

(Theppeang et al. 2008a).  

Whilst lead is known to affect the health of adults, the effects of lead on children and infants 

is substantial, and it is important to include juvenile and infant bones in any archaeological 

study of the impact of lead on a population. Lead is able to pass through the placental 

barrier, and is transferred from mother to child before birth and after through breast milk 

(Vahter et al. 2007). Lead exposure in children is known to cause diminished intellectual 

capacity, even at the sub-clinical level (Ronchetti et al. 2006). Much of the damage may 

come from pre-natal lead exposure. Recent studies indicate that up to 75% of maternal blood 

lead during pregnancy comes from lead stored in the mother’s bone (Ronchetti et al. 2006). 

In essence this means that the effects of long-term lead exposure are multi-generational; a 

mother’s lifetime lead exposure has a direct impact on the health of her children.  

2.3.1.1 Neurological effects of lead exposure 

Children 

Exposure to lead during childhood has been demonstrated to have permanent negative 

effects on IQ, behaviour, mood and cognition. The potential link between lead exposure and 
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children’s intelligence was suggested in the 1970s though the link was considered somewhat 

controversial at the time (Lansdown et al. 1974). Since that time, the link between lead 

exposure in childhood and diminished intelligence has been established and is considered 

one of the most nefarious effects of lead on children’s health. Most early studies of lead 

exposure in children focused almost exclusively on acute lead intoxication and the 

subsequent symptoms, however, the link between lead and brain development was 

established by the 1940s. Byers (1943) studied 20 children with acute lead poisoning and 

reported that 19 of these children suffered permanent developmental delays and learning 

disabilities as a result.   

Among the methodological issues confronted by these early studies was the means by which 

lead exposure was measured, which was primarily blood lead concentration (Brycesmi and 

Waldron 1974). By the late 1980s, the dangers of long term low level exposure in children 

were being studied through the use of bone and teeth, as biomarkers of chronic exposure 

(Needleman and Bellinger 1987,  1991). Needleman and Bellinger (1991) investigated tooth 

lead concentration and children’s performance on an extensive array of cognitive tests. The 

authors report that the children with the highest tooth lead concentration scored the lowest 

on measurements of IQ, speech and language, and attention. Moreover, these children 

displayed the highest levels of non-adaptive (disruptive behaviour and lack of attention) 

behaviour in the classroom and the degree of non-adaptive behaviour appeared to be dose-

dependent based on tooth lead concentration.  

Bellinger et al. (1991) studied lead and academic performance in children and controlled for 

socioeconomic factors by including only children of high socioeconomic status. They found 

that children whose blood lead concentration was high (greater than 10µg/dL) at age 24 

months scored worse on cognitive tests at 57 months than children with lower blood lead 

concentration. Tests of children at ages 6 and 10 years found that lead exposure at 24 months 

had significant long-term effects on development and intellectual achievement (Bellinger et 

al. 1992). Additional research has confirmed these results and suggested that blood lead 

concentration at 24 month has a more significant effect on IQ than blood lead concentration 

at subsequent ages (Chen et al. 2005; Nie et al. 2011). These results have led to researchers 

calling for a the establishment of a threshold limit of 10µg/dL lead in blood as an 

intervention point (as opposed to a toxicity threshold) (Bellinger 2004). More recently, it has 

been established that lead affects children’s development at even lower levels than described 

above, indicating that there is no toxicologically “safe” concentration of lead in blood 

(Bellinger 2011; Jusko et al. 2008; Koller 2004; Needleman 2004; Schwartz 1994a). 
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In addition, pre-natal lead exposure has also proven to be significant in relation to children’s 

neurological development (Bellinger et al. 1987; Cory-Slechta et al. 2008; Gomaa et al. 

2002; Neal and Guilarte 2010; Needleman et al. 1984; Ronchetti et al. 2006; Wasserman et 

al. 2000). This would indicate that the mother’s environment and her bone lead 

concentration will impact the IQ and neurological development of her children. As bone lead 

is known to be released from bone into the bloodstream during pregnancy, a woman’s past 

exposure (up to 10 years) prior to pregnancy could be a significant source of pre-natal lead 

exposure (Gulson et al. 1997; Tellez-Rojo et al. 2004).  

Delinquency and lead exposure 

Recent research has shown a positive correlation between lead exposure in childhood and 

antisocial and delinquent behaviour in adolescence and adulthood (Nevin 2000). This 

relationship manifests itself in higher levels of aggression and impulsiveness among lead-

exposed children. Nevin (2000) tracked environmental and blood lead levels in American 

children and found a correlation between lead and crime statistics, noting that the cessation 

of leaded gasoline in the US was inversely related to violent crime. Haynes et al. (2011) 

found a similar relationship between environmental exposure and criminal convictions 

among teens in Ohio. Whilst there are many confounding variables that would affect this 

statistic, there has been much research in the past decade that has established a link between 

delinquency and lead. 

Needleman et al. (2002) conducted a case-controlled study of bone lead levels in adjudicated 

delinquents between the ages of 12 and 16, and compared them with bone lead levels of non-

delinquent adolescents of the same age group. The authors found that when controlling for 

covariates such as race and socioeconomic status, delinquents had significantly and 

substantially higher bone lead concentrations than non-delinquents at 15µg·g-1 and 1.5µg·g-

1 respectively. Other researchers have found similar trends (Abrahams et al. 2011; Liu 2011; 

Marcus et al. 2010; Nicolescu et al. 2010; Olympio et al. 2009; Olympio et al. 2010). Wright 

et al. (2008) have found that individuals with higher post-natal blood lead levels and whose 

mothers had higher pre-natal blood lead levels were more likely to be arrested for criminal 

activity later in life. Moreover, arrest rates for violent crimes were greater for each 5µg/dL 

increase in blood lead. Wright has subsequently found evidence that lead exposure in early 

childhood has permanent effects on adult behaviour, and that when controlling for other 

confounding variables, lead exposure in childhood can be positively correlated with 

psychopathy in adulthood (Wright et al. 2009). Lastly, in the months leading up to the 

completion of this thesis, Guilarte et al. (2012) have reported a positive association between 

lead exposure and schizophrenia.  
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These trends have broad implications not just for the field of criminology but for society as a 

whole (Bellinger 2011; Narag et al. 2009). From a purely social standpoint, even low levels 

of lead are positively associated with lowered IQ and criminal behaviour, both of which 

affect economic and social well-being (Landrigan and Goldman 2011; Schwartz 1994b). 

Research has shown that the economic gains that result from reduced lead exposure are very 

real (Grosse et al. 2002; Muennig 2009; Pichery et al. 2011; Tsai and Hatfield 2011).  

Adults 

Lead exposure in adulthood is thought to be equally detrimental to cognitive function. 

Whilst childhood lead exposure has been associated with decreased grey matter and brain 

volume, long term, chronic lead exposure has also been associated with decreased cognition 

and even Parkinson’s Disease in adults (Brubaker et al. 2010; Brubaker et al. 2009; Cecil et 

al. 2008; Coon et al. 2006; Weisskopf et al. 2010). Bandeen-Roche et al. (2009) found a 

positive correlation between bone lead concentration and hand-eye coordination in older 

(ages 50 to 70) adults. Additional research has demonstrated a correlation between bone lead 

correlation, drug abuse and cognitive function (Fishbein et al. 2008).  

Schwartz et al. (2007) has suggested that what is currently believed to be normal cognitive 

decline in adults may actually be the result of cumulative exposure to lead. Investigations 

into older adults with age-related Mild Cognitive Impairment and Alzheimer’s Disease 

reported positive correlations between both conditions and cortical bone lead concentration 

(Van Wijngaarden et al. 2009). Anecdotally, Weisskopf et al. (2004a) describe the 

association between cumulative lead exposure and cognitive impairment in two identical 

adult male twins, only one of whom had significant chronic lead exposure. That twin 

showed greater cognitive impairment with age than the non-exposed twin. In a study of over 

450 adult men, this relationship between chronic lead exposure (as measured by bone lead 

concentration) and cognitive impairment was found to be statistically significant (Weisskopf 

et al. 2004b). 

In the oldest males, endogenous release of lead into the bloodstream can cause cognitive 

decline years after exposure (Weisskopf et al. 2004b). Bandeen-Roche et al. (2009) found a 

clear association between persistent cognitive decline in terms of hand-eye coordination and 

verbal learning and memory and tibia lead concentration. The scale of this decline is 

presented in Fig. 2-1, below.  
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Figure 2-1. Decline in cognitive function with increasing tibia lead concentration. Solid line is 

baseline decline in function, dashed and dot-dashed lines are first and second follow up visits 

with the same individuals, demonstrating a persistent decline in cognitive function over time. 

From Bandeen-Roche et al. (2009).  

2.3.1.2 Cardiovascular health and lead  

Adults 

Lead is known to have detrimental effects on the human cardiovascular system, and is 

associated with hypertension, in both adults and children, as well as cardiovascular disease 

(Simoes et al. 2011). Among the strongest evidence of impairment of cardiovascular 

function is that linking lead exposure with hypertension (Lackland et al. 1992). Interestingly, 

there does not appear to be a correlation between blood lead and blood pressure, indicating 

that it may be chronic, as opposed to acute exposure that has the greatest effect on blood 

pressure (Cheng et al. 2001; Nawrot et al. 2002).  

Studies have investigated blood pressure and blood lead concentration, with mixed results 

(Cheng et al. 2001; Glenn et al. 2006; Nash et al. 2003). Bone lead concentration however, 

does appear to be associated with an increased prevalence of hypertension. Recent meta-

analysis has identified a correlation between bone lead concentration and hypertension 

(Navas-Acien et al. 2008). Among the ramifications for this trend on the present project, is 

the possibility of predicting whether or not an individual from the Pretoria Collection 

suffered from hypertension based on cortical bone lead concentration. Cheng et al. (2001) 

reported a significant hazard ratio of 1.7 (controlling for age, body mass index and family 

history of hypertension) between tibia bone lead and hypertension, indicating a causative 

effect. The authors report that lead levels from the lowest quintiles to the highest quintiles 

was positively associated with increased incidence of hypertension, suggesting that even low 
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levels of chronic lead exposure will affect blood pressure. This same correlation has been 

reported by other researchers (Korrick et al. 1999) . Wedeen (1988) has reported that 

bone lead concentration as low as 5μg·g
-1

 is associated with an increased risk of 

hypertension. This same correlation has been reported by other researchers (Korrick et al. 

1999).    

Other hypertension-related disorders are greater in lead exposed individuals than in non-lead 

exposed individuals. Hu et al. (1994) have reported an inverse relationship between 

haematocrit (the percentage of red blood cells in total blood volume) and haemoglobin (the 

iron-containing metalloprotein in blood which transports oxygen throughout the body) and 

bone lead, even when blood lead concentration was very low. Any bone lead concentration 

(from lowest to highest quintiles of bone lead), was associated with decreased haematocrit 

and haemoglobin. Again, this demonstrates a strong association with chronic lead exposure 

as measured by bone lead and cardiovascular health. It also underlines the growing 

consensus that blood lead, whilst an indicator if acute and very recent lead exposure, is not 

necessarily as strong and indicator of the health effects that occur as a result of lead 

exposure.  

Poreba et al. (2011) have recently reported that in individuals with hypertension, those who 

were also occupationally exposed to lead had a higher prevalence of left ventricular diastolic 

dysfunction and an increase in local arterial stiffness, than non-exposed individuals. These 

two pathologies both affect the heart’s ability to efficiently circulate blood.  

Children 

This relationship also appears to manifest during pregnancy, a particularly dangerous 

condition. Research has shown that bone lead concentration is a predictor of third-trimester 

hypertension.  Rothenberg et al. (2002) report that in pregnant women, for every 10µg·g
-1

 

increase in bone lead, the odds ratio of third trimester hypertension was 1.86. Hypertension 

in pregnancy can lead to both foetal and maternal mortality. As will been discussed in 

Chapter 3, black individuals in South Africa already appear to be predisposed to 

hypertension and maternal mortality is higher than in the white population (Rayner 2010; 

Stewart et al. 2011b). Chronic lead exposure among women may exacerbate these 

phenomena. In addition, pre-natal exposure to lead may contribute to high blood pressure in 

children (Zhang et al. 2012). It has been found that maternal tibia lead concentration is a 

predisposing factor to hypertension in girls, but not boys. Other research has found a 

negative association between pre- and post-natal blood lead concentrations and hypertension 

in children. Most notably, this relationship was significant for blood lead concentrations 

below 10µg/dL, indicating that even low levels of lead can affect blood pressure in children 
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aged 9.5 years (Gump et al. 2005). The correlation between blood lead concentration and 

blood pressure has been found in children as young as 5.5 years (Factorlitvak et al. 1996). 

As with adults, research examining the blood lead/hypertension relationship yields mixed 

results. Chen et al. (2006) found no association between blood lead concentration and blood 

pressure.  

Confounding the issue is the relationship between maternal lead burden and birth weight and 

birth weight and hypertension. There is an inverse relationship between maternal bone lead 

concentration and birth weight (Gonzalezcossio et al. 1997). In addition, for girls in 

particular, birth weight appears to be associated with hypertension, though there were 

differences in the mechanism of the association between girls and boys – in boys, lead 

appears to affect vascular resistance, and in girls, cardiac sympathetic activation 

(constriction of blood vessels) (Jones et al. 2008; Loos et al. 2001; Taylor et al. 1997; Te 

Velde et al. 2004). 

2.3.1.3 Other effects of lead 

Renal function 

Recent research has found a correlation between renal function and lead exposure, though 

this is currently subject to debate (Evans and Elinder 2011). Several studies have found 

evidence of renal dysfunction in lead exposed adults. In South Africa, Ehrlich et al. (1998) 

found a correlation between blood lead concentration and renal function, with an exposure-

response correlation between blood lead concentration and renal function. Sun et al. (2008) 

report similar findings in China.   

Lin et al. (2003) have quantified the relationship between renal function and lead in non-

diabetic adults. The authors report that for every increase of 100μg total body lead burden, 

there is a significant associated decrease in the glomerular filtration rate in the kidneys. Van 

de Vyver et al. (1988) also found increased bone lead concentrations in patients undergoing 

kidney dialysis.  

Oral health 

Dye et al. (2002) and Saraiva et al. (2007) using the NHANES III data found a positive 

correlation between periodontal bone loss and blood lead levels in over 10,000 individuals. 

The relationship was stronger in men than women. Arora et al. (2009) also found a positive 

correlation between tooth loss and bone lead in men. Lead has been associated with elevated 

incidence of periodontal disease, which has recently been discovered to be associated with 

heart disease (Saraiva et al. 2007). 
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Bone health  

Lead exposure is significantly correlated with bone density in both children and adults 

(Raafat et al. 2012). In children, lead exposure is associated with significantly reduced bone 

mineral density and increased skeletal maturity – both conditions which are prevalent in 

black South African children (Campbell et al. 2004; Hawley et al. 2012). In adults, both 

osteoporosis and osteopenia are positively correlated with lead exposure in both men and 

women (Raafat et al. 2012; Theppeang et al. 2008a; Vahter et al. 2002).  

 Arsenic 2.3.2

Arsenic is a highly toxic element often produced as a by-product of copper, silver and lead 

mining and until recent times, was widely used as a wood preservative and insecticide 

(Doyle 2009). It has been used medicinally for centuries and is known to have been used by 

Hippocrates. Arsenic sulphide was used in the 10
th

 century to treat skin lesions, syphilis and 

haemorrhoids (Lev 2010). Interestingly, arsenic is currently used in medicine in the form of 

arsenic trioxide in the treatment of leukaemia (George et al. 2004). In most parts of the 

world arsenic is ingested via contaminated water (Meharg and Raab 2010; Meliker et al. 

2006; Rahman et al. 2009; Ratnaike 2003; Tsai et al. 1999). Whilst the effects of ingesting 

high levels of exposure (approximately 300µg/L in drinking water) on the human body are 

well known, recent research has focused on the potential health effects of moderate to low 

rates of exposure (10 to 300µg/L) (Chen et al. 2009b). This research reveals that low to 

moderate arsenic exposure can cause skin lesions (pre-malignant), hypertension, 

neurological dysfunctions, and all-cause and chronic disease mortality. The study, of over 

20,000 individuals in Bangladesh, also noted that the skin effects of arsenic toxicity can be 

mediated by adequate intake of selenium and folate. 

Chronic arsenic toxicity manifests in almost all of the systems within the human body 

(Ratnaike 2003). Exposure to arsenic is known to be linked to increased incidence of 

cardiovascular disease, cancers of the lungs, urinary tract, and gastrointestinal tract 

(Tollestrup et al. 2003; Tsai et al. 1999). Long term chronic exposure is associated with liver 

disease and most notably, Blackfoot Disease, a type of peripheral vascular disease in which 

decreased circulation to the extremities, particularly the feet can lead to gangrene (Hall 

2002).  

2.3.2.1 Children 

Among the potential risks of exposure to arsenic in children is cancer. Investigations into a 

leukemia cluster among children in the US, as well as an arsenic contaminated copper 

smelting region, found high levels of arsenic in local water supplies, prompting researchers 

to suggest a link between the two (Chervona et al. 2012; Moore et al. 2002; Tollestrup et al. 
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2003; Tsai et al. 1999). Wasserman et al. (2011) found a correlation between cognitive 

development in children and arsenic exposure, though only at high levels of exposure. In this 

study the authors report reduced working memory and perceptual reasoning were impaired 

in children with exposure to high levels of arsenic. Pre-natal exposure to arsenic has been 

shown to induce liver pathologies and potentially chronic liver disease later in life in animal 

models, though this link has yet to be examined in humans (States et al. 2012). 

2.3.2.2 Adults 

Cardiovascular disease and arsenic 

Like lead, there is a growing body of evidence to demonstrate that arsenic affects blood 

pressure and is associated with hypertension (Abhyankar et al. 2012). More importantly, 

even low level arsenic exposure has been positively correlated with increase prevalence of 

cardiovascular disease in exposed communities. Gong and O’Bryant (2012) studied a 

population in rural Texas that is chronically exposed to low levels of arsenic. Controlling for 

any confounding factors, the authors report that coronary artery disease and hypertension 

were associated with low-level arsenic exposure (approximately 2 to 15µg/L in drinking 

water) and the prevalence of these diseases increased with increased exposure to arsenic. 

Additional research has also found a dose-dependent relationship between hypertension and 

arsenic exposure (Hossain et al. 2012). This dose-dependent relationship has been reported 

by Mazumder et al. (2012) in a study of exposed and non-exposed populations in India. 

Hypertension was significantly associated with exposure to arsenic in drinking water. The 

exact mechanism of the effect of arsenic on hypertension prevalence (and other diseases) is 

not clear (States et al. 2011). However recent research using animal analogues suggests that 

arsenic may increase inflammation in blood vessels and vascular hypertrophy, contributing 

to heart disease and hypertension (Ma et al. 2012; Sanchez-Soria et al. 2012). The role of 

arsenic in promoting vascular inflammation has been reported in humans as well (Wu et al. 

2012). In addition, arsenic may play a contributing role in prevalence of myocardial 

infarction (heart attack), though the mechanism is unclear (Afridi et al. 2011b). 

Most studies of arsenic and health measure arsenic exposure by investigating the 

concentration of arsenic in drinking water and associating this value with disease prevalence. 

Few studies have investigated the association between the concentration of arsenic in human 

tissues and disease prevalence. Mordukhovich et al. (2012) measured arsenic concentration 

in human tissue – toenails – and investigated the association between nail arsenic 

concentration and hypertension. These authors found a significant association between 

arsenic concentration and increased prevalence of hypertension, with some interaction by 

manganese.  
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It is difficult to relate tissue arsenic concentration and pathology, however several studies 

have measured bone arsenic concentration in exposed and non-exposed populations, and the 

rate of exposure of a given population can be extracted from this data. Wang et al. (1997) 

investigated bone arsenic and bone zinc and selenium concentration in patients with 

Blackfoot Disease and those without. The difference in bone arsenic concentration between 

the two groups was not substantial, however the difference in bone zinc and selenium were, 

with lower bone concentrations of these two elements associated with Blackfoot Disease. 

Like Chen et al. (2009) the authors surmise that zinc and selenium may inhibit the disease. 

Subsequent research has confirmed the mitigating effect of selenium on acute arsenicosis 

(Yang et al. 2002). This relationship has also been confirmed in animal models, in which 

mice supplemented with selenium had lower rates of arsenic induced carcinoma than non-

supplemented animals (Stepnik et al. 2009).  

 Cadmium 2.3.3

Cadmium is a highly toxic element that causes a number of pathologies and morbidity in 

humans (Dokmeci et al. 2009). Most notable among these is the effect of cadmium on 

human bone tissue and the bone disease Itai Itai Disease (literal translation in Japanese: 

Ouch Ouch Disease), so called because it was first identified in Japan and causes sufferers 

severe bone pain. Cadmium is also known to cause renal dysfunction and osteoporosis as 

well as pathologies relating to the prostate gland in men. Unlike lead, for which exposure 

level is generally monitored by bone or blood concentration, and arsenic, monitored by 

drinking water concentration, cadmium exposure is measured by urine cadmium output, 

however some researchers have pointed out that urinary cadmium may be increased as a 

function of kidney damage and could be misleading (Alfven et al. 2000; Alfvén et al. 2002). 

It is difficult then to compare studies of bone cadmium to urine cadmium and make 

meaningful comparisons, as just how urinary and blood cadmium concentration relates to 

bone concentration is unclear, however it is possible to glean exposure rate from bone based 

on previous comparative studies. In addition, the very presence of cadmium in bone is an 

indicator that an individual was exposed to cadmium during life.  

There is limited research regarding bone cadmium concentration and pathology. Noda and 

Masanoku (1990) however measured cadmium concentration in the iliac crest of patients 

diagnosed with Itai Itai Disease and report a mean bone cadmium of 1.9μg·g
-1

 compared to 

0.5μg·g
-1

 in controls.  

2.3.3.1 Cadmium and Itai Itai Disease 

Itai Itai disease is actually a combination of osteomalacia – a chronic softening of the bones 

due to improper mineralisation – and renal disease. The disease causes intense pain and 
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increased risk of fractures and was first identified in Japan after World War II (Nordberg 

2004). Whilst the individuals in Japanese studies were exposed to fairly high concentrations 

of cadmium, recent research has demonstrated that the effects of cadmium on bone 

mineralisation can occur at much lower rates of exposure than previously thought (Alfven et 

al. 2000; Jarup and Alfven 2004). Prior to the beginning of the 21
st
 century, it was widely 

held that urinary creatine (an indicator of cadmium excretion) output of 10nmol/nmol 

(cadmium/creatine) was the minimum or critical threshold for cadmium exposure below 

which renal disease would not occur. Recent research however has demonstrated that both 

kidney damage and risk of fracture occurred at much lower concentrations (Brzoska 2012; 

Brzoska and Moniuszko-Jakoniuk 2004; Jarup and Alfven 2004; Noel et al. 2004). Renal 

dysfunction occurs in conjunction with low bone density in cadmium exposed individuals. 

The half-life of cadmium is 10 to 30 years, and most of the bodily burden of cadmium is 

stored in the kidneys (Dokmeci et al. 2009). Kidney damage manifests in increased urinary 

protein, a symptom of kidney disease (Jakubowski et al. 1987).  

Kazantzis (2004) has reported decreased bone density and increased risk of fracture in 

women and loss of height in men with exposure as low as 1µg·g-1 cadmium concentration in 

urine. As discussed previously, the mechanism behind this is the interference between 

cadmium and calcium and phosphorus in bone mineralisation, as well as the interference 

between cadmium and the metabolism of vitamin D (Alfven et al. 2000; Chalkley et al. 

1998; Christoffersen et al. 1988).  Zhu et al. (2004) measured cadmium exposure and bone 

density among men and women in a cadmium-polluted region of China. The prevalence of 

osteoporosis in non-cadmium exposed women was 34 % compared to 52% in those exposed 

to cadmium. Subsequent research has reported similar findings, and cadmium exposure is 

considered a risk factor in osteopenia, osteoporosis and fracture (Afonso et al. 2009; Brzoska 

2012; Brzoska and Moniuszko-Jakoniuk 2004,  2005; Engstrom et al. 2012a,  2012b; Wu et 

al. 2010). The risk of low bone density and fracture is also more prevalent in men exposed to 

cadmium (Thomas et al. 2011). 

2.3.3.2 Cadmium and cancer 

Several studies have reported increases in mortality among cadmium exposed populations. 

In Japan, China and the United States and Europe, research has demonstrated that cadmium 

exposed individuals have higher mortality rates in general than the non-cadmium exposed. 

(Järup et al. 1998a; Kazantzis 1990,  1991; Menke et al. 2009; Nishijo et al. 2004). Whilst 

some of this increase in mortality is related to kidney disease, the role of cadmium as a 

carcinogen is also to blame (Järup et al. 1998a). Much of the cancer caused by cadmium is 

respiratory-tract-related. Jarup et al. (1998) noted that individuals occupationally exposed to 

cadmium had significantly increased rates of sinus and nasal cancers than the general 
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population. This research also found an increased risk of lung cancer among the cadmium 

exposed population, though this was not an exposure- or dose-dependent relationship. Data 

from the 1970s in the United States estimated that the adult mean daily intake of cadmium 

was 50μg per day (Fox 1979) and the WHO during the same decade estimated a provisional 

tolerable intake in humans at 57-81μg/day, above which clinical symptoms of toxicity would 

occur. 

Data from the NHANES III study indicate increase risk of mortality from cancers of the lung 

and pancreas as well as non-Hodgkins lymphoma in association with urinary cadmium 

(Adams et al. 2012b). Similar increase in cancers of the lung, ovaries and uterus were found 

in women in relation to urine cadmium, though the association was weaker. Further research 

examined a potential effect of cadmium exposure on breast cancer, though no association 

was found (Adams et al. 2012a; Asara et al. 2012). The association between cadmium and 

lung cancer is a significant one (Kazantzis 1987,  1989,  1990; Kazantzis and Lam 1986; 

Park et al. 2012). Kazantzis et al. (1988) conducted a five year study of  UK workers 

occupationally exposed to cadmium and found a substantial and significant increase in 

incidence of both chronic bronchitis and lung cancer.  

2.3.3.3 Cadmium and cardiovascular health 

Recent research has demonstrated a clear link between cardiovascular disease and cadmium 

exposure. Data from the Korean NHANES found that blood cadmium concentration was 

associated with an increased risk of cardiovascular disease with an odds ratio of 2.1 (Lee et 

al. 2011). Data from the US NHANES III found an association between urinary cadmium 

and heart attack. Individuals with urinary creatinine greater than 0.88µg·g-1 had an odds 

ratio of 1.86 for myocardial infarction compared to individuals with urinary creatinine of 

less than 0.43µg·g-1.  Cadmium is also significantly associated with hypertension. Eum et 

al. (2008) using the Korean NHANES 2005 data found that hypertensive individuals had 

significantly higher blood cadmium concentrations that those without hypertension and the 

relationship was clearly dose-dependent. Similarly, Al-Saleh et al. (2006) report that in 

Saudi women, individuals with blood cadmium concentrations above 0.627µg/L  were 

nearly four times more likely to be hypertensive than women with cadmium concentrations 

below this threshold. A 2010 meta-analysis of cadmium and blood pressure confirmed this 

relationship (Gallagher and Meliker 2010). 

2.3.3.4 Cadmium and prostate pathology 

Recent research has suggested a link between pathologies of the prostate and cadmium 

exposure. Zeng et al. (2004) report an increased prevalence of prostate pathology in 

cadmium-exposed men in China. The authors suggest that an increase in follicle stimulating 
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hormone in men with prostate pathology (as diagnosed by digital rectal exam) may be 

caused by hormonal interference by cadmium, which may go on to cause prostate cancer in 

these individuals. Aimola et al. (2012) have found evidence that cadmium causes apoptosis 

(cell death) in the epithelial cells of the prostate, suggesting that this may be a causative 

factor in cadmium-induced prostate cancer. Still, the mechanism behind the relationship 

between prostate cancer and cadmium remains unclear.  

 Manganese 2.3.4

Manganese is both an essential and a toxic element. It is necessary, in particular for proper 

development and maintenance of the skeletal and nervous systems. It is also an important 

antioxidant (Santamaria and Sulsky 2010). The recommended daily adequate intake of 

manganese in adults and adolescents is between 2.0 and 5.0 mg/day which is obtained 

entirely through diet (Iom 2001). Generally, manganese absorption is about one to 3% of 

total dietary intake, the rest is excreted via urine (Boyes 2010; Santamaria and Sulsky 2010). 

Manganese in excess quantities is a potent neurotoxin, particularly in children. This is 

particularly true of inhaled manganese. To date, there is little evidence to suggest that toxic 

levels of manganese can accumulate in the body through ingestion. Numerous studies have 

been conducted involving the dietary supplementation of adults with manganese, up to 

15mg/day, with no adverse effects (Finley et al. 1994). Clinical manganese neurotoxicity, 

however is evident at airborne manganese concentrations greater than 1.0 mg/m
3
, indicating 

that inhaled manganese affects the body differently, though the mechanism is still unclear 

(Santamaria and Sulsky 2010).  It is also unclear what effect or interaction ingested or 

dietary manganese has with inhaled manganese. What is known is that inhaled manganese 

adversely affects neurological, pulmonary and reproductive function in exposed adults and 

children (Boyes 2010).  

Manganese is generally biomonitored in blood, however hair, nail and bone manganese are 

indicators of chronic exposure (Smith et al. 2007; Sriram et al. 2012; Zheng et al. 2011). 

Some studies have purported that it is unclear as to the relationship between blood and urine 

manganese and airborne manganese, however blood manganese concentrations in 

individuals working in areas with high levels of airborne manganese do tend to be 

significantly higher than those in low-airborne manganese areas (Lucchini et al. 1999). 

Though the exposure/tissue uptake may not be clear, it is still possible to biomonitor 

manganese exposure through human tissue concentration.  

Recent research has brought to light the suitability of bone tissue with regards to 

biomonitoring. As with lead, manganese is stored in bone (though not to the same degree) 

and the use of bone for assessing long term exposure. Smith et al. (2007) have stressed that 
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there may be a complex relationship between blood manganese and exposure that may be 

confounded by the mechanism of exposure or the latency of exposure, rendering blood 

manganese concentrations difficult to interpret. It is possible that bone manganese is a more 

accurate measure of chronic exposure than blood, plasma or urine (Aslam et al. 2009; Aslam 

et al. 2008; Pejović-Milić et al. 2009). Unlike lead, there is no established bone manganese 

concentration at which concern or intervention is warranted.  

Manganese is thought to affect neurological development and the central nervous system by 

interfering with the function of the neurotransmitter dopamine (Aschner and Aschner 1991; 

Butterworth et al. 1995; Normandin and Hazell 2002; Verity 1999). Manganese may 

accumulate in the central nervous system resulting in increasing damage with long-term 

exposure (Rivera-Mancia et al. 2011). Recent research has demonstrated that both inhaled 

and ingested manganese has a significant effect on intellectual function in children (Riojas-

Rodríguez et al. 2010; Sharma 2006). There is still debate as to the level at which 

manganese exposure becomes dangerous to children’s neurological development and caused 

impairment. Recent research suggests that manganese levels commonly found in tap water, 

approximately 34µg/L, is enough to cause a reduction in IQ (Bouchard et al. 2011). 

Manganese is also known to affect sight and can cause night blindness in exposed children 

(Afridi et al. 2011c). Manganese is associated with neurological and liver pathologies in 

adults (Butterworth et al. 1995; Laohaudomchok et al. 2011).  

Manganese affects human health at the acute level (manganism), and the chronic, sub-

clinical level. Acute exposure is generally characterised by severe neurological disturbance 

and with Parkinson’s like pathology (tremors, loss of coordination, motor skill deficits) 

whereas chronic exposure can result in milder motor skills deficits and mood disturbances.  

2.3.4.1 Manganese neurotoxicity in children 

There is substantial evidence regarding the toxic effect of excess manganese on the 

neurological development of children. Interestingly, much of this research is very recent, and 

comes on the heels of the WHO’s (World Health Organisation) discontinuation of water 

manganese concentration guidelines. Until 2011, the WHO maintained guidelines 

recommending an upper limit of manganese at 400µg/L in drinking water (Frisbie et al. 

2012). Researchers have suggested that this value was too high, and that damage to 

individual health occurs at concentrations far below this, as was demonstrated by Bouchard 

et al. (2011). Rates of exposure as high as 400µg/L have been positively associated with a 

host of neurological and psychosocial deficits (Bouchard et al. 2007). Kahn et al. (2011) 

found that schoolchildren with higher rates of exposure were associated with increased 

incidence of anti-social behaviour including impulsivity, aggression and irritability. Chung 
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et al. (2011a; 2011b) also report an increased prevalence of Attention Deficit Disorder and 

behavioural problems among manganese exposed children. In addition, manganese has been 

shown to affect the motor skills of exposed children (Hernandez-Bonilla et al. 2011; Takser 

et al. 2003). In infants exposed to manganese in utero, the effects of the element may have 

long term consequences. The concentration of manganese in the cord blood of newborns was 

negatively associated with psychomotor function at three and six years of age (Takser et al. 

2003). In addition, foetal exposure to manganese may adversely affect birth weight (Zota et 

al. 2009). 

Subsequent studies have found that children consuming water with a manganese 

concentration in excess of 400µg/L demonstrated a substantial decrease in mathematical 

aptitude (Khan et al. 2012). Menzes et al. (2011) found that blood manganese concentration 

and hair manganese concentration are negatively associated with IQ, particularly verbal 

skills, in children living near a metal smelting plant in Brazil. The neurological effects of 

manganese have been shown to occur along a continuum of exposure and severity. Lower 

exposure rates are associated with neurological and cognitive pathology which are less 

severe at low manganese exposure and increase in severity as exposure increases (Collipp et 

al. 1983; Mergler et al. 1999).  

2.3.4.2 Manganese neurotoxicity in adults 

As with lead, manganese significantly affects the neurology of adults. Gorrell (1999a) has 

reported an increased incidence of Idiopathic Parkinson’s Disease (IDP) among individuals 

exposed to manganese for more than 20 years. After this time, the odds ratio of developing 

Parkinson’s for manganese exposed individuals was 10.61. Subsequent research has 

suggested that manganese plays a role in the development and onset of IDP (Martin 2006). 

In a recent study of manganese exposed welders, 42% suffered tremors, 60% suffered 

numbness, 65% excessive fatigue, 79% sleep disturbances, and 53% suffered from 

depression. A further 18% suffered from toxic hallucinations associated with long-term 

manganese exposure. The mean blood manganese concentration in this study group was 

10µg/dL (Bowler et al. 2007). Moreover, manganese exposure in adults is associated with 

Parkinson’s-like motor skills deficits and possibly with mood disorders, even at relatively 

low exposures (Laohaudomchok et al. 2011). These deficits, particularly the IDP tremors are 

irreversible (Levy and Nassetta 2003). Bowler et al. (2006) reported mood disturbances, 

including anxiety, depression and confusion and neurological effects including deficits in 

motor skills, visual tracking, verbal proficiency and memory among welders occupationally 

exposed to manganese. These effects are particularly pronounced in older men and with 

increasing manganese exposure (Bowler et al. 1999).   
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 Vanadium 2.3.5

Vanadium has recently been established as an essential ultra-trace element in humans, 

however like manganese, it is toxic in higher concentrations. Vanadium is also essential for 

bone maintenance and has very recently been examined as a potential treatment for diabetes 

due to its insulin-like effects on glucose (Badmaev et al. 1999; Poucheret et al. 1998). Little 

is known about the specific mechanisms of vanadium toxicity. Vanadium is a common 

element found particulate matter resulting from industrial activities and transportation 

emissions (French and Jones 1993). Vanadium may be of special concern in South Africa, as 

the country is a major producer of vanadium.  

The level and degree of vanadium essentiality and toxicity has not been established in 

humans, and no threshold dose by which to measure toxicity is available. In the past decade 

it has been established that vanadium may be a potent carcinogen, particularly in its 

pentavalent form (most commonly found in nature and used industrially) (Assem and Levy 

2009; Chen et al. 2001; Montiel-Davalos et al. 2012). In its inorganic form, vanadium in 

high doses can cause gastrointestinal discomfort and liver and kidney toxicity (Srivastava 

2000). Among the unknown issues with use of vanadium as a therapeutic agent is its 

established affinity for bone. Much like lead, vanadium is a bone-seeking element and is 

sequestered in bone tissue in much the same way. In addition, vanadium is stored in and 

toxic to kidney tissue (Parker and Sharma 1978). Studies in rats have found that in otherwise 

normal and healthy rats, the ability to learn new tasks is diminished with vanadium 

administration (Sanchez et al. 1998). Still other studies have found that in animal analogues, 

vanadium increases bone density in diabetic and non-diabetic subjects and its accumulation 

appears to have no toxic effects (Chiu et al. 2006a; Chiu et al. 2006b; Facchini et al. 2004; 

Facchini et al. 2006).  

Environmental vanadium exposure may be toxic to humans when inhaled in particulate 

matter (PM) (Woodin et al. 2000). The primary effect of inhaled vanadium may be 

pulmonary disease and inflammation, potentially in the presence of nickel (Campen et al. 

2001; Dominici et al. 2007; Lippmann et al. 2007; Rice et al. 2001). In 2009, Bell et al. 

(2009) examined hospital admissions on one day (per year) in 106 U.S. counties between 

1999 and 2005. This data was examined against total atmospheric PM, both fine and course 

(PM2.5 and PM10), in each county on the same day. The authors found an association 

between hospitalisation and vanadium and nickel in ambient air particles. Those counties 

with higher vanadium and nickel concentrations in PM had greater hospital admissions for 

respiratory complaints than counties with lower atmospheric vanadium and nickel 

concentrations.  
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Patel et al. (2009) found a similar trend among children from birth to age 24 months in New 

York City seen at a local hospital for cough and wheeze. The authors report that total PM2.5 

concentration in ambient air was not associated with either symptom but that both nickel and 

vanadium concentration of PM was.  

 Antimony 2.3.6

The toxicity of antimony is not well understood. Antimony is frequently associated with 

arsenic, environmentally, and it is difficult to determine the toxic effects of antimony as a 

result (De Boeck et al. 2003). The element is suspected to be both carcinogenic and 

genotoxic, though this remains unclear (Gebel 1998; Léonard and Gerber 1996; Winship 

1987). Most interestingly, despite its likely carcinogenic properties, antimony may 

potentially reducing the genotoxic effects of arsenic (Gebel 1998).  

2.4 Sex differences in the toxicity of metals 

Confounding the investigation of the health effects of toxic metals in humans is the role that 

biological sex plays in the uptake, metabolism and consequences of these elements. Toxic 

elements can affect men and women quite differently. The differences in health effects can 

be the result of dietary differences and cultural practices (such as occupation, smoking 

prevalence, alcohol consumption). In addition, the differences in the physiology and life 

history between men and women play a role in the effect of metals on health. For example, 

the reduction in hormones caused by menopause causes increased bone turnover in women, 

which in turn, mobilises bone lead back into the bloodstream. As women age the release of 

endogenous lead in causing clinical and subclinical symptoms of lead exposure increases. 

Men, who experience lower rates of bone turnover as they age, are less at risk of endogenous 

lead exposure than women.  

Recently, the role of sex and gender has begun to be explored in the investigation of toxic 

element exposure (Arbuckle 2006; Clougherty 2010). As Clougherty (2010) demonstrates, a 

literature search of key words relating to air pollution and respiratory and health effects 

shows that in a majority of published studies, the reported health effects of environmental 

toxins affect women and girls more than men and boys. It has become clear over the past 

decade that toxic metals affect men and women differently, yet much remains unknown 

about sex and metal metabolism and exposure. What is abundantly clear from these 

differences, is that any analysis of toxic element exposure and the probably effects on health 

must be examined within a sex-specific framework, if the data is to be interpreted in a 

meaningful way.  
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 Lead 2.4.1

Lead toxicity is evident in bone tissues and may affect women and children more acutely 

than men (Vahter et al. 2007). Paradoxically, lead exposure tends to be higher in men than in 

women, even in occupational settings (Popovic et al. 2005). As was discussed in previously 

in this chapter, lead is thought to displace calcium cations in the bone matrix, leading to 

weakening of bones, delayed healing and osteoporosis (Carmouche et al. 2005; Pounds et al. 

1991; Vahter et al. 2007). There is also sufficient research to suggest that women may be 

more susceptible to the effects of lead in the body due to hormone-related changes in bone 

density and bone mineral mobilization during pregnancy and menopause. This research will, 

in part, investigate bone lead concentrations in women in order to contrast with recent in 

vivo studies of bone lead in modern women and its effect on health at the clinical and sub-

clinical level (Adachi et al. 1998; Theppeang et al. 2008a; Vahter et al. 2007).  

In utero, there is currently evidence that lead exposure affects boys more significantly than 

girls. Jedrychowski (2009) has demonstrated that by 36 months of age, pre-natal lead 

exposure is significantly and inversely related to cognitive development, more so than for 

girls. This relationship was evident at low exposure levels (maternal blood lead 

concentration) of less than 5µg/dL.  

 Cadmium 2.4.2

Itai Itai disease was originally considered a women-specific disease, and women appear to 

be affected by the disorder in greater numbers than men (Vahter et al. 2007). It is believed 

that this is due to greater gastro-intenstinal absorption of cadmium in women when bodily 

iron stores are low, a well-documented phenomenon (Kippler et al. 2009; Lee and Kim 

2012b; Vahter et al. 2007). Vahter et al. further point out that despite Itai Itai disease 

garnering the label as a “women’s” illness, little sex-specific research has been conducted 

since the identification of the disease.  

The cardiovascular effects of cadmium also appear to manifest differently in men and 

women. Despite links between cadmium and myocardial infarction (MI), or heart-attack, and 

cadmium and cardiovascular diseases, each condition only manifested in one sex. The 

urinary cadmium MI association brought to light by the NHAHES III data is only significant 

for women (Everett and Frithsen 2008). Conversely, the relationship between blood 

cadmium and prevalence of cardiovascular disease found in the Korean NHANES was only 

significant in men (Lee et al. 2011). In some cases, particularly in regards to cadmium 

exposure, the data is somewhat contradictory (Akesson et al. 2005; Jin et al. 2004). Ferraro 

et al. (2012) report higher rates of cardiovascular mortality in cadmium exposed women 

using data from NHANES.  In addition, whilst research suggests that blood cadmium 
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concentration tends to be higher in men, cadmium is more significantly associated with 

cardiovascular risk in women than for men. This may indicate that women are more 

physiologically more susceptible to cadmium toxicity than men even at lower doses (Olsen 

et al. 2012).  

 Manganese 2.4.3

Sex may also play a role in manganese uptake and toxicity however this is thought to be 

primarily a function of iron status. Iron deficiency is generally associated with women, 

which has led researchers to conclude that iron status and manganese uptake may be higher 

in women (Finley et al. 1994). Other research has suggested that men are more susceptible to 

the neurotoxic effects of manganese (Mergler et al. 1999). 

 Arsenic and antimony 2.4.4

Some studies have suggested the presence of sex-related differences in arsenic and antimony 

uptake between men and women (Buchet et al. 1996; Gebel et al. 1998). Both Buchet et al. 

and Gebel et al. report higher urinary arsenic excretion in men than women in Belgian and 

German populations respectively, which is ascribed to higher uptake due to greater 

exposure. It is also possible that there are differences in arsenic metabolism and 

toxicokinetics of arsenic between men and women. Likewise, Gebel et al (1998) also report 

greater antimony burden in men. 

Conversely, Berglund et al. (2011) report higher urinary arsenic concentrations in the tissues 

of women (along with cadmium and manganese) than in men in Bangladesh. These authors 

also report that women in this population had lower urinary concentrations of essential 

elements including calcium, magnesium and zinc, indicating that nutritional status among 

women may be worse than men. The poorer nutritional status of women may account for the 

increased uptake of toxic elements in this population, including arsenic.  

2.5 Toxic element interactions 

There is a significant amount of interaction between elements in the human body. 

Interactions between essential elements and toxic elements have been discussed in regards to 

element uptake and metabolism. However these elements also interact to exacerbate or 

mitigate the health effects of one another. In some cases, it is unclear how these interactions 

occur and which element may be acting upon the other, however most of the elements of 

interest in this project do interact in ways that have clear consequences for health. 

 Manganese, lead and cadmium 2.5.1

The interaction between lead and manganese may contribute to human morbidity more than 

either element. Manganese may increase the effects of lead toxicity. Studies of children 
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exposed to lead found that those who had high blood manganese levels showed greater 

levels of neurotoxicity than those with lower manganese exposures (Henn et al. 2012). Kim 

et al. (2009) investigated the association between manganese and lead in children’s 

intelligence. The authors report that in children with blood manganese levels above 14µg/dL
-

1
, IQ and verbal IQ were significantly associated with blood lead concentration, whereas 

children whose blood manganese was below 14µg/dL
-1

 did not show a lead/IQ relationship. 

This indicates that manganese may significantly alter the neurotoxic effects of lead in 

exposed children.  

Studies of individuals who have suffered multiple myocardial infarctions (MI), or heart 

attacks, have shown that prevalence of MI is associated with increased blood levels of lead, 

arsenic and cadmium and the levels of these elements were significantly higher in MI 

sufferers than in a control group. Moreover, the levels of these elements were highest in the 

group suffering three MI incidents (Afridi et al. 2011b). These same three elements have 

also been shown to be significantly higher in the scalp hair of individuals with diabetes 

mellitus than in those without (Afridi et al. 2008). 

2.6 Essential elements and toxic elements 

 Magnesium 2.6.1

Magnesium is a bone-seeking, essential trace element and 50% of the body total body 

volume of magnesium is stored in bone (Elin 1988). Worldwide, magnesium deficiency is 

not uncommon (Elin 1988; Johnson 2001; Reinhart 1992). It appears to be particularly 

sensitive to alcohol and it is well established that even moderate consumption of alcohol can 

disturb magnesium metabolism, resulting in decreased absorption and overall deficiency 

(Afridi et al. 2011a; Kärkkälnen et al. 1988; Lieber 1988; Romani 2008; Rylander 2001). 

Excess body fat and excess salt intake, Vitamin D deficiency are also known to disrupt 

magnesium metabolism and result in deficiency of the element in humans (Johnson 2001). 

The three elements, magnesium, calcium and lead appear to have an antagonistic 

relationship with regards to uptake and deposition on the uptake of each element into bone 

tissue (Todorovic et al. 2008). Research has demonstrated that lead toxicity may be more 

acute in the presence of magnesium deficiency (Anetor et al. 2007). The primary mechanism 

by which magnesium may result in increased lead deposition in bone tissue may be related 

to the relationship between magnesium and calcium. Magnesium deficiency is associated 

with decreased calcium uptake into bone tissue and increased risk of osteoporosis (Gur et al. 

2002; Mutlu et al. 2007; Odabasi et al. 2008; Sojka and Weaver 1995). It is believed that 

magnesium deficiency may cause increased bone turnover, which releases endogenous lead 
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into the blood stream. In addition, because lead is a bone seeking element and is readily 

absorbed into bone tissue in place of calcium, the effect of magnesium in the metabolism 

and uptake of calcium is a critical factor in lead uptake.  

In the absence of magnesium, calcium uptake may be decreased and lead uptake increased. 

Magnesium is also required for proper elimination of lead via the kidneys and deficiency 

results in less lead excretion from the body following exposure (Johnson 2000). In both 

animal and human studies, reduced magnesium intake was significantly associated with 

higher tissue lead uptake and toxicity (Ahamed and Siddiqui 2007; Herman et al. 2009; 

Jamieson et al. 2005; Lech 2002; Todorovic et al. 2008; Tonelli et al. 2009). In studies of 

children with neurological disorders thought to be caused by lead intoxication, an inverse 

relationship between lead and magnesium was identified. Low magnesium/lead ratios may 

indicate that magnesium deficiency may increase uptake of lead into human tissues (Lech 

2002). Other research has confirmed this relationship in animal models and it has been 

hypothesised that lead may supress the uptake of calcium, zinc and magnesium (Todorovic 

et al. 2008). 

Magnesium also interacts with cadmium. There is evidence that cadmium prevents 

magnesium absorption in the gastro-intestinal tract and that cadmium excretion in urine is 

associated with increased magnesium excretion (Järup 2002). Conversely, magnesium 

supplementation may reduce cadmium absorption. Magnesium has a two-faceted 

relationship to cadmium in that it plays a role in cadmium elimination and toxicity, but 

magnesium metabolism appears to be disturbed by the presence of cadmium (Matovic et al. 

2010).  

 Zinc 2.6.2

Zinc interacts with several toxic trace elements, including lead however the interaction 

between cadmium and zinc is the most clearly understood. Like magnesium, zinc deficiency 

is prevalent throughout the world and due to the numerous functions the element plays in the 

body, deficiency can result in severe impairment to many metabolic processes in humans 

(Brown et al. 2001; Hambidge 2000). Zinc plays an important role in the formation of bone 

and deficiency can cause a reduction in bone density and osteoporosis (Brown et al. 2001; 

Eberle et al. 1999; Elmstahl et al. 1998; Mir et al. 2007; Mutlu et al. 2007; Yamaguchi 

1998).  

Recent research has demonstrated that lead uptake into bone tissue is increased during 

marginal zinc deficiency in rats. The same study, however found that zinc deficiency did not 

reduce lead toxicity (Jamieson et al. 2005). Other research has contradicted this showing no 
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increased cytotoxicity in lead administered rats in the absence of zinc, indicating that the 

relationship between zinc and lead toxicity may be limited to specific organ systems (Piao et 

al. 2007).  

Zinc is also a potent antioxidant and may play a significant role in the metabolic elimination 

of arsenic and cadmium, with zinc-deficient individuals less able to methylate arsenic, in 

particular (Patrick 2003). Rats fed a diet deficient in both zinc and iron demonstrate a 

substantial increase in cadmium uptake than those fed standard diets, further indicating that 

zinc (and iron) may be critical to the body’s elimination of cadmium (Reeves and Chaney 

2002).  Zinc homeostasis is believed to be disrupted by the presence of cadmium (Jarup 

2002; Noel et al. 2004). The mechanism behind this is believed to be the role of zinc in the 

production of metallothionein, which is responsible for the elimination of cadmium (Patrick 

2003). Inadequate synthesis of metallothionein due in part, to zinc deficiency, may cause the 

release of cadmium into body tissues where it can cause damage, not just to bone, but to 

other organ systems as well. Moreover, in the absence of zinc, cadmium may replace it in 

metallothionein, which may increase the rate of uptake into the body (Goyer 1997). 

 Iron 2.6.3

Iron is known to interact with cadmium, and low blood iron concentration is correlated with 

increased cadmium absorption, and vitamin D may be the link. Studies of dietary vitamin D 

and cadmium, found that cadmium uptake and the negative effect of cadmium on bone 

(severity of Itai-Itai- Disease) were increased in Vitamin D deficient animals (Uchida et al. 

2010). However the relationship between cadmium and Vitamin D is subject to debate 

(Engstrom et al. 2009). Other studies seem to confirm a potential indirect relationship 

between iron and cadmium, and have demonstrated that increased dietary intake of iron 

reduces the uptake of the cadmium metallothionein (Groten et al. 1992). The relationship 

between low serum iron concentration and blood cadmium concentration has been shown to 

be an inverse one, though the implications of this in regards to cadmium uptake in to other 

tissues is not yet clear (Lee and Kim 2012b). 

Iron deficiency has also been associated with increased lead absorption and uptake from the 

intestinal tract (Elsenhans et al. 2011; Goyer 1995; Goyer 1997; O'flaherty 1998b). Iron 

deficiency and lead exposure are often linked socioeconomically, with the poorest 

individuals, usually children, exposed to higher rates of lead and suffering from poor diets 

and inadequate intake of iron (Yip 1989; Yip et al. 1981a,  1981b). It is thought that the 

uptake of lead is not linked to blood iron concentration but the production of red blood cells. 

Choi et al. (2003,  2005) studied blood lead and body iron stores in children and adolescents 
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and found that blood lead increased not as a function of the reduction of blood iron but as a 

function of erythropoiesis during iron deficiency.  

Whilst most of the studies of lead and iron have concerned the relationship in children, the 

relationship between the two elements is also evident in adults. Kim et al. (2003) examined 

iron and lead status in lead workers and non-lead workers in Korea. They report that lead 

workers had significantly lower hemoglobin, hematocrit, serum-iron levels than non-lead 

workers. These findings have been both confirmed and rejected elsewhere (Alabdullah et al. 

2005; Karita et al. 2005; Keramati et al. 2010). However  it has been pointed out that studies 

that have rejected the association between lead and iron have focused on different iron 

measurements such as total blood iron, which may be leading to false-negative results 

(Kwong et al. 2004). With regards to bone iron and bone lead, few studies have sought to 

establish a relationship. Hu et al. (1994) report a significant negative relationship between 

trabecular bone lead and haemoglobin, with no concurrent relationship between blood lead 

and haemoglobin. The authors conclude that release of lead from bone may be responsible 

for decreased iron uptake.  

Iron also interacts with manganese (Aschner and Aschner 1990; Mena et al. 1969; 

Rossander-Hultén et al. 1991; Smith et al. 2012). Studies in rats and mice have demonstrated 

that animals deficient in iron have higher uptake of manganese, and the mechanism is 

believed to be iron’s ability to reduce manganese absorption into mucosal cells of the 

gastrointestinal tract (Davis et al. 1992). A study of humans from the Korean National 

Health and Nutrition Survey Examination (NHANES) also found that individuals with 

decreased iron status had higher blood manganese concentrations than individuals who were 

not deficient in iron (Kim and Lee 2011). However, this relationship may not be detrimental 

to health. In small quantities, the increased uptake of manganese during iron deficiency may 

actually protect the brain. Kim et al. (2012) found that in iron-deficient individuals, 

manganese may improve motor function deficits brought about by lack of iron.  

 Copper 2.6.4

Copper is an anti-oxidant that is essential to human health. It is generally ingested through 

food intake and is absorbed via the gastro-intestinal track by binding to metallothionein 

(Burch et al. 1975). Copper d is rare and generally occurs only in infants and those receiving 

long-term parenteral nutrition (Williams, 1983). Copper interacts primarily with zinc, which 

has been demonstrated to have an inhibitory effect on copper uptake in humans (Valberg et 

al. 1984; Yadrick et al. 1989). In addition, copper may play an important role in facilitating 

iron absorption (Tapiero et al. 2003). With regards to toxic elements, several studies have 

shown that copper, in conjunction with zinc and iron may play a protective role against 
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uptake of lead in animals (Klauder and Petering 1975,  1977; Petering 1978). Copper may 

also interact with both lead and iron. In animal models, rats given high doses of lead 

developed anaemia. This is believed to be secondary to depressed copper intake, which in 

turn, interferes with iron uptake (Klauder and Petering 1977). Copper uptake may also be 

depressed in the presence of cadmium (Petering 1978).  
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3 Health and demography and race in apartheid South Africa 

 

Understanding the demographic, social and health conditions of urban society  is critical to 

the understanding of trace element exposure in South Africa, perhaps more so than would be 

necessary in another population. The phenomenon of apartheid has caused a societal division 

that is unlike that of any other 20
th

 century population. This divide permeated every aspect of 

life, from health, nutrition and disease, to place of residence (both within urban areas and on 

a national scale). A discussion of urban apartheid and its effects on human health in both 

black and white individuals is presented in this chapter. More importantly, the information 

presented here highlights the substantial lack of data regarding the health of black South 

Africans during the apartheid era and underlines the need for studies such as this project. 

This chapter examines, briefly, the political, social and demographic policies that resulted in 

geographic and resource division in South Africa during apartheid. Disparities in living 

conditions, health and nutrition between the black and white populations is also discussed in 

order to provide context to differences in toxic element exposure and the potential social and 

health ramifications arising from this exposure.  

South Africa is a unique country in which to study correlation between demography toxic 

trace element exposure. This is largely due to the nearly 50 year period in which 

demographic groups, split along purely racial lines, were separated by law. Whilst trace 

element exposure does generally differ among socioeconomic groups in other countries, the 

clear division between racial groups in Apartheid South Africa, and the restriction of 

movements and residential choice among black South Africans has led to differences in 

health and health outcomes that are not merely socioeconomically, but racially different.  

In 1950, the Population Registration Act classified every individual living in South Africa 

into one of four racial groups: White, black, Asian and Coloured. White individuals included 

people of European origin, excluding individuals who were of mixed ancestry. Black 

individuals were those who were indigenous to Africa, except the Khoisan. Asians were 

primarily from India, and immigrants from China (until 1984). ‘Coloureds’ was generally 

anyone who did not fit into the previous three categories.  These policies further entrenched 

the differences in health and living conditions that existed previously between the black and 

white populations. The forced removal of black individuals to arid bantustans and 

overcrowded and unsanitary townships had a direct impact on the already marginal to poor 

health of black South Africans. The direct result of apartheid policy was a substantial gap in 

health, nutrition, living conditions and life expectancy between the two populations. By the 

1990s and into the present day, South Africa has had one of the highest income inequality 
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rates in the world, with black South Africans bearing the brunt of the poverty gap (Fig. 3-1) 

(Hirschowitz and Orkin 1997; Klasen 1997). 

   

Figure 3-1.  Percentage of South Africans living below the poverty line by racial group.  

From Klasen (1997).   

3.1 South Africa and apartheid 

South Africa has been referred to as one of the most unequal countries on earth (Mathee et 

al. 2009a). The legacy of complete racial segregation is one in which differential access to 

resources is a persistent problem. An additional legacy of Apartheid is a lack of consistent 

data regarding health discrepancies between black and white populations. Among the current 

public health literature, there is often little mention of the lasting impact of Apartheid on 

public health inequity. Whilst much has been written regarding the lack of adequate 

healthcare among large segments of the population, there appears to be hesitation among 

researchers to identify racial discrepancies regarding access, despite race continuing to be a 

significant barrier to public health care. Social scientists and demographers have been less 

reluctant to refrain from examining inequality among racial lines, and often highlight racial 

differences in cases in which public health researchers may not. Current public health 

literature often uses phrases such as “urban dwellers” living in informal squatter settlements 

and tenements, with little or no mention of the fact that these urban dwellers are almost 

wholly black and still disadvantaged due to the legacy of apartheid (Mathee et al. 2009a). 

Studies of national or provincial public health issues in the present day often do not make 

any demographic distinctions other than age and sex, despite persistent evidence of racial 

disparities in health outcomes.  Moreover, during Apartheid, there was little public health 

research into just how different health outcomes were and still are due to Apartheid policy, 
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for reasons that are quite obvious. Even basic information such as infant mortality rates and 

census data were not collected for the majority of the black population. As with data 

regarding inorganic pollution in South Africa, much of the difference in Apartheid-era health 

and health outcomes between the black and white populations must be gleaned from post-

Apartheid studies of South African health.  

3.2 Health and health outcomes - definitions 

Within this research, the terms health and health outcomes will be used. These terms define 

two distinct phenomena. Health refers to the physical state of an individual or group based 

on factors such as genetics, diet, lifestyle, and, most importantly for this project, exposure to 

pollution and toxic elements. Diabetes and hypertension are two different health conditions 

that are both individual and group-level health problems.  Exposure to lead and subsequent 

lead-related illness is a health condition. Health outcome refers to the change or lack of 

change in a given health condition due to intervention or lack thereof. Diabetes that remains 

uncontrolled in a given individual due to lack of adequate health care is a poor health 

outcome. A reduction in blood lead levels among a group of school children after leaded 

paint is removed from their school is a positive health outcome. Within all populations, both 

health and health outcomes vary based on socioeconomic and, in South Africa’s case, racial 

differences.  

Both terms are important in understanding the consequences of toxic metal exposure 

because both factors are in effect. Different segments of a population may be exposed to the 

same or different levels of lead, and may face different health outcomes due to differences in 

access to health care or treatment.  

3.3 Health care Apartheid in South Africa   

Present-day proxy data can be used to infer past health conditions in South African primarily 

because change has occurred slowly (Christopher 1997,  2005). Prinsloo and Cloete (2002) 

noted that the process of racial integration in post-Apartheid cities was slow in the years 

following the abolition of the Group Areas Act. Mathee et al. (2009a) conducted an 

extensive health survey of five study sites in Johannesburg  in 2006. This study found that 

Apartheid-era racial residential patterns persisted at each of the study sites, despite the 

research taking place a dozen years after the end of Apartheid. Mathee et al. (2009a) 

reported stark living conditions among the almost entirely black study sites. Poor access to 

hot, running water, household degradation, including peeling paint, and damp were reported 

in each study site. In addition, poor health was a persistent problem across all five sites, 

including both chronic and acute illness, but these issues were highest in the two study areas 
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that were formal Apartheid-era settlements for black and coloured (largely Asian) 

populations.  

Peltzer (2002) studied health behaviour of 250 black individuals and 250 white individuals 

in formerly Black and White residential areas of the Northern Province. Among the 

information Pelzter gathered was socioeconomic data, which illuminates the stark contrast 

between the black and white populations. Among respondents, 66% of whites were 

categorised as financially well-off or wealthy, whilst 76% of black individuals were not 

well-off or poor. No black individuals were considered wealthy and no white individuals 

were considered poor. Access to automobiles, another indicator of socioeconomic status was 

also reported. Among black households, 55% had no car. Not one white household was 

without a car and 59% of white households had more than two.  

With regards to access to medical care, the disparities between black and white populations 

were perhaps the most striking. Kon and Lackan (2008) have examined the persistent 

inequality of health care in South Africa as a legacy of Apartheid. The authors note that in 

1981 there was one physician for every 330 white individuals in South Africa, and one 

physician for every 91,000 black individuals. Much of this disparity has to do with the 

administration of bantustans, each of which was responsible for its own health care system, 

despite almost total lack of funding (AAAS 1998). Within urban areas, like Pretoria and 

Johannesburg, access to healthcare for black individuals during Apartheid would have been 

limited. They would not have been able to be treated in most urban hospitals as these were 

reserved for the white population, though some urban hospitals had black wards (AAAS 

1998). Furthermore, black individuals were technically only allowed treatment at hospitals 

in their homelands, meaning economic migrants living in squatter communities near urban 

areas could be refused health care at a black hospital if it was not in their homeland (AAAS 

1988). This means many black individuals resident outside of their designated homelands – 

as many working in Pretoria and Johannesburg were – would have had to travel long 

distances to obtain medical care, an expense that would have likely been beyond the reach of 

most black labourers (AAAS 1988). Wages of black individuals were predominantly set by 

government regulation and worsened over the apartheid period. In 1930, black gold miners 

were paid 11 times less than white mine employees and by 1970 black wages were 20 times 

less than white wages (Coovadia et al. 2009).  

During apartheid, health care across South Africa was decentralised and at the end of the 

apartheid government there were 14 distinct health departments in the country, most of them 

chronically underfunded (Coovadia et al. 2009). Nightingale et al., (1990) provide a telling 

description of the considerable disparity in health care by comparing annual per capital 
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health expenditure between population groups in 1985. The South African government spent 

$201 per white individual and $51 per black individual. At that time 14% of the population 

was white and 74.7% of the population was black. The Nightingale et al. study offers a rare 

though limited glimpse into the delivery of health services between populations during 

apartheid from an outside perspective. Published as the findings of an international 

delegation sponsored, in part by the US National Academy of Sciences and the American 

Public Health Association, it is one of the few non-South African investigations of the health 

consequences of apartheid to take place during apartheid. The authors describe the vast 

magnitude between white and black medical care between Baragwanath Hospital in Soweto, 

versus Johannesburg Hospital, a white only facility. In Baragwanath, the authors find a male 

ward with 40 beds and two toilets serving over 80 patients. Many were sleeping on the floor. 

In contrast, Johannesburg Hospital a few miles away, a new facility with 1800 beds, had 

1000 empty beds. In 2011, Baragwanath Hospital served over one million individuals in 

Soweto (Stewart et al. 2011a). With lack of adequate healthcare, both health and health 

outcomes were substantially compromised for township residents. Many of South Africa’s 

poorest individuals have not sought adequate health care when ill, citing to poor access to 

transportation, and prohibitive treatment costs as the two most prevalent reasons (Klasen 

1997). 

Whilst many view these health disparities as a result of or symptom of, apartheid, others 

have argued that the health care system in South Africa was actually an instrument of 

apartheid. Proponents of this concept argue that the health care services provided for the 

black population served the white agenda, as opposed to the medical needs of the black 

population. One example if this was the conversion of Hillbrow Hospital in Johannesburg 

from a white to a black hospital in the early 1980s. The hospital was converted without a 

paediatrics ward, despite the need for one, because there were ostensibly no black children 

officially resident in Johannesburg (Price 1986). Because children were not labourers, they 

were expected to live in the bantustans, not urban areas. Price argues that the increase in 

urban health services in the 1980s was primarily due to an increase in the need for skilled 

labour in the mines and industries. Skilled labourers are more expensive to train (and replace 

when lost to illness) and so white employers and the government had a financial interest in 

improving urban health care. Further, he argues, that the insistence on black individuals 

receiving primary health care in the bantustans was aimed at preventing greater black 

migration to urban areas, thus keeping these areas white (Price 1986).  

The focus of medical care was on hospitals, and to a great extent, primary health care was 

overlooked and essentially the health system was one of acute as opposed to chronic or 

preventative care (Mayosi et al. 2009). This has strong implications for the health 
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consequences and outcomes associated with all types of disease, but in particular, exposure 

to toxic elements. With primary health care services lacking or beyond the reach of most 

black individuals, both clinical and subclinical toxicity is likely missed. In addition, the 

nutritional deficiencies that can exacerbate heavy metal toxicity would likely have been 

undiagnosed as well. As Kon and Lackan (2008) have pointed out, this lack of adequate 

health care plays out in the substantial difference in life expectancy between black and white 

individuals. In 1980, the median year for the samples included in this project, the life 

expectancy for black males was 55 years. For white males, life expectancy was 70 years.  

Disparities in living conditions also contribute to different health and health outcomes for 

black and white individuals living under apartheid. In a 1989 study of living conditions and 

environmental health services in urban and peri-urban South Africa the South African 

Medical Research Council estimated that the number of black individuals living in 

“informal” (not purpose built or planned) dwellings was nearly 50%. Only 4% of these 

dwellings had either a flush toilet or clean water tap and only 5% had electricity. A majority 

of peri-urban households used coal, wood or paraffin for cooking and heating, which carries 

its own health consequences as will be discussed in subsequent chapters. 

3.4 Urban demography and residential geography 

During apartheid, both Johannesburg and Pretoria, like all other cities, was reserved entirely 

for the white population. Residential patterns followed strict racial lines. The Group Areas 

Act of 1950 ensured no mixing of races in neighbourhoods and complete separation of races 

in regards to residence, shopping, markets, services, and public amenities such as parks. 

Black individuals in each city were expected to live in townships outside of the city, hostels, 

if they were men migrating in from a Bantustan. Many black individuals also lived in 

informal squatter camps that appeared around the cities towards the end of apartheid, as 

more individuals migrated from rural areas in search of work. The aim of the Act was to 

segregate the white population as much as possible from the other three racial groups. This 

was nearly achieved by the late 1980s, which saw most white individuals living in areas 

almost exclusively white. Other areas were more mixed, with the black, coloured and Asian 

groups living in less segregated communities (Christopher 1990). 

 Johannesburg 3.4.1

Prior to apartheid, and particularly during the interwar period between the two World Wars, 

both cities, particularly Johannesburg, were not completely segregated. Inner city slums, 

near the central business district of Johannesburg housed nearly 8,000 poor white individuals 

(Parnell 1988). Many of these white individuals were relocated to council houses during the 

clearance of the slums in the pre-apartheid years. Most of these homes were located in high-
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density neighbourhoods near the central business district. According to Parnell (1988), the 

shortage of housing for white families in Johannesburg was effectively relieved during this 

period. In addition, a shortage of skilled labour contributed to a backlog of construction 

(Crankshaw and White 1995). The situation for the black individuals uprooted during slum 

clearance programs was less positive. Despite needing approximately 42,000 new housing 

units to shelter these individuals, less than 2% of building materials were allocated for this 

purpose (Parnell 1988).  

The program of urban slum clearing was effectively codified into law with the 1950 Group 

Areas Act. In the 1950s, forced removal of black individuals from the city was carried out, 

and formerly black neighbourhoods were razed. Many of these individuals were no longer 

considered urban residents, but temporary migrants, whose real residence was on one of the 

Bantustans. In Soweto, the permanent black township in the southwest of the city, black 

individuals were segregated within the township according to tribal or ethnic background. 

This was to ensure cultural identity with a tribe (which likely had a corresponding 

Bantustan), rather than identify as urban residents of Johannesburg(Mashile and Pirie 1977). 

To further reinforce the temporary nature of their presence in the city, the Group Areas Act 

also ensured that ownership of land within the townships could was only tenable for a 

maximum of 30 years.  
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Figure 3-2.  Designated racial group areas in Johannesburg circa 1970. From Parnell and Pirie 

(1991). 

 

As is evident in Figure 3-2, the overall effect of the Group Areas Act was the creation of a 

white-centred urban core, insulated by white neighbourhoods and services, with black 

townships and hostels on the periphery. Even black individuals who worked in white 

neighbourhoods as domestic labourers were restricted. The number of black individuals who 

could live in white neighbourhoods, was reduced and closely monitored by the apartheid 

government. Within the white core, unemployed black individuals could not be present for 

more than 24 hours before being subject to arrest or removal. There were officially no black 

residents of Johannesburg. All black individuals living in Johannesburg were technically 

migrant labourers resident in one of the homelands and living temporarily in Johannesburg. 

The townships however, proved insufficient to house the black population. By 1990, it was 

estimated that nearly two million black individuals lived in informal housing or squatter 

camps on the urban periphery.  
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 Pretoria 3.4.2

The urban demography of Pretoria is similar to that of Johannesburg, in that it follows 

closely the white urban core/black periphery model envisioned by the Group Areas Act. 

Even before the rise of the apartheid government, Pretoria generally followed this model, 

with a white urban core and a number of black satellite settlements (both official and 

unofficial) around the outskirts. By 1970, almost all black individuals were living in one of 

the peripheral townships: Atteridgeville and Mamelodi. In Pretoria, the white residential 

areas surround the urban core, and comprised most of the city. The areas between the white 

and black areas were industrial zones. As Hattingh and Horn (1991) point out, the location 

of the industrial areas adjacent to black townships appears to be deliberate, which should and 

did have health consequences for the township residents, but also, as this project 

demonstrates, had consequences on white health as well.  

The Group Areas Act enforcement in Pretoria, also served to create distinct cities within the 

greater Pretoria urban area. The multi-city model was aimed at removing the non-white 

population from Pretoria, making it a white only city. Non-white individuals were forcibly 

removed to one of the new black towns. As part of “grand apartheid” – the creation of 

independent bantustans, the government tried to establish urban areas within bantustans and 

sited these areas adjacent to industrial activities, in addition a policy of industrial 

decentralisation was adopted in an attempt to move industry to the urban periphery or to the 

bantustans to help stem rural to urban migration (Bell 1973; Wellings and Black 1986). In 

the Pretoria region, this included the establishment of Ga-Rankuwa, an urban township 

within the boundaries of Bophuthatswana and adjacent to Pretoria. Another black township, 

Mabopane, was also incorporated in Bophuthatswana. The Bantustan KwaNdebele also 

borders Pretoria, and thought it lacked an “urban centre” like Ga-Rankuwa, it was home to a 

number of settlements on the urban periphery (Hattingh and Horn 1991).  

 Urban demography of Johannesburg and Pretoria – implications for 3.4.3

health 

The organisation of urban areas in apartheid South Africa, particularly in Pretoria has three 

primary implications for health as it relates to the current project: 

1. Crowding and poor health conditions in townships and squatter camps.  

2. The need for black individuals living on the periphery to commute daily to work in 

the urban core  

3. The impact of mass commuting and daily transit on air quality and pollution in the 

urban core 
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Each of these factors is important in understanding how heavy metal exposure affects 

different segments of the population, and how the health and health outcomes of this 

exposure may also be different among black and white individuals. The first two factors, 

crowding and conditions in townships are discussed in this chapter, and the third factor, air 

quality and pollution is discussed at length in Chapter 4.  

The Group Areas act and the forced relocation of hundreds of thousands of black urban 

residents caused a severe housing shortage in both cities. The construction of homes in the 

townships could not keep up with the population growth in these areas, resulting in vast 

squatter settlements or “informal’ housing on the periphery of urban areas in South Africa. 

In Pretoria, this phenomenon saw the rise of the Winterveld squatter camps. In the late 

1960s, housing allocation and building ceased in the townships of Atteridgeville and 

Mamelodi. Whilst accommodation existed in Ga-Rankuwa and KwaNdebele, the 

Bophuthatswana Bantustan was intended as a homeland for the Tswana people, and housing 

in these townships was earmarked primarily for Tswana. Non-Tswana individuals migrating 

to the Pretoria urban region were left to settle on the Winterveld north of Pretoria. The result 

was that this area became densely populated with squatter camps, as the poor farming and 

economic conditions in the bantustans pushed their populations to urban areas in search of 

better opportunities.  

Conditions in the Winterveld were quantitatively assessed in the late 1980s by Vermaak 

(1992) . In the southern end of the settlements, closest to Pretoria, only 8% of homes had 

foundations. Nearly 50% of the population were under 20 years of age at this time, and 

approximately 75% were unskilled or semi-skilled. Sewage systems were non-existent and 

water was obtained by boreholes and wells, which were often contaminated with human 

waste. There was little refuse removal in the area. Conditions in townships were (and still 

remain) little better. 

 Commuting and movement within urban centres 3.4.4

Among the key characteristics of the removal of black urban residents to the urban periphery 

was an increase in transport into and out of the central business district and industrial areas 

each day (Pirie 1986). During apartheid, urban transportation from black areas into 

Johannesburg and Pretoria was subsidised by the South African government to ensure a 

reliable labour force (Pirie 1986). It has been estimated that by the 1980s nearly 1.5 million 

intra-urban commuters moved between townships and urban centres daily (Khosa 1998). In 

Pretoria, an estimated 400,000 labourers travelled into the city core each day, with an 

average commuting distance of 52km (Khosa 1998). Black workers could spend up to seven 

hours per day commuting between work and home, using public transportation, 



71 
 

predominantly, a feature of apartheid policy meant to further control the movements of the 

black population (Khosa 1995). The “kombi taxi” (minibuses) transporting labourers were 

introduced in the 1970s which increased efficiency, however this has impacted traffic in and 

around the urban core on a daily basis in vehicles, many of which burned leaded petrol. This 

phenomenon of massive movement of labour from the urban periphery to the urban core 

each day has had a dramatic effect on urban pollution. This is discussed in greater detail in 

Chapter 4.  

 Post-apartheid demographic change 3.4.5

Since the abolition of the apartheid government and the establishment of the new Republic 

of South Africa in 1994, the restrictions imposed by the Group Areas Act became obsolete. 

All South Africans were legally allowed to live where they chose. The transfer of power 

from white South Africans to black South Africans however, was political rather than 

economic since the end of apartheid, financial constraints have prevented many black South 

Africans from moving out of townships and ghettos (Christopher 2005). In short, the 

physical dismantling of apartheid residential constraints has been slow. The majority of 

black South Africans remain in townships or informal settlements on the urban periphery, 

whilst white (and coloured) South Africans remain in the urban core. 

There is evidence that this pattern is slowly changing. As Prinsloo and Cloete (2002) note, 

many black South Africans are moving out of the previously black residential areas. In both 

cities black residents are following a similar pattern of moving to areas that are between the 

previously black suburbs or townships and the central business district (Fig. 3-2). Relatively 

speaking, there is a trend towards greater urbanisation of the black population, even as 

circular migration persists and township populations grow (Clark et al. 2007; Ginsburg et al. 

2009; Kok and Collinson 2006). In Johannesburg, this is evident in one formerly white 

residential area known as Hillbrow, which is adjacent to the central business district. Racial 

desegregation of this area began in the 1980s when the South African government began to 

relax influx control laws and Group Areas Act restrictions that controlled the movement of 

black Africans from one region to another (Morris 1994,  1999). The shift in demography in 

areas such as Hillbrow has resulted in a corresponding physical decline of the 

neighbourhood not unlike that if the typical “inner city” neighbourhoods in the United States 

where inadequate maintenance of buildings and exploitative tenant-landlord relationships 

result in slum-like conditions. In the early post-apartheid period, the slow pace of movement 

into formerly white areas was due largely to the unaffordability of these areas for most black 

individuals, however this is changing (Crankshaw and White 1995; Gilbert and Crankshaw 

1999; Morris 1999).  
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Figure 3-3.  Percent of black residents in formerly white-only residential areas in Johannesburg 

in 2001. From Crankshaw (2008).  
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Figure 3-4.  Population density by race in Pretoria in 2000 (Lombard and Olivier 2000). 

 

Much like cities in North America, South African cities – Johannesburg in particular- have 

undergone deindustrialisation and a decentralisation of the industries that remain. In 

Johannesburg, many industries and businesses that once occupied the central business 

district have moved into the northern and persistently white suburbs (Crankshaw 2008). By 

2001, the demographic make-up of the formerly white-only neighbourhoods of inner city of 

Johannesburg was 88% black, indicating a massive shift (Crankshaw 2008). In Pretoria, the 

change has occurred more slowly (Fig. 3-3). With the exception of a few pockets, most of 

central Pretoria has remained relatively white.  

Much of the influx of black individuals into cities comes as a result of rural to urban 

migration. In the period between 1996 and 2001, the urban population of South Africa 

increased by over 17% , with Gauteng as the greatest recipient of rural to urban migrants 

(Christopher 2005). Much of this urban expansion has taken the form of the expansion of the 
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townships and black residential zones, and white residential areas have remained particularly 

segregated. But whilst the movement from rural to urban areas is often seen as a positive 

one, with greater access to education, and health and welfare services, Ginsburg et al. (2009) 

have pointed out that in South Africa in particular, urban migration can have serious 

negative health and social consequences for migrants, particularly children. Ginsburg et al.’s 

study of the residential mobility of children included in the Birth to Twenty Cohort study is 

one of the most extensive post-apartheid studies of intra-urban migration in Gauteng. This 

study showed that the households in the lowest and highest socioeconomic strata were most 

likely to move.  

Whilst many black households have moved into established, formerly white areas, more still 

have moved into the burgeoning informal settlements in the Pretoria/Johannesburg region. In 

2005, 1.376 million black South Africans lived in informal/squatter settlements (Richards et 

al. 2007). 

3.5 Health among black South Africans 

Apartheid policy affected health in many distinct ways. In addition to lack of access to 

adequate medical care, as well as poor living conditions, lack of education and within group 

ethnic divisions all contributed to the poor health and health outcomes of the black 

population.  

 Living conditions in townships and squatter camps 3.5.1

In 1955, five years after the introduction of the Group Areas Act, the township of Alexandra, 

Johannesburg had roughly 80,000 people living in just 1.5 square miles of land. The 

township lacked a sewer system and refuse collection system and the Alexandra Health 

Committee had a budget of less than £1 per head (Susser et al. 1955). Whist Alexandra was 

just one smaller township, the conditions within its boundaries were characteristic of most 

townships, and squatter camps were notoriously worse. By the 1980s townships in Pretoria 

and Johannesburg were so overcrowded that sub-tenancy (shack homes on larger plots 

within the townships) and squatting were rife (Fig. 3-4). In 1990, it was believed that over 

two million people lived in squatter camps in the Johannesburg region. Because of their 

informal, unsanctioned nature, these squatter camps are characterised by some of the worst 

urban living conditions (Parnell and Pirie 1991). These conditions are directly responsible 

for the poor health of black South Africans during apartheid.  

A 1991 demographic and health survey of Alexandra paints a bleak picture of the township, 

which the South African Medical Journal describes as “distressing” (Ferrinho et al. 1991). 

By 1991, the population of Alexandra was 200,000 people living in under five square 
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kilometres. Despite an ambitious 1979 plan to upgrade Alexandra away from a hostel city 

and into a model urban township, Ferrinho et al. point out that the upgraded homes and 

services were out of reach financially for the majority of residents, many of whom were 

displaced into the informal sector as a result. The survey highlights high infant and child 

morbidity, communicable and sexually transmitted disease and violence. From the 1950s to 

the 1970s the township had only three general practitioners, which increased to 17 by 1991. 

The referral hospital for Alexandra, Tembisa was over 25 kilometres away.  With respect to 

facilities and quality, a 1987 study of patients receiving sutures at the Alexandra Health 

Centre found that over 22% of patients returned to the clinic with septic suture sites 

attributed to the lack of aseptic conditions during suturing (Reitenberg et al. 1991).  

 

Figure 3-5.  The borders of both townships and informal/squatter camps in Johannesburg in 

1991 (Ferrinho et al. 1991). The map shows the extensive nature of squatter settlements 

surrounding Johannesburg, and to a lesser extent, Pretoria, most of which were characterised 

by poor living conditions.  
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 Infant mortality as an index of black health status 3.5.2

Andersson and Marks (1988), following on the WHO report Apartheid and Health (1983) 

examined the impact of apartheid on health. They note that disease patterns in South Africa 

closely followed income, which is a function of racial classification. Damningly, they note 

that as late as 1986, data on health indices such as infant mortality were lacking for large 

regions of the country. The South African government stopped officially publishing data on 

black infant and child mortality in 1963 (Wisner 1989). Even official census data did not 

include mortality data for many Bantustans, as they were considered independent countries 

by this time, and not subject to basic data collection (Thompson 2001). As late as the 1970’s 

the three poorest homelands were not included in the census, and urban black residential 

areas were under-sampled (Klasen 1997). Moreover, much of the data that was gathered was 

piecemeal and methodologically different, making comparison difficult. What was clear was 

that perinatal and infant mortality was substantially higher among the black population than 

the white (Andersson and Marks 1988). In 1950 infant mortality rates among black infants at 

Baragwanath Hospital was 233 per 1000 live births. The infant mortality rate for white 

infants in Johannesburg in 1950 was 32 (Stein and Rosen 1980). 

In the bantustans, mortality by age five was thought to be nearly 50% (Wisner 1989). 

Perinatal death due to causes such as gastroenteritis, chest infection and “peri-natal 

problems” was 11 times higher in black children than white children in the city of 

Kimberley, a pattern repeated in other urban areas. Maternal deaths were also higher in black 

populations, with illegal and unsafe abortions causing most maternal deaths among black 

women, a factor Andersson and Marks ascribe to differential access to safe medical care 

between black and white women. In a pilot study of peri-natal deaths in a Lebowa hospital (a 

black hospital), 30% of all peri-natal deaths were attributed directly to medical mistakes or 

omissions in care (Wilkinson 1991). 

Nannan et al.(2007) reported similar trends using the Demographic and Health surveys. In 

the 1980s, infant mortality rates were 13 per 1000 live births for white children and 68 per 

1000 live births for black children. The 1996 census was the first to collect vital information 

for South Africa as a whole, incorporating the former homelands. In 1995 16% of infant 

deaths, and 20% of child deaths (under five years) were attributed to diarrhoea (Choi 2003). 

Among the factors that are correlated to childhood diarrhoea are sanitation, hygiene and 

maternal education (Gyimah 2003). All of these factors were directly influenced by 

apartheid policy – the forced residence in townships with no access to sanitation or clean 

water, and limited educational opportunities for black individuals (Choi 2003). Again, this 

data was collected post-apartheid, but it is believed that these trends in infant mortality are 
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persistent ones, and given the slow rate of change in health care access in post-apartheid 

South Africa, they are accurate proxies for apartheid era trends (Burgard and Treiman 2006).  

The 1998 Demographic and Health Survey has been used to identify another significant 

cause of apartheid (and present-day) infant and child mortality: indoor air pollution. The 

trends associated with indoor pollution in relation to heating and cooking fuel are discussed 

in greater detail in Chapter 4. Use of coal and wood fuel for heating and cooking in 

impoverished areas of South Africa was significantly correlated to infant and child mortality 

(1-59 months), although the authors of this study do not speculate as to the mechanism 

responsible for increased mortality associated with indoor pollution (Wichmann and Voyi 

2006).  

3.5.2.1 Chronic disease 

There is little information regarding chronic disease among black South Africans during 

apartheid. Again, this is largely due to lack of inclusion in demographic and health surveys 

prior to 1995 and lack of access to medical care for diagnosis. Since the late 1990s, several 

studies have examined differences in chronic disease between the black and white 

population. These studies focus primarily on non-communicable disease such as heart 

disease, hypertension and diabetes. It is difficult to compare pre-and post-apartheid non-

communicable diseases such as these for a number of reasons. First, is the aforementioned 

lack of baseline data. Secondly, is the concept of an epidemiological transition, which South 

Africa is currently undergoing (Stewart et al. 2011). This phenomenon marks the transition 

from communicable disease associated with developing countries to non-communicable 

diseases prevalent in the developed world.  

Whilst historically, the black population has had lower rates of death due to heart disease 

and Type II diabetes, there are chronic diseases that were more prevalent in the black 

population than the white. In a 1984 study of all cardiovascular deaths between black and 

white individuals in Cape Town and Durban, the black population had a higher rate of death 

from cerebrovascular events, i.e. stroke than white individuals with 36% and 20% of all 

cardiovascular deaths, respectively (Andersson and Marks 1988). The black population also 

had a higher rate of death from hypertension, at 3% and 0.5% respectively, though overall, a 

substantially lower rate of cardiovascular deaths (values given are for Cape Town, Durban 

values followed the same trend). In a 1982 study of urban Zulus versus urban whites, 25% of 

Zulus were hypertensive, compared to 22.8 of whites (Seedat and Hackland 1984). Both 

Andersson and Marks (1988) and Seedat and Hackland (1984) attribute the higher rates of 

hypertension and stroke to higher levels of stress among the black population.  
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Diseases such as tuberculosis (TB) were also more prevalent in the black population during 

apartheid. Prevalence rates for TB in the black population were between 18 and 47 times 

higher than in the white population, depending on location. Cholera was believed to be 

endemic in several of the bantustans, due predominantly to poor sanitation, however the 

exclusion of bantustans from national health surveys means there was little data on the 

prevalence of cholera during apartheid (Andersson and Marks 1988). Neither the cholera, 

nor similar typhoid outbreaks in black areas seemed to reach the white population, as its 

primary cause is due to lack of clean drinking water (Coovadia et al. 2009). Tuberculosis in 

particular, is nutrition-related. Individuals who have iron-deficiency anaemia are more likely 

to contract and die from tuberculosis than individuals who are not (Schaible and Kaufmann 

2004).  

3.5.2.2 Nutrition 

Poor nutrition is a major factor not only to overall health, but in the uptake of heavy metals 

within the human body. As discussed previously, in Chapter 2, deficiencies in some essential 

trace elements can result in increased uptake of toxic trace elements into the body, which can 

cause illness or exacerbate existing illness. Again, wide-scale nutritional surveys of the 

black population during apartheid were not undertaken. However the information that does 

exist demonstrates that a large percentage of black individuals were chronically 

malnourished to some degree.  

Among the issues pertaining to poor nutrition among black individuals, was the presence of 

Bantustan and townships. By the mid-1980s the bantustans were theoretically home to 24 

million black individuals (74% of the population). The area encompassed by all of the 

bantustans was only 13% of the total area of South Africa. Additionally this land was among 

the most arid in the region, and yet it was expected that the bantustans would be self-

sufficient food producers (Wisner 1989). This meant that township and squatter camp 

residents and bantustans had to purchase food at market prices, despite poverty. The result 

was wide-spread hunger and malnutrition. In 1983, the WHO estimated that vitamin A 

deficiency, scurvy (in an orange-growing country), rickets, Kwashiorkor (a protein 

deficiency) and pellagra, were all extremely common, based on information gleaned from 

small-scale studies (WHO 1983). In addition, the WHO estimated that incidence of 

marasmus (protein deficiency plus inadequate caloric intake), an acute form of malnutrition 

was approximately 15-20% in rural areas. Overall, the WHO estimated that the number of 

black children in South Africa suffering from some form of malnutrition was nearly one 

million. In 1978 alone, over 1100 children were seen at Baragwanath Hospital, 

Johannesburg suffering from acute malnutrition and an estimated 25% of child deaths were 

caused by Kwashiorkor, marasmus or a combination of both (Stein and Rosen 1980).  
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In a rare investigation of the state of affairs in a peri-urban township near Johannesburg, a 

1955 report published in the Lancet highlighted conditions in Alexandra Township. The 

authors note that the primary food source among township households was maize and 

potatoes with little meat. Little to no vegetables were consumed and despite the availability 

of vegetables in shops, the high prices meant vegetables were out of reach of most 

households (Susser et al. 1955). This appears to be the case still in many townships, and the 

present South African government is promoting the use of urban vegetable gardens, a 

practice that may be problematic in regards to toxic elements (see Chapter 4) (Crush et al. 

2011; Keatinge et al. 2012; Wills et al. 2010).  

As Faber et al (1999) points out and the few studies mentioned above reiterate, national food 

security does not equal household food security, and despite the fact that South Africa 

produces adequate food for its population, large gaps in nutrition between the white and 

black populations exist into the present day . Food insecurity in some townships is as high as 

85% in Johannesburg (Naicker et al. 2009). Faber at al. (1999) conducted a study of 

nutrition among primary school children in a rural area outside Durban. They found 

persistent deficiencies in several micronutrients, and an overall low intake of calcium and 

vitamin A.  In addition, chronic malnutrition was prevalent as was the associated growth 

stunting. 

Among black adults, nutrition is also lacking in key nutrients. Whilst there is no real data 

regarding adult nutrition in this population during apartheid, a handful of post-apartheid 

studies make it clear that nutritional gaps existed. Women in particular may be lacking in 

vitamins D and A, as well as calcium, iron and zinc (Hattingh et al. 2008; Kruger et al. 2011; 

Oldewage-Theron et al. 2008; Steyn et al. 2000). Most nutritional studies focus on children 

and infants as they are more susceptible to health problems from a poor diet. However as 

was discussed in Chapter 2, deficiencies in essential trace elements such as zinc, calcium, 

iron and vitamin D may have a direct effect on uptake of toxic trace elements, putting 

nutritionally deficient adults at risk for higher rates of uptake of these elements. Iron, 

magnesium and zinc deficiencies are prevalent in black men, the former two are due to 

inadequate nutritional intake and the latter due both to nutritional deficiency and the 

prevalence of alcohol consumption (Elin 1988; Kärkkälnen et al. 1988; Lieber 1988; 

Nojilana et al. 2007; Parry et al. 2005; Peltzer 2002; R. Rylander 2001; Romani 2008; 

Schneider et al. 2007).  

Among the most substantial research into health in South Africa is the Birth to Twenty 

Cohort (BT20) research. The study began in 1990 and followed 3273 children who were 

born in Soweto in 1990 (Naicker et al. 2010a; Richter et al. 2007). The BT20 research 
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examined all facets of the health of the children included in the study and data from the 

project is still being published in the present day. Most critically for this project, the research 

included data regarding lead exposure among Soweto children despite its post-Apartheid 

focus, the children included in the study were born into Apartheid-era conditions and this 

data can be used as a proxy to infer conditions for black South Africans prior to the 1990s 

(Richter et al. 2007). Bearing in mind, the black population in South Africa is currently 

undergoing a nutritional and epidemiological transition towards a Western, higher fat diet 

and towards obesity and related health conditions, the status of children in townships such as 

Soweto is still far from healthy (Abrahams et al. 2011; Bourne et al. 2002; Bourne and Steyn 

2000).  

Studies of the BT20 cohort have yielded much information about the health of individuals 

growing up in an urban township. MacKeown et al. (2007) report the mean intake of macro 

and micro nutrient intake of 143 children from the cohort at ages 10 and 13. They found 

moderate deficiencies in iron, zinc, copper and vitamin A, pantothenic acid and biotin at 

both ages. More serious deficiencies in mean calcium intake (less than 70% recommended 

daily intake) were reported at both ages. The children consumed more protein than 

recommended, but less over all calories than recommended at each age. In 2000 (age 10), 

73% of children consumed below the recommended daily energy (caloric) intake. Eighty-

five and 90% of children were deficient in zinc and calcium respectively and in almost half 

of children calcium intake was less than 50% recommended intake.  

3.6 Health of white South Africans during Apartheid 

The focus in this chapter has been largely on the health of the black population, but the 

white population of South Africa is not without its health concerns, despite western 

standards of living and access to world-class medical care. The health of white individuals in 

South Africa is on par with European and North American health. The epidemiological and 

nutrition transitions took place there at the same pace as western countries so the diet is high 

in fat and carbohydrate, and diabetes, heart disease and obesity are similar to European 

countries (Faber and Wenhold 2007; Steyn et al. 1992). As was discussed above, white life 

expectancy is approximately 70 for males and 77 for females, compared with 52 and 55 in 

black males and females, respectively (as of 1997) (Kinsella and Ferreira 1997). 

Communicable diseases such as cholera, HIV/AIDS, tuberculosis and typhoid are nearly 

non-existent in the white population. Sanitation, population density, and food security are 

similar to western countries. 

Several dietary deficiencies are prevalent in the white population, namely calcium, iron, zinc 

and magnesium. As with the black population, this is primarily due to consumption of a 
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Western diet, high in fat, carbohydrate, and sugar. Smoking and alcohol use, which is most 

prevalent in white males also contributes to deficiency in some essential elements such as 

magnesium and zinc (Steyn et al. 2006). 

There are differences in health however, in which the white population is at a disadvantage 

to the black population. White individuals are more likely to suffer from diabetes, and non-

hypertensive heart disease than the black population. Primarily, this is due to lifestyle 

differences and the influence of the western diet. However there are other differences that 

are more difficult to explain. Post-menopausal white women have demonstrably lower bone 

mineral density than black women, despite better nutrition (Chantler et al. 2012). Post- 

menopausal black women have higher femoral neck and total hip bone mineral density but 

lower lumbar spine density than white women. The authors attribute this to socioeconomic 

and lifestyle differences, but point to a paucity of explanatory data (Chantler et al. 2012). 

Interestingly, this difference in bone mineral density between those of African and European 

ancestry is seen in other countries such as the United States (Luckey et al. 1996). Other 

authors have found similar trends among post-menopausal women in South Africa, 

attributing this to higher body mass index in post-menopausal black women (Daniels et al. 

1995). 

Mickelsfield et al. (2011) conducted a thorough study of bone differences between black and 

white women in South Africa and, controlling for socioeconomic factors, found a 

significantly lower rate of bone fracture among black women as well as higher femoral bone 

density. In this study, black women had a significantly lower mean intake of calcium than 

white women, at approximately 400 to 500 mg per day. Other researchers have reported 

differences in calcium intake between black and white women at approximately 100 and 

1000 mg per day respectively (Kruger et al. 2007). Nutritionally, post-apartheid urban black 

women consume more fat than white women and have less lean mass and less visceral fat 

and greater peripheral fat than white women, which significantly affects bone mineral 

density in these women (Micklesfield et al. 2011). The difference in bone density is 

manifested in higher femoral neck and total hip density in black females, and is highly 

correlated to socioeconomic status and degree of physical activity (Chantler et al. 2012). 

The phenomenon of lower calcium intake yet higher fat intake among urban black South 

Africans is part of a wider paradox of both under- and over-nutrition occurring in the same 

community. In a study commissioned by the Mines Safety Commission, South Africa, Dias 

et al. (2003) found that among mine workers across all mine types (gold, coal and diamond), 

black mine workers were, on average deficient in vitamins C and A despite normal body 

mass indicies. Mine workers living in hostels had significantly poorer nutrition and lower 
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energy intakes than men living in non-hostel accommodation. Moreover, all mine workers 

consumed very little fruit and vegetables (Dias et al. 2003). Puoane et al. (2002) examined 

under-over nutrition in South African adults and found that in urban black and white South 

Africans and found malnutrition despite obesity. With regards to weight, Puoane et al. found 

the highest rates of abdominal obesity (most often associated with heart disease and 

diabetes) in white men and urban black women. In men, an estimated 12% of black 

individuals were classified as underweight, compared to just 5% of white individuals 

(Vorster 2010). As Vorster (2010) points out, South Africa is prone to both infections 

disease that results from under-nutrition as well as non-communicable disease that results 

from over-nutrition. Other researchers have suggested that early childhood malnutrition and 

growth stunting may account for the prevalence of obesity in black South Africans later in 

life (Kruger, Margetts & Vorster 2004; Mukuddem-Petersen & Kruger 2004). Even in 

overweight individuals however, there appears to be a prevalence of micro-nutrient 

deficiency that is likely to affect health and more importantly, for this project, trace element 

uptake (Vorster 2010).  
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4 Environmental pollution in South Africa 

 

Of paramount importance to this research is an understanding of the type and prevalence of 

inorganic pollution in South Africa during the later-half of the 20
th

 century. Without this 

information, the context of human exposure rates within the greater environment cannot be 

established. This chapter provides a review of environmental studies conducted in South 

Africa, specifically those dealing with inorganic pollutants, and will include discussion of 

the state of the environment in South Africa, particularly Gauteng Province,  incorporating 

the few environmental studies conducted in the region prior to 1990 with present-day data. 

In doing so will present as thorough analysis of inorganic pollution as is possible, given the 

paucity of data. This chapter also includes a discussion of the likely sources of exposure to 

toxic metals and trace elements for individuals living in urban Gauteng. As with data on 

human health, however, this information is quite piece-meal, and often lacking altogether. In 

addition, much of what is known about the state of inorganic pollution in South Africa 

comes from studies conducted since the end of apartheid, meaning any robust review of the 

environment during this period will entail a certain amount of educated conjecture.  

Information regarding heavy metals and trace elements in the South African environment is 

sparse. The need for a system of environmental monitoring for trace elements has only 

recently begun to be recognized in South Africa. Despite the country’s long history of 

mining and industrial activity, environmental policy has been largely lax compared to other 

developed nations (Van Eeden 2008). This is due, in part to the historical domination of 

industrial and mining companies in the political realm in South Africa. As a public health 

concern, human exposure to heavy metals has been relegated to the background and public 

health discourse tends to be centred on HIV/AIDS, as this is among the more pressing of 

health crises in southern Africa. Nonetheless, as this review demonstrates, heavy metal 

pollution is worryingly high across Africa as a continent and in South Africa in particular 

(Nriagu 1988; Nriagu 1992; Yabe et al. 2010).  

There are certain environmental trends that are clear regarding the distribution and primary 

sources of pollution and toxic metal exposure in South Africa. The majority of pollution 

comes from motor vehicle emissions, followed by industrial activities such as the burning of 

fossil fuels (coal and oil), and domestic wood and coal burning. In urban Gauteng 

(Transvaal), mining and smelting are also pollution sources. As Norman (2007a; 2007b) 
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points out, South Africa is at once an industrialised and undeveloped country, with many of 

the environmental issues that plague each.  

However data regarding atmospheric concentrations of heavy metals and their behaviour 

from other South Africa countries can shed light on the likely distribution of these elements 

in the past. In South Africa, as elsewhere, the majority of exposure to inorganic pollution is 

in the form of airborne particulate matter which is suspended in the air in aerosol form. 

Aerosol pollution contains both organic (including volatile organic compounds) and 

inorganic components, most of which are harmful to humans. Much of the inorganic matter 

in particulate matter (PM) has been shown to be bioavailable to humans, meaning it can be 

taken up into human organs (Lum et al. 1982). Inorganic constituents of aerosol fall into one 

of two types of PM: fine and coarse. Fine PM is any which contains particle sizes up to 1μm 

in diameter. Fine PM (PMFINE) is almost always anthropogenic in origin. Coarse PM, which 

includes two types: PM2.5 and PM10, contains much larger particles and can be anthropogenic 

and natural (e.g.. volcanic) in origin. The numeric subscript indicates the size, in microns, of 

the particulate matter with PM2.5 consisting of particulate matter of 2.5μm and PM10 

consisting of particulate matter of 2.5 to 10μm. PMFINE and coarse PM can be readily inhaled 

by humans and absorbed by the human body, and as such are dangerous to human health 

(Davidson et al. 2005; Harrison and Yin 2000; Lippmann et al. 2000; Oberdorster et al. 

2004). 

The size of the particulate matter plays a role in the extent of dispersion of the pollutants, 

with PMFINE and PM2.5 generally dispersing more widely than PM10, and have a longer 

“lifetime” (time spent airborne) as the smaller particle size allows for greater atmospheric 

mobility through wind and air current patterns, though the practical modelling of PM 

dispersion is quite complex (Claiborn et al. 2000). Adding further complexity is the fact that 

the same element can be present in each type of PM, often this is a function of its source. Of 

the recent PM aerosol monitoring conducted in South Africa, several trends emerge. Present 

day studies of manganese point to its high concentration in PM10, with vehicle emissions as a 

source. During the period from 1960 to 2002, manganese was not added to South African 

petrol. During this period atmospheric manganese in Gauteng likely came from 

ferromanganese smelting activities, which produces manganese particles which fall into 

PM2.5 (Who 2001) which tends to have a wider dispersal pattern than PM10. Vanadium is a 

by-product of steel production and smelting and is found in PM10 (Moja et al. 2013). 

Cadmium is likely present in both PM2.5 and PM10, however the proportion of the element in 

each has not been established in South Africa. PM2.5 is not well-studied in South Africa. 
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This lack of widespread PM monitoring is just beginning to be addressed. In the past four 

years, several studies of PM and its impact on human health were conducted in South Africa. 

Kaonga and Kgabi (2009) measured PMFINE, PM2.5 and PM10 in a platinum mining area in 

Rustenburg, in northwest South Africa (Fig 4-1). They found that in the morning hours, 

when traffic is at its peak, PM was dominated by PM2.5 (particularly in winter, when cold 

and dry weather conditions cause concentration of PM) but that levels of all PM were 

highest during this time. They also note that this is a peak time for burning of domestic coal. 

PM valued dropped midday when mining activity peaked. The authors conclude that 

domestic coal burning and traffic accounted for the bulk of atmospheric PM in the region.  

 

 

Figure 4-1.  From Kaonga and Kgabi (2009). PM monitoring in a mining area in Rustenburg, 

South Africa. The platinum mining area is east of Pretoria and adjacent to present-day 

Gauteng.  
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In 2012, Kgabi (2012) reported levels of toxic elements associated with PM10 in near 

Rustenburg. Of the elements of interest to this project were lead and vanadium. Source 

apportionment of PM10 determined that both lead and vanadium come from vehicle traffic, as 

opposed to domestic heating or industrial activities. Kgabi also reported that as levels of 

total PM10 increased, so did levels of inhalable lead and vanadium. Other authors report the 

presence of lead in both PMFINE and PM2.5 and vanadium in the PM resulting from oil-fired 

industrial activities (Dominici et al. 2007; Kgabi et al. 2011; Woodin et al. 2000). Kgabi et 

al. (2012) monitored PM concentrations in the mining area of Rustenburg as well as the 

Rustenburg central business district. They report higher levels of PM10 in the mining area 

regardless of season or time of day. Notably the air quality in the mining area, classified by 

the degree of PM into categories ranging from good to hazardous,  

Since the 1990s, following the formation of the new South African Republic, few 

researchers have undertaken the task of monitoring urban and suburban air and soil quality 

in South Africa. To date, eight studies have been conducted on atmospheric inorganic 

pollution in Pretoria and Johannesburg. Several studies have investigated air quality and 

health, including the Vaal Triangle Air Pollution studies, which have sought to quantify the 

health effects of the highly industrialised and polluted Vaal Triangle in southern Gauteng 

(Moja et al. 2013; Terblanche et al. 1993; Terblanche et al. 1992). Few of these studies have 

investigated inorganic pollution, with Moja et al. (2013) and Maenhaut et al. (1996) the 

exceptions. These two studies sought to identify the constituent metals in the coarse and fine 

fractions of PM. Maenhaut et al. measured trace metals in aerosols in eastern Transvaal. 

They report that lead and antimony were found in the coarse fraction, and manganese in the 

fine fraction. Zinc was found in both and copper in the course fraction. As this region is not 

particularly industrialised, they attribute the PM to burning biomass. Moja et al. (2013) 

found lead in both coarse and fine PM, and attributed PM in the industrialised Vaal Triangle 

to industrial, motor vehicle and domestic coal burning. One other study, conducted by 

Batterman et al. (2011) found lead and manganese in both PM2.5 and PM10 in Durban, 

however manganese measured in this study included MMT emissions, which would not have 

been present during the period from 1960 to 2000.  

PM studies are critical to the study of trace element exposure patterns, particularly for 

elements such as lead, manganese and vanadium which are predominantly airborne. The 

presence of lead in PM10, the heavier component of PM, explains why lead is concentrated 

around roadways. PM10 does not disperse as far and remains concentrated near its source. It 

also explains the presence of lead, albeit in lower concentrations, in areas far from traffic, as 

lead is also found in PM2.5, which can disperse quite widely across great distances. 

Moreover, the finer particles of PM2.5 may be more dangerous to humans as they are more 
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easily absorbed into the lungs. These particles stay airborne for longer periods, where they 

are more readily inhaled. Again, the kinetics and movement of PM in the atmosphere add a 

level of complexity to studies of trace element exposure and are not as well documented in 

South Africa as in other parts of the world.  

Fewer studies still have examined water and soil pollution. In Pretoria/Tshwane, much of the 

published data regarding urban heavy metal pollution derives from one study of lichen and 

jacaranda trees that was conducted during a three-month period. Moreover, studies of urban 

pollution in South Africa are largely non-existent prior to 1985. This means that any analysis 

of pre-1990 human exposure to heavy metals is largely framed in the context of present-day 

environmental data. Despite a lack of temporal environmental data, and with the exception 

of the (very) recent cessation of leaded-petrol use, very little is believed to have changed in 

the urban environment in Gauteng in the past several decades and apartheid era 

environmental conditions can be adequately extrapolated.  

It is critical to note that data on inorganic environmental pollution in South Africa are 

heavily biased towards the study of lead. Whilst other element concentrations are reported 

along with lead, these are rarely given more than cursory discussion. Moreover, within the 

handful of studies conducted on trace elements in the Gauteng environment, a given element 

may be included in one study and omitted in another. As a result, data is often piecemeal and 

the overall state of urban pollution must first be pieced together from sometimes difficult to 

compare studies. Subsequently, the state of the Gauteng urban environment in the past must 

be extrapolated from these present –day studies.  

Despite a lack of data regarding the state of the environment in South Africa prior to the 

1990s, researchers have characterised the period as one in which industrial pollution and 

“general air quality issues” were the norm (Naiker et al. 2012). During this period, the Vaal 

Triangle, encompassing Gauteng Province, was a known “hotspot” of air pollution. In 1965 

the government of South Africa enacted the Atmospheric Pollution Prevention Act, with the 

general aim of addressing industrial pollution. Notably, however, the Act exercised little 

regulatory control over vehicle emissions, which have since been determined to be among 

the primary sources of lead pollution in urban South Africa (Diab 1999; Monna et al. 2006; 

Naiker et al. 2012). What can be gleaned from the sparse data regarding atmospheric 

pollution in urban South Africa prior to 1990 is that the environment was largely 

characterised by industrial, vehicle and smoke-related pollution, with lax government 

control. Studies primarily investigated trace element and heavy metals present in the 

atmosphere in Cape Town, Durban, Port Elizabeth, Pretoria and Johannesburg. More 
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recently, multi-site studies have monitored air quality in Pretoria and Johannesburg and the 

greater Tshwane metropolis in Gauteng Province.  

In the past decade, South African researchers have conducted limited studies of trace 

element concentrations in lichen transplants throughout Pretoria/Tshwane and Johannesburg. 

These mark the first studies of this kind in South Africa. Separately, these studies offer a 

snap-shot view of urban inorganic pollution levels in Pretoria/Tshwane and Johannesburg. 

Taken together, the data presented show some consistent patterns in urban pollution, 

particularly with regards to lead. When these patterns are combined with data gathered from 

the Pretoria Bone collection, and with blood lead data from the region, a more detailed 

picture emerges, in which urban pollution and human exposure rates are characterised both 

by urban geography and urban demography.  

Lastly, research into the source of heavy metal exposure in humans is sorely needed in South 

Africa. In the case of lead, in particular, no analysis of lead isotope ratios have been 

conducted on blood or bone lead, meaning that any conclusions regarding both exposure 

source and pathway are, on balance, conjectural. Whilst it is still possible to make 

meaningful and significant connections between a given element source and human 

exposure to it, these relationships and correlations must be taken with a proverbial grain of 

salt until more quantitative data is available.   

4.1 Environmental monitoring in Gauteng prior to 1994 

A review of the literature yields almost no information regarding the state of the 

environment in urban South Africa prior to 1990. Studies of urban atmospheric pollution and 

heavy metals from this time were simply not conducted. Two studies however, were 

conducted on atmospheric pollution in Johannesburg in 1978 and 1982-1984 by PIXE 

(Particle Induced X-ray Emission) analysis (Annegarn et al. 1981; Formenti et al. 1998). 

These analyses, though limited, shed substantial light on the state of the environment during 

this time, and for a variety of reasons, are of great value to the present research. Annegarn et 

al. (1981) conducted atmospheric monitoring of three sites in Johannesburg: the urban core 

(central business district), Soweto – the Southwestern Township 15km south of the city, and 

Lanseria Airport, approximately 30km outside of Johannesburg. Monitoring was conducted 

over a two-month period from September to October (Spring). The study included the 

monitoring of atmospheric trace element concentrations including lead.  

Two patterns emerge from the Annegarn et al. (1981) study. Firstly, atmospheric lead 

concentrations were substantially lower in Soweto than in central Johannesburg, with 

concentrations of 0.33µg/m
3
 and 0.90µg/m

3
, respectively. Unlike the lichen studies that will 
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be discussed in Section 4.2.2, this analysis allowed for the continuous monitoring of 

pollution levels, including diurnal, nocturnal and hourly fluctuations in element 

concentrations. This allows for the uncovering of a second pattern: significant differences in 

temporal variation in atmospheric lead concentration between study sites. The authors report 

consistently high lead levels in the central core of Johannesburg throughout the day, with 

atmospheric lead concentration dropping only at night on most nights, and remaining high 

on others. Conversely, in Soweto, daily peaks occurred which corresponded to peak traffic 

times, which the authors ascribe to the transport of black workers into and out of the city 

each morning and evening (Annegarn et al. 1981).   

Formenti et al. (1998) examined these patterns in further detail. The time-resolved 

atmospheric monitoring conducted in this study found that the two peaks in atmospheric lead 

concentration peaked strongly between 7:00 and 10:00am, and again from 17:00 and 

21:00pm. Furthermore, during the mid-day period, lead levels dropped in the order of ng/m
3
. 

Formenti et al. also posit that the burning of domestic coal accounted for between 40% and 

50% of atmospheric pollution (including sulphur, copper, zinc, and manganese), with the 

rest stemming from street dust (on unpaved Soweto roads) and traffic. No isotopic studies 

were included in this analysis, so it is unclear as to the source of individual elements, 

however the authors employ a source apportionment method involving Principle Component 

Analysis (PCA) and tracer elements for coal-burning (crust elements) and traffic.  

These two studies are interesting, particularly in light of present-day isotopic analysis of lead 

pollution in Johannesburg (this chapter, section 4.2.3), which conclude that coal contributes 

little to atmospheric lead in the region.  

Lastly, in 1992 a study was conducted by Yousefi and Rama (1992) on trace element 

composition of the atmosphere in Johannesburg. The monitoring sites included two 

hospitals, a residential area, an industrial area, a metal-works, a chemical plant and a ceramic 

factory. Unfortunately, the authors do not identify the specific areas studied nor do they 

include a map with the data, so it is impossible to identify where the monitoring sites were 

located within the city, whether they are near to residential areas, townships, the central 

business district or important road networks. The authors do report that lead concentration at 

the industrial site was ten times that of the next highest lead concentration, located at a metal 

works at approximately 6000ng/m
3
 and 600ng/m

3
 respectively. The undisclosed residential 

area had an atmospheric lead concentration of approximately 300ng/m
3
, higher than one of 

the hospitals, the chemical plant or the ceramic plant.  

Manganese was highest in the ceramic plant and second highest in the residential area at 

approximately 1800 and 1200ng/m
3
. Manganese in the residential area was double or triple 



90 
 

that of manganese in other areas including one hospital and was three times that of the metal 

works. Iron followed roughly the same pattern as manganese, with a high concentration in 

the residential area. Given the fact that manganese is associated with iron ore deposits, this 

finding is not surprising. Other elements such as cadmium, zinc and antimony were 

extremely high, by an order of magnitude, at the industrial site. Between 1979-1982, the 

highest airborne manganese concentration recorded by the U.S. Environmental Protection 

Agency was 200ng/m
3
, and the mean concentration was 20ng/m

3
 (WHO 2001). The WHO 

(2001) also reports that worldwide, regions with ferromanganese foundries or industry, 

manganese concentration can be as high as 500ng/m
3
, still far lower than the values 

measured by Yousefi and Rama (1992).  

Recent data indicates that with manganese in particular, particule size is more important that 

concentration of manganese in the atmosphere with regards to uptake and toxicity in 

humans. There is no published data regarding the distribution of manganese in fine and 

coarse PM in Gauteng. It is assumed that manganese in this region would be mainly found in 

PMFINE and PM2.5 particulate matter, but this is not confirmed. There is growing evidence 

that manganese found in fine PM is more toxic to humans as it is easily transported from the 

lungs to the brain (Weiss 2006). The lack of data regarding toxic element particle size makes 

health predictions based on environmental data substantially more challenging.  

4.2 Present-day environmental monitoring Pretoria 

The basis of urban atmospheric pollution studies in South Africa is lichen (Parmelia 

sulcata). The use of lichen for biological monitoring is well established in the field of 

environmental toxicology, having been first mentioned in the literature as effective 

biomonitors in 1866. Lichen species are effective accumulative bioindicators because they 

are both cosmopolite, easily transplanted from one environment to another, and are efficient 

accumulators of environmental contaminants such as heavy metals. In practice, lichen can be 

grown in conditions that are free of any anthropogenic contaminants. Individual lichens can 

then be subsequently transplanted to an area of interest for monitoring, where they will 

absorb and accumulate any environmental substances in the atmosphere. This allows for 

quantitative assessment of contaminant or pollutant levels in a given region. Lichen have 

been used over the past two decades to monitor environmental pollution in a wide range of 

environments from urban industrial areas to indoor pollution (Canha et al. 2012; Conti et al. 

2012; Flegal et al. 2010; Garty et al. 2009; Geagea et al. 2008; Klos et al. 2011; Olmez et al. 

1985; Sert et al. 2011; Tretiach et al. 2011).  
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 Heavy metals 4.2.1

Lichen are effective bioindicators of both heavy metals and trace elements. Though the exact 

mechanisms for accumulation are not fully understood, it has been hypothesized that thre are 

three potential mechanisms for the absorption of heavy metals in lichen organisms 

(Richardson 1995): 

1) intracellular absorption through exchange processes 

2) intracellular accumulation 

3) entrapment of particles containing heavy metals 

These elements and other atmospheric contaminants deposit on lichen through precipitation, 

including rain, mist, dew, dry sedimentation and gaseous absorption (Conti and Cecchetti 

2001). The levels of elements accumulated do vary according to phases of accumulation and 

release – this is thought to be influenced, in part, by acid rain. In addition, altitude is known 

to play a role in absorption of lead and cadmium in particular. Lead accumulation has been 

shown to increase linearly with altitude, whilst Cd follows an inverse trend.  

 Lichen studies and heavy metal pollution in urban South Africa    4.2.2

4.2.2.1 Johannesburg 

Lichen were first used as biomonitors in South Africa in 2001. To date, only one study has 

been conducted. Monna et al. (2006) used Parmelia sulcata to monitor atmospheric lead in 

and around Johannesburg. Between 2001 and 2003, naturally growing lichen (non-

transplanted) were collected from throughout the city and investigated using Inductively 

Coupled Plasma Mass Spectrometry (ICP-MS) and  Thermal Ionisation Mass Spectrometry 

(TIMS). Samples were taken from several sites, including parks, mine dumps, and industrial 

areas and roadways. Notably however, is the absence of sampling sites in or near the 

historically black townships such as Soweto, which the authors ascribe to an absence of 

lichens in the area. 
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Table 4-1.  Mean trace element concentrations in lichen in Johannesburg by area type. In µg·g
-1

. 

From Monna et al (2006).  

Area 

Type  

Pb 

Avg.  

Pb 

Rang

e 

Cu Cu 

Rang

e 

Zn  Zn 

Rang

e 

Cd Cd 

Rang

e 

As As 

Rang

e 

Sb Sb 

Rang

e 

Open 

Space 

Urban 

81.41 49-

179 

35.2

5 

15-45 74.25 53-

121 

0.25

3 

0.05-

0.55 

4.86

6 

2.5-

9.5 

1.9

6 

1.1-

4.8 

Low  

Traff ic 

Urban 

159.1

6 

41-

302 

51.8

3 

26-81 143.7

5 

70-

227 

0.21

3 

0.14-

0.25 

7.82 3.4-

13 

3.7

6 

1.6-

4.7 

Med. 

Traff ic 

Urban 

157 157 41 41 124 124 0.18 0.18 6.1 6.1 6.9 6.9 

High 

Traff ic 

Urban 

273.5 159-

388 

53.5 41-66 171 169-

173 

0.36 0.25-

0.47 

11.1

5 

7.3-

15 

6.9

5 

4.2-

9.7 

Open 

space 

Suburb 

114.2

5 

47-

217 

26.5 21-36 139 82-

274 

0.59 0.23-

1.39 

6.9 6.1-

9.6 

3.2

3 

1.8-

6.8 

Open 

Space 

Dump 

108.6

6 

53-

141 

57 21-93 127.3

3 

101-

145 

0.34

3 

0.15-

0.59 

11.9 9.7-

14 

2 1.8-

2.3 

Open 

Space 

Rural 

53.5 51-56 29 24-34 61 68-88 0.09

5 

0.08-

0.11 

5.65 5.3-6 1.1 1-1.2 

Pilansbur

g  

6.9 6.9 15 15 37  0.08 0.08 2.6 2.6 <0.

1 

0 

 

As is evident from both Table 4-1 and Fig. 4-2, central urban areas in Johannesburg yield the 

highest levels of lead. Monna et al. posit that this is likely due to leaded petrol emissions, a 

pattern also visible in Pretoria. Interestingly, however is antimony, which is highest in 

concentration in urban open space. The authors make no mention of this phenomenon.  
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Figure 4-2.  From Monna et al. (2006) Atmospheric lead concentration in and around 

Johannesburg showing an urban to suburban/ high to low (red > orange > yellow > green) lead 

gradient (colour added).  

 

Unfortunately, information regarding heavy metals, specifically lead, in Soweto and 

historically black townships is not included. Despite this oversight, the authors provide 

strong evidence for a distinct, urban to rural gradient for petrol-based lead in the 

Johannesburg environment. In addition, the areas characterised by mine dumps yield lower 

lead pollution than even the low traffic urban areas, indicating that mining activities may not 

contribute to airborne heavy metal pollution. Mining may, however, contribute substantially 

to water pollution. This is a critical pattern, as urban residential patterns in South Africa 

followed strict laws which saw the urban core as a white area and the surrounding suburban 

areas as black areas.  

The urban pollution data is moderately better for Pretoria/Tshwane (Table 4-2). To date, one 

lichen study and three street dust studies and one study of jacaranda (Jacaranda 

mimosifolia) leaves and bark have been conducted, though most are overlapping studies of 

the same areas during the same time period (Okonkwo et al. 2006; Okonkwo et al. 2009; 

Olowoyo et al. 2011). Thought the authors do not identify the same pollution distribution as 

Monna et al. (2006), closer examination of the data results in the identification of a similar 

urban to rural gradient. Specifically, the lichen transplants and dust samples located in the 
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city centre yield the highest concentrations of heavy metals – higher than the mining area 

and industrial dump.  

Table 4-2.  Mean trace element concentrations in lichen in Pretoria by area type. In µg·g
-1

 from 

Olowoyo et al. (2010). 

Area Type Pb Cu Zn Cd Sb Mn Ni Sn Fe 

University 25.4 13.1 35.3 0.2 0.36 232 6.64 1.91 1.47 

Residential 14.1 5.46 25.2 0.08 0.18 243 4.12 1.24 1.22 

Mining area 36.2 16.5 92.84 0.22 0.32 256 10.71 2.61 1.32 

Industrial 40.8 15.2 65.3 0.2 0.28 234 9.18 3.96 1.32 

Industrial/Traff ic 45.6 19.9 95.1 0.46 0.56 256 11.6 2.32 1.56 

Commercial/Traff ic 54.4 20.6 130 0.58 0.72 345 12.2 3.32 2.34 

Smelting 33.4 17.9 89 0.22 0.32 312 6.78 3.96 1.35 

Union 28.0 14.2 48.6 0.22 0.4 208 7.36 1.62 1.43 

Airport 13.8 14.3 85.2 0.26 0.26 286 7.16 1.46 1.45 

Taxi Rank 46.8 15.3 184 0.51 1.38 368 9.28 4.26 3.42 

 

 

From the data sets presented in Olowoyo et al. and Monna et al. it is possible to conduct 

bivariate correlation to investigate how elements are distributed across the urban landscape. 

Spearman’s rank correlations between elements are given below. Each area  was coded to 

represent the amount of traffic likely present. The data set used to conduct these tests is 

included in Appendix G.  
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Table 4-3.  Spearman’s Rank correlation matrix for trace elements in lichen in Pretoria and 

Johannesburg. In a) in mining and industrial areas and b) in high traffic areas. Significant 

correlations are in boldface. Bonferroni’s correction reduced the p-value associated with 

significance to 0.005. 

 a. Pb  Cu Zn  Cd Sb 

Pb  1.000     

 .     

Cu .771 1.000    

 .072 .    

Zn  .829 .486 1.000   

 .042 .329 .   

Cd .812 .522 .986 1.000  

 .050 .288 .000 .  

Sb .986 .812 .812 .824 1.000 

 .000 .050 .050 .044 . 

 

 b. Pb  Cu Zn  Cd Sb 

Pb  1.000     

 .     

Cu .951 1.000    

 .000 .    

Zn  .727 .776 1.000   

 .007 .003 .   

Cd .238 .326 .637 1.000  

 .456 .301 .026 .  

Sb .958 .916 .748 .277 1.000 

 .000 .000 .005 .384 . 

 

There are trends that become apparent when high traffic and mining and industrial areas are 

compared. In both areas, antimony is highly and significantly correlated with lead. Given the 

use of antimony in brake pads, particularly on heavy goods vehicles, this is not surprising. 

As most of the lead in the atmosphere in Gauteng has been attributed to motor vehicle 

traffic, it is not surprising that antimony correlates highly to lead. What is striking is that 

lead and cadmium are only correlated in high traffic areas, and not in mining and industrial 

areas. Antimony correlates with cadmium only in low traffic areas. These relationships may 

indicate slightly different element sources in these areas. Or, they may indicate that elements 

such as lead and cadmium are present in different fractions of PM and are distributed 

differently across the landscape. Until further research on atmospheric PM is conducted in 

Gauteng, there is no way to be sure.  

 Differences between Johannesburg and Pretoria 4.2.3

Examining the mean heavy metal concentration in lichen between the two cities, 

Johannesburg and Pretoria/Tshwane uncovers interesting differences. There is no 
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statistically significant difference between the mean cadmium concentration in lichen 

between the two cities (ANOVA, p > 0.05).  Significant differences do exist between lead t 

= 2.97 (two-tailed) (p < 0.05), antimony t = 3.07 (two-tailed) (p < 0.05), and copper t = 4.31 

(two-tailed) (p < 0.05). Mean concentrations in lichen for these three elements are higher in 

Johannesburg than in Pretoria/Tshwane (Figure 4-3). Unfortunately, arsenic, iron, 

manganese and nickel concentrations could not be compared. These differences have yet to 

be analysed or reported in the literature, and it is unclear whether the differences in mean 

element concentration are methodological or due to differences in size, traffic congestion 

and industrial activity between the two cities.  
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Figure 4-3.  Mean concentrations (µg·g
-1

) of trace elements in Johannesburg and 

Tshwane/Pretoria. In a) copper, lead and zinc; and b) cadmium and antimony. From Monna et 

al., (2006) and Olowoyo et al. (2010). 

 

4.3 Urban Pollution – Sources 

 Lead 4.3.1

The bulk of atmospheric lead, like that from automobile emissions is found in PM10. 

Information regarding the source of inorganic pollution in Gauteng is also lacking. 

Anecdotal evidence suggests that industrial and mining activity would account for much of 
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the non-lead heavy metal pollution, though this has not been quantified. Conversely, lead is 

known to stem largely from automobile emissions – as a result of South Africa’s persistent 

use of leaded petrol (Bollhofer and Rosman 2000; De Villiers et al. 2010; Monna et al. 2006; 

Okonkwo et al. 2009). Coal is believed to be the second most prevalent source of 

environmental lead pollution. Lastly, industrial and mining activities make up the remainder 

of potential lead sources in Gauteng.  

During the 20
th

 century, most environmental lead worldwide came from leaded petrol. 

However the environmental and public health consequences of this led to the reduction or 

cessation of leaded petrol in most countries beginning in the 1970s. South Africa however, 

continued to use leaded petrol until 2006. The late cessation of the use of lead in petrol has 

been ascribed to the country’s robust lead mining industry and the fact that lead is a cheaper 

way to increase fuel octane than the alternatives.  

4.3.1.1 Determination of lead source – Isotopic studies 

Identifying the source of lead entails the analysis of the distinct isotopic signature of a given 

source. This ratio can be used to establish the source or provenance of a given lead product, 

such as leaded gasoline, paint, mine or industrial product. As with environmental pollution 

studies, few studies have attempted to quantify lead source in South Africa. Monna et al. 

(2006) measured lead isotope signatures in atmospheric lead in Johannesburg and compared 

these isotope ratios against the known isotopic signatures of leaded petrol for sale in the city, 

coal used for domestic heating and cooking and industrial/mining fly ash. Monna et al. 

(2006) determined that the bulk of atmospheric lead surrounding Johannesburg is from 

leaded petrol. The authors conclude that sources such as domestic coal contribute very little 

to the overall atmospheric lead concentration. Whilst this clearly evident from the results, 

there have yet to be any studies to examine the contribution of each lead source to human 

tissue-lead concentration (blood or bone). Nor are there adequate studies of indoor air 

pollution which may differ substantially from the outdoors.  

Recent studies of lead concentration and lead isotopes in soil have confirmed that lead levels 

in the Johannesburg area are substantially elevated compared to background levels. De 

Villiers et al. (2010) report that areas of active lead mining exhibit high surface soil lead 

levels, which is to be expected. Areas of coal mining, whether active or inactive, exhibited 

low levels of soil lead, which the authors attribute to the relatively low concentration of lead 

in South African coal (Diaz-Somoano et al. 2009; Wagner and Hlatshwayo 2005). Other 

researchers however, have reported lead concentrations in coal fly ash from coal-powered 

electric plants at nearly 25µg·g
-1 

(Ayanda et al. 2012). When compared to recent studies of 
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coal fly ash in China (3077 µg·g
-1

) and India (35µg·g
-1

), the South African value is low 

(Bhangare et al. 2011; Liang et al. 2010). 
  

Overall, the patterns found correlate to previous studies, showing that the areas with the 

highest lead levels correspond to areas of high traffic and industrial activity. Studies of peat 

layers on the Witwatersrand also attribute high peat lead levels not to mining runoff, but to 

automobile traffic (Mccarthy and Venter 2006). Furthermore, a 2009 analysis of isotope 

ratios in lead aerosols worldwide found that despite a now global phasing out of leaded 

petrol, lead from petrol products, as opposed to coal combustion, still accounts for the bulk 

of atmospheric lead in South Africa (Diaz-Somoano et al. 2009). 

Whilst lichen studies from Pretoria/Tshwane do not include isotopic analyses, they do show 

the same pattern as Johannesburg, of higher lead levels in the urban/industrial areas 

associated with high traffic. This would further indicate that total atmospheric lead is largely 

a result of the persistent use of leaded petrol. This has been confirmed by the reduction in 

total atmospheric lead that has followed South Africa’s reduction in the use of leaded petrol, 

and follows the worldwide trend. Prior to its use being curbed, petrol in South Africa 

contained the highest levels of lead in the world, primarily because it is a relatively 

inexpensive and efficient means to increase the octane rating of petrol. From a high of 0.5 – 

1.0g/L
-1

 in the 1980s, the concentration of lead in petrol was reduced in the early 1990s, and 

unleaded petrol was introduced in 1996. Leaded petrol was not removed from the South 

African market until 2007. During the 1990s, Gauteng province consumed 35% of all petrol 

sold in South Africa. During a two-year monitoring period from 1996-1997, lead levels in 

Pretoria exceeded the WHO minimum mean monthly guideline value of 1.0µg/m
-3

, a total of 

eight times. This is twice as many instances as neighbouring Johannesburg and four times as 

many as Durban (Diab 1999). Post-1999, these peaks have dropped below WHO minimum 

guidelines, however they remain higher than those of Europe or North America (Diab 1999). 

Mining is a major industry in Gauteng (Transvaal) and in South Africa as a nation. Between 

1980 and 1984, total lead mined in South Africa exceeded 85,000 tonnes per year, compared 

to just hundreds of tonnes in the early 20
th

 century (Snodgrass 1986). Pretoria in particular is 

home to the Edenvale mining sites, just northeast of the city near Mamelodi. This was an 

active lead mine from 1898 to 1932 and activities included onsite lead smelting. Recent 

environmental studies of the abandoned mines, has reported hazardous levels of lead in the 

soils near the mines. The ranges of lead concentrations at slag and dump sites are above EU 

intervention levels of 580 parts per million, indicating that the area remains highly 

contaminated over 80 years after the cessation of mining activity (Glass 2006). Lead 

smelting activities at Edenvale would have been a source of atmospheric and water pollution 
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of lead, iron and zinc oxides, arsenic and antimony which may have affected the nearby 

townships (Glass 2006).  

As Monna et al. (2006) point out, the location of historically disadvantaged populations near 

mine dump sites, and the concomitant exposure to airborne mine pollution continues to be a 

source of debate into the present day. However as is evident in Fig. 4-2, these authors noted 

that lead levels at mine dumps in Johannesburg are relatively low in lead. This may not have 

been the case at Edenvale, however, as these mines were active lead, as opposed to primarily 

gold mines.  

 Cadmium 4.3.2

As with other heavy metals, cadmium in the South African environment is a by-product of 

mining and smelting operations as well as petroleum (De Villiers et al. 2010; Van Aardt and 

Erdmann 2004). It is generally not mined on its own, but is a by-product in the mining and 

refining and smelting of other elements such as zinc (Nordberg et al. 2004). In drinking 

water the WHO maximum recommended concentration is 5µg/kg (5 ppb).  

As is evident in Monna et al. (2006) and Olowoyo et al. (2010), in Tables 4-1 and 4-2, 

cadmium is present in the atmosphere in urban Gauteng, and at high levels in some areas. 

Despite being included in studies of atmospheric pollution, there is little to no published 

information regarding cadmium pollution in South Africa, other than its inclusion in studies 

focused on other elements such as lead. It is known that in polluted areas, cadmium is often 

found in water resources, and it is unlikely that South Africa is any different. Naicker et al. 

(2003) reported cadmium levels as high as 10mg/L (10 ppb) in acid mine drainage in 

Johannesburg, which is double the WHO maximum concentration for water.  

De Villiers et al. (2010) identified substantial cadmium concentrations in soil samples in 

Gauteng, and attribute this to motor vehicle exhaust. These authors also identify high soil 

cadmium levels along the Namibian border, a region home to the only remaining active lead 

mine in South Africa (Figure 4-4a). Importantly, cadmium concentration is related to lead 

concentration in soil and other sources both at the local and national level as is evident in 

Fig. 4-4b.  
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Figure 4-4.  Soil lead and cadmium concentrations in South Africa. a) soil cadmium distribution 

in South Africa. b) soil lead distribution in South Africa. From de Villiers et al. (2010). 

 Manganese 4.3.3

It is difficult to compare present-day levels of manganese in the urban South African 

environment with bone levels from the last century. This is primarily because the use of 

manganese has increased following the phasing out of leaded petrol. Since the 1990s, 

methylclycopentadienyl manganese tricarbonyl (MMT) has been added to petrol as an anti-

knock and octane enhancer as a replacement for lead (Batterman et al. 2011; Forbes et al. 

2009; Röllin et al. 2005). Manganese levels in the environment, especially the urban 

environment are likely to be higher in the present day than would have been prior to 1990.  

Though the data on environmental manganese in South Africa prior to the mid-1990s is 

almost non-existent, Formenti et al. (1998) conducted PIXE analysis on urban aerosols in 

a 

b 
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Soweto from 1982-1984. This study concluded that atmospheric manganese in Soweto was 

likely due to manganese smelting activities near Johannesburg. There is a significant 

ferromanganese processing economy in Gauteng. The authors also note that the presence of 

manganese in the atmosphere was intermittent and dependent on southerly wind, which 

would not have been often. With regards to the substantial mining activities in the region, 

aerosol monitoring of a Transvaal goldmine conducted in the late 1980s found negligible 

manganese concentrations in dust resulting from any mining activities (Annegarn et al. 

1987). Prior to the use of MMT, the most likely source of manganese in urban Gauteng 

would have been smelting activities as it is used extensively in the production of steel, and 

ferromanganese alloys.  

 Arsenic 4.3.4

Like manganese, arsenic is largely a by-product of mining, specifically gold mining (Armah 

et al. 2012; Davies 2010; Dzoma et al. 2010; Ogola et al. 2011). Almost no research has 

been undertaken regarding the measurement of arsenic in the environment in either Gauteng 

or the country at large. However, studies of water resources do report high levels of arsenic 

in surface and groundwater in Gauteng. This is largely due to the region’s substantial gold-

mining industry (Durand 2012).  

Historical and present-day gold mining in Gauteng has left the region with substantially 

elevated arsenic levels in water resources. In addition, South Africa has no formal arsenic 

monitoring programme to track arsenic concentration in water resources, and the presence of 

arsenic in the South African environment is under-studied (Kempster et al. 2007). However 

there is evidence that the region’s gold mining heritage has resulted in extensive arsenic 

pollution (Figure 4-5.). 
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Figure 4-5.  Aresnic concentration in groundwater in Gauteng. From Kempster et al. (2007) 

 

Rosner et al. (2000) identified over 200 mine damn tailings (the materials that remain after a 

valuable metal has been extracted from the surrounding ore) in South Africa, many of which 

are located in or near urban areas. Most of this material is not treated in any way, allowing 

seepage of heavy metals into ground and surface water sources. International target and 

“intervention” thresholds for arsenic in the environment are 29 and 55mg/kg respectively – 

in this case the intervention value signifies significant risk of toxicity. Among seven sites in 

and around Johannesburg, one had a soil concentration of 53mg/kg, and the remaining six 

sites were close to or exceeding the target value for arsenic and are considered moderately to 

highly contaminated (Rösner and Van Schalkwyk 2000).  

Outside of urban areas, the prevalence of arsenic in the environment can be equally 

substantial. Dzoma et al. (2010) cite nearby mining activity for elevated arsenic levels in 

water, grass, soil and the blood of grazing cattle in the Northwest Province, South Africa. In 

this study, arsenic levels in water in the cattle farming area of Koekemoerspruit were 12 

times higher than the WHO/U.S. EPA recommended maximum of 10µg/L.  

 Vanadium 4.3.5

South Africa is home to the world’s largest reserves of vanadium, some 85 percent of which 

is used in steel production (Edel et al. 2009; Feichtinger 1993; Jochens 1985; Rohrmann 

1985; Young 1985). Nearly 50% of the vanadium produced in South Africa is vanadium 

pentoxide, widely considered the most dangerous form of vanadium in regards to human 

health (Moskalyk and Alfantazi 2003). Despite the scale of vanadium production in the 

country, little research has been conducted on environmental vanadium in South Africa. 

Two studies have found vanadium toxicity in sentinel cattle adjacent to vanadium mines 
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(Gummow et al. 2006; Mccrindle et al. 2001). The authors found no toxicity from mere 

background vanadium, even at elevated background concentrations. Investigation of PM10 

in the Vaal Triangle found vanadium concentrations in PM as high as 0.36μg/L (Moja et al. 

2013). 

 Antimony 4.3.6

There is little to no research into the source of antimony in the South African environment. 

Highveld coal products are low in antimony but there is extensive antimony mining in 

Limpopo Province north of Gauteng in former Transvaal (Davis et al. 1989; Feichtinger 

1993; Jaguin et al.; Wagner and Hlatshwayo 2005). Antimony is not routinely monitored in 

the urban environment.  

4.4 Urban pollution and heavy metal exposure pathways 

 Sewer sludge  4.4.1

As in many countries, the use of disinfected sewer sludge as agricultural fertiliser is not 

uncommon in South Africa. The use of sludge provides crop soil with needed nitrogen and 

phosphorus, which increased agricultural output. Sewer sludge is thoroughly disinfected 

prior to agricultural application and any organic contaminants are removed. However, 

disinfection does not remove inorganic contaminants and toxic substances such as heavy 

metals and trace elements of interest to this research. These substances can be incorporated 

into growing plants and work their way into the food chain either by direct consumption of 

plant products by humans or by grazing animals. In 1991, mean lead concentrations in sewer 

sludge in South Africa was 452mg/kg
-1

.  The mean lead concentration for UK sewer sludge 

from the same time period was 400mg/kg
-1

 (Hutton and Symon 1986).  

 Water 4.4.2

Water pollution is a persistent problem in South Africa. Despite this, extensive studies of 

heavy metal concentration in water were not adequately conducted prior to the mid-1990s 

(Roux et al. 1994). Studies specific to metals in water in Gauteng are equally scant. 

Approximately 70% of all water in South Africa is surface water (Ochieng et al. 2010). 

Moreover, Gauteng derives all of its water from surface sources, particularly the Vaal River 

(Mckenzie and Wegelin 2009). This is a critical issue with regards to heavy metal exposure, 

as the Vaal Triangle and the surface water sources that supply Gauteng are highly polluted 

with mining effluent (Potgieter-Vermaak et al. 2006). The country’s substantial mining 

industry produces a form of pollution called acid mine drainage (AMD), which can and does 

contaminate South Africa’s largely groundwater water resources, and has been referred to as 

the a significant threat to South Africa’s environment (Mccarthy 2011). AMD is formed 
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when mine runoff comes into contact with rock formations containing sulphur. The result is 

acidic, metal-rich water, specifically in lead and manganese, which can be highly toxic. The 

low pH of the water allows for a high uptake of metals into the water and when the drainage 

meets with a groundwater source, can contaminate the source with heavy metals.  AMD in 

Gauteng is particularly high in metals such as manganese, lead, iron, nickel and zinc 

(Durand 2012).  

The level of heavy metal contamination can be severe enough to cause health effects in 

individuals who drink contaminated water or eat fish or plants that have been exposed. 

Naicker  et al. (2003) reported high levels of heavy metal contamination in soil and water 

near a mining area of Johannesburg. In addition, the authors report that the water 

contamination continued up to 10km from the AMD source. AMD in Gauteng (and in 

mining areas worldwide), is known to persist for long periods after the closure of a mine or 

the removal of mine dump materials (Rösner and Van Schalkwyk 2000).  

Studies of water metal concentration in three rivers in Limpopo have reported lead and 

cadmium levels that exceed WHO maximum recommended concentrations for drinking 

water (Okonkwo and Mothiba 2005; Okonkwo et al. 2005). Interestingly, this study reported 

higher metal concentrations in the wet season than in the dry, which the authors ascribe to 

run-off from road (petrol) pollution further contaminating rivers, a well-documented 

phenomenon (Dunlap et al. 2008; Kayhanian 2012).  

 Soil/Ingestion 4.4.3

Though soil is generally not the proximal source of toxic metals in the environment, it often 

acts as the immediate source in that lead and other trace elements are readily absorbed into 

soil and then released into the food chain and water supply. Environmental cadmium in 

particular is often found in soil. Cadmium has a long half-life and can remain in soil for 

decades, even centuries. The primary pathway from soil to humans is the ingestion of food 

grown in metal rich soils (Oliver 1997).  

Elevated soil lead levels resulting from acid mine drainage can also be a significant source 

of lead, especially in children. Soil lead levels have been positively correlated with 

childrens’ blood lead levels (Zahran et al. 2010). The US Centers for Disease control have 

estimated that for every 1000 ppm increase in soil lead concentration, a corresponding 

increase of 3-7µg/dL occurs in the blood lead concentration of exposed individuals (Mielke 

and Reagan 1998). Moreover, highly acidic soil, similar to that caused by AMD, results in 

greater lead mobility and greater uptake of lead into plants (Davies 2010). This is potentially 

an issue in areas such as the historically black townships in Gauteng. In these areas where 
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food security is and has traditionally been poor, individuals turn to small urban farming to 

meet household food needs.  

Though there is little quantitative data regarding the prevalence of urban farming, it is 

estimated that the practice is common. In a survey of five settlements within the 

Atteridgeville township in Pretoria/Tshwane, 54% of households were actively involved in 

urban farming. In addition, it has been reported that as much as 25% of total annual food 

requirements in these areas (Van Averbeke 2007). A similar study of the informal settlement 

of Orange Farm near Johannesburg found that 88% of households participated in some form 

of urban farming (Crush et al. 2011). Provincially, urban farming is on the increase in 

Gauteng. Between 2002 and 2007 the total percentage of households participating in urban 

cultivation increased from 5% to 15% (Burger et al. 2009 ). This increase in the practice of 

urban farming over time may be one contributing factor to the high levels of blood metal 

concentration reported in present day studies. Kootbodien at al. (2012) have recently 

measured heavy metal contamination in soil in a school vegetable garden in Johannesburg 

which was located near a mine tailing. Levels of lead and arsenic were elevated in both soil 

and vegetables, though each element concentration was within acceptable limits in South 

Africa.  

There is a dearth of data on soil-trace element concentrations in the townships, but it is not 

unreasonable to assume, given the high concentration of metals in urban street dusts in the 

area, that urban farming in heavy metal contaminated soils may be one pathway of exposure 

to these elements (Okonkwo et al. 2006). Atteridgeville in particular is situated parallel to 

Church Street, one of the busiest thoroughfares in the city. Olowoyo et al. (2010) study of 

trace element concentration in jacaranda also included data for soil metal concentration. The 

authors report lead levels as high as 99.7µg·g
-1 

in high traffic areas of the city, which is just 

at the 100µg·g
-
1 threshold considered dangerous to children by the US EPA (1991). 

Cadmium concentration was not reported in this study. From this it may be extrapolated that 

soil plots historically used for urban cultivation may be contaminated with heavy metals.  

Olowoyo at al. (2012) also measured element concentration in soil at this site. Lead 

concentration ranged from 11.62µg/g
-1

 (0-15cm) and 9.92µg/g
-1

 (15-30cm). Manganese 

levels were reported at 78.94µg/g
-1 

(0-15cm) and 73.39µg/g
-1

 (15-30cm). In this instance, 

jimson weed and amaranth demonstrated a low uptake rate of trace elements.   

With regards to cadmium, it seems that soil contamination may be a primary exposure 

pathway. An estimated 65% of total cadmium in soil is considered bioavailable to living 

organisms (Scheyer 2004; Wilson et al. 2008). Again, data on soil cadmium concentration is 

sparse Gauteng. However it is possible to extrapolate cadmium concentration from 
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measurements of cadmium in street dusts in Pretoria/Tshwane. Okonkwo et al. (2009) 

reported a cadmium concentration of 0.17µg/g
-1 

in Pretoria. This is relatively low compared 

to Hong Kong and London with reported cadmium concentrations of 3.77µg/g
-1 

and 4.2µg/g
-

1  
respectively (Li et al. 2001; Thornton et al. 1985). Cadmium in any level is toxic to 

humans however, and even low concentrations can have subclinical and clinical effects on 

human health.  

4.4.3.1 Plant element concentration  

One proxy measure that may be a good indicator of trace elements in urban soil is the 

measurement of trace elements and heavy metals in medicinal plants that are grown in these 

areas. Use of plants as traditional medicine is still widely practiced among urban black 

populations and country-wide it has been estimated that as many as 27 million South 

Africans, primarily black, make use of locally grown plants for medicinal purposes (Mander 

1998). Across plant species, metal concentration varies widely and is largely a function of 

soil characteristics such as metal concentration, pH and the bioaccumulative properties of 

each individual plant species. Still, South Africa lacks an official monitoring program to 

regulate metal concentration in medicinal plants (Street et al. 2008b). What is clear is that 

these plants contribute both a direct exposure pathway as well as a proxy (albeit a less than 

ideal one) for data regarding soil contamination.  

Most  medicinal plants are sold without packaging at open-air markets near busy traffic 

corridors where they can be contaminated with street dust containing heavy metals (Street et 

al. 2008b). Ingestion of these plants has been associated with renal pathology leading to 

speculation that heavy metal poisoning may be the cause (Steenkamp et al. 2000). Whilst 

medicinal plants tend to be low in lead, manganese levels are high (Olowoyo et al. 2012; 

Steenkamp et al. 2000; Street et al.2008). Urine manganese concentrations after ingestion of 

medicinal plants were shown to be higher than in control individuals (Steenkamp et al. 

2000). Street et al. (2008b) measured manganese concentrations as high as 2089µg/g
-1

 in the 

leaves and stems of some species.  

In a 2012 study of trace elements in medicinal plants collected from a waste dump site in 

Pretoria near the town of Ga-Rankuwa, Olowoyo et al. (2012) reported a mean lead 

concentration of 1.98µg/g
-1 

in roots and 1.31µg/g
-1 

in leaves. This is substantially lower than 

the 10µg/g
-1 

limit recommended by the WHO (Olowoyo et al. 2012). Mean manganese was 

also reported at 21.94µg/g
-1 

in leaves and 44.41µg/g
-1

 in roots. Cadmium concentration was 

not analysed.   
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 Ambient air 4.4.4

It is difficult to quantify the difference in exposure between inhaled and ingested trace 

elements. For some elements, such as cadmium, the most likely pathway is through 

ingestion of contaminated water and food. Elements such as lead and manganese are also 

ingested through contaminated substances, however the high levels of atmospheric lead in 

countries such as South Africa, make it equally likely that some lead exposure stems from 

lead that is suspended in the atmosphere in particulate matter. Environmental lead suspended 

in the air maintains the same isotopic signature once it has settled into soil or water, meaning 

isotopic studies of blood and bone lead provide little information as to exposure pathways.  

Ranft et al. (2008) established a quantitative relationship between atmospheric lead and 

blood lead concentration in children. These authors report 48 % of the variation in children’s 

blood lead could be explained by variation in lead in ambient air. Similarly, 17 % of 

variation in blood lead could be explained by changes in soil lead concentration. For 

individuals living adjacent to roadways in Gauteng, inhaled lead may be a significant 

contributor to overall lead burden.  

Only one similar study has been conducted in South Africa. Batterman et al. (2011) studied 

blood lead levels in children following the cessation of leaded petrol. Children attending 

schools in more industrial areas of Durban showed higher blood lead levels than other 

children. However, no corresponding differences were visible in atmospheric lead in these 

areas, leading the authors to conclude that non-airborne lead plays a more significant role in 

blood lead concentration than airborne lead. The authors further speculate that lead from 

sources other than petrol may be a substantial contributor to children’s lead exposure in 

Durban. It is unclear if this is the case in Gauteng, as no similar studies have been 

undertaken. As with other aspects of environmental pollution in urban South Africa, the 

dearth of data renders comparisons both within South Africa and between South Africa and 

other countries, quite difficult.  

 Indoor exposure  4.4.5

Exposure to indoor air pollution, primarily from smoke and its associated particulate matter 

is a major public health concern for developing countries worldwide (Ezzati et al. 2002). In 

Africa particularly, the burden of diseases such as respiratory disease, chronic obstructive 

pulmonary disease, lung cancer and others are attributed directly to exposure to often toxic 

coal and wood smoke (Norman et al. 2007a). This can be particularly dangerous for 

impoverished populations in which individuals are already nutritionally and physically 

stressed (Goyer 1995; Mahaffey 1983).  
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4.4.5.1 The role of domestic coal  

During Apartheid and continuing into the present, the primary fuel for cooking and heating 

used in townships and historically black neighbourhoods in South Africa has been coal or 

wood (Kimemia and Annegarn 2011; Monna et al. 2006; Wesley and Loening 1996). This is 

true even of households with electricity (Mdluli and Vogel 2010). Of the 50% of households 

that use coal or wood for heating and cooking, 95% are black African households (Norman 

et al. 2007a). Whilst the few studies investigating this phenomenon are primarily concerned 

with respiratory and cardiovascular disease, it is critical to consider that indoor smoke from 

coal contains lead and may well be a contributor to the overall lead burden within a given 

household, despite the relatively low lead concentration of South African coal (De Villiers et 

al. 2010; Wagner and Hlatshwayo 2005).   

So, whilst researchers conclude that the lead in coal provides very little contribution to 

overall atmospheric lead in urban South Africa, it would be naïve to discount coal as a 

substantial contributor to individual lead exposure in black households, especially in regards 

to lower level chronic exposure. Domestic coal use in general is attributed to higher rates of 

lead exposure in lower-income households worldwide (Barnes et al. 2009; Ezzati et al. 

2002).  Recent studies of the blood lead concentration in children in Cape Town may help to 

confirm this (Mathee et al. 2004). What is needed however, are isotopic studies of blood or 

bone lead concentration of a cross section of South Africans. This would provide researchers 

with much critical information regarding both sources and pathways of lead exposure.  

4.4.5.2 Lead in paint 

Lead concentration in residential paint has been of great concern worldwide (Clark et al. 

1985). Lead in paint is particularly dangerous for young children, who are likely to exhibit 

pica during infancy/toddlerhood and who may ingest lead-based paint chips. And whilst 

leaded paint is considered a problem unique to older homes in the West, this may not be the 

case in South Africa. Lead-containing paint as an exposure pathway did not garner attention 

in South Africa until the first decade of the 21
st
 century. The first study of its kind, 

Montgomery and Mathee (2005) investigated the lead content of 60 homes throughout 

Johannesburg. The authors found that 20% of all homes surveyed contained lead-based 

paint, in both new and old homes and across socioeconomic backgrounds.  

More importantly, despite an agreement to stop the practice of adding lead to paint in the 

mid-1970s, Mathee et al. (2004) report that 60% of paint being sold to the public in Cape 

Town and Johannesburg were lead-based. In addition, some lead concentrations in these 

paints were as high as 189,000µg·g
-1

. The U.S. reference level for lead concentration in paint 
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is 5,000µg·g
-1

. In addition, lead concentration in the paint on widely available children’s 

toys were measured at levels as high as 145,000µg·g
-1 

(Mathee et al. 2006).  

The paint used in children’s playground equipment is also a source of lead exposure. A 

reported 48% of lead used in play equipment in Johannesburg, Tshwane and Ekurhuleni, 

contained lead in concentrations higher than international reference values, signifying a 

substantial risk to the children that use them (Mathee et al. 2009b).  Currently, and certainly 

during the latter half of the 20
th

 century, no government legislation has existed in South 

Africa regulating lead in paint, and given the high concentrations reported by Montgomery 

and Mathee  (2005) and Mathee et al. (2006), it appears that this may be a substantial source 

of exposure for South Africans, particularly children. Unfortunately, no isotopic studies of 

lead isotope ratios in paint have been conducted, making it difficult to ascertain just how 

much of the total lead burden in the population comes from residential paint.  

 Tobacco 4.4.6

Tobacco smoke is an often overlooked yet potentially significant source of toxic element 

exposure in both smokers and those exposed to second-hand smoke (Chiba and Masironi 

1992; Mishra et al. 1986). Tobacco is known to contain arsenic, cadmium, lead, manganese 

and vanadium (Bernhard et al. 2005). These elements are then inhaled into the lungs where 

they are quickly absorbed into the blood stream. Cadmium is particularly prevalent in 

tobacco, and contributes to elevated blood cadmium levels in populations worldwide, though 

this varies based on several factors including the region in which the tobacco is grown (Järup 

et al. 1998b; Stephens et al. 2005; Tsadilas 2000).  

 Secondary exposure  4.4.7

Lastly, very little research into secondary exposure pathways has been investigated in South 

Africa. In this sense, para-occupational exposure – the exposure to heavy metals of 

individuals living with occupationally exposed household members is also under-reported. 

Anecdotal evidence exists regarding children who are exposed to lead, cadmium or arsenic 

from backyard motor repairs, car battery recycling, jewellery making, and mining dust, but 

no studies have been conducted into the prevalence of these activities nor their effect on 

heavy metal exposure rates (Rees and Schneider 1993; Von Schirnding et al. 2003).  
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5  Toxic elements and health in South Africa 

 

The discussion of the current state of knowledge regarding toxic elements in the South 

African environment is critical to understanding the risks to humans.  Studies of inorganic 

pollution in South Africa have primarily concerned children, as opposed to adults and the 

majority of were conducted in Cape Town or Cape Province. The environment of urban 

Gauteng differs from the Cape in many ways, not the least of which is the predominance of 

mining and industry activities that are located so close to urban areas. Nonetheless the 

information presented in this chapter, particularly the studies of metal exposure conducted in 

Gauteng after apartheid and more recently, after the reduction of lead in petrol, provide a 

means by which to directly compare the data generated by this project.  

As with environmental studies, research regarding human exposure to toxic metals and trace 

elements is in its infancy in South Africa. The majority of studies that have been undertaken 

in the past two decades have focused on exposure rates in children as opposed to adults. In 

addition these studies have primarily involved lead and manganese exposure, and little 

information is available regarding rates of exposure to other toxic elements. Nevertheless, 

the studies that have been conducted provide two critical sources of information by which to 

compare data from this project. Firstly, historical exposure can be compared against modern 

to identify any changes in exposure rates or patterns. Secondly, and subsequently, any 

identification of changes over time can be used to infer and predict potential future changes 

in toxic element exposure within the South African population.  

The distribution of human lead exposure in South Africa has only been monitored since 

1982, and until the 2000s no multi-city study was undertaken. Most published studies have 

focused on Cape Town, and since 2000 only a few have focused on Johannesburg. No 

investigations of human lead exposure have been undertaken in Pretoria/Tshwane. Some 

overall trends are apparent however, with regards to lead exposure across the population. In 

most urban centres in South Africa, lead exposure follows a negative urban to rural gradient, 

with the highest lead concentrations found in city centres. Within that trend however there 

are many factors that appear to influence lead exposure, socioeconomic status most 

prominent among them. The major source of human lead exposure has likely been leaded 

petrol, however as some more recent studies have shown, lead exposure persists even after 

the phasing out of leaded petrol and other sources are likely to play a role as well. 

The role of lead in the total disease burden of South Africa is substantial. Norman et al. 

(2007c) estimate that in the year 2000, approximately 23 million South Africans had a blood 
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lead concentration between 5 and 10μg/dL-1. A further four million individuals were 

estimated to have blood lead concentrations above 10μg/dL-1. Given these lead exposure 

level, Norman et al. estimate that in children, 530 in every 1000 suffer a reduction in IQ at 

blood lead levels of between 5 and 10μg/dL-1. At high levels of exposure - > 20μg/dL-1, an 

estimated three children in every 1000 suffer a loss in IQ of 3.5 points.  

In adults with blood lead levels between 5 and 10μg/dL-1, an estimated 0.4 to 0.6 increase in 

mmHg (systolic blood pressure) occurs in 527 out of every 1000 individuals. In adults with 

blood lead concentrations above 20μg/dL-1, a corresponding increase of 3.75 mmHg occurs 

in 2.3 per 1000 adults.  

The authors report that 75% of the total Disability Adjusted Life Years (DALYs) in the 

population as a whole can be attributed to mild cognitive disability in children caused by 

lead exposure.  Cardiovascular diseases such as stroke, hypertension and heart disease make 

up the remaining 25% of DALYs, all of which can be brought about and exacerbated by 

exposure to lead. Thus the role of lead exposure in the total burden of disease in South 

Africa is quite substantial.  

With regards to other elements such as manganese, the research is less well defined and 

under-reported. To date, only a handful of studies have investigated manganese exposure in 

the population, and as with lead, these tend to focus primarily on children. There does 

appear to be a link between lead and manganese in some parts of the population however 

this has been explored in only one published report. Only one study to date has investigated 

cadmium exposure in the South African population.  

It is critical to note that studies of human exposure to several elements included in this 

research, namely, vanadium, antimony and arsenic have yet to be conducted in South Africa 

and there is no way to compare the data gathered in this project to present-day trends.  

5.1 Lead 

 Early lead monitoring – 1982 to 1999 5.1.1

The earliest investigation into urban lead exposure in South Africa is that of White et al. 

(1982), in which the authors measured the blood lead concentration of 226 children residing 

in Cape Town. Among the findings of the study is that children residing in the Cape Town 

urban area had blood lead concentrations approaching those of children in other major urban 

centres worldwide. The ethnic/socioeconomic background of the children studied was not 

reported by the authors, however 23 of the children were inpatients at a Ciskei homeland 

hospital and were thought to have been residents of a township near East London, which 



113 
 

would indicate that they were black children. These children, and those white children 

residing in the Cape Peninsula but not necessarily in Cape Town, yielded lower blood lead 

concentrations (mean 7.8 and 8.2μg/dL blood lead concentration vs. 12.7μg/dL) than 

children residing in Cape Town, though the range in blood lead levels was the same. The 

authors recognize the urban/rural dichotomy in lead exposure. In this study however, blood 

lead levels in Cape Town children were still lower than those of children living in a lead-

exposed area of Philidelphia, United States.  

Though White et al. do not report the race of the children with the highest blood lead levels 

among the Cape Town dwellers, based on previously-reported sociological trends, it may be 

that they were black or of low socioeconomic status. The authors investigated each child 

with a blood lead concentration above 24μg/dL. Among these nine children, the father of 

one worked in a factory using lead, the father of another child collected and burnt batteries 

to sell for scrap metal, and three of the homes were in disrepair with visible paint. The 

collection and burning of batteries in particular is a predominantly black activity, and homes 

with peeling paint indicate lower socioeconomic status. Lastly, six of the children lived 

adjacent to major roadways.  

These trends are mirrored in subsequent research by Deveaux et al. (1986). This study 

investigated blood lead levels of 293 children between the ages of 4 and 6 and attending pre-

school in Cape Town. All of the children resided in central Cape Town and all were 

classified as “coloured”. Devereaux et al. also applied a socioeconomic score to each child 

based on family income, mother’s education level and parents’ occupation. The average 

blood lead concentration in this study was approximately 16μg/dL and there was no 

correlation between socioeconomic status and blood lead level.  

In children with the highest blood lead levels (> 29μg/dL) lead-based paint was found in the 

home of the majority, indicating that among children, lead paint was and likely still is a 

substantial source of lead exposure. Measurements of house dust in the homes of a cross-

section of children were taken and there was no correlation between the lead concentration 

in house dust and those children with the highest or lowest blood lead concentrations. 

Notably however, the children with the highest and toxic levels of blood lead all came from 

the most socioeconomically deprived areas of the city. Lastly, the authors report that they 

did not find an association between petrol-derived aerosols and blood lead levels.  

Von Schirnding (1991) and von Schirnding et al. (1991) subsequently explored the potential 

causes behind the elevated blood lead levels in coloured children residing in urban Cape 

Town. Von Schirnding analysed the blood lead levels of 1,234 school children residing in a 

working-class neighborhood near central Cape Town. Potential sources of lead were 
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explored as well as socioeconomic status and potential health effects of high levels of lead 

exposure. The author found that dusty homes and homes in disrepair were significantly 

correlated with increased blood lead concentration. Among the other factors found to be 

correlated with higher blood lead concentration were overcrowded living conditions, high 

number of siblings, low parental education, single parents and lack of home ownership. Thus 

within the urban core, von Schirnding found a socioeconomic gradient with regards to lead 

exposure. Most strikingly, there appears in this study to be a negative correlation between 

attendance at a crèche (only available to higher income households) and blood lead 

concentration. The author further posits that the difference in blood lead levels may be 

ultimately related to the quality of care-giving received by lower income children, as 

overcrowding, large families and single parenthood may greatly reduce the time spent 

monitoring children by caregivers.  

von Schirnding et al. (1991) expanded the study to include comparison between mixed-race 

and white children, as the neighborhood studied was among the few mixed areas in South 

Africa. The authors reported that extremes of wealth were present within the study area. The 

study area was approximately 4km from the central business district and almost all traffic 

into and out of the central business district traveled through the area.  

The authors found significant differences in mean blood lead between mixed-race and white 

children with mixed-race children yielding higher blood lead levels. All of the children with 

elevated blood lead were mixed-race. The primary differences between the two groups were 

socioeconomic. Nutritional and health status between the white and mixed-race children 

were negligible. The white children tended to live in larger homes and in smaller families, 

even those at lower incomes.  

Another significant factor influencing blood lead concentration was residence and school. 

Children of either racial group attending one of three schools closest to the main roads 

yielded significantly higher blood lead levels than children in other schools, even when 

residence and socioeconomic factors were taken into account. The increase in blood lead 

level associated with attendance at these schools was between 5 to 7μg/dL. Atmospheric 

lead levels obtained at these schools confirmed greater air-lead concentration than at schools 

further from roadways. This study was the first in South Africa to associate traffic with lead 

exposure, although it is clear that other variables contribute strongly to lead exposure in the 

region. In addition, this particular study highlights the potential for substantial intra-urban 

variability in exposure to lead based on multiple risk-factors. 

In 1996, von Schirnding and Fuggle (1996) studied the distribution of lead exposure in urban 

Cape Town. They found high levels of variation in urban environmental lead levels across 
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the study sites. Sites situated near roads yielded atmospheric lead levels nearly double that of 

those sites located further from major roads.  

Examining the rural/urban differences in blood lead, Grobler et al. (1986) measured the 

blood lead concentration of adult long-distance runners in both urban and rural settings. The 

authors analysed the blood of participants in one of two ultra-marathons in either Cape 

Town or the area between Durban and Pietermaritzburg. Mean blood lead among rural 

runners was 20.1μg/dL and for urban runners was 51.9μg/dL indicating significant 

difference in lead exposure between urban and rural areas of South Africa. 

In 1993, Maresky and Grobler (1993) investigated the effect of the reduction of lead in 

petrol (though not its complete removal on blood lead between 1984 and 1990. During this 

time, lead additives in petrol were reduced from 0.84g/L to 0.4g/L. The authors report that 

between 1984 and 1990, the average blood lead concentration of urban Cape Town residents 

with no unusual or occupational exposure to lead fell from 9.7 to 7.2μg/dL, bringing urban 

blood lead concentration in line with urban areas in Europe and North America. This trend 

was confirmed in 1999 by Diab (1999). 

 Kwazulu-Natal and Durban: Post-Apartheid 5.1.2

Also among the first researchers to investigate blood lead in urban South Africa were 

physicians working in an obstetrics ward in Durban (Chetty et al. 1993). In this small study, 

the maternal and cord blood levels of 21 women were investigated. Among women, 95% 

were above the 10μg/dL threshold and 25% had blood lead levels at or above 25μg/dL. 

Among newborns (as measured by umbilical cord blood) 95% had blood lead levels at or 

above 10μg/dL, indicating high infant blood lead levels. Of contributing socioeconomic and 

sociological factors, only the amount of physical labour engaged in by the mother was a 

significant predictor of elevated blood and cord blood lead concentration.  

In 1997, Nrigau et al. (1997) studied 1200 children in and around Durban and rural 

Kwazulu-Natal. This study was among the first to investigate blood lead in children resident 

in black townships. This is also one of the first large scale studies to study a city or region 

other than Cape Town or Cape Province. The “Besters” township area included in the study 

is semi-urban, like many townships, and consists largely of informal shanty towns and 

represents the most socioeconomically disadvantaged segment of the Durban population. 

Of children resident in the townships, 50% had blood lead levels above 10μg/dL, the level at 

which the US CDC recommends intervention. Children resident in rural areas of KwaZulu-

Natal had significantly lower blood lead levels than township children. Among the 

significant risk factors for children living in Besters was proximity of residence to a 
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tarmacked road, number of rooms in the house, cooking fuel used and the presence of 

smokers in the house. Contrary to von Schirnding, Nriagu et al did not find any association 

between the education level of parents and blood lead, however Besters is considered 

socioeconomically uniform and this was not expected.  

Although Nriagu et al. do not compare black children to white or coloured children, one 

important comparison is found between blood lead levels measured in a formal Durban 

township in 1985 and the Besters study. A blood lead level difference of just 2μg/dL
-1

 was 

apparent despite a 10 year difference in the date of the studies. Nriagu et al. state that this 

may be an indicator that despite reduction in lead in petrol, the corresponding reduction in 

human lead exposure may be slower than in developed countries.  

Bazzi et al. (2008) studied a number of trace elements in children from rural Kwazulu-Natal 

aged 8-10 years. The children studied lived approximately 140km from the nearest city, 

Durban. Among the sampled children the mean blood lead was 5.64μg/dL-1. No information 

was given regarding the race/sex of the studied children. 

Batterman et al. (2011) studied 408 children in urban Durban 14 years later and reports a 

dramatic reduction in mean blood lead, and 3.4% had blood lead concentrations above 

10μg/dL-1. Blood lead concentration was highly correlated with school and with sex. Blood 

lead concentration was lower in white children than in black or Indian children. Most 

critically, Batterman et al. suggest that lead exposure in present-day Durban may not be 

linked to petrol emissions. The authors measured airborne lead in addition to blood lead 

across the city and did not see a gradient from high traffic to low traffic areas, despite the 

trend of higher blood lead concentration in children attending schools near transport 

networks.  

 Gauteng (Transvaal) 5.1.3

Despite being the largest and most industrialised urban areas, Johannesburg (and Pretoria) 

were not subject to human lead exposure monitoring until 2001. As with studies of other 

cities, lead exposure studies in these two cities has focused primarily on exposure rates in 

children.  

Among the earliest mentions of lead exposure is a case report of a young girl from Soweto 

undergoing treatment for lead poisoning at Baragwanath Hospital, Soweto. The authors 

report that her blood lead concentration was 100μg/dL-1. Subsequent investigation revealed 

that the girl’s grandfather with whom she resided regularly burned and dismantled batteries 

near the home to sell the scrap metal. Most strikingly, the authors recommend that a blood 

lead level at or above 30μg/dL-1 in children under the age of 14 should be referred for 
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clinical intervention, a level substantially higher than the US CDC recommends as a level 

for intervention. To lower the actionable standard, the authors argue would be counter-

productive, as lower levels are likely to be the result of common environmental exposure, 

indicating belief among the medical establishment that high levels of lead in the 

environment were likely causing elevated lead levels in the region’s children (Rees and 

Schneider 1993). 

The first major study of lead exposure was reported by Mathee et al. (2002). As with other 

studies, the study focuses on exposure in children. The study included 433 children from the 

inner urban core, the Alexandra township and the Westbury suburb. The authors describe 

each area as relatively low on the socioeconomic scale. The study did not include statistics 

regarding lead exposure and race or lead exposure across socioeconomic groups.  

Mathee et al. (2002) found that the highest blood lead levels were in children living in the 

inner city and in the Alexandra township. Overall, the authors report that 78% of children 

had blood lead concentrations at or above 10μg/dL. Significant differences in mean blood 

lead concentration were found between male and female children, with males having higher 

blood lead levels than females. Like von Schirnding et al. (1991), the risk factors for 

elevated blood lead concentration in Johannesburg children included parental education 

level, living in an informal dwelling, the presence of smokers in the household and the 

regular consumption of canned foods.   

Notably, Mathee et al. (2002) are the first researchers in South Africa to examine behaviour 

and lead exposure within the study population. Parents of the children studied were asked 

about the perceived quality of the children’s schoolwork and whether or not they perceived 

the children as being hyperactive. Children whose parents described them as doing poorly in 

school or as hyperactive had higher blood lead levels than other children, indicating that 

some neurological deficits may be present among lead exposed children.  

It is critical to note that this study was conducted after the reduction in lead in petrol in 

South Africa, and yet the authors found persistently high blood lead levels in the study 

population, indicating that sources other than petrol are responsible for toxic levels of lead in 

the environment. Mathee et al. hypothesize that lead in paint and the rise in “cottage 

industries” in the townships (i.e. battery recycling, welding and metalworking, motor vehicle 

repair) are contributing factors to lead exposure in urban children.  

Mathee et al. (2004) explored the matter further and examined the potential sources of 

household lead across South Africa. Though to date, no isotopic studies have been 

conducted to conclusively identify the primary sources of lead exposure in Johannesburg, 
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particularly in children, it is likely that household sources to contribute to lead exposure in 

the region, in addition to lead from petrol. Mathee et al. identify several potential sources, 

including lead paint, cottage industries, and the grinding of batteries to use the lead in mud 

coated walls in traditional dwellings.  

In 2009 Rollin et al. (2009) investigated maternal and umbilical cord blood in women at 

several sites across South Africa, including urban Gauteng (city not specified). Urban 

Gauteng women had the highest levels of blood lead with a median concentration of 

32.9μg/dL. Women in coastal, inland, industrial and rural areas all had lower blood lead 

concentrations than urban dwellers. Median cord blood concentration was also highest in 

urban Gauteng, at 24μg/dL. 

Most recently, Wilson et al. (2011) investigated trace element concentrations in non-

occupationally exposed residents of Gauteng. The study included 107 men and women 

across racial groups who were between the ages of 18 and 73, and most closely aligns with 

the research being undertaken in the present project. Participants were considered 

environmentally exposed to trace elements if they lived within 2km of a motorway, mine 

dump, incinerator or power station. This included 68% of the population, although the 

authors do not report the results according to environmental exposure, nor are the results 

reported according to socioeconomic status (though they are all workers in a local electric 

utility office) or racial background. The authors do report that the blood lead levels 

measured in the study are similar to those reported in Germany and the UK.  

5.1.3.1 Lead and the Birth-to-Twenty Cohort Study 

The Birth-to-Twenty Cohort Study (Bt20) is a longitudinal study of the health and wellbeing 

of children born in Soweto between the months of April and June 1990. The study has 

included 16 follow up studies of approximately 2300 children and their families. Among 

these, blood lead data was gathered for 1546 children aged 13, making this the largest study 

of lead exposure and its associated health effects in Africa (Naicker et al. 2010a; Naicker et 

al. 2010b; Naicker et al. 2012).  

At age 13, the mean blood lead for all sampled children was 5.7μg/dL-1. Three percent of 

children had blood lead concentrations at or above 10μg/dL-1. (Naicker et al. 2012). Among 

the critical findings of these studies is the association between blood lead and a number of 

pathologies and negative health outcomes. Among the black females included in the study 

(n=725), the mean blood lead concentration was 4.9μg/dL-1 (Naicker et al. 2010a). Among 

females with higher levels of lead, the onset of puberty was significantly delayed. Based on 

previous research, the mean age of the onset of puberty for black females in South Africa is 
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10.42 to 11.69 years of age. By 13, most of the females in the Bt20 study are expected to 

have begun puberty. Naicker et al. report that in girls with blood lead concentrations above 

5μg/dL-1, the onset of puberty (including breast development, pubic hair growth and onset 

of menarche) was delayed, even when controlling for socioeconomic and anthropometric 

factors. This follows the same trend found in other countries (Wu et al. 2003).  

In 2012, Naicker et al., using the same data investigated the potential neurological effects of 

lead exposure among the sampled children. Specifically, the authors examined the 

relationship between blood lead and socio-behavioural adjustment and aggressive and 

delinquent behaviours. In all the children, two anti-social behaviours were significantly 

associated with higher blood lead concentrations: “threatening others” and “destroys own 

things”. In boys, in which the mean blood lead concentration was 6μg/dL-1, four anti-social 

behaviours were associated with elevated blood lead levels: “argues”, “destroys own things”, 

“attacks people”, and “loud”. No significant relationships were found between anti-social 

behaviours in females. White children were not included in the study, and the majority of 

children included in the study (coloured, mixed race and black) were from a low 

socioeconomic group.  

Among the Bt20 cohort, 618 maternal and cord blood samples were taken at birth and of 

these, 312 repeat blood samples from this subset of children were sampled again at age 13 

(Naicker et al. 2010b). At birth the mean cord blood concentration was 5.9μg/dL-1. By age 

13, blood lead decreases in females but not in boys. Of the children sampled at birth and at 

13 years, blood lead concentration increased in 42.3% of the population, with the rest of the 

population either decreasing or staying the same. The authors also found that children born 

to teenaged mothers (<20 years) had higher blood lead levels at birth than those born to 

mothers aged 20 years or older. Similarly, there was a positive association with low 

educational status of the mother and the blood lead concentration of the child at birth.  

By age 13, children born to adult mothers and with lower cord blood concentrations at birth 

had higher blood lead concentrations than those born to teenaged mothers, indicating that 

different environmental or household factors may be affecting lead exposure (Naicker et al. 

2010b). Among these factors, low education level of mothers, lack of home ownership and 

lack of household telephone were significantly associated with elevated blood lead 

concentration, indicating that those children living at the lowest end of the socioeconomic 

spectrum were more significantly exposed to lead at aged 13. In addition, children with 

higher blood lead concentrations at birth were 1.9 times more likely to have elevated blood 

lead concentrations at age 13.  
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5.1.3.2 Lead exposure in a mining region 

Von Schirnding et al (2003) measured blood lead levels of children living in a lead mining 

town in the Northern Cape Province and compared this data to that gathered from a non-

mining community 40km away. The authors report several interesting findings. Mean blood 

lead level between the two rural communities was 15.9 and 13.2μg/dL in the mining and 

non-mining towns respectively, which is, overall quite similar. In the mining community, 

98% of the study population had blood lead levels above 10μg/dL-1. In the non-mining 

community, 85% had a blood lead level at or above 10μg/dL-1. Among the key differences 

between the communities is the level of parental education and level of poverty, with higher 

educated parents in the mining community and a higher level of poverty in the non-mining 

community. Children in the non-mining community were also more likely to live in 

households with more than 3 children under the age of five years.  

Within the more affluent mining community, children from higher socioeconomic 

backgrounds had lower blood lead concentrations than children from lower socioeconomic 

households, even when the exposure rate of the former group was higher than in the latter. 

These findings are similar to those of von Schirnding, (1991) and Mathee et al. (2002) which 

found a clear link between blood lead concentration and socioeconomic status even when 

exposure rates are roughly similar, or, in the case of the mining community, higher. 

5.2 Manganese 

The post-2000 studies of manganese exposure in South Africa have largely assumed that the 

bulk of manganese exposure stems from the use of MMT as a petrol additive. Whilst this is 

likely so, manganese is also mined and processed in South Africa, and some exposure may 

be due to other sources of manganese in the environment. One study in particular, Rollin et 

al. (2009), reports data in which rural residents and urban residents have roughly similar 

blood manganese concentrations, which calls into question the traffic/automotive 

explanation for human manganese exposure.  

There are no published investigations into manganese exposure in South Africa before 2005. 

At that time, blood manganese concentrations in 430 children were measured in Cape Town 

and 384 children in Johannesburg (Rollin et al. 2005). This study compared children living 

in the inner city of each city, those living in former townships, and those in white or 

coloured suburbs. Children attending school in the inner city of Johannesburg had the 

highest blood manganese concentrations. Inner city children had a mean blood manganese 

concentration of approximately 11μg/L-1 whilst children from schools in Soweto had a 

blood manganese concentration of approximately 8μg/L-1. In Cape Town, children from the 

formerly coloured suburb of Mitchell’s Plain had the highest blood manangese 
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concentrations at approximately 5μg/L-1 compared to > 5.5 μg/L-1 in the inner city. In both 

cities, black children had the highest blood concentration of any demographic group, 

although the authors did not report results according to race, so the exact blood manganese 

concentrations per racial group is unknown.  The authors report that in Johannesburg, 12.5% 

of children had blood manganese concentrations above 14μg/L-1, the Agency for Toxic 

Studies and Disease Registry (ATSDR) threshold for intervention. In Cape Town, this 

percentage is much lower at 4.2% of children.  

In 2007, Rollin et al. included the city of Kimberley and three rural sites in the Northern 

Cape to the 2005 study. Children living in the mining town of Aggeneys had the highest 

blood manganese concentration with a mean of 9.86μg/L-1. Children in Johannesburg and 

Kimberley had blood manganese concentrations of 9.76 and 9.72μg/L-1 respectively. Rural 

children from Pella and Onseepkans had blood manganese concentrations of 8.30 and 

7.75μg/L-1 respectively and children in Cape Town had the lowest blood manganese 

concentration at 6.75μg/L-1.  

Paradoxically, Rollin et al. (2009) found that blood manganese and cord blood manganese 

levels in women and infants from urban Gauteng were substantially lower than those in 

women and infants from any other region, including mining and industrial areas. Median 

cord blood manganese concentration in Gauteng was 19.7μg/L-1 as opposed to 34.5 and 

36.6μg/L-1 in mining and industrial areas. Maternal blood manganese concentration was 

substantially lower in each region except Gauteng, with median blood manganese of 

approximately 16μg/L-1 in mining, industrial and rural areas, and 17.7μg/L-1 in urban 

Gauteng. Notably, this does not follow the same trend as lead which shows a clear 

urban/rural, high/low dichotomy in regards to blood concentration.  

Rollin et al. (2007) also examined the relationship between blood lead concentration and 

blood manganese concentration. When blood lead was fitted as the response variable, and 

manganese as the explanatory factor, there was no consistent relationship between blood 

lead and manganese concentration in any of the study areas. The authors did find that blood 

manganese concentrations were higher in females than in males and lower in black 

individuals than in those of other races, a trend found by Batterman et al. (2011) in Durban. 

In addition, the authors report an overall positive linear trend in which manganese 

concentration increased with increasing blood lead, but this trend was not found to be 

significant across each study location. In Johannesburg, no linear effect between blood 

manganese and blood lead was apparent (Röllin et al. 2007).  
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Wilson et al. (2010) report blood manganese concentration of 9.7μg/L-1 in non-

occupationally exposed Gauteng residents. This value is higher than those reported in Italy 

in 1990 and the Germany in 2002 at 8.8 and 0.6μg/L-1, respectively.  

Bazzi et al. (2008) report a mean blood manganese concentration of 8.48μg/L-1 in children 

from rural Kwazulu-Natal.  

5.3 Cadmium 

There is scant information regarding cadmium exposure in South Africa. Rollin et al. (2009) 

and Wilson et al. (2010) are the only two studies to date that have examined cadmium 

concentration in human tissues in South Africa. These studies do indicate that cadmium 

exposure is higher in South Africa than in many other under-developed countries, and is on 

par with Western countries. 

Wilson et al. (2010) report median adult cadmium concentration at 1.1μg/L-1 with a range of 

0.3-2.3μg/L-1. This is compared with Italy (1990) and Germany (2002) with median 

reported blood concentrations of 0.6μg/L-1. The range in Italy is lower than that of South 

Africa at 0.1 to 1.7μg/L-1 and the range in the sampled German population is 0.1-3.3μg/L-1.  

The values reported by Rollin et al. in maternal blood is substantially lower than those 

reported by Wilson et al. In rural samples median blood cadmium concentration is 0.10μg/L-

1 and 0.15μg/L-1  in women from urban Gauteng, despite the fact that these women come 

from roughly the same region and time period as those potentially sampled by Wilson et al. 

The highest cadmium concentrations reported by Rollin et al. are from women living on 

either South Africa coast, with women on the Atlantic ocean having the highest blood 

cadmium concentrations in the study, with 0.25μg/L-1, and women living near the Indian 

Ocean having the second highest at 0.16μg/L-1.  

5.4 Arsenic 

To date, only two published studies have investigated blood arsenic concentration in the 

South African population, Bazzi et al. (2008) and Rollin et al. (2009). Bazzi et al. report a 

mean blood arsenic concentration of 1.5μg/L-1 in children from rural Kwazulu-Natal. 

Conversely, Rollin et al. report much lower blood arsenic concentrations in the blood of 

women across South Africa, with maternal blood arsenic concentration from women in 

urban Gauteng at 0.43μg/L-1. In Rollin et al., women living in a mining community and 

women living in a rural inland malaria region had the highest blood arsenic concentrations at 

0.73 and 0.74μg/L-1 respectively. The lowest concentration came from women living in the 

industrial area at 0.33μg/L-1. Cord blood taken from infants at the same time as maternal 

blood was sampled also showed lower blood arsenic concentrations than that measured by 



123 
 

Bazzi et al., with the highest concentration of blood arsenic found in infants from the inland 

malaria zone at 0.79μg/L-1. The lowest blood arsenic concentration in cord blood came from 

infants born in urban Gauteng at 0.37μg/L-1.  

5.5 Antimony and Vanadium 

No monitoring of antimony or vanadium has been conducted in humans in South Africa. 
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6 Materials and methods 

6.1 Materials 

 Skeletal materials 6.1.1

Skeletal material was sampled from incomplete postcranial remains from Pretoria Identified 

Bone Collection at the University of Pretoria, South Africa and the Dart Student Bone 

Collection at Witswatersrand University, Johannesburg. The Pretoria Bone Collection is an 

identified reference collection held at the University of Pretoria, School of Medicine. The 

skeletal remains are those of individuals who died in the Pretoria area between 1943 and 

2012 and whose bodies were either unclaimed or donated. In the former case, unclaimed 

bodies become the property of the University of Pretoria to be used for teaching and 

research, subject to the South Africa Human Tissues Act of 1983 (L'abbe et al. 2005). The 

collection consists of individuals who range in age from neonates to 95 years of age. The 

predominant demographic within the collection is black males, followed by white males, 

white females, and black females. This is largely to do with both overall demographic 

patterns within South Africa and to economic conditions during Apartheid, in which 

circulating migration brought black males to urban areas from Bantustans for work (Byerlee 

1974; L'abbe et al. 2005; Smit 2001). The Raymond Dart Collection is housed at the 

University of Witswatersrand, School of Medicine and is similar in demographic 

composition to the Pretoria Collection. Skeletal remains in the Dart collection date to 1928 

(Dayal et al. 2009). Only 12 of the femora included in this study are from the Dart 

collection. 

6.1.1.1 Collection background 

The Pretoria collection was founded in 1942 with skeletal material derived from research 

and teaching cadavers from the University of Pretoria School of Medicine (L'abbe et al. 

2005). The collection does include forensic cases, however, none are included in this 

research as the remains are too valuable for destructive sampling. The remains in this 

collection were never buried, and so there is little possibility of post-mortem exposure to any 

of the elements of interest in this research. This factor, above all others, makes this 

collection ideal for trace element research.  

All remains that arrive in the School of Medicine are given a cadaver number, and their 

identity is expunged from the database used by students, staff and researchers. The identity 

of each individual is known to select staff, as the school maintains the policy of returning 

remains to family upon request. Therefore, these samples are technically linked, in that it 

would be possible to identify them individually. However, identity information was not 
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made available to the author, and the bone samples were re-coded with completely unlinked 

numbers upon arrival at the University of Southampton.  

6.1.1.2 Sample selection 

Whilst the collection itself is vast and the documentation is excellent, the physical 

organisation of the collection made sampling difficult. Years of neglect (L’abbe, 2011) 

meant that there is little organisational logic with the exception of forensic cases, which are 

stored in numbered boxes. The materials sampled for this research came largely from the 

Student Collection, and from materials slated for destruction. A majority of the bones were 

stored in large plastic or cloth bags which contained bones of one type and side. There was 

no organisation according to cadaver number, sex, age or any other demographic factor. 

These bones are regularly given out to students for study purposes.  

Sample selection was difficult due to the haphazard nature of selecting one bone, checking 

its cadaver number against the University’s database and deciding whether to include or 

reject it. Moreover, because the collection is biased heavily towards black males, it was 

difficult to find white males and females from among the bags of bones. It was decided that 

all white males and black females that were located would be sampled, and that black males 

would be sampled in such a way as to attempt to match the white and female samples for age 

at death and date of death. Despite being statistically more prevalent, no white females were 

found among the incomplete postcrania. Time and organisational constraints led to the 

decision not to include white females. Younger black males were also included to establish a 

range of ages, despite the inclusion of very few young white males. The nature of this 

sampling method invariable introduced a significant sampling bias into the process. Because 

the nature of the collection’s organisation was unknown prior to arrival in Pretoria, there was 

little time to prepare and attempt to correct for any sampling bias that occurred. Age, sex and 

race statistics for the sampled remains are given in Table 6-1.  
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Table 6-1  Demographic breakdown of sampled remains. Includes age and hospital (residence) 

by race and sex. 

 N Percent     

Males 165 76     

Females 49 23     

Black 179 82.5     

White 35 16.1     

       

 

Age Mean Median SD  Min Max. 

All 

 

53.01 55 16.06 20 95 

White Males 

 

66 67 13.1 42 95 

Black Females 

 

48.2 46 14.67 25 80 

Black Males 

 

51.2 50.5 15.28 20 80 

       

 

Hospital Pretoria Johannesburg Rural Unk. Total 

All 

 

153 40 6 16 217 

White Males 

 

16 6 2 11 35 

Black Females 

 

38 8 1 2 49 

Black Males 

 

98 26 3 3 127 

 

Given the sampling method, the remains in this study conform rather closely with the 

demographic profile of the collection as a whole
1
. Black females comprise 23% of the 

sampled remains and make up 16% of the total collection. The mean age for black females 

in the collection is 47.4, and is 48.2 in the sampled remains. White males comprise 16% of 

both the total collection and the sampled remains. The mean age of white males in the whole 

collection is 66.5 and mean age in the sampled remains is 66. Black males comprise 60% of 

the complete collection and comprise 60% of the sampled remains. In terms of age, the mean 

age of black males in the complete collection is 53.9, and is 51.2 in the sampled remains. 

Thus, excepting the omission of white females, the sampled remains are highly 

representative of the Pretoria Collection.  

In addition, the nature of the collection itself, in that it is comprised predominantly of 

unclaimed bodies, lends to a bias as well. Komar and Grivas (2008) refer to these as 

“manufactured populations” as they tend to be heavily biased towards males, and older 

individuals, and certainly this is the case with the Pretoria Collection. In much the same way 

that researchers question whether contemporary populations in reference questions can be 

used as analogues to historical populations, the same can question can be asked of the 

                                                 
1
 The 12 samples from the Dart Collection are considered with the Pretoria Collection. These remains 

are of 12 black males and as such, are not considered representative of the large Dart Collection. 

Moreover, there is considerable overlap between the two collections with regards to admitting 

hospital. The remains are treated as coming from one population, as opposed to two distinct 

populations.  
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Pretoria collection. With regards to the research at hand, it can be argued that the use of a 

reference collection is quite appropriate.  

6.1.1.3 Diagenesis and the advantage of cadaver remains 

Diagenesis is the most formidable obstacle facing any chemical analysis of archaeological 

material. Diagenetic processes must be accounted for and controlled for in order for any 

examination of bone chemistry to be worthwhile and before results can be properly 

interpreted (Elliott and Grime 1993). The effects of diagenetic processes are controversial 

(Martinez-Garcia et al. 2005; Millard 2006). An example of this controversy is the long held 

assumption that long-term lead exposure and widespread lead poisoning led to the decline of 

the Roman Empire. This assumption was based on chemical analyses of bone lead 

concentrations in Roman skeletal remains. Research has questioned whether the high levels 

of lead in Roman remains is actually representative of in vivo lead concentrations or rather 

the effects of diagenesis (Patterson et al. 1987) 

Bone tissue in burial environments is subject to ground water, soil conditions, exposure to 

burial artefacts etc. The porous nature of bone makes it predisposed to the absorption of 

organic and inorganic material in the immediate environment. Archaeologists must 

determine whether the concentrations of metals and trace elements present in any previously 

buried bone are representative of in vivo exposure, or diagenetic, resulting from post-

mortem exposure in the burial environment. Complicating matters is the fact that bone 

porosity varies for a variety of reasons, and there are countless processes by which elemental 

uptake occurs in bone and most are site-specific (Hedges 2002). Exposure to groundwater is 

the most common diagenetic process (Hedges and Millard 1995). Reference collections like 

the Pretoria Collection are not subject to diagenetic processes and as such are ideal for 

biochemical analysis.  

The primary aim of this research is to understand present-day exposure to trace elements and 

heavy metals through a framework of exposure rates in the recent past. With regards to the 

Pretoria collection’s bias towards African males, this is true of many skeletal reference 

collections, and should not be an argument against using them for epidemiological studies – 

especially in previously unstudied populations. Many present-day epidemiological studies of 

heavy metals in humans are biased towards one demographic group or another – often these 

studies are biased towards women and children and this is certainly the case in South Africa. 

Lastly, it is an unfortunate reality that investigations of heavy metal exposure were not 

conducted in South Africa prior to 1980. Analysis of skeletal reference material is the only 

means by which to establish any understanding of past exposure rates and by which to frame 
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present-day studies. In this respect, the value of the Pretoria Collection in this research 

cannot be understated.  

In total, 346 individual bones were sampled from 214 individuals, including femora, fibulae, 

radii, ulnae, humerii, and tibiae. In addition, multiple bones were removed from 48 

individuals (excluding individuals from whom the same bone was sampled only on different 

sides).  

 Sampling Method 6.1.2

6.1.2.1 Sampling procedure 

Sampling began on July 12, 2011. In the first instance, fibulae, radii and ulnae were taken 

from materials that were slated for destruction. These remains had been stored in the 

basement morgue of the Department of Anatomy for some time, and it was agreed that they 

would be sampled first. These remains were fully traceable, as they were all labelled with 

cadaver numbers. Fibulae, radii and ulnae were sampled using a Dremel saw with corundum 

cutting blade.  Samples were taken from the distal end of the fibula approximately 2-3cm 

from the distal end. Radial samples were taken from the proximal end on the anterior 

surface. Ulnar samples were taken from the proximal/anterior surface as well. The bone 

samples were not weighed, but a 1.5cm by 1.5cm square of bone was taken and the samples 

consisted of the full thickness of the cortical bone.  

Femoral bone samples were removed by drill. A 10mm diamond-tipped core drill was 

attached to a conventional drill press. Femora were held securely by placing the bone 

between two blocks of wood to prevent the bone from rotating counter to the drill during 

sampling. The same drill bit was used for multiple bones and was not rinsed between bones, 

primarily because to do so would have required a substantial amount of time, slowing the 

process as there was no water source available in near the drilling aparatus. Any bone dust 

that may have been transferred between samples was removed in the lab. A full-thickness 

core of cortical bone was removed from each femur from the distal/posterior surface 

approximately 3-4 cm above the intercondylar fossa. This location was chosen because of 

the ease of sampling, and because it provided a substantial amount of cortical bone without 

interfering with any femoral landmarks or osteometric measurements (Gibbon et al. 2009).  

Previous research has demonstrated that bone element concentration can differ substantially 

within the same bone, depending on sampling site. Todd et al. (2001) found that bone lead 

concentration differed along the diaphysis of the tibia. To correct for this, every effort was 

made to sample each bone in precisely the same location give or take one centimetre.  
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After removal from the bone, all samples were placed into zip-closure plastic bags and 

labelled with cadaver number, bone, and side. A database was also maintained with the same 

information. Sampling concluded on August 13, 2011. Sample bags were stored at the 

University of Pretoria until transport to the UK in March, 2012. A complete list of the bones 

sampled, including the bone, sex, age and ancestry of each sample, is provided in Appendix 

G.  

6.2 Analytical method 

 Sample pre-treatment  6.2.1

6.2.1.1 Method choice constraints 

In this analysis, several constraints were placed upon the project that had to be taken into 

consideration when choosing a sample preparation method. The most critical constraint was 

time. Only five working days were allowed from the time the samples were signed for by 

Dr. Trueman, to render the bone tissue completely acellular. This timeline was imposed by 

the University of Southampton, in accordance with the University’s Human Tissue Licence 

as legislated by the UK Human Tissues Act of 1994. Lab access was restricted on weekends, 

mornings before 9:00 and evenings after 19:00, so all analysis was carried out during normal 

working hours between Friday, March 2, 2012 and Thursday, March 8, 2012.  

The second primary constraint was lab equipment/space. Whilst the NOC clean 

geochemistry laboratory is considered cutting edge, it is not set up to process large batches 

of biological samples. The time and equipment needed to dry ash over 350 samples is 

substantial and would have resulted in the analysis falling afoul of the five-day processing 

restriction. Space within the clean laboratory is also at a premium. The clean fume 

cupboards lack the space necessary to process 350 samples on the lab’s hotplates without 

displacing other researchers and research projects. Thus processing the samples at 

temperature would have to have been accomplished in small batches, which would have 

likely resulted in failure to meet the University’s deadline. 

The decision was made to process the samples in the most simple, timely method possible so 

as not to violate the five-day deadline.  

 Digest Method 6.2.2

Sample digestion was conducted at the University of Southampton Geochemisty Class 100 

Clean laboratory at the National Oceanography Centre Southampton. All reagents used were 

Fisher Trace Element grade and further sub-boiled in Teflon® stills to ensure ultra-purity. 

Water used was MilliQ® Millipore ultra-pure water (18.2 MΩ).  All tubes and bottles, 
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including caps used in this analysis were washed with 10% HNO3 for a minimum of 48 

hours and rinsed clean three times with MilliQ. Complete washing protocol can be found in 

Appendix B. Labware was then placed in a clean dryer with HEPA filtration system to dry. 

All materials were stored in acid-washed plastic bags until use. Solution bottles were left 

capped until use. Pipettes and pipette tips used to transfer acid to sample tubes were washed 

three times with 6M HCl and rinsed three times (including internally) with MilliQ. Nitrile 

gloves, Tyvek clean suits and clean lab shoes were worn at all times during sample 

preparation.   

After arrival, samples were removed from the storage bags within the clean lab and each 

sample of whole bone was weighed to 0.0001g accuracy. The samples were then placed in 

15ml tubes and each was washed to remove surface dust and dirt in ultrapure MilliQ™ 

water. Washing was accomplished by filling the tube with approximately 8-10ml of water, 

capping the tube and shaking the sample, the water was then decanted and the process 

repeated three times, or more if the decanted water did not run clear after the third wash. 

After washing, 1mL of 69% sub-boiled, ultrapure nitric acid was added to each sample. 

Samples were left at room temperature, approximately 20°C, loosely capped for 72 hours. 

After 72 hours, the samples still retained some organic material. They were then diluted to 

10mL with MilliQ water. Samples were then left for four days to allow solid phase to settle.  

After acid digestion, individual dilution factors were calculated for each sample in order to 

reach a dilution of 100µg/mL
-1

. Dilution was carried out for two reasons: the reduction of  

total dissolved solids in the sample, and to reduce Ca concentration to a level that would 

minimise matrix effects. This was accomplished by first calculating the percentage of 

Ca3(PO4)2 bone apatite that is comprised of calcium: 38.7% . Because whole bone as 

opposed to ashed bone was used, the result was multiplied by 0.666, which is the widely 

held approximation of the percentage of bone tissue that constitutes the inorganic phase. The 

following equation was used to calculate the dilution needed to achieve 100µg·g
-1

 Ca, where 

W is the total weight in grams of the bone sample and DF is the dilution factor:  

((W*0.387)0.666)1000 = DF 

Aliquots of varying volume (dependent on the individual DF of each sample) for each 

sample were pipetted into 20mL vials and then 10mL ±0.1 of 3% HNO3 was added to each 

bottle by placing the bottle on a scale and adding acid until total solution weight (sample + 

acid) was as close as possible to 10g.  

For the addition of internal standards, rhinium, indium and beryllium were added to each 

diluted sample at a concentration of 5µg/mL (Re and In) and 20µg/mL (Be). All three are 



131 
 

rare earth or post-transition metals and are used in this instance to control for signal drift. 

None of these elements is expected to be present in human bone tissue. Samples were stored 

in capped vials until analysis. Dilution factors, aliquot volumes and total analytical volumes 

are listed in Appendix G. All results are reported in concentration (μg·g
-1

) dry weight. 

ICP-MS Equipment was calibrated by the inclusion of nine calibration standards plus five 

calcium standards. Individual elements of interest were taken from stock element solution 

(Inorganic Ventures) of either 1000μg·g
-1

 or 10,000μg·g
-1

 and diluted to below the lowest 

expected concentration for each element. Element concentrations were then increased across 

the nine standards until the top standard contained element concentrations above what was 

expected in analytical samples. The five calcium standards ranged in concentration from 

70μg·g
-1

 to 110μg·g
-1

. Calibration standards volumes and method are given in Appendix D.  

Nine samples of CRM, NIST-SRM 1486 Bone Meal were digested and analysed alongside 

analytical samples. In addition, 10 reagent blanks of 3% HNO3 were analysed to detect and 

control for contamination.  

  Instrument operating parameters 6.2.3

The equipment used was a ThermoScientific XSeries 2 Quadropole ICP-MS. The elements 

of interest were analyzed in one of two instrument modes depending on signal size and 

susceptibility to interferences. These were standard mode and continuous count (CCT) mode 

with 2mL/min. of a mixed He/H2 gas added to reduce interferences. 

6.2.3.1 Limits of Detection and Limits of Quantification 

Limits of Detection (LoD) and Limits of Quantification (LoQ) for ICP-MS were calculated 

for each element and are given in Table 6-2. The procedure used to quantify LoD and LoQ 

are given in Appendix B. 

Eleme

nt 

As Cd Mn Pb Sb  V Mg Zn Fe Cu 

LoD 0.0000

3 

0.00000

2 

0.0001

5 

0.0001

2 

0.0001

6 

0.00000

6 

0.0007

7 

0.0001

8 

0.0016

5 

0.000000

04 

LoQ 0.0000

7 

0.00000

6 

0.0003

6 

0.0002

7 

0.0004

8 

0.00001

8 

0.0017

7 

0.0004

0 

0.0037

2 

0.000000

09 

Table 6-2. LoD and LoQ for each element in μg·g
-1

. 

 

 Element recovery, precision and robustness  6.2.4

CRM recovery rates were consistent and for elements other than Cd, within acceptable 

ranges. Mean and target recovery rates are given in table 6-3. Recovery rates for certified 

elements are good. Non-certified elements are provided by NIST for reference but element 
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concentrations of these elements are not considered accurate or reliable enough for 

certification. The four certified elements included in this analysis are Fe, Zn, Pb and Sr. Sr is 

included in this table as an additional measure of recovery rate. Some CRM samples were 

run more than once, with different sample batches on different days. These are noted by date 

and time in Table 6-3. 

Table 6-3. Recovery rates and target recovery rates for CRM (NIST 1486 Bone Meal). * 

Indicates certified element concentration. Other elements are present in the target 

concentration but not certified. 
Sample Mn Fe* Cu Zn* As Cd Sr* Pb* 

 
μg·g

-1
  μg·g

-1
  

μg·g
-

1
  

μg·g
-1

  μg·g
-1

  μg·g
-1

  μg·g
-1 μg·g

-1
  

 
      

 
 

CRM 1    11/05/2012 
13:22:24 

1.095 88.78 
1.18

2 
119.3 0.1034 0.00137 243.6 1.188 

CRM 9     11/05/2012 
17:14:24 

1.111 83.07 
1.06

6 
121.9 

0.00670
4 

0.00181
4 

246.9 1.256 

CRM 1    11/05/2012 
21:39:30 

1.054 83.19 1.12 116.2 0.09403 
0.00162

6 
236.6 1.207 

CRM 1    09/05/2012 
17:52:06 

1.118 94.86 
1.27

4 
126.1 0.04463 0.00203 275.5 1.166 

CRM 2    09/05/2012 
20:16:27 

1.127 103.8 
0.86

1 
120.5 

0.00019
2 

0.00153
3 

271.9 1.034 

CRM 3    09/05/2012 
22:28:28 

1.268 104.1 
1.02

3 
133.8 0.03278 

0.00235
3 

299.7 1.167 

CRM 4    10/05/2012 
00:53:39 

1.283 103.1 
1.02

2 
140.1 0.03619 

0.00132
1 

311 1.217 

CRM 1    10/05/2012 
14:47:46 

1.046 83.18 1.12 115.4 0.01645 
0.00302

7 
239.8 1.18 

CRM 5    10/05/2012 

17:49:37 
1.101 79.32 

0.87

2 
121.3 0.01177 

0.00216

6 
248.2 1.344 

CRM 7    10/05/2012 
20:07:55 

1.038 76.24 
0.77

3 
117.1 0.07577 

0.00207
2 

237.8 1.229 

CRM 8    11/05/2012 

00:32:24 
0.95 71.86 

0.73

1 
107.3 0.03274 

0.00200

1 
219.8 1.248 

CRM 1    12/05/2012 
13:50:43 

1.112 89.87 
1.15

1 
120 

-
0.02474 

0.00256
5 

245.7 1.18 

CRM 10    12/05/2012 

15:30:55 
1.112 82.85 0.93 125.6 

-

0.04708 

0.00260

2 
248.4 1.259 

CRM 9    12/05/2012 
21:54:52 

1.101 81.41 
1.05

7 
122.3 

-
0.07249 

0.00186
8 

247.8 1.257 

 
      

 
 

Mean 
1.10828

6 
87.54

5 
1.01

3 
121.921

4 
0.02216

8 
0.00202

5 

255.192

9 
1.20942

9 

Target 1 99 0.8 147 0.006 0.003 264 1.33 

± 
 

8 
 

16 
  

7 
 

%Recovery 110 88 127 83 369 67 97 91 

 

Precision for each element as measured by %RSD for each sample, calibration standard and 

CRM are between 0.5 and 5.0 for certified elements and the internal standards (Be, In and 

Re). For elements found in very low concentrations, < 1.0μg·g
-1

, including As, Cd, and Sb, 

precision is lower. Precision data for each analytical sample (including calibration standards 

and CRM are given in Appendix G.  
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Given the good CRM element recovery rates and precision, the data presented in Chapter 7 

are considered robust and fit-for-purpose. No major analytical or pre-analytical issues were 

experienced with the digestion method. Analytical instruments performed as expected, with 

no calibration or measurement errors.  

6.3 Statistical methods and data analysis 

 Data preparation 6.3.1

All data was analysed statistically with IBM SPSS 19 (IBM 2010). Analysis was divided 

into three sections: toxic elements and their relation to one another, essential elements and 

their relation to toxic elements, and intra-individual variability in element concentration and 

bone. In the first instance, tests of normality were conducted on all element concentrations. 

No element was distributed normally across samples, as a result, all element concentrations 

were transformed by calculating log10 of each concentration value and using only log 

transformed data for all statistical tests except for descriptive statistics, in which the back-

transformed data is reported. Kolmogorov-Smirnov values for non-transformed element 

means for each population as a whole is given in Table 6-4. Within demographic groups, 

normality was first determined by application of the Kolmogorov-Smirnov test of normality. 

In all instances in with the K-S test is significant (p < 0.05), non-parametric tests are 

employed to compare means between groups and noted in the text. To correct for the 

possibility of Type I error on repeated tests, Bonferroni’s Correction (0.05/k) where k  is the 

number of tests and 0.05 is the critical value of p. In this case, k=20 so the corrected value 

for p is 0.0025.  

Table 6-4 Normal and non-normally distributed elements. Elements are considered normally 

distributed if the K-S statistic is not significant.  
Element Statistic Df Sig. Element Statistic Df Sig. 

24Mg 0.137 152 .000 LogMg 0.101 152 0.001 

51V 0.149 152 .000 LogV 0.052 152 .200 

55Mn 0.166 152 .000 LogMn 0.074 152 0.042 

56Fe 0.269 152 .000 LogFe 0.169 152 .000 

65Cu 0.194 152 .000 LogCu 0.054 152 .200 

66Zn 0.201 152 .000 LogZn 0.135 152 .000 

75As 0.473 152 .000 LogAs 0.114 152 .000 

111Cd 0.198 152 .000 LogCd 0.063 152 .200 

121Sb 0.375 152 .000 LogSb 0.146 152 .000 

208Pb 0.211 152 .000 LogPb 0.063 152 .200 

 

Data is investigated statistically by comparing individual bone element concentration 

between and within demographic. In Chapter 7, for each toxic element, mean bone element 
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concentration is compared among all groups, black and white individuals (males and 

females), black and white males, black males and black females, age at death, and decade of 

death. For each race and sex, descriptive statistics are provided (mean, median, standard 

deviation, range, minimum and maximum). In addition, concentrations of toxic elements are 

compared against one another to investigate the patterns and interactions between elements 

as discussed in Chapter 8.  

Toxic element concentrations are explored in relation to essential trace element 

concentrations. In this chapter, the relationships between these element types are subject to 

statistical analysis to uncover the presence of any statistically significant relationships and 

interactions between essential and toxic elements as discussed in Chapter 8.  

6.3.1.1 Using multiple bones in statistical tests 

Duplicate bones were sampled in order to establish whether statistically significant 

differences in bone element concentration exist between bones. To assess this, bone element 

concentration in different bone types were first compared by repeated measures ANOVA, 

however samples sizes were too small for this statistic. Instead, paired t-tests were conducted 

between six long bones: femora, fibulae, tibiae, radii ulnae and humeri. The results show 

that bone element concentration does not vary significantly between long bones of the same 

individual for any element. The results of these analyses are presented in Appendix A. In all 

cases, effect size is included in analytical results. In all analyses a mix of long bones are 

used.  

6.3.1.2 Variable Coding 

Variables were coded into binary dummy variables for race (1, 2), and sex (1, 2). Hospital 

was used as an approximation of the city of residence. The admitting hospitals were: Pretoria 

General, HF Verwoerd, Johannesburg, Baragwanath, Ga-Rankuwa, Kalafong, Edenvale, 

Benoni, Tembisa, Middlesburg, Natalspruit, and Potgietersrus. These were grouped into one 

of three codes based on which city the hospital was located in. In some cases, admitting 

hospital information was missing, or the name of the hospital did not match any known 

hospitals in the region. These cases were omitted. 

Age and decade of death were coded into 10 year intervals. Ages were grouped into eight 

age categories starting with ages 20-29, and continuing to 99. Decade of death similarly 

coded into four categories starting with 1960-1969 and ending with 1999.  

 Comparison of means 6.3.2

Comparison of mean element concentrations between demographic groups was conducted 

by Student’s T-test and Analysis of Variance, in the case of normally distributed data, and 
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by Mann Whitney U and Kruskal-Wallis H tests in the case of non-normally distributed data. 

Bonferroni’s procedure (described below) was applied to all independent t-tests or Mann-

Whitney U tests. T-tests and Mann-Whitney U tests were used to compare differences in 

mean or median bone element concentration between three demographic groups: black 

females, white males and black males. A standard Bonferroni’s Correction of 0.05/3 (0.016) 

was used on all such comparisons and H0 was rejected if p> 0.016. Post-hoc tests for 

comparison of multiple means was accomplished with Bonferroni’s or Games-Howell 

procedures with ANOVA (the latter used when variances were unequal) and the Mann 

Whitney U test with Bonferroni’s Correction with Kruskal-Wallis test. The critical value for 

significance of the Bonferroni’s correction was determined by dividing 0.5 by the number of 

comparisons, N and using the critical value obtained to accept or reject the results.  

 Correlation and regression 6.3.3

When comparing element concentrations for multiple elements both bivariate correlation as 

well as linear regression tests were employed. Both methods were used because it was 

suspected that a linear relationship between elements was present in some cases. 

 All bivariate correlations are two-tailed. Correlation coefficient matrices represent 

Spearman’s Rho coefficients only as so many variables are not normally distributed. In 

addition Pearson’s correlation is less robust and more susceptible to influence by outliers. 

Linear (Pearson’s) correlation coefficients are given as the ‘B’ value in linear regression 

tables. To correct for Type 1 error in multiple comparisons, Bonferroni’s correction was 

applied to Spearman’s Correlation matrices. The adjusted p-value for significant correlation 

between two elements is 0.0009 (0.5/55, where 55 is n comparisons). 

In each instance of linear regression, the Unstandardised, Standardised and Deleted residuals 

were tested for normality using the K-S test. Residuals were considered normally distributed 

if K-S was not significant at p > 0.05. Only those regression models for which residuals are 

normally distributed and in which no assumptions are violated were considered valid. Any 

instance in which residuals were not normally distributed is reported within the text.  

When reporting regression statistics, both significant and non-significant results are given. 

Linear regression results are considered significant if they meet all of the following criteria: 

1. β is significant with p < 0.05 

2. Residuals are normally distributed with a K-S  p > 0.05 (see above) 

3. F statistic is significant with p <0 .05 
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6.3.3.1 Treatment of outliers 

During the course of statistical analysis it became apparent that in several instances there 

were outliers that skewed the normal distribution of the data, causing the violation of 

assumptions necessary for regression and other statistics. In the case of linear regression and 

Univariate ANOVA, outliers were found to violate normality and homoscedasicity. In these 

cases the outliers were removed.  

Removal of outliers is somewhat controversial, but it was felt that in the case of the present 

data, removal was the most prudent course, as it became clear that the outliers were 

influencing the data significantly and preventing the identification of potentially meaningful 

population trends. However, removal of outliers was conducted with extreme caution and 

according to statistically sound methods. Outliers were removed from the data prior to 

multiple regression after first exploring the data. Once it was determined that any given data 

set was heteroscedastic, both Mahalanobis and Cook’s distances were calculated for all data. 

For an outlier to be excluded it had to clearly and significantly influence the regression 

model according to all three criteria. A Mahalanobis distance greater than 11, Cook’s 

distance greater than 1 were the ttwo critical values set to determine whether a data point 

was an influential outlier. In every case in which data was removed the data reported is the 

data generated after outlier removal. In any case in which the removal of an outlier or 

outliers changed the significance of a test or the strength of an effect of a variable, this is 

noted in the text. 

 Multivariate statistics: Principal Component Analysis 6.3.4

Following a recent trend in trace element analyses of biological samples, the use of 

multivariate statistics was explored as a potential means by which to determine, 

approximately, the environmental sources of toxic elements. To accomplish this, Principal 

Component Analysis (PCA) with Varimax rotation was used to explore and visually identify 

similarities within the data set.  

PCA was conducted according to procedures outlined in Field (2009). Initially, all elements 

of interest were included in PCA analysis. After examining the Kaiser-Meyer Olkin measure 

of sampling adequacy, one element, magnesium, was found to have a KMO value below the 

critical value of 0.5 (Field, 2009) and was subsequently removed. All other elements: V, Mn, 

Cd, Cu, As, Pb, Fe and Ni remained. Two critical assumptions were explored prior to 

accepting PCA results. Firstly, it was determined that the overall KMO measure of sampling 

adequacy was above the critical threshold of .05. Secondly, Bartlett’s Test of Sphericity, as 

measured by the X
2
 statistic was positive and above the critical value for the reported 
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degrees of freedom. Reliability of results was tested with Cronbach’s α and each component 

was determined to be reliable if overall Cronbach’s α was between .7 and .8.  

Both the scree plot generated by PCA analysis and the eigenvalues were considered when 

determining how many factors to extract. Factors were extracted if they met Kaiser’s 

criterion and had an eigenvalue greater than 1 (Field, 2009).  

6.3.4.1 Interpretation and use of principal components 

The use of PCA analysis in trace element studies of biological tissues is not new, however it 

can be confounded by several factors, primary among which is differences in metabolic and 

toxicokinetic characteristics of each element. Several toxic and trace elements have both 

symbiotic and antagonistic relationships with one another within the human body, which can 

promote or supress uptake of these elements into bone tissue. In this study, PCA is not used 

to determine exactly or definitively, the environmental source of these elements, but is used 

instead to enable the generation of hypotheses regarding likely sources based on known 

combinations of elements that are often found to be highly correlated in specific 

environmental contexts. In the case of South Africa, specifically Gauteng, these 

combinations are based on data reported by Monna et al. (2006), Olowoyo et al. (2011; 

2010), Naicker et al. (2003) and de Villiers et al. (2010) and Rohrmann (1985). 

After initial PCA analysis of the total sample population, subsequent analyses were 

conducted on black males, white males and black females separately to determine if 

differences existed between principal components. In black females, PCA was not found to 

be useful, as no elements were strongly or significantly correlated, rendering PCA useless.  

6.3.4.2 Scatter plots and Box plots 

When producing graphs for the purpose of comparing relationships between bone 

concentrations of toxic and essential elements the log-transformed data is used in some 

cases. This was done purely for reasons of aesthetics. For some elements graphical 

representation of the data, particularly scatter plots with regression lines were considered 

very difficult to interpret due to differences in element concentrations and scale. Particularly 

in instances in which an element measured in very small concentrations was compared 

against an element with much higher concentrations, the use of log-transformed data enabled 

each element to be compared on the same scale (generally between 0 and 5) resulting more 

manageable plots. When log transformed data is used it is noted on the graph. 

All box plots are representative of median values (central line of each box), 2
nd

 and 3
rd

 

quartiles (boxes) and range (whiskers).  
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 Essential trace elements 6.3.5

The three essential trace elements, zinc, iron and magnesium are investigated. Box plots for 

these elements are not given, but basic descriptive statics are, as are comparative statistics 

between demographic groups. Temporal and geographic trends in trace elements are not 

explored. These elements are only investigated in relation to toxic elements and are not the 

focus of this research.  
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7 Results 

This chapter investigates the bone element concentration for each element of interest in the 

collected bone samples. In addition to descriptive statistics, the differences in mean element 

concentrations are explored in relation to age, sex, race and time, and, in some cases, cause 

of death. In addition, statistical relationships between toxic metals is explored, as there are 

previously reported relationships between elements such as lead, manganese, cadmium, 

arsenic, antimony  and vanadium (Chapter 2).  

7.1 Descriptive statistics 

Descriptive statistics for bone element concentration for all toxic elements of interest are 

given. The mean, median, standard deviation, range, and minimum and maximum are given 

for black males, white males, black females in Table 7-1. Frequency distributions for each 

toxic element, including deciles are given in Figures 7-1 through 7-6 and Tables 7-2 through 

7-7. For the elements As and Sb, several sample concentrations are below LoD. Minimum 

values for these elements are given as 0.5*Sample LoD, where Sample LoD is LoD/sample 

Dilution Factor.  

Table 7-1. Toxic element concentrations in μg·g
-1

 by race and sex. Minimum values for As and 

Sb are reported as 0.5*Sample LoD due to several samples with concentrations below detection 

limits.  
Group Element N Mean SE of Mean Median SD Minimum Maximum 

Black Males  

Pb 

 

129 5.71 0.46 4.34 5.23 0.560 32.23 

White Males 35 16.11 2.14 13.26 12.65 1.55 64.09 

Black Females 44 3.92 0.39 3.35 2.73 0.57 14.48 

Black Males 

Cd 

129 0.030 2.41 .024 0.027 0.002 0.187 

White Males 35 0.037 6.33 .027 0.037 0.007 0.224 

Black Females 44 0.028 2.88 .021 0.020 0.007 0.099 

Black Males 

Mn 

129 0.481 49.09 .318 0.558 0.046 4.384 

White Males 35 0.444 67.94 .250 0.068 0.094 1.680 

Black Females 44 0.410 44.05 .305 0.308 0.105 1.487 

Black Males  

As 

 

129 1.03 0.605 .128 6.841 0.004 77.210 

White Males 35 0.450 0.156 .071 0.924 0.004 3.634 

Black Females 44 14.13 9.65 .128 67.565 0.004 453.600 

Black Males  

Sb 

 

129 0.281 0.060 .015 0.680 0.006 4.302 

White Males 35 0.055 0.032 .010 0.189 0.006 1.128 

Black Females 44 0.303 0.096 .036 0.671 0.006 3.710 

Black Males  

V 

 

129 0.026 0.001 .021 0.016 0.006 0.112 

White Males 35 0.020 0.004 .012 0.021 0.004 0.111 

Black Females 44 0.031 0.003 .024 0.023 0.008 0.124 
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 Frequency distributions for each group/element 7.1.1

For each element, the distribution of bone element concentrations is highly skewed to the 

left tail of the distribution curve. This indicates that the majority of the sample population is 

characterised by low rates of exposure to each element, relative to the rate of exposure as a 

whole.  This trend is consistent across race and sex. In some cases, such as As and to some 

extent Mn and Pb, there is a substantial range in concentrations in all groups, In the case of 

As this occurs to significant degree in black females. Table 7-1 shows that the highest As 

concentration in black females is 453.6μg·g
-1

, with a median of 0.128μg·g
-1

. The distribution 

curve for As, given in Figure 7-8b, shows clearly that there is only a small number of black 

females with bone As concentrations on the higher end. This is true for white males and 

black males as well (Fig. 7-8a and 7-8c). In fact it is only at the 8
th

 decile that bone As 

concentration is above 1000μg·g
-1

 in black females.  
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Lead 

 

 

Figure 7-1.  Frequency distribution of bone lead. In a) white males, b) black females, and c) 

black males 

 

Table 7-2.  Bone Pb concentration in μg·g
-1

 at each decile across the sample population.  
Decile Pb 10 20 30 40 50 60 70 80 90 

White Males 3.23 7.48 8.71 10.36 13.26 14.51 17.58 26.06 34.68 

Black Females 1.23 1.48 2.08 2.61 3.35 3.98 4.75 6.27 7.49 

Black Males 1.90 2.22 2.77 3.52 4.30 5.35 6.04 7.38 11.58 

 

A B 

C 
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Cadmium 

 

 

Figure 7-2.  Frequency distribution of bone cadmium. In a) white males, b) black females, and 

c) black males 

 

Table 7-3.  Bone Cd concentration in μg·g
-1

 at each decile across the sample population.  
Decile Cd 10 20 30 40 50 60 70 80 90 

White Males 0.011 0.018 0.021 0.024 0.027 0.031 0.036 0.048 0.062 

Black Females 0.010 0.013 0.015 0.017 0.021 0.025 0.031 0.039 0.057 

Black Males 0.010 0.014 0.016 0.020 0.024 0.028 0.034 0.043 0.052 

 

 

A 

C 

B 
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Manganese 

  

 

Figure 7-3.  Frequency distribution of bone manganese. In a) white males, b) black females, and 

c) black males 

 

Table 7-4.  Bone Mn concentration in μg·g
-1

 at each decile in the sample population. 
Decile Mn 10 20 30 40 50 60 70 80 90 

White Males 0.134 0.175 0.210 0.239 0.250 0.304 0.470 0.646 1.139 

Black Females 0.157 0.189 0.205 0.225 0.305 0.370 0.486 0.600 0.738 

Black Males 0.139 0.178 0.205 0.258 0.316 0.383 0.474 0.645 0.892 

 

C 

A B 
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Arsenic 

 

 

Figure 7-4.  Frequency distribution of bone arsenic. In a) white males, b) black females, and c) 

black males 

 

Table 7-5.  Bone As concentration in μg·g
-1

 at each decile in the sample population.  
Decile As 10 20 30 40 50 60 70 80 90 

White Males 0.013 0.033 0.048 0.057 0.091 0.225 0.277 0.629 2.100 

Black Females 0.056 0.074 0.084 0.114 0.136 0.267 0.495 1.674 453.600 

Black Males 0.037 0.059 0.080 0.094 0.140 0.192 0.321 0.557 1.818 

 

A B 

C 
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Vanadium 

 

 

Figure 7-5.  Frequency distribution of bone arsenic. In a) white males, b) black females, and c) 

black males 

 

 

 

Table 7-6.  Bone V concentration in μg·g
-1

 at each decile in the sample population.  
Decile V 10 20 30 40 50 60 70 80 90 

White Males 0.005 0.008 0.009 0.011 0.013 0.016 0.022 0.029 0.045 

Black Females 0.011 0.014 0.020 0.022 0.024 0.029 0.036 0.039 0.060 

Black Males 0.011 0.015 0.016 0.020 0.021 0.025 0.028 0.036 0.045 

 

A 
B 

C 
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Antimony 

 

 

Figure 7-6.  Frequency distribution of bone arsenic. In a) white males, b) black females, and c) 

black males. 

 

Table 7-7.  Bone Sb concentration in μg·g
-1

 at each decile in the sample population. 
Decile Sb 10 20 30 40 50 60 70 80 90 

White Males 0.004 0.010 0.012 0.016 0.019 0.030 0.049 0.081 0.118 

Black Females 0.006 0.011 0.016 0.028 0.037 0.071 0.332 0.533 1.467 

Black Males 0.004 0.007 0.012 0.017 0.026 0.034 0.077 0.624 1.435 

A B 

C 
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7.2 Differences between demographic groups 

 Lead 7.2.1

Bone lead concentration is lower in black individuals than in white. This is true for both 

males and females and across ages. Mean bone lead concentration for black individuals is 

5.14µg·g
-1 

and for white individuals 16.11µg·g
-1

. An independent t-test confirmed that the 

difference in means is significant:  t(47.65) = 7.74, p < 0.001. The effect size is significant, r 

= 0.751.  

Though the values for the minimum bone lead concentrations between black and white 

individuals are not substantially different, 1.55µg·g-1 and 0.56µg·g-1 for black and white 

individuals respectively, the maximum bone lead concentrations are significantly different at 

32.23µg·
g-1

 and 64.09µg·g
-
1. respectively.  

Bone lead concentration between black and white males follows the same trend. When black 

females are removed, there is little change to the mean bone lead concentrations between 

black and white males. The differences in means between black and white males is still 

significant, t(49.71) = 6.81, p < 0.001, with an effect size, r =  0.701.  
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a.  All individuals by race b. Black males and females 

  

    c. Black females and white males       d. Black and white males 

Figure 7-7 Comparison of median bone lead by race and sex. Boxes include 2
nd

 and 3
rd

 quartiles, 

horizontal line represents median and whiskers represent range. In a) all individuals by race; b) 

black males and white males; c) black males and black females; and d) white males and black 

females.  

 

Mean bone lead concentration between black females and black males is significantly 

different. Mean bone lead concentration in black females is 4.14µg·g
-1

, with a lower range 

and the maximum concentration is 15.78µg·g
-1

. Independent t-test confirms the significance 

between means in black males and females, t(88.379) = 2.712, p < 0.01, with an effect size,  

r = .272. The difference between black females and white males is also significant t(68.28) = 

7.82, p < 0.001.White males have substantially higher bone lead than black females.  
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7.2.1.1 Bone lead concentration and age 

Differences in bone lead concentration between individuals of different ages was assessed. 

Black males, black females, and white males were analyses separately. Individual age was 

coded into age categories, which are given in Table 7-8. As the data in this table and in Fig. 

7-8 show, bone Pb increases as age increases within the population as a whole. The highest 

lead concentrations are found in the oldest individuals. In males, bone Pb increases with age, 

with some small fluctuations. In white males, there is a drop in bone Pb between the ages of 

80-89, when Pb concentration is substantially lower than in other ages. The reasons for this 

are unclear.  

Table 7-8 Bone lead concentration in μg·g
-1

 by age, sex and race.  
Group Age 

Group 

N Mean SE Mean Median SD Minimum Maximum 

Black 

Males 

20-29 14 3.98 0.64 3.03 2.39 1.55 9.25 

30-39 13 5.26 0.96 4.26 3.47 1.82 13.56 

40-49 26 3.94 0.45 3.29 2.31 1.22 11.56 

50-59 24 6.21 1.14 3.69 5.58 1.61 24.06 

60-69 33 5.34 0.54 4.95 3.12 0.60 16.63 

70-79 16 9.57 2.57 5.61 10.27 0.56 32.23 

80-89 2 14.46 1.51 14.46 2.16 12.95 15.97 

White 

Males 

20-29 0 - - - - - - 

30-39 0 - - - - - - 

40-49 5 18.57 5.37 12.82 12.00 7.53 35.63 

50-59 7 12.59 2.64 10.85 6.99 6.38 27.58 

60-69 10 14.40 3.44 14.34 10.88 2.78 37.00 

70-79 6 15.00 4.13 18.58 10.12 1.55 24.18 

80-89 4 9.38 1.41 8.20 2.82 7.45 13.45 

90-99 3 37.21 14.69 34.04 25.44 13.50 64.09 

Black 

Females 

20-29 2 3.90 1.62 3.90 2.28 2.29 5.52 

30-39 14 3.74 0.68 3.04 2.54 0.95 7.49 

40-49 9 5.47 1.46 3.87 4.38 1.81 14.48 

50-59 7 3.17 0.89 2.23 2.36 1.00 7.81 

60-69 10 3.34 0.62 3.90 1.95 0.57 6.27 

70-79 2 3.19 0.15 3.19 0.21 3.04 3.34 

80-89 2 5.10 0.35 5.10 0.50 4.76 5.46 

 

In all individuals the difference in bone lead concentration between age groups is significant, 

Welch’s adjusted F(7, 27.05)  =  4.05, p < 0.01. The effect size is medium, ω
2
 = .12.  

When each demographic is examined independently, by ANOVA, the trend is the different. 

In white males bone lead concentration does not differ across age groups, F(5, 10.34) =  

1.405, p > 0.05, even when three outliers are removed due to high Cook’s distances (greater 

than 4/N).  
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Among black males the difference in bone lead concentration between age groups is 

significant, F(6, 117) = 3.03, p <0.01, with a medium effect size, ω
2
 = .09.  Post hoc 

procedures (Hochberg , due to unequal sample sizes between age groups) confirm that the 

difference in mean bone Pb in individuals aged 80-89 is significantly different (p < 0.05) 

from all other ages 20-29 and ages 40-49.  Residuals from Univariate ANOVA identified 

four samples which yielded a Cook’s distance above 4/N. These outliers were removed from 

the model.  

 

a. White males 

 

b. Black males 
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c. Black females 

Figure 7-8.  Bone lead and age in a) white males; b) black males; and c) black females  

 

Among age groups in black females, the greatest differences between bone lead 

concentration occurs at older ages. Bone lead concentration increases significantly after the 

age of 70. The lowest mean bone lead concentration is found in 50-59 year olds, and the 

highest in women ages 40-49. Bone lead concentration then increases beyond age 60. 

Statistically, however bone lead is not significantly different among age groups in black 

females, F(6,39) = 0.489, p > 0.05. One outlier was removed from black females. Removal 

of outliers did not affect results.  

7.2.1.2 Temporal trends in bone lead concentration 

Bone lead concentration was investigated across time to determine the existence of temporal 

patterns in lead exposure. Dates of death for each individual were coded into decade, and 

bone lead was analysed in ten year intervals. Decade intervals and median bone Pb for each 

decade for the population as a whole is presented in Table 7-9.  
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Table 7-9.  Bone lead concentration in μg·g
-1

by decade of death, race and sex. 
Demographic Decade N Mean Median SD Min. Max 

Black males 

1960-1969 41 6.03 4.75 4.63 1.22 24.06 

1970-1979 48 4.94 3.62 4.10 0.56 20.69 

1980-1989 36 6.47 4.35 7.11 1.35 32.23 

1990-1999 3 3.36 2.23 2.42 1.71 6.14 

White males 

1960-1969 2 21.64 21.64 6.93 16.74 26.54 

1970-1979 14 16.84 13.04 12.57 1.55 37.00 

1980-1989 12 18.05 13.50 15.51 6.38 64.09 

1990-1999 7 9.76 7.59 7.00 3.41 23.72 

Black females 

1960-1969 23 4.54 3.04 3.31 1.00 14.48 

1970-1979 20 3.34 3.03 2.25 0.57 7.81 

1980-1989 5 3.36 3.87 1.04 1.57 4.01 

1990-1999 1      

 

Though it would appear, based on the data presented in Table 7-9, that bone Pb 

concentration decreases during the 1990s, the trend is not significant. In white males there is 

no significant change in mean bone Pb over time, F(3,31) = 1.17, p > 0.05. In black females, 

there is no difference in Pb concentration across time, F(2,46) = .922, p > 0.05. One outlier 

was removed from this. For black males there is also no significant trend, F(3,122) = 1.31, p 

> 0.05. Four outliers were removed, according to methods described in Chapter 6. Removal 

of outliers did not affect the results of any analysis. Median bone Pb for each demographic 

group for each decade is given in Fig. 7-9. 

 

a. White males 
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b. Black males 

 

c. Black females 

Figure 7-9.  Bone Pb concentration per decade in a) white males, b) black males and c) black 

females.  

 

To determine whether age of death and decade of death co-vary, ANCOVA was carried out 

for all groups with age group and decade of death as covariables. In white males, the 

inclusion of age as a covariate does not affect the model, F(3,31) = 1.62, p > 0.05. Four 

outliers were removed from white males, in the initial ANCOVA which did not affect the 

result. In black females, there was no relationship between bone Pb and decade of death, 

F(3,42) = 0.670, p > 0.05 when age was included as a covariate. No outliers were removed 

among black females. The inclusion of age as a covariate in black males yields the same 
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result, F(2,116) = 2.945, p > 0.05. Eight outliers were removed from the model with no 

effect on the results.  

7.2.1.3 Geographic trends in bone lead  

Bone lead concentration between Johannesburg and Pretoria and rural areas was examined 

with admitting hospital as a proxy for residence.  

Among all individuals there is no difference in bone Pb concentration and location, F(2,201) 

= 2.403, p. > 0.05 (Fig. 7-10).  

 

Figure 7-10.  Median bone Pb concentration and city in all individuals. Rural residents, N=6.  

 

The possibility that bone Pb varies between Pretoria and Johannesburg among individual 

groups was explored by ANOVA with city of residence. In black females, ANOVA shows 

that city is not a significant predictor of bone Pb, F(2, 45) = 0.369, p > 0.05. In white males, 

there is no variation in bone lead across residence, F(2,23) = 0.501, p > .05. The lack of 

relationship between bone lead and city is also evident in black males, F(2,123) = 1.00, p < 

0.05. Box plots for each group and city are given in Figure 7-11, below. 
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a. White males 

 

b. Black males 
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c. Black females 

Figure 7-11.  City of residence and median bone Pb concentration in a) white males, b) black 

males and c) black females. 

 

 Manganese 7.2.2

Manganese data are not normally distributed, even when log transformed. Non-parametric 

statistics are used. Although median bone Mn appears to be slightly higher in black males 

than in white males or black females (Table 7-1), when explored statistically, there is no 

difference in bone Mn concentration between black and white individuals, Mann Whitney U 

= 3263, p > 0.05. Among males only, there is no difference in bone Mn between black and 

white males, U = 2156, p > 0.05. Between black males and females, there is also no 

difference in bone Mn, U = 3114.5, p > 0.05. Between black females and white males, there 

is no significant difference, U = 1317, p > 0.05. Box plots for each comparison are given in 

Fig. 7-12.  
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a. All individuals by race. b. Black males and white males  

  

c. Black males and females d. Black females and white males  

Figure 7-12.  Median bone Mn concentration between a) all individuals by race, b) all males by 

race, c) black males and females and d) black females and white males.  

 

7.2.2.1 Bone Mn concentration and age at death 

Bone Mn appears, based on data presented in Table 7-10, to vary between age groups, 

though not in any consistent pattern across all groups. In black males and females, median 

bone Mn appears to peak between the ages of 80-89, though this is not the case for white 

males.  Statistically however, there is no significant difference in mean bone Mn 

concentration and age at death. Kruskal-Wallis tests did not yield any differences in age 

category and bone Mn concentration.  
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Table 7-10.  Bone Mn concentration in μg·g
-1

and age at death by race and sex.  

Group 
Age 
Group 

N Mean SE Mean Median SD Minimum 
Maximu
m 

Black Males 20-29 14 0.620 0.201 0.355 0.753 0.125 3.053 

 30-39 13 0.412 0.083 0.285 0.298 0.184 1.152 

 40-49 26 0.370 0.047 0.272 0.239 0.151 0.951 

 50-59 24 0.330 0.044 0.306 0.213 0.072 1.036 

 60-69 33 0.632 0.145 0.404 0.834 0.046 4.384 

 70-79 16 0.533 0.134 0.201 0.534 0.112 1.554 

 80-89 2 0.471 0.345 0.471 0.488 0.126 0.816 

White Males 20-29 0 - - - - - - 

 30-39 0 - - - - - - 

 40-49 5 0.237 0.041 0.210 0.091 0.121 0.349 

 50-59 7 0.182 0.027 0.170 0.072 0.094 0.299 

 60-69 10 0.421 0.082 0.299 0.261 0.167 0.958 

 70-79 6 0.717 0.182 0.708 0.446 0.245 1.326 

 80-89 4 0.884 0.387 0.853 0.774 0.152 1.679 

 90-99 3 0.346 0.111 0.235 0.192 0.234 0.568 

Black 
Females 

20-29 2 0.231 0.077 0.231 0.109 0.154 0.308 

 30-39 14 0.459 0.078 0.451 0.292 0.167 1.241 

 40-49 9 0.274 0.058 0.208 0.175 0.105 0.695 

 50-59 7 0.397 0.145 0.263 0.384 0.157 1.255 

 60-69 10 0.366 0.064 0.351 0.203 0.128 0.738 

 70-79 2 0.187 0.002 0.187 0.003 0.185 0.189 

 80-89 2 0.793 0.194 0.793 0.274 0.600 0.987 

 

Among all individuals, H(7) = 12.02, p > 0.05. In black females, H(6) = 8.601, p > 0.05 

indicating no significant difference in bone Mn across age groups. In this group however, 

the presence of outliers among females between the ages of 30 and 39 and 50 and 59 were 

suspected of skewing the results. These cases were removed and Kruskal-Wallis test was run 

again. The results remain insignificant, H(6) 10.344, p > 0.05. 

In black males, the result is the same with H(6) = 4.424, p > 0.05. As is evident in Fig. 7-13, 

there are two outliers that may potentially affect statistical results, in males aged 20-29 and 

60-69. These outliers were removed and the analysis was performed again with little change 

in results, H(6) = 3.261, p > 0.05. And in white males, H(5) = 11.530, p > 0.05, also not a 

significant relationship between age and bone Mn.  
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a. White males 

 

b. Black males 
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c. Black females 

Figure 7-13.  Age at death and median bone Mn concentration in a) white males, b) black males 

and c) black females.  

 

7.2.2.2 Temporal trends in manganese concentration 

Bone manganese descriptive statistics per demographic group and decade are given in Table 

7-11. There is a significant difference in bone Mn across time in all individuals, H(3) = 9.50, 

p < 0.05. It is clear from Fig. 7-13, that individuals who died in the 1990s had higher bone 

Mn concentrations than individuals who died in the previous three decades, particularly 

those living in the 1960s (Fig. 7-14). Mann Whitney U test was performed with Bonferroni 

correction (.05/4) to determine if this group differed significantly from other decades. The 

decade spanning 1990-1999 differs from the 1960s and the 1970s when p < .016, but not the 

1980s.  

Table 7-11.  Bone Mn concentration in μg·g
-1

 and decade of death by race and sex. 
Demographic Decade N Median SD Min. Max. 

Black males 1960-1969 41 0.251 0.236 0.112 1.001 

 1970-1979 48 0.314 0.316 0.046 1.554 

 1980-1989 36 0.377 0.672 0.128 3.053 

 1990-1999 3 0.417 0.380 0.344 1.036 

White males 1960-1969 2 0.237 0.099 0.167 0.307 

 1970-1979 14 0.247 0.291 0.121 1.015 

 1980-1989 12 0.240 0.263 0.094 0.970 

 1990-1999 7 0.445 0.637 0.152 1.679 

Black females 1960-1969 23 0.290 0.154 0.128 0.636 

 1970-1979 20 0.416 0.377 0.167 1.487 

 1980-1989 5 0.157 0.174 0.105 0.534 

 1990-1999 1 - - - - 
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In black females, there is significant difference in Mn concentration across time, H(3) = 

7.90, p < 0.05, however when this trend is examined graphically (Fig. 7-14), it becomes 

apparent that women living in the 1970s had the highest Mn concentrations. There is only 

one female from the 1990s, however this individual has the highest bone Mn concentration 

(Table 7-11). Mann Whitney test with Bonferroni Correction (.05/4) indicates none of the 

decades differs significantly in terms of bone Mn in black females.  

In white males, there appears to be an increase in bone Mn over time (Fig. 7-14), however 

the difference is not significant, H(3) = 5.73, p < 0.05. The removal of the outlier (per visual 

inspection of box plot) does not change the results.  In black males the trend is similar, with 

no significant difference in Mn concentration over time, H(3) 6.10, p > 0.05. When apparent 

outliers are removed, the results remain insignificant. 

 

a. White males 
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b. Black males 

 

c. Black females 

Figure 7-14. Bone Mn (back transformed) by decade of death in a) white males, b) black males 

and c) black females.  

 

Bone Mn does not vary by city (Fig. 7-15). In all individuals, H(2) = 2.158, p > 0.05. In 

black females, H(2) = 3.197, p > 0.05, indicating that there is no difference in Mn between 

cities. In black males and white males, H(2) = 0.10, p > 0.05 and H(2) = 2.471, p > 0.05, 

respectively, also demonstrating a lack of difference in bone Mn concentration between 

individuals in each location.  
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a. White males 

 

b. Black males 
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c. Black females 

Figure 7-15.  Median bone Mn by city in a) white males, b) black males and c) black females. 

 

 Arsenic 7.2.3

Mean and median As concentration appears to differ by race and sex (Table 7-1). In this 

analysis, all concentrations reported below detection limits are given as LoD/2. 

Unlike lead there is no significant difference between bone As concentration and race among 

all individuals.  Independent samples Mann-Whitney U test confirms that the differences in 

means are not significant, U = 2263, p > 0.05. The same is true of the means between white 

and black males, U = 2003, p > 0.05. There is no difference in bone As concentration 

between black males and females, U = 2717.5, p > 0.05.  

Among black females and white males, there is no significant difference in bone arsenic, U 

= 641, p < 0.05. Fig. 7-15 includes box-plots between each group. Log transformed data was 

used to create histograms as the wide variance of As values in each group makes back 

transformed data hard to interpret graphically.  
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a. All individuals by race b. Black males and females 

  

c. Black males and white males  d.  Black females and white males  

 

7.2.3.1 Bone arsenic and age 

Bone arsenic concentration was explored as a function of age. Using the same categories as 

with lead, bone As concentration was compared across age categories. Because As is not 

normally distributed, Kruskal Wallis tests are used as opposed to ANOVA due to non-

normal distribution of As. Table 7-12 gives the descriptive statistics for bone As 

concentration for each age group by race and sex. 
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Table 7-12. Bone As in μg·g
-1

 by age group by race and sex.  
Group Age Group N Mean Se Mean Median SD Min. Max. 

Black Males 20-29 14 0.879 0.360 0.330 1.347 0.078 4.962 

 30-39 13 0.402 0.239 0.079 0.860 0.004 2.609 

 40-49 26 3.383 2.956 0.147 15.073 0.004 77.210 

 50-59 24 0.590 0.260 0.092 1.275 0.004 5.389 

 60-69 33 0.306 0.151 0.111 0.866 0.004 4.985 

 70-79 16 0.422 0.217 0.139 0.867 0.004 3.217 

 80-89 2 0.108 0.055 0.108 0.078 0.053 0.164 

White Males 20-29 - - - - - - - 

 30-39 - - - - - -  

 40-49 5 0.781 0.716 0.013 1.602 0.004 3.634 

 50-59 7 0.065 0.031 0.040 0.082 0.004 0.237 

 60-69 10 0.379 0.178 0.174 0.563 0.004 1.766 

 70-79 6 1.043 0.617 0.180 1.512 0.042 3.623 

 80-89 4 0.119 0.060 0.073 0.120 0.034 0.297 

 90-99 3 0.194 0.218 0.015 0.378 0.004 0.629 

Black Females 20-29 2 226.81 320.73 226.81 226.80 0.021 453.60 

 30-39 14 0.318 0.155 0.104 0.581 0.004 1.674 

 40-49 9 14.656 14.493 0.082 43.479 0.004 130.60 

 50-59 7 1.889 1.380 0.132 3.651 0.037 9.787 

 60-69 10 0.918 0.375 0.303 1.187 0.073 3.016 

 70-79 2 0.265 0.180 0.265 0.255 0.085 0.445 

 80-89 2 39.036 38.174 39.036 53.986 0.862 77.210 

 

In white males there is no significant difference in bone As concentration between age 

groups, H(5) = 4.70, p > .05. Among black females the trend is the same, H(7)  = 6.63, p > 

0.05. Among black males, the results are the same, with no significant difference in bone As 

across age groups, H(6) = 12.53, p > 0.05. The much higher bone As concentration seen in 

females aged 20-29 is due to the small number of individuals in this age group (n=2) and the 

presence of a very high concentration in one of the individuals. Box plots for each age group 

by race and sex are given in Figure 7-16, below. 
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a. White males 

 

b. Black males 
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c. Black females 

Figure 7-16.  Median bone As by age group in a) white males, b) black males and c) black 

females. Log transformed data used.  

 

7.2.3.2 Temporal trends in bone As 

Bone As concentration was examined across time. Across all demographic groups there is 

significant difference in bone As across time, H(3) = 22.71, p <.001. Descriptive statistics 

are given in Table 7-13. Mean values are not given as bone As is not normally distributed. 

Table 7-13.  Bone As concentration in μg·g
-1

 and decade of death by race and sex.  
Demographic Decade N Median SD Min. Max 

Black males 

1960-1969 41 0.202 12.008 0.010 77.210 

1970-1979 48 0.094 0.763 0.004 3.496 

1980-1989 36 0.069 0.843 0.004 4.962 

1990-1999 3 0.000 0.601 0.004 1.015 

White males 

1960-1969 2 2.208 2.016 0.782 3.634 

1970-1979 14 0.056 1.110 0.004 3.623 

1980-1989 12 0.047 0.232 0.004 0.629 

1990-1999 7 0.075 0.089 0.034 0.297 

Black females 

1960-1969 23 0.244 97.517 0.004 453.600 

1970-1979 20 0.122 2.216 0.004 9.787 

1980-1989 5 0.079 0.718 0.037 1.674 

1990-1999 1     

 

In white males, H(3) = 5.24, p > .05, indicating that bone As does not change over time. The 

same is true of black females, there is no difference in bone As across time, H(3) = 2.86, p 

> .05. In black males, however there is significant difference in bone As over time, H(3) = 

15.50, p =.001. As can be seen in Figure 7-17, there is a reduction in bone As between the 

1960s and the 1980s. Mann Whitney U test with Bonferroni Correction (.05/4) confirms that 
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this difference is significant U = 390.0, p <.001. No other differences were seen between 

decades.  

 

a. White males 

 

b. Black males 
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c. Black females 

Figure 7-17.  Median bone As by decade of death in a) white males, b) black males and c) black  

females. 

 

7.2.3.3 Geographic trends in bone As 

Bone As concentration between Pretoria and Johannesburg was explored. There are no 

statistically significant differences in bone As concentration by city in any demographic 

group. In white males, there is no significant difference in bone As between cities, H(2) = 

5.71, p > 0.05. In black males however, there is significant difference between location of 

residence and bone As, H(2) = 6.31, p < .05. Mann Whitney U test with Bonferroni 

correction (.05/4) confirms that the difference in bone As between Johannesburg and 

Pretoria is significant, U = 824.0, p < .016. The difference between either city or rural 

residents is not significant, p > .05. There is no difference in bone As in black females across 

locations, H(2) = 0.818, p >.05. 
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a. White males 

 

b. Black males 
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c. Black females 

Figure 7-18.  Median bone As concentration and city of residence in a) white males, b) black 

males and c) black females.  

 

 Cadmium 7.2.4

Log transformed Cd data is normally distributed and so parametric analyses are employed 

for all tests. Among all individuals, there is significant difference in mean bone Cd between 

black and white individuals, t(212) = 2.11, p > 0.05, though the effect size is small, r = 0.14. 

In black individuals, there is no significant difference in bone Cd concentration between 

males and females, t(175) = 0.383, p > 0.05. When only males are compared, there is also no 

significant difference in bone Cd between black and white males, t(161) = 1.85, p > 0.05. 

Among black females and white males, there is significant difference in bone Cd with white 

males having higher bone Cd concentration than black females, t(102) = 2.68, p <.01, with 

an effect size, r= 0.21. Box plots of log-transformed bone Cd concentration are given below, 

in Figure 7-19. 
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a. All individuals by race b. Black males and females 

  

c. Black males and white males  d. Black females and white males  

Figure 7-19.  Median bone Cd concentration in a) all individuals by race, b) black males and 

females, c) all males and d) black females and white males.  

 

7.2.4.1 Age trends in bone cadmium 

ANOVA was used to explore the relationship between age and bone Cd concentration. 

Descriptive statistics are given in Table 7-14  and box plots in Figure 7-20. Across all age 

groups there is no significant difference in bone cadmium concentration, F(7, 203) = 0.736, 

p > 0.05. In black individuals, there is also no significant difference in bone Cd in 

individuals of different ages, F(7, 179) = 0.457, p > 0.05. Six outliers were removed from 

analysis of black males and age, the results of ANOVA did not change when these cases 

were removed.  

Among black males only, the results are the same, F(6,115) = 0.509, p > 0.05, indicating no 

effect of age on bone Cd concentration. In white males, F(5, 30) = 1.07, p > 0.05, there is no 

difference in mean bone Cd across age groups. Three outliers were removed from analysis of 

white males with no change in results.  
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There is no significant difference in mean bone Cd between age groups in black females, 

F(5,38) = 1.038, p > 0.05.Three outliers were removed from analysis of black females, with 

no change in results. Post-hoc procedures (Bonferroni’s) were performed on ANOVA for all 

demographic groups and age, no significant differences were found between any age groups 

in any of the above analyses.  

Table 7-14.  Bone Cd in μg·g
-1

 and age at death by race and sex.  

Group 
Age 

Group 
N Mean SE Mean Median SD Median Maximum 

Black 

Males 

 

20-29 14 0.033 0.011 0.024 0.043 0.009 0.179 

30-39 13 0.031 0.008 0.021 0.028 0.009 0.111 

40-49 26 0.026 0.003 0.026 0.014 0.007 0.053 

50-59 24 0.029 0.003 0.028 0.017 0.002 0.064 

60-69 33 0.033 0.006 0.023 0.032 0.005 0.187 

70-79 16 0.036 0.009 0.019 0.035 0.007 0.121 

80-89 2 0.028 0.006 0.028 0.009 0.022 0.035 

White 

Males 

 

20-29 0       

30-39 0       

40-49 5 0.031 0.007 0.024 0.017 0.021 0.060 

50-59 7 0.021 0.004 0.022 0.010 0.007 0.033 

60-69 10 0.031 0.004 0.033 0.012 0.016 0.048 

70-79 6 0.071 0.031 0.042 0.076 0.025 0.224 

80-89 4 0.046 0.020 0.040 0.040 0.008 0.097 

90-99 3 0.020 0.006 0.017 0.010 0.012 0.031 

Black 

Females 

 

20-29 2 0.017 0.003 0.017 0.004 0.014 0.020 

30-39 14 0.029 0.005 0.023 0.020 0.007 0.071 

40-49 9 0.026 0.009 0.019 0.028 0.010 0.100 

50-59 7 0.029 0.010 0.016 0.027 0.009 0.088 

60-69 10 0.021 0.003 0.018 0.010 0.008 0.039 

70-79 2 0.027 0.011 0.027 0.016 0.016 0.038 

80-89 2 0.053 0.004 0.053 0.005 0.050 0.057 
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a. White males 

 

b. Black males 
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c. Black females 

Figure 7-20.  Median bone Cd and age at death in a) white males, b) black males and c) black 

females. Log transformed data. 

7.2.4.2 Temporal trends in bone cadmium concentration 

Bone Cd concentration was analysed across time to identify any significant temporal trends. 

First, univariate ANOVA was performed between all ages and all individuals, yielding no 

significant differences in mean bone Cd across time, F(3,211) = 1.09, p > 0.05. Each 

demographic group was then analysed independently. Descriptive results are given in Table 

7-15 and box plots for each sex/racial group are presented in Figure 7-21. 

Table 7-15.  Bone Cd in μg·g
-1

 by decade of death.  
Demographic Decade N Mean Median SD Min. Max. 

Black males 

1960-1969 37 0.043 0.026 0.053 0.009 0.261 

1970-1979 41 0.024 0.019 0.021 0.002 0.121 

1980-1989 25 0.036 0.027 0.030 0.007 0.114 

1990-1999 2 0.021 0.024 0.013 0.015 0.033 

White males 

1960-1969 2 0.048 0.048 0.017 0.036 0.060 

1970-1979 14 0.048 0.027 0.017 0.017 0.261 

1980-1989 10 0.022 0.023 0.012 0.007 0.046 

1990-1999 5 0.035 0.027 0.035 0.008 0.097 

Black females 

1960-1969 22 0.024 0.020 0.013 0.007 0.050 

1970-1979 15 0.021 0.023 0.013 0.009 0.057 

1980-1989 5 0.020 0.020 0.007 0.013 0.031 

1990-1999 1 -  - - - 

 

In white males, F(3,32)= 1.76, p > 0.05, indicating no significant difference in mean bone 

Cd across time. Four outliers were removed from this analysis. Removal of outliers resulted 

in a change from insignificant to significant results. Inclusion of age as a covariate does not 

change results. Post hoc procedures (Bonferroni’s procedure) do not yield any significant 
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differences between any decade and bone Cd, p > 0.05, this is interpreted as a lack of overall 

difference in bone Cd concentration over time in white males.  

In black females, there is no significant difference in bone Cd across time, even when age is 

taken into account, F(3,46) = 1.092, p > 0.05. Examination of Cook’s distance uncovered 

one outlier among black females, however this individual died in 1998 – among the most 

recent date of death among this demographic group and it was determined that the date of 

death resulted in a large Cook’s distance, not a high bone Cd concentration. This outlier 

remained in the analysis. 

The same true of among black males, F(3,119) = 1.97, p > 0.05. However, when age is 

included as a covariate, and ACNOVA is conducted the result is the same. Six outliers were 

removed from initial ANOVA with no change in significance.  
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a. White males 

 

b. Black males 
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c. Black females. 

Figure 7-21.  Median bone Cd concentration and decade of death by a) white males, b) black 

males and c) black females. Log transformed data.  

 

7.2.4.3 Geographical trends in bone Cd concentration 

Among all individuals, there is no difference in mean bone Cd concentration between 

Pretoria and Johannesburg, F(2,196)  = 0.586, p > 0.05. Box plots are given in Figure 7-22. 

Among white males, there is no difference in mean bone Cd concentration between 

individuals in Pretoria and Johannesburg, F(2,22) = 0.352, p > 0.05. In black females, the 

trend is the same, F(2,45)  = 0.507, p > 0.05. In black males, there is no difference in mean 

bone Cd concentration between individuals from Pretoria or Johannesburg, and rural 

residents, F(2,21)  = 0.370, p > 0.05.  

 

 



180 
 

 

a. White males 

 

b. Black males 
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c. Black females 

Figure 7-22.  Median bone Cd concentration by city of residence (admitting hospital) in a) white 

males, b) black males and c) black females. Log transformed data. 

 

 Vanadium 7.2.5

Descriptive statistics for bone V are given in Table 7-1. Vanadium is not normally 

distributed across any demographic group and was log transformed. Log transformed V 

concentrations are normally distributed and parametric tests are used.  

When all individuals are compared, there is significant difference in bone V concentration 

between black and white individuals, t(41.65) = 2.78, p < 0.001, with effect size, r= 0.40. 

Black individuals have significantly higher bone V concentrations than white individuals. 

Box plots are given in Figure 7-23.  
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a. All individuals by race b. Black males and females 

  

c. Black males and white males  d. Black females and white males  

Figure 7-23.  Median bone V concentration in a) all individuals, b) black males and black 

females, c) black males and white males and d) black females and white males. Log transformed 

data. 

 

In males only, the difference in bone V between black and white individuals is also 

significant, t(42.09) = 2.66, p < 0.001, with effect size, r= 0.38. Among black males and 

females, there is no significant difference in bone V concentration, t(136) = 1.35, p > 0.05. 

When white males and black females are compared, the difference is also significant, 

t(61.23) = 3.014, p < 0.001, with effect size, r= 0.36. As is evident in Fig. 7-23, in all cases 

with significant differences, black individuals yield higher bone V concentration than white 

individuals. 
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7.2.5.1 Bone V concentration and age at death 

Descriptive statistics for bone V concentration across age groups are presented in Table 7-

16, below. Bone V concentration was explored by ANOVA to investigate the relationship 

between V and age at death. In the whole sampled population, there is no significant 

difference in mean bone V concentration across age groups, Welch’s F(7, 26.74) = 0.967, p 

> 0.05.  

Table 7-16.  Bone V concentration in μg·g
-1

 by age at death.  
Group Age 

Group 

N Mean SE Mean Median SD Min. Max. 

Black 

Males 

20-29 14 0.029 0.004 0.027 0.015 0.011 0.064 

30-39 13 0.028 0.004 0.023 0.015 0.010 0.056 

40-49 26 0.024 0.002 0.023 0.009 0.010 0.056 

50-59 24 0.022 0.002 0.021 0.011 0.007 0.045 

60-69 33 0.030 0.004 0.024 0.022 0.006 0.112 

70-79 16 0.026 0.005 0.018 0.021 0.008 0.089 

80-89 2 0.035 0.023 0.035 0.032 0.013 0.058 

White 

Males 

20-29 0 - - - - -  

30-39 0 - - - - -  

40-49 5 0.014 0.003 0.017 0.007 0.004 0.022 

50-59 7 0.009 0.001 0.009 0.003 0.004 0.013 

60-69 10 0.019 0.003 0.016 0.009 0.009 0.033 

70-79 6 0.031 0.011 0.024 0.026 0.006 0.065 

80-89 4 0.033 0.026 0.008 0.052 0.005 0.111 

90-99 3 0.021 0.006 0.025 0.010 0.009 0.029 

Black 

Females 

20-29 2 0.031 0.009 0.031 0.012 0.022 0.039 

30-39 14 0.031 0.006 0.022 0.023 0.010 0.078 

40-49 9 0.023 0.003 0.022 0.008 0.010 0.035 

50-59 7 0.031 0.008 0.034 0.020 0.008 0.060 

60-69 10 0.035 0.010 0.026 0.033 0.012 0.124 

70-79 2 0.019 0.003 0.019 0.004 0.016 0.022 

80-89 2 0.037 0.001 0.037 0.001 0.036 0.038 

 

In black women however, there is significant difference in bone V among age groups, 

Welch’s F(6, 6.68) = 5.085, p < 0.05, with effect size, ω
2
= 0.02. Post hoc procedures 

(Games-Howell) indicate significant difference between the oldest women, those aged 80+ 

and women aged 40-49, p < 0.05 (Fig 7-24), however among women aged 80+, sample size 

is only two, so these results are accepted with caution. Neither significance, nor post hoc 

results change when the outlier is removed from analysis. In black and white males, there is 

no difference in mean bone V across time, F(6, 121) = 0.619, p > 0.05, and Welch’s F(5, 

9.52) = 2.232, p > 0.05 respectively. 
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a. White males 

 

b. Black males 
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c. Black females 

Figure 7-24.  Median bone V concentration by age at death in a) white males, b) black males 

and c) black females. Log transformed data. 

 

7.2.5.2 Temporal trends in bone V concentration 

In the sample population as a whole, there is no significant difference in mean bone V 

concentration across time. Descriptive statistics for bone V by decade and demographic 

group are given in Table 7-17. When each sub-group is explored independently, the trend is 

the same and no change in bone V concentration is evident over time.  

Table 7-17.  Bone V concentration in μg·g
-1

 by decade of death. 
Demographic Decade N Mean Median SD Min. Max 

Black males 

1960-1969 41 0.028 0.023 0.015 0.010 0.064 

1970-1979 48 0.024 0.021 0.014 0.006 0.074 

1980-1989 36 0.025 0.020 0.016 0.009 0.089 

1990-1999 3 0.025 0.019 0.018 0.012 0.045 

White males 

1960-1969 2 0.019 0.019 0.004 0.016 0.022 

1970-1979 14 0.014 0.019 0.009 0.004 0.035 

1980-1989 12 0.020 0.013 0.017 0.004 0.065 

1990-1999 7 0.032 0.010 0.040 0.005 0.111 

Black females 

1960-1969 23 0.026 0.022 0.010 0.013 0.048 

1970-1979 20 0.040 0.029 0.031 0.008 0.124 

1980-1989 5 0.017 0.012 0.011 0.010 0.036 

1990-1999 1 - - - - - 

 

7.2.5.3 Geographic trends in bone V concentration 

Across all groups there is no difference in mean bone V between Johannesburg, Pretoria or 

rural residents, F(2, 194) = 0.765, p > 0.05. When individual groups are tested, the results 
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are the same. In black females, F(2,45) = 1.38, P > 0.05, black males, F(2, 122) = 0.490, p > 

0.05, and in white males, F(2, 21) = 0.219, p > 0.05.  

 

a. White males 

 

b. Black males 
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c. Black females. 

Figure 7-25.  Bone V by city in a) white males, b) black males and c) black females. 

 

 Antimony 7.2.6

 There are significant differences between groups with regards to bone Sb concentration. 

Within the population as a whole, the differences occur between males and females, as 

opposed to by race. Among white males, and black males and females Mann-Whitney U = 

2479, p > 0.05. Between females and all males however U = 3149, p < 0.05. 

The primary difference in bone Sb appears to occur between white males and black females. 

Black females have significantly higher Sb concentrations than white males, U = 563, p < 

0.01, with effect size, r= 0.31. Between black males and females, the difference is not 

significant, U = 2560.5, p > 0.05. 

Within males only, there is no difference in bone Sb between black males and white males, 

U = 1914, p > 0.05. Fig. 7-26 includes box plots for each sex/race.  
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a. All individuals by race b. Black males and black females  

  

c. Black males and white males  d. Black females and white males  

Figure 7-26.  Median bone Sb by race and sex in a) all individuals by race, b) black males and 

females, c) black males and white males and d) black females and white males. 

 

7.2.6.1 Age trends in antimony concentration 

There are significant differences in bone antimony concentration among age groups. 

Descriptive statistics are given in Table 7-18.  
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Table 7-18.  Bone Sb in μg·g
-1

per age group by race and sex.  
Group Age 

Group 

N Mean SE Mean Median SD Minimum Maximum 

Black 

Males 

20-29 14 0.835468 0.365317 0.063825 1.366891 0.006 4.302 

30-39 13 0.095781 0.086169 0 0.310687 0.006 1.129 

40-49 26 0.485239 0.133241 0.039245 0.6794 0.006 2.045 

50-59 24 0.202007 0.130401 0.005892 0.638833 0.006 2.336 

60-69 33 0.090933 0.057284 0.008342 0.32405 0.006 1.725 

70-79 16 0.152499 0.082533 0.01768 0.33013 0.006 1.215 

80-89 2 0.040815 0.024265 0.040815 0.034316 0.01655 0.06508 

White 

Males 

20-29 0       

30-39 0       

40-49 5 0.248295 0.220243 0.04025 0.492479 0.006 1.128 

50-59 7 0.039382 0.01874 0.0123 0.049582 0.006 0.1175 

60-69 10 0.018212 0.011331 0.006459 0.035832 0.006 0.1178 

70-79 6 0.01607 0.008396 0.010045 0.020567 0.006 0.05135 

80-89 4 0.021983 0.018119 0.006145 0.036238 0.006 0.07564 

90-99 3 0.008693 0.00465 0.01018 0.008054 0.006 0.0159 

Black 

Females 

20-29 2 0.852615 0.842385 0.852615 1.191312 0.01023 1.695 

30-39 14 0.156998 0.072875 0.036275 0.272674 0.006 0.7533 

40-49 9 0.114243 0.062831 0.01568 0.188493 0.006 0.5052 

50-59 7 0.356958 0.245643 0.02357 0.649911 0.005631 1.79 

60-69 10 0.660533 0.387167 0.023515 1.224328 0.006 3.709 

70-79 2 0.06593 0.00591 0.06593 0.008358 0.06002 0.07184 

80-89 2 0.257105 0.230695 0.257105 0.326252 0.02641 0.4878 

 

Kruskall-Wallis test confirms that the difference in Sb between age groups among all 

individuals is significant, H(7) = 17.57, p < 0.05. This difference is only significant in black 

males. In white males and black females, there is no difference in bone Sb across age groups 

and H(5) = 2.26, p > 0.05, and H(6) = 3.01, p > 0.05, respectively.  

In black males, H(6) = 21.03, p < 0.01. Mann-Whitney U test with Bonferroni’s correction 

(.5/7) indicates that the difference in bone Sb in black males ages 20-29 and 40-89 are 

significantly different higher than in other age groups. Bone Sb is lowest in individuals ages 

50-59 (Fig 7-27b). 
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a. White males 

 

b. Black males 
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c. Black females 

Figure 7-27.  Median bone Sb by age in a) white males, b) black males and c) black females. 

 

7.2.6.2 Temporal trends in antimony concentration 

There is significant difference in bone Sb concentration across time and descriptive statistics 

are given in Table 7-19. Across the population H(3) = 75.04, p < 0.01. This difference is 

only significant in black males and females, H(3) = 48.98, p < 0.001, and H(3) = 14.96, p < 

0.01, respectively. In white males there is no significant change in bone Sb across time, H(3) 

= 5.62, p > 0.05, though graphically, bone Sb does appear to be higher in the 1960s. Mann 

Whitney U test with Bonferroni’s correction (.5/4) confirms that bone Sb is significantly 

higher during the 1960s than in any subsequent decade in black individuals (Fig. 7-28).  

Table 7-19.  Bone Sb concentration and decade of death in μg·g
-1

 by race and sex. 
Demographic Decade N Median SD Min. Max 

Black males 

1960-1969 41 0.507 1.000 0.006 4.302 

1970-1979 48 0.009 0.073 0.006 0.112 

1980-1989 36 0.004 0.069 0.006 0.095 

1990-1999 3 0.000 0.050 0.006 0.081 

White males 

1960-1969 2 0.623 0.714 0.118 1.128 

1970-1979 14 0.009 0.035 0.006 0.118 

1980-1989 12 0.014 0.028 0.006 0.101 

1990-1999 7 0.002 0.028 0.006 0.076 

Black females 

1960-1969 23 0.334 0.891 0.006 3.709 

1970-1979 20 0.013 0.075 0.006 0.331 

1980-1989 5 0.013 0.013 0.006 0.037 

1990-1999 1 - - - - 
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a. White males 

 

b. Black males 
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c. Black females 

Figure 7-28.  Median bone antimony by decade in a) white males, b) black males and c) black 

females. 

 

7.3 Essential element concentrations  

 

Four essential trace elements were explored. Descriptive statistics for each are given in 

Table 7-20.  

Table 7-20.  Essential trace element concentrations in μg·g
-1

 by race and sex.  
Group Element N Mean SE of 

Mean 

Median SD Minimum Maximum 

Black Males  

Cu 

 

129 13.083 1.265 8.881 14.312 0.360 78.620 

White Males 35 16.203 2.477 10.550 214.758 14.655 1.333 

Black 

Females 

44 13.215 2.077 9.586 14.536 1.833 94.720 

Black Males 

Fe 

129 25.460 2.973 13.585 33.633 0.484 234.800 

White Males 35 12.246 1.561 9.289 9.237 0.839 42.380 

Black 

Females 

44 13.083 1.265 8.881 14.312 0.360 78.620 

Black Males 

Mg 

129 2856.716 59.276 2753.500 670.635 441.800 4805.000 

White Males 35 3090.057 126.826 2861.000 750.315 2165.000 4983.000 

Black 

Females 

44 2838.306 92.638 2648.000 648.463 2064.000 4805.000 

Black Males  

Zn 

 

129 87.668 2.570 85.550 29.080 11.320 274.700 

White Males 35 102.303 2.450 102.400 14.496 69.840 133.900 

Black 

Females 

44 91.011 3.714 88.240 25.998 63.240 232.800 

 



194 
 

 Zinc 7.3.1

Descriptive statistics for Zn are presented in Table 7-20. There is significant difference in 

bone Zn between black and white individuals, U = 1455.0, p < 0.01, with an effect size r = 

0.354, with white males having higher bone Zn concentration than either black men or 

women. Among black individuals, there is no significant difference in bone Zn between men 

and women, U = 3013.5, p > 0.05. There is significant difference in bone Zn between black 

and white males, U = 1025.0, p < 0.01, with an effect size r= of 0.39.  

7.3.1.1 Bone Zn and age 

Among all individuals, there is significant difference between bone Zn concentration and 

age H(7) = 16.149, p < 0.05. However among individual groups there is no significant 

difference in bone Zn with age. Among black women, there is no significant difference in 

median bone Zn concentration across age groups, H(6) = 1.743, p > 0.05. Among black 

males, there is no significant difference in median bone Zn across age groups, H(6) = 6.153, 

p > 0.05. In white males, the trend is the same, with no significant difference in median bone 

Zn concentration across age groups, H(5) = 6.54, p > 0.05.   

 Magnesium 7.3.2

There is no significant difference in bone Mg concentration between black and white 

individuals as a whole, U = 2839.5, p > 0.05.  Nor is there any significant difference 

between black males and females, U = 2935.0, p > 0.05. There is no significant difference in 

median bone Mg between black and white males, U = 2044.0, p > 0.05. In black females and 

white males, there is no significant difference in bone Mg, U = 665.5, p > 0.05. 

7.3.2.1 Bone magnesium and age 

Across all age groups there is no significant difference between bone Mg and age group, 

H(7) = 7.062, p > 0.05. In black women, the result is the same with no significant difference, 

H(6) = 5.691, p > 0.05. Among white males and among black males, there are no significant 

differences in bone Mg across age groups with H(5) = 4.762, p > 0.05 and H(6) = 4.820, p > 

0.05 respectively.  

 Iron 7.3.3

There are significant differences in bone Fe between groups. Notably, it is white males, who 

have the lowest bone Fe concentrations. Among black and white males, white males have 

significantly lower bone Fe than black males, U = 1593, p < 0.01, with effect size, r= 0.17. 

In white males also have significantly lower bone Fe than black females, U = 580, p < 0.016, 

with effect size r= 0.12. The in bone Fe between black males and females is not significant, 

U = 3096, p > 0.05.  
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7.3.3.1 Bone iron and age 

Bone Fe does not vary with age in any group. In black males, H(6) = 9.82, p > 0.05. In black 

females H(6) = 3.54, p > 0.05, and in white males, H(5) = 4.48, p > 0.05.  

 Copper 7.3.4

Bone Cu concentration does not vary by race or sex. In black males and females, t(178) = 

0.831, p > 0.05. In black males and white males, t(161) = 1.48, p > 0.05. And in black 

females and white males, t(82) = 0.773, p > 0.05. 

7.3.4.1 Copper and Age 

Bone Cu does not vary with age in any group. In black males, F(6,120) = 0.745, p > 0.05. In 

black females, F(6, 39) = 0.432, p > 0.05. The results are the same in white males, where 

bone Cu does not vary by age, Welch’s F(5, 10.68) = 3.04, p > 0.05. 

7.4 Relationships between elements 

In the first instance a Spearman’s Rank Correlation coefficient matrix was produced to 

determine which elements were significantly correlated in the bone of the sample 

population. Matrices for black males, black females and white males were produced. These 

matrices make up Tables 7-21 to 7-23.  
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Table 7-21.   Spearman’s rank correlation matrix for white males. Significant correlations are 

presented boldface. Bonferroni’s corrected critical value for p = 0.0009. 

   Ca Pb Mn Cd Fe Zn Mg Sb As Cu V 

Ca Coef. 1.000           

Sig. .           

Pb   -.054 1.000          

  .760 .          

Mn   .356 -.061 1.000         

  .036 .726 .         

Cd   .369 .062 .630 1.000        

  .029 .724 .000 .        

Fe   .317 .161 .586 .276 1.000       

  .063 .356 .000 .109 .       

Zn   .507 .168 .004 .228 .065 1.000      

  .002 .334 .983 .188 .710 .      

Mg   .714 -.052 .057 .072 .223 .704 1.000     

  .000 .767 .746 .683 .197 .000 .     

Sb   -.326 .090 .171 .220 .145 -.400 -.411 1.000    

  .056 .606 .326 .204 .407 .017 .014 .    

As   -.092 -.164 .445 .637 .215 -.225 -.297 .366 1.000   

  .597 .347 .007 .000 .216 .194 .083 .030 .   

Cu   .459 .290 .488 .419 .390 .381 .334 -.061 .002 1.000  

  .006 .091 .003 .012 .021 .024 .050 .729 .990 .  

V   .161 .316 .583 .400 .627 -.104 .008 .371 .371 .225 1.000 

  .356 .065 .000 .017 .000 .551 .962 .028 .028 .194 . 
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Table 7-22.  Sperma’s rank correlation matrix for black males. Significant correlations are 

presented in boldface. Bonferroni’s corrected critical value for p = 0.0009. 
   Ca Pb Mn Cd Fe Zn Mg Sb As Cu V 

Ca Coef. 

 

1.000           

Sig. .           

Pb  .284 1.000          

 .001 .          

Mn  .259 .194 1.000         

 .003 .028 .         

Cd  .107 .549 .580 1.000        

 .230 .000 .000 .        

Fe  -.098 .100 .148 .118 1.000       

 .272 .259 .096 .183 .       

Zn  .360 .359 .187 .288 .220 1.000      

 .000 .000 .034 .001 .013 .      

Mg  .602 .123 .081 .036 .120 .620 1.000     

 .000 .165 .363 .686 .178 .000 .     

Sb  -.011 .056 .000 .094 .329 .028 -.002 1.000    

 .912 .585 .997 .361 .000 .789 .987 .    

As  -.009 -.042 .403 .258 .137 -.096 -.163 .585 1.000   

 .921 .662 .000 .000 .147 .312 .085 .001 .   

Cu  .149 .091 .575 .308 .131 .154 .078 -.029 .353 1.000  

 .093 .308 .000 .000 .140 .083 .379 .775 .000 .  

V  .180 .183 .643 .443 .205 .116 .099 .360 .494 .501 1.000 

 .042 .039 .000 .000 .020 .191 .267 .000 .000 .000 . 
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Table 7-23.  Spearman’s rank correlation matrix for black females. Significant correlations are 

presented in boldface. Bonferroni’s corrected critical value for p = 0.0009. 
   Ca Pb Mn Cd Fe Zn Mg Sb As Cu V 

Ca Coef. 

 

1.000           

Sig. .           

Pb  -.193 1.000          

 .185 .          

Mn  .179 .101 1.000         

 .218 .489 .         

Cd  -.063 .321 .615 1.000        

 .669 .024 .000 .        

Fe  -.159 .105 .157 .151 1.000       

 .276 .472 .281 .300 .       

Zn  .143 .164 .182 .100 .296 1.000      

 .327 .261 .210 .495 .039 .      

Mg  .601 -.407 .155 -.201 .008 .341 1.000     

 .000 .004 .289 .167 .956 .017 .     

Sb  .071 -.046 .160 .057 .138 .389 .104 1.000    

 .654 .772 .313 .722 .383 .011 .513 .    

As  .133 .002 .271 .154 .134 .207 .081 .653 1.000   

 .384 .991 .072 .313 .380 .173 .596 .000 .   

Cu  .248 -.069 .549 .242 .107 .339 .277 .216 .373 1.000  

 .086 .636 .000 .093 .464 .017 .054 .170 .012 .  

V  .295 -.256 .623 .167 .329 .316 .425 .360 .083 .524 1.000 

 .040 .076 .000 .252 .000 .027 .002 .000 .587 .000 . 

 

There are several differences and similarities in relationships between elements among white 

males, black males and black females:  

 Sb and Mg are correlated in white males but not in black males or females.  

 In black females, Sb and Zn are not correlated and in white males negatively 

correlated. In black males the two elements are not correlated at all.  

 In white males, Fe is strongly correlated with Mn. There is no correlation between 

these elements in black males or females.  

 Fe is also correlated with V in white males but not in black males or females. 

 As and Mn are correlated in males but not in females.  

 V and Cd are correlated in males but not in females.  

 As and Sb are correlated in black males and females but not white males. 

 As and Cd are correlated in black males but not in black females or white males 

 V and Mn are correlated in all individuals.  

 Cd and Mn are correlated in all individuals.  

 V and Cu are correlated in black males and females but not in white males. 
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 Pb and Zn are correlated in black males, but not in white males or black females.  

 Pb and Cd are not correlated in white males or black females, but are in black males. 

7.4.1.1 Multivariate Analysis – Source apportionment and metabolic processes 

Principle Component Analysis with Varimax rotation was conducted on trace elements in 

bone in the whole population and subsequently in white males and black males 

independently, to investigate relationships between elements. The purpose of PCA was to 

generate hypotheses regarding potential sources of toxic element pollution and exposure, 

and to determine whether groups of elements may be related in meaningful ways. 

All elements were included except magnesium which was excluded because the KMO 

statstic was .291, below the acceptable limit of 0.5. KMO. The overall KMO value was 

0.613, indicating sampling adequacy.  

Correlations between elements were high enough to allow for PCA, and were measured by 

the X
2
 statistic (Bartlett’s test of sphericity) which was X

2
(36) = 306.26, p < .001. In addition 

the determinant of the correlation matrix is .239, which indicates that multicoliniarity is not 

affecting the results. The Correlation Matrix is given in Table 7-24. All elements correlate 

significantly to at least one other element with the exception of iron, which does not 

correlate to any other element.  

Table 7-24.  Correlation matrix for all elements include in PCA. Element pairs with significant 

correlations at either .01 or .05 are in boldface.  
 V Mn Fe Ni Cu Zn As Cd Pb 

V 1         

Mn 0.540 1        

Fe 0.125 0.07 1       

Ni 0.011 -0.112 0.007 1      

Cu 0.301 0.508 0.000 0.016 1     

Zn 0.102 0.22 0.027 0.146 0.283 1    

As 0.058 -0.014 -0.026 -0.043 0.355 0.001 1   

Cd 0.274 0.408 0.030 -0.098 0.287 0.292 -0.033 1  

Pb -0.013 0.063 -0.092 0.047 0.170 0.252 -0.045 0.249 1 

V          

Mn .000         

Fe 0.033 0.151        

Ni 0.435 0.05 0.459       

Cu .000 .000 0.498 0.405      

Zn 0.068 0.001 0.346 0.016 .000     

As 0.198 0.417 0.354 0.263 .000 0.493    

Cd .000 .000 0.331 0.076 .000 .000 0.314   

Pb 0.425 0.18 0.09 0.245 0.006 .000 0.257 .000  
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Initial analysis identified four factors which had eigenvalues above 1 (Kaiser’s criterion). 

The scree plot is given in figure 7-29. Components two, three and four are also included in 

the analysis based on their eigenvalues.  

 

Figure 7-29.  Scree plot of all elements (except Mg) showing one primary factor.  

 

Eigenvalues for components 1, 2, 3 and 4 are respectively and account for 66.55% of the 

total variation.  

Initial eigenvalues are given in Table 7-25, below.  

Table 7-25. Eigenvalues for each component and the percent variation explained by the 

component. 
Component Eigenvalue Percent variance 

1 2.417 26.885 

2 1.309 14.546 

3 1.186 13.175 

4 1.075 11.940 

 

Component 1 accounts for 27% of variation and component 2 accounts for 15% of variation, 

with components 3 and 4 accounting for the remaining 25% of variation.  

Rotated factor loadings are given in Table 7-26, below. Factor loadings below 0.4 are 

omitted. 
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Table 7-26.  Rotated factor loadings for components 1, 2 and 3 in all individuals. 
Component 1 2 3 

Element    

Mn 0.834     

V 0.773     

Cd 0.559 0.498   

Pb   0.781   

Zn   0.589   

Fe   -0.407   

As     0.900 

Cu 0.512   0.628 

Sb       

 

Factor loadings for each component show several trends. Component 1 includes Mn, V and 

Cd and is likely associated with metal smelting and processing, given the presence of 

vanadium and manganese. Component 2 includes lead, which initially suggests that this 

component represents elements associated with vehicle emissions as well as metabolic 

proesses involving Zn and Cd. Component 3 includes copper and arsenic and is potentially 

associated with acid mine drainage or gold mining slag. Component 4, including nickel 

alone is likely to be associated with platinum mining.  

7.4.1.2 PCA white males 

PCA was conducted on white males and black males independently. In white males, 

examination of KMO values resulted in the removal of As, Ni, Mg and Pb. Overall KMO 

value was 0.614 and Bartlett’s Test of Sphericity yielded a X
2
(10) = 54.561, which is above 

the critical value at p < .001. The determinant of the coefficient matrix was .117, indication 

that there is a lack of multicolinearity between elements. 

Table 7-27.  Correlation matrix for white males. Element pairs with significant correlations at 

either .01 or .05 are in boldface. Determinant = .117 
 Zn Cd Cu Mn V 

Zn 1     

Cd 0.355 1    

Cu 0.348 0.271 1   

Mn 0.099 0.614 0.244 1  

V 0.003 0.411 0.159 0.769 1 

Zn      

Cd 0.018     

Cu 0.020 0.058    

Mn 0.287 .000 0.078   

V 0.493 0.007 0.181 .000  
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Two components had eigenvalues above 1 which accounted for 73.275 of the variance. 

Initial eigenvalues are given in Table 7-28, and the scree plot is Fig. 7-30, below.  

Table 7-28. Eigenvalues for white males and the percent of variation explained by each 

component. 
Component Eigenvalue Percent variance 

1 2.408 48.167 

2 1.255 25.108 

 

 

Figure 7-30.  Scree plot for components and eigenvalues in white males.  

 

Rotated factor loadings for each component are given in Table 7-29, below.  

Table 7-29. Rotated factor loadings for components 1and 2 in white males.  
Component 1 2 

Element   

Mn .935   

V .904   

Cd .655 .475 

Zn   .865 

Cu   .723 

 

As in all individuals, Component 1 includes Mn, V and Cd, and is most likely associated 

with metal processing activities. Component 2 in white males is significantly different than 

that of the whole population, in that it no longer includes Pb, but instead Zn, Cd and Cu. In 
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this case, it is hypothesised that this component represents tobacco smoke. It is unclear why 

Pb is not a factor in any component in white males. 

 

 PCA black males 7.4.2

PCA in black males reveals different trends. Ni and Fe were removed from analysis due to 

KMO values of less than 0.5. When these elements were removed, overall KMO = 0.713 and 

Bartlett’s Test resulted in X
2
(21) = 182.548, p < .001, which is well above the critical value 

for X
2
 with Df = 21. The determinant of the correlation matrix is .229, indicating a lack of 

multicolinearity. The correlation matrix is in Table 7-30, below. 

Table 7-30.  Correlation matrix for black males. Determinant = .229. Significant relationships 

between elements are in boldface.  
 Zn Cd Pb Cu Mn V As 

Zn 1       

Cd 0.316 1      

Pb 0.264 0.473 1     

Cu 0.3 0.34 0.283 1    

Mn 0.225 0.337 0.165 0.607 1   

V 0.101 0.391 0.127 0.386 0.492 1  

As -0.018 0.100 -0.016 -0.006 0.083 0.114 1 

Zn        

Cd .000       

Pb .001 .000      

Cu .000 .000 0.001     

Mn 0.005 .000 0.032 .000    

V 0.129 .000 0.077 .000 .000   

As 0.42 0.13 0.427 0.472 0.175 0.099  

 

Initial analysis reveals three components with eigenvalues above 1, accounting for 54.35% 

of the variability. Eigenvalues are given in Table 7-31, and the corresponding scree plot in 

Fig. 7-31, below. 

Table 7-31. Components and eigenvalues for black males and the percent variance explained by 

each component. 
Component Eigenvalue Percent variance 

1 2.651 37.875 

2 1.154 16.483 
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Figure 7-31.  Scree plot for components and eigenvalues in black males.  

 

Rotated factor loadings for each component are given in Table 7-32, below.  

Table 7-32.  Rotated factor loadings for extracted components in black males.  
Component 1 2 

Element   

Mn .798   

V .786   

Cu .639 .426 

As .412  

Cd .403 .637 

Zn   .676 

Pb   .781 

 

Component 1 includes Mn and V, as well as Cu, As and Cd, which are likely due to 

metalworking processes and mining activities. Component 2 includes Pb, as well as Cd, Zn 

and Cu, which may represent a combination of metabolic processes and tobacco smoke.  

 Relationships between toxic elements 7.4.3

Relationships between toxic elements are explored. Simple and multiple regression is used 

to determine whether any of the toxic element factors in each component of PCA form linear 

relationships. Several significant relationships are evident between toxic elements. The 

statistical methodology used to compare toxic element concentrations is given in Chapter 6. 



205 
 

In all comparisons, the data reported includes R
2
, b, β (R), and the SE of b. Significant β 

values are noted. All data used is log-transformed. 

7.4.3.1 Lead and cadmium 

Results of linear regression are given in Table 7-33. Among all individuals, bone Pb is 

significantly correlated with bone Cd, however this is clearly due to the effect of black males 

in the sample.  

When groups are investigated independently the relationship between bone Pb and Cd 

differs. There is a weak correlation between bone Pb and Cd in black women and no linear 

relationship. 

Among white males, there is also no significant correlation linear relationship. 

Among black males, there is a not very strong correlation between bone Pb and bone Cd. 

There is also a clear linear relationship, R
2
 = 0.294. The results of the simple regression are 

given below in Table 7-34 and are plotted in Fig. 7-32.  

Table 7-33.  Regression statistics for Pb and Cd. Dependent variable = Bone Pb. *Sig. at p < 

0.001 level. **Not significant at p = 0.05. 
Pb vs. Cd B SE B β R2 Adjusted R2 

All indiv. .210 0.026 .471* .222 .278 

Black Fem. .119 0.065 .256** .066 .046 

White Males .065 .078 -.144** .021 -.009 

Black Males .244 0.034 .543* .294 .289 

 

 

a. White males 
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b. Black males 

 

c. Black females 

Figure 7-32.  Plot of Pb and Cd in a) white males, R
2
 = .021, b) black males, R

2
 = .294 and c) 

black females, R
2
 = .066 

 

7.4.3.2 Cadmium and Manganese 

The relationship between bone Cd and bone Mn concentrations was explored by examining 

the correlation and potential linear relationships, the details of which are given in Table 7-34 

and Figure 7-33.  

There is a clear linear relationship between bone Mn and bone Cd in all groups. In white 

males in particular bone Cd shows a moderate linear relationship with bone Mn 
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concentration, with R
2
 = .547. The same is true of bone Cd and Mn in black males, in which 

R
2 
=.368.  

Table 7-34.  Linear regression with variables Mn and Cd. *Sig. at 0.05. 
Mn vs. Cd B SE B β R2 Adjusted R2 

All indiv. .301 .025 .637* .406 .403 

Black Fem. .248 .048 .595* .354 .340 

White Males .365 .058 .739* .547 .533 

Black Males .287 .033 .607* .368 .363 

 

In all regression models of Mn and Cd, residuals were normally distributed and no outliers 

were identified.  

 

a. White males 
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b. Black males 

 

c. Black females 

Figure 7-33.  Linear relationship between Mn and Cd with Mn is dependent variable in a) white 

males, R
2
 = .547, b) black males, R

2
 = .368 and c) black females, R

2
 = .354. 

 

7.4.3.3 Cadmium and Arsenic 

Bone As concentration is a weak but significant predictor of bone Cd in some groups and the 

sampled population as a whole. Statistics are given in Table 7-35 and plots for individual 

racial groups in Fig. 7-34.  In the study population as a whole, as well as with all males and 

black males, the three residuals chosen (Chapter 6) are not normally distributed despite a 

weak but significant linear relationship, In white males, there is a significant positive linear 

relationship between bone As and bone Cd, and no assumptions of the linear regression 
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model are violated (residuals normally distributed). There is no linear relationship between 

bone As and bone Cd in black females.  

Table 7-35.  Linear regression between Cd and As with Cd as dependent variable. *Sig. at p < 

0.01.  

** Not sig. 
Cd vs. As B SE B β R2 Adjusted R2 

All indiv. .322 .074 .298* .089 .084 

Black Fem. .053 .218 .037** .001 -.021 

White Males .576 .156 .565* .319 .296 

Black Males .345 .084 .362* .131 .123 

 

 

a. White males 
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b. Black males 

 

c. Black females 

Figure 7-34.  Linear relationship between As and Cd where dependent variable is Cd in a) white 

males, R
2
 = .319, b) black males, R

2
 = .131, and c) black females, R

2
 = .001 

 

7.4.3.4 Manganese and Arsenic 

A linear relationship is evident between bone Mn and As in the sample population as a 

whole. As is a significant but weak predictor of bone Mn. Regression statistics are given in 

Table 7-36, below.  

Table 7-36.  Linear regression for Mn and As with dependent variable Mn. *Sig. at p < .001. 

**Not significant. 
Mn vs. As B SE B β R2 Adjusted R2 

All indiv. .166 .028 .395* .156 .151 

B. Fem. .054 .044 .182** .033 .011 

W. Males .265 .077 .538* .289 .265 

B. Males .231 .085 .435* .235 .228 

Linear regression for Mn and As with dependent variable Mn. *Sig. at p < .001. **Not 

significant. 

In all males As is a weak but significant predictor of bone Mn. In black females, there is no 

association between bone As concentration and bone Mn concentration. Regression lines for 

black females, white males and black males are plotted in Fig. 7-35. 
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a. White males 

 

b. Black males 
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c. Black females 

Figure 7-35.  Linear relationship between Mn and As where dependent variable is Mn in a) 

white males, R
2
 = .289, b) black males, R

2
 = .235 and c) black females, R

2
 = .033 (not sig.) 

 

7.4.3.5 Lead and vanadium 

There is no linear, non-linear or curvilinear relationship between bone Pb and bone V in all 

individuals. Curve estimates are given in Table 7-37 and plotted in Fig. 7-36.  

Table 7-37.  Table showing curve estimates for Pb and V. There is no significant relationship, 

linear or otherwise, when all individuals are included in the model. 
Curve R2 F  Df 1 Df 2 Sig.  

Linear .003 .591 1 .443 

>.05 

Logarithmic .004 .810 1 .369 

Inverse .005 1.042 1 .308 

Quadratic .006 .643 2 .526 

Cubic .006 .464 3 .708 
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Figure 7-36.  Curve estimates for Pb and Vin the total population. There is no relationship 

between the two varibles. 

 

When the groups are examined individually, however, the relationship between Pb and V 

does become significant in black females and black males, but very weak. In black females, 

there is a significant negative relationship between bone Pb concentration and bone V 

concentration, though the residuals of the linear model are not normally distributed 

according to the K-S statistic (Table 7-38 and Figure 7-37). There is no relationship between 

the two elements in males.  

Table 7-38.  Linear regression between Pb and V with dependent variable Pb. *Sig. at p < 0.01, 

** Not sig. 
Pb vs. V B SE B β R2 Adjusted R2 

All indiv.      

B. Fem. -.373 .160 -.319* .102 .083 

W. Males .110 .165 .115** .013 -.007 

B. Males .311 .116 .231* .054 .046 
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a. White males 

 

b. Black males 
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c. Black females 

Figure 7-37.  Linear relationships between Pb and V with Pb as dependent variable in a) white 

males, R
2
 = .013 b) black males, R

2
 = .054 and c) black females, 

R2
 = -.102.  In black and white 

males the relationship is not significant. 

7.4.3.6 Manganese and vanadium 

PCA shows that Mn and V are highly loaded factors in Component 1 in both males and 

across the sample population as a whole. The two elements are highly correlated in all 

individuals. 

Linear regression also yields a significant linear relationship between manganese and 

vanadium in all individuals (Table 7-39). 

Table 7-39.  Linear regression between Mn and V with dependent variable Mn. *Sig. at p < 

0.01.  
Mn vs. V B SE B β R2 Adjusted R2 

All indiv. .780 .063 .646* .418 .415 

B. Fem. .599 .124 .572* .327 .313 

W. Males .810 .120 .756* .571 .558 

B. Males .954 .093 .674* .454 .450 

 

The relationship is strongest in males, but significant in females as well (Fig. 7-38). In white 

and black males, the correlation between bone Mn and bone V is over .60 (B in table 7-39).  
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a. White males 

 

b. Black males 
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c. Black females 

Figure 7-38.  Bone Mn and V with dependent variable Mn in a) white males, R
2
 = .571, b) black 

males, R
2
 = .454 and c) black females, R

2
 = .327 

 

7.4.3.7 Cadmium and vanadium 

There are weak, but significant linear relationships between bone Cd concentration and bone 

V concentration in males, but not in black females (Table 7-40). The strongest relationship is 

seen in white males, followed by black males (Fig. 7-39).  

Table 7-40.  Linear regression between Cd and V with dependent variable Cd. *Sig. at p < 0.01. 

**Not sig. 
Cd vs. V B SE B β R2 Adjusted R2 

All indiv. .968 .162 .378* .143 .139 

B. Fem. .362 .359 .144** .021 .000 

W. Males 1.207 .312 .558* .312 .219 

B. Males 1.4410 .232 .482* .233 .227 
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a. White males 

 

b. Black males 
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c. Black females 

Figure 7-39.  Cd and V with dependent variable Cd in a white males, R
2
 = .312, b) black males, 

R
2
 = .233 and c) white males, R

2
 = .312. black females, R

2
 = .021R2 in black females is not 

significant (p > .05). 

 

7.4.3.8 Arsenic and Vanadium 

In all individuals, there is a linear relationship between bone As and bone V concentration. 

The relationship is not evident in black females. In males, a significant linear relationship is 

present in both black and white males. 

Table 7-41.  Linear regression between bone As and bone V in with dependent variable As. *Sig 

at p < 0.001. ** Not sig.  
As vs. V B SE B β R2 Adjusted R2 

All indiv. 1.104 .179 .406* .165 .160 

B. Fem. .424 .533 .119** .014 -.008 

W. Males 1.311 .313 .613* .376 .355 

B. Males 1.392 .397 .486* .236 .229 
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a. White males 

 

b. Black males 
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c. Black females 

Figure 7-40.  Bone As and bone V with dependent variable As in a) white males, R
2
 = .376,  b) 

black males, R
2
 = .241 and c) black females, R

2
 = .014 (not sig.) 

 

7.4.3.9 Arsenic and Antimony 

Arsenic and antimony show only a very weak linear relationship, R
2
 = 0.029 (Table 7-42). 

When the relationship is explored by sex and race, significant linear relationships are 

evident. The relationship is strongest (though still fairly weak) in black females, with R
2
 

of .292, followed by white males with an R
2
 of .251. Scatterplots with R

2
 are given in Figure 

7-41. 

Table 7-42. Linear regression between As and Sb with dependent variable As. *Sig. at p < 0.01.  
As vs. Sb B SE B β R2 Adjusted R2 

All indiv. 8.82 3.50 .170* .029 .024 

B. Fem. .632 .158 .540* .292 .274 

W. Males .758 .301 .501* .251 .211 

B. Males .240 .071 .342* .117 .107 
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a. White males 

 

b. Black males 
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c. White females 

Figure 7-41. Linear relationship between As and Sb with dependent variable As in a) white 

males, R
2
 = .251, b) black males, R

2
 = .117 and c) black females, R

2
 = .292.  
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8 Discussion 

This research presents unusual and unexpected findings with regards to toxic trace elements 

in urban Gauteng. From the 1960s to the 1990s, several demographic trends in toxic element 

exposure become clear. This chapter will discuss the results presented in the previous 

chapter and examines the level and degree of exposure for each toxic element measured in 

the sample population. The potential impact of each element on the health of males and 

females in the population will also be discussed. The relationships between elements are also 

discussed, as the presence or absence of these relationships can shed light on potential health 

effects of exposure as well as the potential source of exposure. Lastly, this chapter includes a 

discussion of the six research objectives set forth in the introduction and how these 

objectives were met through the results of the research. 

It is all too easy to draw sweeping conclusions from the results of this research and the 

temptation to fit, refit, and over-fit statistical models to the data is great. As with any 

biological research, the temptation is also great to infer too much into the results that are 

obtained and make assumptions about the population at large based on a small segment of 

that population. This can be particularly true in archaeology and biological anthropology, 

where despite small sample sizes researchers risk forming assumptions about whole cultures 

or populations. In public health research where sample sizes are often, but not always, high, 

and researchers have the benefit of substantially more background information about 

research subjects, the practice of formulating generalisations about a whole population are 

more justified.  

This research is somewhat unique, in that it straddles the line between bioarchaeology and 

public health. Certainly these data can be used to infer recent, and to some extent present, 

public health conditions in a modern urban population and in this way it is firmly rooted in 

public health. However the use of a skeletal collection, even an identified one, comes with 

all the drawbacks of conducting research on a burial or archaeological population. Sample 

sizes are small. Study “participants” cannot be chosen, nor can detailed sociological data be 

gathered. In this sense, this research is considered bioarchaeological as opposed to public 

health oriented and every effort is made to avoid making broad generalisations about urban 

South Africans. Rather, the results discussed here will present trends and relationships in the 

sample population, the 200 individuals on which this research was conducted. It is possible, 

perhaps even likely, that the results presented here represent population-wide patterns in 

trace element exposure, but it is inappropriate to assume that this is the case. Any 

conclusions reached about the population of Gauteng at large are treated as potential, as 

opposed to definite, realities. 
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To fully understand the implications of toxic element exposure it is critical to explore these 

results from a geographical and social context. The distribution of labour, access to health 

services, as well as demographic trends such as household composition and location of 

residence were all largely politically determined during apartheid, for both the black and 

white population. Thus exposure to and interaction with the environment were both 

predetermined by race and are not equal between groups, which subsequently causes some 

striking differences in exposure to toxic pollution within the population.  

The extreme inequality characterizing apartheid South African cannot be separated from the 

results presented in this research. However South Africa is not unique in suffering from, or 

creating, inequality within its population. In almost all countries, particularly less developed 

countries, exposure to toxic elements and urban pollution disproportionally affects one 

demographic group or socioeconomic strata more than others. In most cases, such as the 

United States, the poorest and most disadvantaged groups within the population bear the 

brunt of toxic element exposure, due to marginal living conditions, proximity to industry and 

transportation congestion and occupational exposure. This trend has been quantified in 

populations across the globe. Recent research into lead exposure among children in post-

apartheid South Africa has found that children from the lowest socioeconomic strata suffer 

from greater exposure than their more well-off contemporaries. The results presented here 

show that this was not necessarily the case for this population during apartheid. For some 

elements, arsenic, cadmium, antimony, lead and vanadium, there appears to be significant 

difference in exposure between different demographic groups. In the case of lead, the 

opposite trend has been identified, in which white males have significantly higher lead 

exposure than more socioeconomically disadvantaged black individuals. The potential 

reasons for these trends are discussed in greater detail in subsequent sections of this chapter.  

It is suggested from these results that, despite the high level of mining and industrial 

activities taking place in Gauteng during the three decades in question, the level of exposure 

to elements such as lead was lower than in many industrial areas in other parts of the world. 

Lead levels in particular are much lower than expected, given the use of leaded petrol and 

lead mining and smelting activities in the region. Other element concentrations, such as 

manganese, cadmium and arsenic are also lower than in many industrial regions. There is no 

significant difference between toxic elements in individuals living in Pretoria and 

Johannesburg, indicating that the levels of exposure at this time may have been relatively 

uniform throughout the region (Chapter 4, Section 4.2.3).  

Several essential trace elements have been studied, including iron, magnesium, zinc, and 

copper. These elements are included and discussed for two reasons. Each of these elements 
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interacts with specific toxic elements within the human body, and can affect uptake and 

health consequences of toxic elements. Each of these elements is also a common industrial 

pollutant in itself, and the relationship between these elements and certain toxic elements 

can often be due the sharing of common sources within the environment. In this respect, the 

correlation between these elements and toxic elements can allow for the formulation of basic 

hypotheses regarding the likely source of toxic elements. The measurement of these 

elements can also highlight differences in nutrition and overall health that may affect toxic 

element uptake and toxicity. 

It is critical to note at the outset of this chapter, that the interrelationship between toxic 

element exposure, essential trace elements and the human body is extremely complex. For 

example, it is known that certain elements share uptake pathways within the human body 

and subsequently, concentrations in human tissues are likely to be correlated. In other 

instances, essential trace elements may inhibit the uptake of toxic elements. Calcium, a 

critical element in bone formation, is known to affect the uptake of cadmium and lead. 

Lastly, the correlation of elements in the atmosphere due to common sources is also a 

significant possibility. As such, the nature and cause of the association between given 

elements in human bone tissue is difficult to determine with certainty. What is most likely is 

that the interplay between elements in bone tissue is likely the result of environmental, 

biological, metabolic and kinetic factors in combination. The discussion that follows is not 

intended to present definitive evidence of any one environmental, behavioural or nutritional 

causes in regards to relationships between elements or individuals. Rather, this section is an 

exploration of the data presented in Chapter 7 and a discussion of the statistically-based 

inferences that may be (cautiously) drawn from them. 

Overall, several trends emerge from the results of this analysis in addition to that discussed 

above. In black women, statistical analysis does not reveal as many significant trends 

between toxic elements in black or white males. This is evident in PCA, for which women 

were not included due to a very weak or nonexistent relationships between elements. Within 

this trend one notable exception occurs, and that is the inverse relationship between 

magnesium and lead, which suggests that for this sample population, magnesium may play a 

significant role in lead uptake. Another trend is the clear racial dichotomy between many 

elements.  

In males, both black and white interesting correlations are evident between essential and 

toxic elements in the bone tissue of the sample population. Conversely, some relationships 

that would be expected given the level of industrial pollution are not present. More 

importantly, relationships between toxic and trace elements among males differ between 
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black and white males, suggesting different routes of exposure and/or differences in 

nutritional and health status. Given the lack of corresponding environmental data from the 

study era, it is not possible to determine conclusively the sources of and environmental 

connections between trace and toxic elements. However the data presented in the preceding 

chapter does allow for the discussion of reasonable hypotheses, which can provide both an 

understanding of past health and environmental trends. Perhaps more importantly, the data 

presented here highlight several gaps in present-day environmental studies, such as an 

understanding of the way toxic element exposure may have changed across time that may be 

critical to public health in urban South Africa. 

8.1 Lead 

 Overall trends in bone lead concentration 8.1.1

The overall trend in bone lead concentration in individuals from apartheid-era Gauteng is 

one of substantially lower lead exposure than would be expected in an industrial 

environment and one in which leaded petrol was used. In black individuals, in particular, 

bone lead concentration is lower than that of non-occupationally exposed Europeans during 

the same time period. Few black individuals have bone lead concentrations that would be 

expected in occupationally exposed individuals. Black women have significantly lower lead 

concentration that either black males or white males, which corresponds to trends worldwide 

(Barbosa et al. 2006; Popovic et al. 2005). These results are in accordance with the lower-

than-expected levels of lead found in environmental samples in Gauteng and discussed in 

Chapter 4. When compared to data from adult men in the United States, the lead levels in 

black and white males in the study population are significantly lower. Hu et al. (1996b) 

report an average bone lead concentration of 20.8μg·g
-1

 in non-occupationally exposed adult 

men in Boston. These authors also report that lower socioeconomic background and fewer 

years spent in school were correlated to higher bone lead. In addition, white individuals had 

a slightly higher mean bone lead concentration than black individuals at 22.1 and 25.8μg·g
-1

 

respectively.  Lead levels in both black and white adult males in the US were higher than 

those reported in this research, and in the case of black males, substantially so, a trend also 

reported by Elmarsafawy et al. (2002) who found higher bone lead levels in occupationally 

exposed black individuals than in similarly exposed white individuals. In adult women 

patients in a Boston maternity ward, mean cortical bone lead was 4μg·g
-1

, which is quite 

close to the mean bone lead concentration in women from Gauteng, at 3.92μg·g
-1

 (Hu et al. 

1996a). Other authors however, studying nurses in Boston, report a higher mean bone lead 

concentration of 13.3μg·g
-1

, significantly higher than that reported here (Korrick et al. 1999).  
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The lead concentration found in black individuals in the sample population are lower than 

those reported in occupationally exposed or industrially exposed populations (Table 2-1, 

Chapter 2) such as those reported by Lindh (1980), Somervaille et al. (1988), Baranowska et 

al (1995) in continental Europe. The bone lead concentration in white males falls in the 

lower range of occupationally exposed individuals.  

The distribution of lead across the sample population however, is unexpected. Bone lead 

concentration is highly dichotomous between black and white individuals within the sample 

population. This finding is counter to trends in developed countries in which disadvantaged 

populations have higher rates of lead exposure than populations from higher socioeconomic 

backgrounds (Bellinger et al. 1988; Hicken et al. 2012; Krieger et al. 2003; Tong et al. 

2000). This is also counter to recent findings in South Africa, in which lower socioeconomic 

status is positively correlated with lead exposure (Harper et al. 2003).  

There are four primary factors that may contribute to the higher bone lead concentrations in 

the white males of the sample population: residential patterns, non-petrol related residential 

lead exposure, age and iron status. It is likely that a combination of one or more of these 

explains the difference in bone lead concentrations between black and white individuals. 

Between black males and females, it is hypothesized here that differences in bone lead 

concentration may be explained first and foremost by differences in bone biology and by 

age. In addition differences in occupation and time spent within and without the household 

may contribute to the lower lead levels seen in black women versus those seen in black and 

white males. Lastly, it is possible that within the sample population men and women had 

different sources of lead exposure, which may account for some difference in total lead 

burden within each sex. 

 Bone lead trends and potential source and exposure pathways  8.1.2

The lowest bone lead concentration occurs in black females and is significantly different 

from that of black males, though the mean and median bone lead concentrations in each 

group are still low relative to industrially exposed populations elsewhere in the world. 

Baranowska et al. (1995) in particular measured bone lead in a modern Polish population 

from the highly industrial and polluted Silesia region and found concentrations as high as 

200 μg·g
-1

. These authors lowest measured bone lead concentration was approximately 

20μg·g
-1

. The lowest bone lead concentrations in black males and females – 0.5μg·g
-1

 each 

in South Africa. This is very low for an industrial region, particularly one in which leaded 

petrol was still in use. In Sweden, 1980, prior to the cessation of leaded petrol, mean bone 

lead concentration in non-industrially or occupationally exposed individuals was 2.85μg·g
-1

. 

In occupationally exposed individuals this increased to 15μg·g
-1

, which is on par with the 
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highest measured bone lead concentration of 14.48μg·g
-1

 among black women in the 

sampled population. In black males the highest measured bone lead concentration in the 

sampled population is 32.23μg·g
-1

. The results suggest that the majority of black individuals 

in the sample population were neither occupationally, nor industrially (i.e. living near an 

area characterized by industrial lead emissions) exposed. Given the level of industrial and 

occupational activities involving in the Transvaal region during apartheid, this result is 

unexpected.  

The difference in bone lead between males and females has been reported world-wide and in 

nearly every study of lead exposure in South Africa. Mathee et al (2002), von Schirnding et 

al (1991) and Naicker (2012) consistently found higher blood lead levels in males. In 

children this was attributed to boys spending greater time outdoors than girls. Barry (1970) 

measured bone lead in adults in the north of England in the1960s and reported that males 

from the UK had bone lead concentrations higher than females at a ratio of 3:2. This is 

approximately the same ratio observed in the Pretoria sample population, in which male 

bone lead ratio is higher than that of females at a ratio of 2.9 to 2.  

It is notable that the mean bone lead measured by Barry in non-occupationally exposed 

males and females is 21.03μg·g
-1

 and 16.05μg·g
-1

, respectively – substantially higher than 

the mean values reported here. Moreover, in English individuals, there was no dichotomy in 

the range of bone lead concentration as there is in South African individuals. The range of 

bone lead concentration in Barry’s sample population was the same for both males and 

females with approximately 0.6 to 49μg·g
-1

 for both sexes.  

There is a substantial body of research documenting the role that differences in bone biology 

– specifically different rates of bone turnover – plays in the deposition of lead in bone in 

men and women (Aufderheide and Wittmers 1992; Theppeang et al. 2008b; Vahter et al. 

2007; Vahter et al. 2002). Popovic et al. (2005) note that in women exposed to lead a 

smelting plant, bone lead concentration was lower than expected, based on comparative 

studies of men, indicating sex differences in the deposition of lead in bone. Vahter et al. 

(2002) have also noted sex differences in the deposition of lead in the bones of women. In 

addition, the higher rate of bone turnover in postmenopausal women may contribute to lower 

bone lead concentrations but higher blood lead concentrations due to endogenous release of 

lead into the blood stream and several studies have confirmed this. In pre-menopausal 

women, however, uptake of lead into bone is expected to be roughly equal to men when 

exposure is equal (Kosnett Mj 1994). 

In the case of the present sample population, the relationship between bone lead and age was 

examined in both males and females. Bone lead increases between the ages of 20-29 and 
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peaks in women between the ages of 40 and 49 and declines from the ages of 50-89
2
. In 

women aged 40-49, bone lead is approximately double that of any other age group at 

5.47μg·g
-1

. Though these results are not statistically significant, the data is consistent with 

Walker et al. (1984) in which the average age of menopause in women living in Soweto was 

48.9 years. The data presented here would seem to confirm this, as it is well established that 

bone lead levels in women peak just before and decline after menopause. In white and black 

males, bone lead does differ significantly between individuals of different ages and peaks 

substantially later. In black males, bone lead concentration peaks between the ages of 80 and 

89 and in white males, in ages 90-99
3
. These data correspond to trends reported by Hu et al. 

(1996), which report increasing bone lead concentration in adult males from the ages of 47 

to 70+. Hu et al. (1996a) also found increasing bone lead concentration with age in adult 

American women.  

In black individuals, the difference in bone lead concentration between men and women may 

indicate a lower level of exposure among women, and this certainly may be the case, as will 

be explored in the following section. But it may also indicate that lead is not being deposited 

in the bones of women at the same rate as males, and is being released from bone in 

postmenopausal women. This has significant implications for the potential toxicity of lead in 

women and the subsequent health effects. The results here indicate that 30% of women in 

the sample population were exposed to a moderate degree of lead exposure. The lower lead 

concentrations among women aged 50 and older does not indicate cessation or reduction of 

exposure, but likely indicates that the higher rate of bone turnover post-menopause likely 

resulted in the release of lead from bone into the blood stream and other tissues where it may 

have caused a host of health issues. Thus older black women in South Africa may have been 

at increased risk of lead toxicity than older males.  

It has been established by Monna et al.(2006) and Olowoyo et al. (2010) that atmospheric 

lead in Johannesburg and South Africa is largely concentrated along transportation corridors, 

showing higher lead concentrations in biomonitors (bark and lichen) located along major 

roadways than anywhere else, even in close proximity to mining dumps. Monna et al.’s 

isotopic studies of lead in Johannesburg further demonstrate that the majority of lead in the 

atmosphere comes from leaded petrol burning, as opposed to mine pollution or domestic 

coal burning. The results of this research appear to corroborate these results. When the 

                                                 
2
 Bone lead increases slightly in women aged 80-89, however in this group, N=2. The difference in 

mean bone lead concentration per age is not significant, though this may be likely to small sample 

sizes in some age groups. 
3
 Sample sizes in these groups are small in both black and white males. However, in both groups the 

minimum and maximum bone lead concentrations in each age group are significantly higher than in 

lower age groups.   
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Monna et al. lead concentration map of Johannesburg is juxtaposed with a map of the racial 

group areas that characterized apartheid-era Johannesburg, the relationship between lead 

exposure and proximity to transport networks becomes clear (Chapter 3, p. 60 and Chapter 

4, p. 83, respectively)  

It is clear that the black townships and residential areas are located far from the central 

business district and urban core, which yield the highest lichen lead concentrations 

(identified in red, above). The areas with the lowest concentrations are those in the outlying, 

suburban areas, to which black individuals were relocated following the Group Areas Act. 

Even biomonitoring sites located near mine dumps adjacent to Soweto (identified in green) 

show lower lead concentrations than those sites located in the central business district, which 

is adjacent to white-only residential areas. Most importantly, the one lead monitoring study 

conducted in Soweto and central Johannesburg during the 1980s confirms that the township 

experienced lower lead pollution than central Johannesburg throughout the day (Formenti et 

al. 1998).  

This distribution of lead across the landscape has clear implications that are mirrored in the 

bone lead results from the Pretoria bone collection. Bone lead concentration is highly 

dichotomous between black and white individuals within the sample population. The median 

bone lead concentration in white males is significantly higher at 12.82 μg·g
-1

 than in either 

black males or females at 4.34μg·g
-1

 and 3.35μg·g
-1

. Calcium, a critical element in bone 

formation, is known to affect the uptake of cadmium and lead. Von Schirnding et al. (1991) 

found similar correlations between the proximity of schools and major roadways and blood 

lead concentration in children in Cape Town, though the results do not correspond so 

strikingly to racial group areas as in Gauteng. This is potentially because in both Pretoria 

and Johannesburg, the relegation of non-whites to areas outside of the city centre and into 

suburban areas was more pronounced than in other cities in South Africa (Bickford‐Smith 

1995). Among the conclusions that can be drawn from the lead levels in this sample 

population is that residential patterns, in which black individuals outside the urban core may 

have had lower rates of exposure to emissions from leaded petrol than their white 

counterparts and thus lower bone lead concentration.  

While the bone level concentrations do not correspond with the concentrations expected of 

occupationally exposed populations, it is possible that the difference in bone lead between 

males and females is due, in part, to occupation and the daily movements across the urban 

landscape that result. In urban Gauteng, during apartheid, many males living in the region 

would have been industrial/mining/construction-related (Pons-Vignon and Anseeuw 2009), 

whist women were more likely to remain in the townships or work as domestic servants 
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(Casale 2004). This would likely affect both time spent outdoors and time spent in the urban 

core or central business district, in short, the time spent exposed to outdoor air pollution. It is 

interesting to note, however that the main source of employment available to urban black 

women during apartheid was domestic service, much of which would have taken place in 

white homes in white residential areas. It is likely that a significant proportion of women in 

the sample population were domestic workers in either Pretoria or Johannesburg, and it 

would be expected that women working in white households may have higher bone lead 

concentrations as a result. Unfortunately, no white women could be included in the sample 

population, which would have shed light on this matter.  

Monna et al.’s lead isotope data concludes that the bulk of atmospheric lead in Johannesburg 

comes from leaded petrol and that the domestic burning of coal contributes little to overall 

lead burden in the environment. South African coal is low in lead, but not devoid of it. 

Moreover, the burning of coal for domestic heating and cooking is common in the townships 

and black residential areas of both Johannesburg and Pretoria. It is not unreasonable to 

assume that some lead exposure in black women comes from domestic coal when burned 

inside enclosed spaces. To date, there have been no isotopic studies of bone or blood lead in 

either city nor was lead isotope analysis was conducted in women in this sample population. 

It is possible, however to infer the potential source of lead from its relationship with other 

toxic elements (Doucet and Carignan 2001).  

During apartheid the urban areas experienced high degrees of oscillating migration among 

the black population, particularly black males. These individuals would have been resident 

in the cities only as temporary labour, returning to their designated bantustan at the end of 

seasonal work or the end of a work contract. In this way, these individuals would have been 

only part-time residents of either Johannesburg or Pretoria and would not have been exposed 

to the same level of pollution as permanent residents. The permanent white population of the 

cities and the more permanent black female population would have been exposed to more 

lead. Though black females have low bone lead concentrations and much lower 

concentrations than white males, there are other variables that may explain this difference.  

The correlations between bone lead and several elements differs between groups. Notably, 

black females seem to follow the same pattern as white males with regards to correlations 

between elements, suggesting a potentially similar pattern of exposure. In black males, there 

is a correlation between bone lead and bone zinc, rs= .307, p < .001. There is no significant 

correlation between lead and zinc in the bones of white males or black females. A 

correlation between the two is to be expected, given the strong correlation between 

atmospheric zinc and lead as presented in Chapter 4, based on Monna et al. (2006) and 
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Olowoyo (2010. To what extent dietary intake of zinc may be influencing these results in 

unclear. It is known that zinc deficiency is prevalent in black South Africans, and bone zinc 

is significantly lower in black males and females than in white males in this study 

population, U = 1441.5, p < .01, with r = .354.  There is no difference between bone zinc 

concentration in black males versus black females. 

The discrepancy between black males and the rest of the study population points to either a 

different source of lead exposure between black males and white males and black females, a 

significant secondary source of lead exposure in black males, or a different exposure 

pathway in black males. Environmental data taken from Monna et al. (2006) and Olowoyo 

(2010) were examined statistically by this author. In high-traffic areas, there is no significant 

relationship between the two elements. In high traffic areas that form the urban core: taxi 

ranks and high traffic corridors, there is no correlation between zinc and lead in lichen, rs = 

.608, p > .05. In all areas outside high traffic areas however, there is a strong and significant 

correlation between zinc and lead, rs= .937, p < .05. The relationship between lead and zinc 

in soil samples taken in Pretoria show the same relationship between lead and zinc with  r = 

.093, p > .05 in high traffic areas and rs = .90, p < .05 in lower traffic areas, including mining 

and industrial areas. 

Results of PCA augment these findings, though unfortunately PCA results in black females 

are of little use as there are no correlations between elements. In black males, lead, zinc and 

cadmium form component 2 with cadmium also a factor in Component 1, with manganese, 

vanadium and copper. In white males, lead is not a factor in either component.  

There are several ways to (cautiously) interpret these results. The first relates to potential 

environmental sources. Many investigations have used PCA to explore toxic element source 

apportionment in biological tissues (Bechmann et al. 2000; Borgå et al. 2006; Kunito et al. 

2002; Samanta et al. 2004). These authors found that it is possible to identify regional and 

exposure differences in trace element exposure in animals based on relationships between 

elements in tissues. While it is impossible to determine the exact movements and 

occupational patterns of individuals within the sample population, it is possible that the 

black males in the sample population are exposed, at least partially, to a different source of 

lead than white males (and black females, many of whom would likely be spending time in 

white neighborhoods near the urban core). This may potentially explain the differences in 

the relationship between lead and zinc in these groups. It may also be that lead and zinc are 

metabolically associated.  

Worldwide, cadmium is predominantly a soil and water contaminant and it is an element 

associated with mining in South Africa. Cadmium is mined alongside zinc and lead in 
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Gauteng and in north western South Africa along the Namibian border. As discussed in 

Chapter 4, cadmium is found in high concentrations in Gauteng, which previous authors 

have attributed to vehicle pollution (De Villiers et al. 2010). Yet in high traffic areas, it is 

not correlated with lead or zinc in lichen, which would be expected if the elements shared a 

common source. Bivariate correlation performed on environmental trace element data from 

Monna et al. (2006), Olowoyo et al. (2010) and Naicker et al. (2003) yield correlations 

between these elements that provide useful comparisons. In mining and smelting areas, lead 

is not correlated with cadmium, rs = .842, p > .005. Cadmium is strongly correlated with 

zinc in mining and smelting areas, rs = .986, p < .001. In Naicker et al.’s (2003) analysis of 

acid mine drainage from a gold mine near Johannesburg, cadmium was significantly 

correlated with zinc as well, rs = .724, p < .001. As with the relationship between zinc and 

lead, cadmium and lead are only significantly and positively correlated in black males, rs = 

.304, p < .01. In white males and black females there is no correlation. In black males, zinc 

and cadmium are also significantly correlated, rs = .543, p < .001, with no correlation 

between zinc and cadmium in black females and white males.  

Whilst the correlations between the three elements in bone tissue of black males are not as 

strong as they are in environmental samples, factors such as bioavailibilty, uptake and 

element biokinetics are likely affecting the relationships in bone. It is also likely that the 

source of lead exposure in the three groups is the same – lead from petrol emissions, but the 

data does suggest a different pathway of exposure in black males, and suggests that the 

urban core is not the primary area in which black males from this sample population are 

exposed to lead.  

With regards to bone magnesium, the element is not significantly correlated to lead at any 

site in lichen or soil Luo et al. (2012a; 2012b) have noted that the bioavailability of both lead 

and zinc in humans is highly dependent on soil pH and the amount of organic material in the 

soil, with lower pH and soil organic matter associated with greater element uptake in 

humans. Potentially, black males are more likely to be exposed to ground, dust or soil 

contaminants from occupations such as mining or industry, than black women or white 

males, whose exposure to these elements may stem from inhalation of atmospheric 

pollution
4
.  

It is not possible to ascertain definitively whether black females and white males share a 

similar lead exposure source and pathway without isotopic analysis. However the 

similarities between these two groups in the relationships between lead, zinc and cadmium 

clearly require further investigation. In addition, apartheid era residential and labour 

                                                 
4
 Mining activities in the Gauteng region create highly acidic soil and water runoff.  
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patterns, in which whites lived in or near the urban core, and black females worked in white 

homes, lends credence to the hypothesis that these groups shared similar exposure pathways 

with regards to lead. The data does not allow for speculation as to the extent to which 

domestic coal served as a source of lead exposure for black females, however it does not 

seem likely given the above results. These results suggest that the difference in lead 

exposure between black women and white males is one of degree as opposed to source or 

pathway, however clearly more data is needed in order to reach such a conclusion.  

When these results are examined for each city independently, some differences arise. In 

black males who were likely resident in Pretoria, the relationship between bone lead and 

zinc is slightly stronger, r = .468, p < .001. However in black males living in Johannesburg, 

there is no correlation between bone lead and zinc. In Pretoria, bone lead and bone cadmium 

are correlated, rs = .561, p < .001, and not correlated in Johannesburg. In Pretoria, bone 

cadmium and zinc are correlated in black males, rs = .269, p < .01, but not in Johannesburg. 

In white males and black females, there is no correlation between bone lead and zinc or bone 

cadmium and zinc. Again, this points to potentially different sources or pathways of 

exposure in black males between the two cities.  

Mathee et al. (2006; 2009b; 2004) have examined lead in paint as a potential source of lead 

exposure in Johannesburg. Without isotopic analysis of bone lead in this population, it is 

impossible to say to what extent lead paint is a source of lead for white individuals and, to a 

lesser extent, black females. Lead paint is not commonly associated with adults, and is 

generally only a source of lead for children, particularly small children who often exhibit 

signs of pica and are prone to eating paint flaked from the walls of older or decrepit homes 

(Gould 2009). Adults can be exposed to lead paint in homes, during periods of renovation or 

in individuals who work as builders, however this is generally not a long-term source of 

exposure in adults (Atsdr 2007). In young adults, for whom bone tissue may still include 

exposure from childhood, exposure to lead paint could, hypothetically, be a source of bone 

lead and in young females not getting adequate nutrition, osteopenia could release childhood 

lead sequestered into bone back into the blood stream. None of the individuals in the sample 

population are below the age of 18 however, and most are too old for lead in household paint 

to be considered a significant risk factor.  

In black males, mining and cottage industries involving automobile repair and lead battery 

dismantling are potential sources of lead exposure in the sampled population. Cottage 

industries were and remain common in the townships and squatter settlements in Gauteng. 

Mining is certainly a potential source of lead, particularly in the case of black males in 

Gauteng. It is highly likely that some males in the sampled population were involved in 
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mining, and potentially resided in the mining hostels located just outside each city. During 

apartheid laws were enacted to strictly regulate the movement of black individuals, 

specifically black males, from white residential neighborhoods and the central business 

district. Unless black males worked in these areas they were restricted from spending more 

than 24 hours within them. Men who were miners would likely rarely enter the central 

business district. In addition, a large percentage of black miners were technically circular or 

oscillatory migrants. They would have worked in the mines, lived in a mining hostel on the 

urban periphery and returned to a bantustan when not working. These males in particular, 

were unlikely to be exposed to the same lead sources as women and white males.  

 Geographic and temporal trends 8.1.3

There are no temporal trends in bone lead concentration within the sampled population. No 

differences in lead were uncovered between individuals living in Pretoria versus individuals 

living in Johannesburg, in any group. This result is unexpected. Environmental monitoring 

has shown that atmospheric lead is higher in Johannesburg than in Pretoria. Pretoria is a 

smaller and less industrial city. Furthermore, predominant wind directions for each city 

result in wind that is not blown from city to city (Fig. 8-1). Wind patterns from Krugersdorp, 

the major mining area between the two cities would blow some wind north east, towards 

Pretoria. However environmental monitoring conducted in 1986 included Lanseria, the 

airport just north east of Krugersdorp (Formenti et al. 1998). This study showed that this site 

did have low atmospheric lead compared to other sites in Johannesburg. Multiple studies 

have shown that atmospheric lead emissions from traffic congestion are not limited to the 

areas adjacent to roadways and that atmospheric lead can travel quite far, and it is likely that 

overall atmospheric lead in Pretoria was influenced to some extent by lead coming from 

Johannesburg (Daines et al. 1970; Doucet and Carignan 2001; Komárek et al. 2008). It is not 

possible to determine the extent to which atmospheric lead moves from one city to the other, 

however it is clear that within this sample population, the exposure levels of individuals to 

lead was similar, even if environmental monitoring has not shown the same.  

It is possible that individuals living in Pretoria were exposed to lead pollution from the 

Edendale lead mine, located near Pretoria and active until 1938 some of the adults in the 

study population may have been exposed to smelting activities that took place at the mine, 

which could have released metal fumes which included lead, zinc and iron oxides, arsenic 

and antimony (Glass 2006). 
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Figure 8-1.  Dominant wind direction from Pretoria and Johannesburg. In Pretoria, top, the 

overall trend is for a north by northeasterly wind. The dominant wind direction in 

Johannesburg, below, is northwesterly, which would blow wind not into Pretoria but southwest 

of the city.  Source: windfinder.com. 

 

No temporal trends in bone lead concentration were apparent in the sample population. 

When each demographic group was analysed individually the results were the same with 

significant change in bone lead concentration over time. During the entire “study period” of 

this research, from 1960 to 1998, South Africa used leaded petrol. Whist the country began 

to phase out leaded petrol in 1996, post-phase out studies of environmental lead have shown 

that lead persists in the atmosphere and in soil and dusts despite cessation of lead use. It was 

not expected that there would be a decline or increase in bone lead over time.  
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 Lead and health in the sample population 8.1.4

8.1.4.1 Lead in males 

Lead levels in black males are skewed towards lower concentrations. Approximately 85 

percent of black males in the sample population have a bone lead concentration below 

10.0μg·g
-1

. Over 35 percent have bone lead concentrations between 0.5 and 3.0μg·g
-1

, 

indicating a lower risk of lead-related health effects than white males in the study. In white 

males, the results are nearly mirror image, approximately 90% of individuals have bone lead 

concentrations above 3.0μg·g
-1

. Nearly 60% of the white males in the study have 

concentrations above 10.0μg·g
-1

.  

Recent research has demonstrated that even low levels of chronic lead exposure can cause 

neurological and behavioural consequences, particularly in males. In white males with bone 

lead concentrations above 10.0μg·g
-1

, the clinical effects can include movement disorders 

such as Parkinson’s Disease and behavioural disorders such as poorer impulse control and 

delinquent behavior. Needleman et al. (2002) report in their case-controlled study of 

adjudicated teenage delinquents that the cases in their study had bone lead levels of 11μg·g
-1 

or greater. At bone lead levels of 25μg·g
-1

 or above, cases were four times more likely than 

controls to be brought into the criminal justice system. With regards to neurological 

disorder, it has been demonstrated that individuals with tibia bone lead concentrations of 

13μg·g
-1

 or greater are significantly more likely to suffer from Parkinson’s Disease than 

individuals with lower lead exposure (Coon et al. 2006; Gorell et al. 1999a; Weisskopf et al. 

2010). The risk of these disorders, given the strong association with cumulative lead 

exposure, is clearly greater in the white males in the sample population.  

Within the male population as a whole, there is potential evidence that a majority of both 

black and white males have bone levels high enough to cause hypertension which is 

particularly prevalent in black individuals in South Africa. The degree to which lead 

exposure contributes to this has not been explored, but given the low levels of chronic lead 

exposure found in this study, it could be that lead does not play a role. Given the threshold 

bone lead levels (iliac crest) of 5μg·g
-1

 which Wedeen (1988) associated with hypertension, 

the majority of males in the sample population could have been at risk - in this sample 

population approximately 80% of white males and approximately 60% of black males. Bone 

lead levels of 20μg·g
-1

 and above are associated with hypertension, nephropathy and 

cognitive decline, which could have impacted approximately 55% of white males in the 

sample population. Renal disease has been associated with blood lead in South Africa in 

males working in a battery factory. To put even low bone lead concentrations in perspective 

with regards to health risk, Schroeder and Tipton’s (1968) estimate that a bone lead 
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concentration of 5μg·g
-1

 equals a body burden of lead of approximately 200mg. And, given 

that up to 60% of the total lead in blood can originate in bone tissue, even at relatively low 

bone lead concentrations, endogenous release of lead into the blood stream can be of 

concern, meaning lead can have severe health consequences years after cessation or 

reduction in exposure.  

Recalling Bandeen-Roche (2009) and Weisskopf et al. (2004b), regarding cognitive decline 

and bone lead concentration, it is probable that males in the sampled population would have 

been at risk for mild cognitive impairment due to lead exposure, including those with lower 

bone lead concentrations. White males with the highest bone lead concentrations may have 

been at particularly high risk. Anecdotally, the cadaver database lists the white male with the 

highest bone lead concentration in the sample population, 64μg·g
-1

, as having died of 

“senility”. 

8.1.4.2 Lead in females 

The health effects of lead exposure are somewhat different in females than in males, due 

largely to physiological differences in bone tissue and the effect of reproduction and 

menopause on bone. Nonetheless, bone lead is a significant predictor of hypertension in 

females, as it is in males. Another effect of lead exposure in women is the potential for 

osteoporosis. Women in general are more prone to bone loss than males at all ages, and this 

has the additional effect of releasing endogenous lead from bone into the blood. In this 

sense, older women are at greater risk of endogenous lead exposure than older males 

(Theppeang et al. 2008b). This risk is also heightened during pregnancy, when increased 

bone turnover releases lead into the bloodstream which may then cause toxicity in both the 

women and fetus (Gulson et al. 1997).  

It is possible that women in the sample population did not suffer greatly from the effects of 

lead however. In the sampled population, 96% of black females had bone lead 

concentrations at or below10μg·g
-1

. Among these 44% of the female population had bone 

lead at or below 3μg·g
-1

. There are few health effects associated with bone lead 

concentrations this low. Given that average bone lead concentration peaks at ages 40-49 and 

declines thereafter, and that 65% of the sample population is over the age of 40, it is unwise 

to assume that black females had consistently low lead exposures and were therefore 

unaffected. However, the low lead concentrations in females relative to males does indicate 

a lower rate of exposure to lead and potentially lower chances of suffering from toxic health 

effects. The average bone lead concentration in females just before menopause is 

approximately 5.5μg·g
-1

, high enough to cause the same risk of hypertension in males, but 

below the thresholds for renal effects (Nash et al. 2003; Nash et al. 1999). It would be 
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unwise as well, to assume that the declining bone lead levels in women over the age of 50 

were due to cessation of exposure. Considering the use of leaded petrol in South Africa, this 

is unlikely. What is more likely is that the decline in bone lead concentration with age is due, 

in part, to endogenous release of lead in older women.  

Bone lead can have negative health consequences in pregnant women and even more serious 

consequences for children who suffer from pre-natal exposure. Jedrychowski  et al. (2009) 

found that even extremely low pre-natal lead exposure (< 0.5μg/dL) was correlated with 

cognitive deficits in children up to three years of age, particularly in boys. The levels of lead 

in women of childbearing age within the sampled population (18-50), coupled with the 

known increase in bone turnover during pregnancy, would likely release enough lead into 

the bloodstream to cause negative consequences for children born to them. These 

consequences could have included loss of IQ. Hernandez-Avila et al. (2002) report that 

women with tibia bone lead of 16.6μg·g
-1

 or greater had children with significantly reduced 

length and head circumference than women with lower bone lead concentrations. Reduction 

in head circumference is known to have negative effects on brain development and is 

associated with reduced skeletal growth. Notably, only one female in the sample population 

had a bone lead concentration near this level, and none of the women of childbearing age 

had bone lead concentrations above 14.5μg·g
-1

. As will be discussed below, there may be 

other factors contributing to the low level of and health effects of bone lead in women in the 

sample population.  

 Bone lead and essential trace elements 8.1.5

The interaction between lead and essential trace elements is well established and discussed 

briefly, in Chapter 1. Several trace elements affect the uptake and metabolism of lead, such 

as iron, magnesium, zinc, and in males in particular, copper. Generally, dietary inadequacies 

in these elements result in increased uptake and toxicity of lead, and some, like magnesium, 

are even administered to individuals undergoing chelation therapy for acute lead toxicity. 

The metabolism of all trace elements, whether toxic or essential is complex and dependent 

on a number of factors; age, sex, health and  lifestyle (smoking, alcohol consumption). As 

such, it is not possible to know conclusively in this population how or why certain 

relationships exist in the bone concentration of lead and essential elements, however the data 

presented here, coupled with known dietary and health trends in South Africa, does allow for 

the formulation of solid hypotheses.  

8.1.5.1 Magnesium and zinc 

Among the most interesting relationships to be uncovered among the results of this research 

is the relationship, or lack thereof in some groups, between bone lead and magnesium. As 
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discussed in Chapter 2, magnesium has a mitigating effect on lead in the body. It both 

reduces the amount of lead that is absorbed into bone tissue and reduces the toxicity of lead 

in the blood stream or other tissues. In South Africa, mild to moderate magnesium 

deficiency is common, due in part to poor diet and also to the natural lack of the mineral in 

the water supply (Leary 1986). Magnesium deficiency has its own correlated health 

consequences, such as cardiovascular disease and heart attack and is common worldwide. 

Median magnesium concentration in the sample population is 2741μg·g
-1

 ±656 and does not 

vary by race, sex or age. Due to its affinity for bone, like lead, and its ability to reduce bone 

lead uptake it is expected that there would be a negative relationship between bone 

magnesium and bone lead.  

Bone magnesium and bone lead are not correlated in black males, and negatively correlated, 

though not significantly correlated in females, rs = -.390, p < .001. Unlike zinc, magnesium 

is not correlated with lead in the environment in any location, which suggests that the 

difference in lead/magnesium correlation between black males and females is not 

environmental, but nutritional and/or biological.  

The negative correlation between bone magnesium and bone lead in black females is 

interesting and complex. Magnesium is a bone seeking element and bone magnesium can be 

seen as a proxy for information regarding dietary intake. Black females with low magnesium 

levels have higher bone lead concentrations, which is to be expected. Zinc also has a 

negative relationship with lead in black females. There is evidence demonstrating that zinc 

has a protective effect on the body in the presence of lead (Hubbs-Tait et al. 2007; Jamieson 

et al. 2005).  

Just why this relationship is not apparent in white or black males is difficult to ascertain. It is 

possible that the higher levels of lead in males in the sample population obscure any linear 

trend between lead and magnesium, especially as bone magnesium does not vary between 

the groups. Among the factors associated with reduced magnesium uptake is alcohol 

consumption (Elin 1988; R. Rylander 2001). As discussed in Chapter 3, alcohol 

consumption ranging from moderate to high intake is common in South Africa and 

substantially more common in men than in women. It is possible that alcohol consumption in 

the males in the sample population reduced the effects of magnesium on lead. Given the 

much lower prevalence of alcohol intake in black women than in black or white males in 

South Africa, it may be that magnesium intake is not impacted and magnesium is providing 

a mitigating impact on lead uptake in black females. This phenomenon is also a potential 

factor in the lower bone lead concentration in black females in the sample population.  
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8.1.5.2 Iron 

In the sample population bone iron concentration differs significantly between white males 

and black and white females. Unexpectedly, it is the white males who have significantly 

lower bone iron concentration with a median of 9.57μg·g
-1

 compared to 13.74 and 14.36 for 

black males and black females respectively. It is expected that bone iron concentration 

provides a meaningful estimation of the dietary intake of iron and particularly in an unburied 

population, can be used as a proxy for iron intake during life, though there is significant 

disagreement in regards to the use of bone iron concentration as nutritional indicator (Ezzo 

1994; Klepinger 1984). Within the black population in present-day South Africa, both men 

and women tend towards similar levels of iron deficiency, in some areas iron intake is less 

than half the recommended daily intake (Bourne and Steyn 2000; Macintyre et al. 2002). 

Studies of cadaver bone from present day populations in Europe report bone iron 

concentrations of approximately 60μg·g
-1

 which is just under three times the median for 

black males and females and just over six times the median bone iron concentration for 

white males in the sample population (Helliwell et al. 1996; Wiechuła et al. 2008).  

Low iron intake and iron deficiency has been associated with increased uptake of lead and 

lead toxicity. Few studies have examined the relationship between bone iron and bone lead. 

Some authors report positive correlations between bone lead and bone iron concentrations 

which is not expected given the interaction between the two elements (Brodziak-Dopierala 

et al. 2009; Wiechula et al. 2008). Bone lead and bone iron concentration were not correlated 

in any of the group in this sample population. Though a significant correlation between the 

bone elements does not exist, it is notable that white males have both the highest bone lead 

concentrations and the lowest bone iron concentrations. This may be an indication that there 

is some influence of lead on iron and vice versa in this group, despite a lack of a statistical 

relationship in bone tissue.  

8.2 Manganese 

 Overall trends in bone manganese concentration 8.2.1

Bone manganese has only recently begun to be considered as a viable biomonitor of 

manganese exposure in humans, despite research demonstrating that approximately 40% of 

manganese stored in the body is found in bone. The result is a dearth of data regarding bone 

manganese concentration and how it relates both to the level of manganese in the 

environment and how it relates to human health. Nevertheless, the recent research into bone 

manganese measurement provides useful data by which to compare the sample population in 

this research. It is possible to consider whether individuals in this population were likely 

occupationally or environmentally exposed, which is an important factor in establishing the 
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level of exposure. Subsequently, it may be possible to infer the likely health consequences 

that would result at the exposure levels experienced by the sample population.  

Bone manganese concentrations in non-occupationally exposed populations appear to range 

from .006 to 0.36μg·g
-1

 in developed countries such as Spain, New Zealand, Russia, Taiwan, 

Korea and Canada (Table 2-1, Chapter 2(Pejović-Milić et al. 2009)). Pejovic-Milic et al. 

(2009) have examined whether bone manganese can be used as an indicator of occupational 

exposure in Canada. These authors report that in exposed individuals bone manganese 

ranged from 3.8 to 9.1μg·g
-1

 and in non-exposed individuals the mean was 0.2 to 3.0μg·g
-1

. 

Only one individual in the sample population has a bone manganese concentration above 

4μg·g
-1

, a black male. Outside of that individual, no other group has any one individual with 

a bone manganese concentration above 2μg·g
-1

. The average bone manganese concentration 

of 0.453μg·g
-1

 lies above the values for these countries and could be considered low to 

moderate exposure, given that it is above what is expected for non-occupationally exposed 

individuals and far below what is expected for occupationally exposed individuals. 

Moreover, the distribution is skewed left, and the median is substantially lower than the 

mean at 0.302μg·g
-1

, below bone magnesium values reported for Russia or New Zealand.  

These results are commensurate with the environmental data, which indicates that during the 

period from 1960 to 1998, manganese, although present in the atmosphere, was low relative 

to values measured elsewhere, particularly in light of the ferromanganese and alloy activities 

in the region.  

 Manganese demographic trends and potential source and pathway 8.2.2

There is no significant difference in bone manganese between any of the demographic 

groups in the sample population. Black females, white males and black males have bone 

manganese concentrations of 0.41, 0.44 and 0.48μg·g
-1

 respectively. The lack of significant 

difference in mean bone manganese, as well as the low concentration relative to other 

countries suggests a common environmental source of manganese exposure affecting all 

individuals. As discussed in chapter 4, Gauteng is home to substantial ferromanganese 

processing facilities, predominantly iron and manganese smelting and steel and alloy 

fabrication (Dme 2005; Moja et al. 2013). 

PCA analysis and subsequent correlation and linear regression demonstrate significant, 

positive relationships between manganese and vanadium in the sample population. This is a 

strong indication that manganese (and vanadium) exposure is related to metal processing, as 

both elements are used extensively in the manufacturing of steel and other metal alloys. Both 

elements are, however necessary for bone health and their association may be metabolic as 
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well as environmental (Smith and Huyck 1999).  PCA determined that in the whole sample 

population, as well as for black and white males, manganese and vanadium were always 

factors which loaded highly in Component 1 of each analysis.  

In the sample population, rs = .629, p < .001 between manganese and vanadium. The 

relationship is stronger in black individuals with rs = .635 and .648, p <.001 in females and 

males respectively, than in white males at rs = .583, p < .001. The relationship also follows a 

positive linear trend. Coal burning is also another potential source of manganese for the 

sample population. South African coal, whilst low concentrations of most trace metals, has 

slightly higher manganese and vanadium concentrations than coal from regions such as 

North America (Wagner and Hlatshwayo 2005).   

Despite the scale of manganese processing in South Africa, it is unlikely that any individuals 

within the sample population were directly involved in manganese smelting or mining. Bone 

manganese concentrations are well below what would be expected for individuals in these 

professions (Pejović-Milić et al. 2009). Another potential source of occupational manganese 

exposure is welding, and it is possible that the individuals with bone manganese 

concentrations above 2μg·g
-1

 were involved in some sort of occupation such as welding, 

where the likelihood of manganese inhalation is high (Pejović-Milić et al. 2009). The low 

manganese concentrations of the sample population are most likely to result from exposure 

to low-levels of manganese in the atmosphere resulting from manganese processing and as 

well as coal burning.  

It is difficult to compare manganese concentration in the sample population to present-day 

studies of manganese distribution in the South African population. The addition of MMT as 

a lead replacement in South African petrol in 2000 has likely resulted in an increase in 

manganese exposure in urban areas. This means that present-day tissue concentrations of 

manganese are likely to be higher than those in the sample population, particularly in high-

traffic urban areas.  

Bone manganese concentration, unlike lead, does not differ among individuals of different 

ages. It is unclear what influence age has on bone manganese. Pejovic-Milic et al. (2009) did 

not find a relationship between age and bone manganese. Early research into bone element 

concentration did, however find a negative correlation between bone manganese and age, 

with decreased manganese in older individuals  (Tipton et al. 1968). Zaichick et al. (2011; 

2009) report decreasing bone manganese with age in women and increasing bone manganese 

with age in men. In this research, bone manganese does not change significantly with age in 

either males or females, regardless of race.  
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Several authors have reported higher levels of bone manganese in women than in men. 

Zaichick et al. (2011) report mean a bone manganese concentration in women at 0.43μg·g
-1

 

compared to 0.27μg·g
-1

 in men. Other authors have reported both sex difference in 

manganese uptake and postulated that it may be a function of iron uptake, with lower iron 

stores associated with higher manganese uptake (Finley et al. 1994; Kim and Lee 2011).  

The relationship between bone iron and manganese will be discussed below.  

 Geographic and temporal trends in bone manganese 8.2.3

There are no differences in bone manganese concentration between Pretoria, Johannesburg 

and rural residents. When each demographic group is examined individually, the result is the 

same with no differences based on city of residence. Similarly, there are no temporal trends 

in bone manganese. These results indicate that manganese exposure was relatively constant 

across both the landscape and across time. Unfortunately data regarding manganese 

concentration between Pretoria and Johannesburg is lacking, and any present-day studies of 

manganese in the region would be highly influenced by the presence of MMT and would not 

be a useful tool for comparing past distributions. However, cautious extrapolation is 

possible. As has been discussed previously, the predominant source of manganese in the 

Gauteng/Transvaal environment prior to the introduction of MMT was ferromanganese 

smelting. This activity releases manganese mainly into PM2.5 which is known to have a wide 

dispersal pattern and long airborne “lifetime”. Potentially, this may have resulted in a more 

even dispersal of manganese across the landscape and a more uniform rate of exposure 

among the population.  

There are no significant increases or decreases in bone manganese concentration across time 

in the sample population. This result was expected, as MMT, the cause of increasing 

manganese exposure in urban South Africa was not widely introduced until approximately 

four years after the most recent date of death included in the sample.  

 Bone manganese and essential trace elements  8.2.4

8.2.4.1 Iron  

Iron is known to have a complex relationship with manganese. Previous research has found 

significant correlations between bone manganese and bone iron in both males and females 

(Brodziak-Dopierala et al. 2009; Kuo et al. 2000). Recent research suggests that dietary iron 

can reduce uptake of even inhaled manganese, which is the predominant pathway of 

exposure in most populations (Davis et al. 1992; Ellingsen et al. 2003; Kim et al. 2012; Kim 

and Lee 2011; Kim et al. 2005; Thompson et al. 2006). Moreover, manganese is known to 

inhibit iron absorption (Hansen et al. 2010; Rossander-Hultén et al. 1991). 
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It is possible that if iron deficiency is causing increased uptake of manganese this process is 

acting on the whole sample population albeit to different degrees.  

With regards to manganese source and pathway, given the predominance of steel production 

in Gauteng, and the use of both iron and manganese in the South African steel industry, it is 

unusual that the two element concentrations would not be correlated in the black population. 

Worldwide, iron and manganese tend to be correlated as they are two of the main 

constituents of PM10 (large particulate matter) and South Africa is no different (Dusseldorp 

et al. 1995; Karar et al. 2006; Moja et al. 2013). 

The difference in bone iron concentration may play an important role in manganese uptake. 

In white males, there is a significant, positive correlation between bone manganese and iron, 

rs= .615, p < .001, and a moderate linear relationship, R
2
 = .384, p < .001. This relationship 

is not evident in either black males or females. Several authors have suggested that in states 

of chronic iron deficiency, manganese uptake into the nervous system is increased. In the 

case of white males, this is one explanatory factor for why manganese concentration is 

similar to that of black individuals, yet iron concentration is so low. In these individuals, 

manganese may potentially be deposited preferentially in the nervous system as opposed to 

bone (Aschner and Aschner 1990; Erikson et al. 2002; Kim et al. 2012). 

 Manganese and health in the sample population 8.2.5

8.2.5.1 Manganese in males and females 

As the use of bone manganese as a biomonitor of human exposure is in its infancy, it is 

challenging to postulate what effects manganese exposure may have had on the sample 

population. While there is no benchmark dose in bone to correlate to specific degrees of 

toxicity, it is certainly possible to make educated generalisations about the potential health 

consequences associated with the reported bone manganese concentrations. As discussed in 

Section 8.2.2 above, manganese exposure in males in the sample population can be 

considered low to moderate, with a few individuals who were more highly exposed.  

Low-level manganese exposure is associated with mild cognitive and central nervous system 

damage. Luccini et al. describe neurological symptoms including tremors, irritability, loss of 

balance and rigidity (of muscle tissue) in ferroalloy workers exposed to low levels of 

manganese. The authors however, report environmental manganese concentrations of up to 

500 times those reported by Yousefi and Rama (1992) in Johannesburg. It is likely that only 

the individuals with the higher bone manganese concentrations – those individuals with 

concentrations above 2μg·g
-1

,were exposed to this level of airborne manganese. Among 

these males, the likelihood of mild neurological dysfunction was high.  
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Nonetheless, like lead, manganese exposure and toxicity is cumulative and exposure across 

time is associated with increasing toxicity. Mergler et al. (1999) describe a continuum of 

toxicity in non-occupationally exposed individuals and indicate that very low levels of 

manganese exposure can cause sub-clinical to mild symptoms that worsen with worsening 

exposure. Roels et al. (1987) report mild neurotoxic symptoms in a low to moderately 

exposed population. Exposed subjects showed significant deficiencies in visual reaction 

time, short term audio-verbal memory along with hand tremor.  

Manganese found in finer PM is believed to be more toxic to humans than that found in 

PM10. The fine particles produced by the manganese smelting activities in Gauteng may 

have been more hazardous to human health than that from MMT. Research involving rats 

exposed to inhaled fine-particle manganese demonstrates that smaller particles can remain in 

lung tissue up to 500 days after exposure. Some of this is taken into bone, where it is safely 

sequestered, but that which remains in lungs is still available to uptake into the brain and 

central nervous system (Weiss 2006). In addition very fine manganese particles can be 

translocated directly to the brain from the olfactory epithelium (Oberdorster et al. 2004; 

Tjalve and Henriksson 1999). In effect, the lungs become a reservoir for manganese 

alongside bone (Andersen et al. 1999). 

 The possible health implications of this in the sample population are not inconsequential. A 

moderate manganese concentration in the lungs, similar in concentration to that found in 

bone is a significant amount and can cause more than just mild neurotoxicity. Standridge et 

al. (2008) found impaired standing balance in adults exposed to low levels of environmental 

manganese, which would include the majority of the sample population. The study 

participants who exhibited displays of “postural sway’ when standing were thought to be 

experiencing the effects of subclinical manganese toxicity. Lucchini et al. (2012) found an 

increase incidence of Parkinson’s Disease attributed to manganese exposure in Valcamonica, 

Italy, adjacent to a ferroalloy processing plant. The authors also report mean airborne and 

soil manganese concentrations of 49.5 ng/m
3
 and 958μg·g

-1
 in the same city, significantly 

lower than the atmospheric manganese concentration reported by Yousefi and Rama in 

Johannesburg, but higher than the soil manganese concentrations reported by Olowoyo et al. 

(2009) in Pretoria. Lucchini et al. studied adolescents living in Valcamonica and found 

significant and marked motor dysfunction and olfactory impairment in teenagers exposed to 

long-term low level manganese. Hand tremor in the participants was linked to hair 

manganese concentration. Lastly, the authors note that olfactory impairment is strongly 

linked to Parkinson’s Disease and is an early symptom, with 75% of Parkinson’s individuals 

suffering from olfactory dysfunction (Zoni et al. 2012). Soil manganese testing was not 

conducted in Johannesburg during apartheid, and it is difficult to compare modern soil 
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samples from Pretoria with airborne samples from Johannesburg, particularly as limited 

environmental studies show higher concentrations of all toxic elements in Johannesburg. 

However the airborne manganese concentrations measured in Johannesburg are much higher 

than those of Valcamonica, and as PM manganese is likely more toxic, it can be suggested 

that individuals in Pretoria and Johannesburg were likely affected by manganese in the same 

way as individuals in Valcamonica. The prevalence and epidemiology of Parkinson’s 

Disease in South Africa is unknown (Carr et al. 2009; Dotchin and Walker 2012). 

What is clear is that the sample population were likely exposed to levels of manganese that 

were high enough to cause subclinical toxicity and mild symptoms, leading to a potentially 

higher incidence of neurological disease than would otherwise occur. In some individuals, 

higher bone manganese concentrations would likely have had mild clinical symptoms of 

manganese neurotoxicity. Bone manganese concentrations suggest chronic long-term 

exposure, which is known to have a cumulative effect in the body.  

8.2.5.2 Manganese in females 

There are no health effects of manganese that are specific to women however manganese 

exposure during pregnancy is particularly dangerous to the developing fetus. To date, few 

studies have examined the effects of prenatal manganese exposure in children however there 

is evidence to suggest that low-level environmental manganese exposure in utero is 

associated with cognitive deficiencies in young children. Takser et al. (2004; 2003) found 

significant negative correlation between cord blood manganese concentration and attention, 

non-verbal memory and hand coordination at age three. Henn et al. (2010) have also found 

that low-level environmental manganese exposure during the early postnatal period is 

associated with adverse effects on infants neuro-motor development. Other, recent research 

has suggested that low-level manganese exposure during pregnancy leads to infants with 

higher body mass (Ponderal Index), which may result in a propensity towards obesity later in 

life (Eriksson et al. 2003; Yu et al. 2012). 

The results of this research show that the sample population was likely exposed to low-to 

moderate environmental exposure to manganese, enough to cause subclinical to mild clinical 

neurological affects. Several males, both black and white, showed elevated bone manganese 

levels indicating that they were potentially involved in smelting activities, or were living 

near smelting facilities. These males would have shown some cognitive and neurological 

symptoms of mild manganese toxicity.  
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8.3 Cadmium 

 Overall trends in bone cadmium concentration 8.3.1

Bone cadmium in the sample population is as low, or lower, than reported bone cadmium 

concentrations in industrialised countries. Mean bone cadmium concentration for the sample 

population as a whole is 0.03μg·g
-1

. This mean is lower than values reported for Spain, 

Czech Republic and Russia and substantially lower than reported bone cadmium 

concentrations from Poland, Korea and Taiwan. The values reported here are commensurate 

with those reported by  Lindh et al. (1980) in non-smoking industrially and non-industrially 

exposed individuals living in a low-pollution area in Sweden. The bone cadmium 

concentrations reported by these authors were all below .05μg·g
-1

 in cortical bone. The low 

mean cadmium concentration suggests that few individuals were occupationally exposed to 

cadmium and that environmental exposure was low. Bone cadmium concentration in non-

occupationally exposed individuals has been reported to be as high as 0.2μg·g
-1

.  

There is little data regarding bone cadmium concentration as it relates to occupational 

exposure. Less than 10% of white or black males in the sample population have bone 

cadmium concentrations above 0.15μg·g
-1

 indicating potential occupational exposure, 

though in low concentrations. It is potentially more likely that these males were smokers, 

which will be discussed below (Morgan et al. 1990). Lastly, the health effects of low-level 

cadmium exposure, such as that which characterizes the sample population, are just 

beginning to be recognised.  

 Demographic and potential source and pathways 8.3.2

Mean bone cadmium concentration does not vary significantly between black males and 

females, nor between black and white males, however the difference between black females 

and white males is significant, with higher bone cadmium concentrations in white males. 

Mean bone cadmium for white males, black females and black males is 0.030, 0.036, and 

0.027μg·g
-1

. However the maximum bone cadmium concentrations in both black and white 

males are more than double the maximum concentration of black females at 0.187 and 

0.261μg·g
-1

 respectively. The lack of difference in cadmium concentration in women is not 

in accordance with the literature, in which the trend is towards higher cadmium uptake in 

women than in men. Several studies have found higher cadmium uptake in women and 

higher bone cadmium concentration in women as well (Berglund et al. 2011; Menke et al. 

2009; Satarug et al. 2004; Vahter et al. 2002). However, it has been suggested that the 

difference in cadmium uptake in women may be due to iron status. Olsson et al. (2002) 

found that despite a lower cadmium intake women had higher cadmium uptake than men, 

which was attributed to lower iron status in women. In this sample population however, this 
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phenomenon may be reversed, with white makes having much lower iron status than 

women, though other researchers have reported that low iron stores are not associated with 

greater cadmium uptake in males (Satarug and Moore 2004; Satarug et al. 2004). In no 

group is bone iron concentration correlated with bone cadmium concentration. The 

individuals in this study with highest cadmium concentrations among both males and 

females also have lower iron concentrations, though not the lowest, and the relationship is 

not significant.  

The likely sources of cadmium in the sample population are not clear, however in the case of 

males, PCA does identify a component that suggests tobacco smoke. Dietary ingestion of 

cadmium is the most common pathway worldwide, and it South Africa unlikely to be 

different, though studies of dietary cadmium in South Africa are lacking. Cadmium is often 

present in coal, however levels of cadmium in South African coal are low (Wagner and 

Hlatshwayo 2005). Street et al. (2008b) found high levels of cadmium in three of the most 

popular traditional medicinal herbs used by many black South Africans. This indicates the 

presence of cadmium in soil and reaffirms the possibility of dietary intake of cadmium in the 

sample population. Potentially, contamination of vegetables and plant foods is responsible 

for cadmium exposure in the sample population. Were medicinal plants playing a significant 

role in cadmium exposure, it would be expected that black individuals would have higher 

bone cadmium concentrations than white individuals, which they do not. As discussed in 

above, cadmium and lead only appear to be related in black males. PCA analysis of males 

shows that cadmium is a factor in two components and is only associated with lead in black 

males. The fact that cadmium is not related to lead at all in white males, who likely had 

higher exposure to pollution from traffic is curious.  

De Villiers et al. (2010) however, found a high correlation between cadmium and lead in soil 

sample sites near urban Johannesburg, suggesting a common source. This is the opposite 

trend found in lichen studies conducted in Johannesburg and Pretoria, in which cadmium is 

not correlated with lead in high traffic areas but highly correlated with lead in 

mining/smelting areas (Monna et al. 2006; Olowoyo et al. 2011). De Villiers et al. suggest 

that due to the correlation of lead with cadmium, vehicle emissions is the most likely source 

of cadmium in Gauteng, however data from lichen studies would seem to contradict this. 

Naicker et al. (2003) report both cadmium and lead in AMD in Johannesburg, but when 

bivariate correlation was performed on this data, there was no correlation between cadmium 

and lead in water samples.  

Another potential source of cadmium is gold mining activities, particularly in males. Naicker 

et al.’s data regarding AMD from gold mine tailings shows a strong correlation between 



251 
 

arsenic and cadmium in mining runoff, rs= .888, p < .001. In both black males and white 

males, bone arsenic is significantly correlated to bone cadmium, rs = .372, p < .001 and rs = 

.618, p < .001, respectively. There is no correlation between the two elements in black 

females. The same relationships are present and significant between cadmium and 

manganese, in both Naicker’s data and the males in this study, but not in black females. PCA 

identified arsenic, manganese, and vanadium and cadmium in Component 1, in white males 

and manganese, vanadium and cadmium in Component 1 of black males. Vanadium also 

correlates strongly to cadmium in both white and black males, but not in black females. As 

discussed above, manganese and vanadium are both processed in Gauteng, and both are 

associated with PM in the region. The association with cadmium and these two elements in 

males indicates that they may be more highly exposed to industrial or mining sources than 

females.   

There is one significant source of cadmium that may be a factor in male exposure: tobacco. 

Tobacco cigarettes are known to contain cadmium copper and zinc in high concentrations 

and in heavy smokers can be a significant source of these elements (Chiba and Masironi 

1992). Over 50 percent of black males, 40 percent of white males and only 10 percent of 

black females smoke tobacco in South Africa (Sitas et al. 2004). PCA revealed that 

cadmium, copper and zinc are factors in Component 2, in both black and white males, 

however cadmium and zinc are not significantly correlated. Cadmium exposure in black 

males could potentially be due to inhalation of cadmium (as well as copper) from cigarette 

smoke, however the same relationship between elements should be found in white males as 

well. Subsequent bivariate correlation shows that none of these elements are correlated in 

black females, which would be expected given the low prevalence of smoking among this 

group. The three elements are significantly correlated in black and only copper and cadmium 

are correlated in white males.   

The possible explanations for higher cadmium in white males versus black females are 

probably related both to degree and source of exposure. White males in the sample 

population were more likely to be exposed to traffic pollution, given residential patterns and 

bone lead concentrations and more likely to be smokers than black females.  

 Geographic and temporal trends in cadmium 8.3.3

There are no differences in bone cadmium between Johannesburg, Pretoria or rural areas. 

This result was expected. In Chapter 4, bar graphs generated using data from Monna et al. 

and Olowoyo et al. showed no difference in lichen cadmium between Pretoria and 

Johannesburg. Though these graphs are based on present day data, it is not expected that 

environmental cadmium has changed significantly in either city during the last two decades.  
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There are also no differences in bone cadmium across time in any demographic group within 

the sample population. Again, this result was expected, as there is no literature suggesting 

that potential sources of cadmium changed significantly from the 1960s to the 1990s.  

 Cadmium and health in the sample population 8.3.4

The low bone cadmium concentration across the sample population indicates that the 

individuals that comprise it were likely not suffering from serious clinical effects of 

cadmium toxicity. The highest bone cadmium concentrations in the study population are 

significantly lower than those of individuals suffering from Itai Itai disease. Noda et al. 

(1990) measured bone cadmium concentration in Japanese patients suffering from the 

disease and controls. Mean bone cadmium concentration in sufferers was 1.9 to 2.7μg·g
-1

 

and mean cadmium concentration in controls was 0.5. The highest measured bone cadmium 

concentration in this sample population is 0.2μg·g
-1

, lower than Noda et al.’s control group.  

Subclinical cadmium toxicity may have affected a small minority of individuals in the 

sample population. There is a significant and growing body of evidence suggesting that low-

level and chronic exposure to cadmium is associated with serious health effects in both 

males and females. Most prevalent among these effects is damage to bone and renal tissue. 

Both osteopenia and osteoporosis are found in populations exposed to low level cadmium, 

particularly in older individuals with long-term exposure (Brzoska and Moniuszko-Jakoniuk 

2004). Alfven (2000) report an increased odds ratio of osteoporosis in men and women 

exposed to cadmium versus controls. The odds ratio was also higher in males than in 

females at 2.2 and 1.8 respectively, indicating that men are as likely if not more likely to 

suffer osteoporosis after cadmium exposure than women. Men with low-level cadmium 

exposure and poor diets  (low intake of fruits and vegetables) are particularly at risk for 

cadmium induced bone fracture (Thomas et al. 2011). Still other studies have found that the 

bone effects of low cadmium exposure are greater in women than in men (Vahter et al. 

2007). This low-level exposure may also cause significant renal damage (including diabetes) 

as well (Alfvén et al. 2002). In 2004, the Swedish study OSCAR (OSteoporosis – CAdmium 

as a Risk factor), found that both bone and renal damage caused by cadmium occurs at a 

concentration far lower than previously believed and that no level of cadmium is safe (Jarup 

and Alfven 2004).  

Interestingly, in the South African population as a whole, the white population has higher 

rates of both osteoporosis and diabetes. Whilst differences in diet likely play a prominent 

role in this phenomenon, given the data gathered on the sample population, there may 

potentially be environmental factors such as exposure to toxic elements that play a role as 

well.  
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 Bone cadmium and essential trace elements 8.3.5

 Iron 8.3.6

Among the greatest risk factors for increased cadmium uptake and toxicity is low body iron 

stores (Andersen et al. 2004; Reeves and Chaney 2002). This certainly describes the sample 

population, particularly white males, who have significantly lower bone iron concentrations 

than either black males or females. Not surprisingly, it is also white males in the sample 

population that also have the highest concentrations of bone cadmium. The relationship 

between iron and cadmium in men however, is unclear, primarily due to the lack of focus on 

low iron stores in men. Most studies concerning the relationship between iron deficiency and 

cadmium uptake focus on women, however there is little reason to believe that iron deficient 

males would not also be affected by increased cadmium uptake. In fact, iron status may be a 

more significant determinant of cadmium uptake than the amount of cadmium in the 

environment (Vahter et al. 1996) and iron status is now believed to be the primary reason 

why, in most studies, women have higher tissue cadmium concentrations than men. This 

means that the white males in the study population in particular, may have been most 

susceptible to cadmium uptake. This may, in part, explain the greater bone cadmium 

concentrations found in white males versus black males and females in the study population.  

 Zinc and copper 8.3.7

Zinc, copper and cadmium have a complex relationship in human tissues. Firstly, the three 

elements are known constituents of tobacco, and have been associated with smoking 

(Bernhard et al. 2005). In addition, the presence of cadmium in the body is known to 

increase zinc and copper uptake in kidney and liver tissues (the relationship in bone has not 

been assessed) (Satarug et al. 2001). In the sample population this complexity is further 

emphasized by a lack of consistency between these relationships and previously published 

studies. In this population, no individua ls show positive correlation between cadmium and 

zinc in bone, and only black males show a correlation between cadmium and copper. As 

discussed in Section 8.3.2, this could be an indicator of smoking in black males. Bone zinc 

concentration is significantly lower in black males and females than in white males, adding 

further complexity to the issue.  

The relationship between zinc and cadmium is well researched. Zinc homeostasis within the 

body is disrupted by cadmium, and zinc deficiency, in turn, may increase uptake of 

cadmium. The primary mechanism may be competition for metallothionein. However, other 

elements play a role in zinc uptake, particularly in bone and given the lower concentrations 

of cadmium in black males, it is unlikely that cadmium alone is affecting zinc uptake. 
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Vanadium also is known to reduce zinc uptake into bone tissue, and may be causing 

suppression of zinc uptake in black males in the sample population.  

8.4 Antimony, Arsenic and Vanadium 

Antimony, arsenic and vanadium are discussed together because little has been reported 

regarding the concentrations of these two elements in bone tissue. The toxicological effects 

of each element are just beginning to be understood and vanadium is, like manganese, also 

an essential trace element. Both are present in PM matter and are industrial pollutants. 

Antimony has been associated with Heavy Goods Vehicles (HGVs) due to its use in brake 

pads in HGVs and has been mined in South African provinces adjacent to Gauteng. 

Vanadium is mined in South Africa and is used in steel and alloy production in Gauteng. 

The source of arsenic is more ambiguous, but it is present in AMD and is found in lichen in 

both Pretoria and Johannesburg. Unfortunately these three elements are not generally studied 

in bone, and it is difficult to determine how the sample population compares to other 

populations in regards to exposure. However some interesting patterns emerge with regards 

to these elements, particularly in relation to elements such as lead, cadmium and manganese. 

 Overall trends 8.4.1

8.4.1.1 Antimony 

Antimony shows clear differences in distribution within the sample population. Black 

individuals have significantly higher bone antimony concentrations than white individuals, 

by an order of magnitude. In black males and females median bone antimony is 0.289μg·g
-1

 

and 0.280μg·g
-1

 respectively, compared to 0.016μg·g
-1

 in white males. For black individuals, 

these concentrations are substantially higher than those reported in bone from Sweden, 

Czech Republic or Russia. The highest bone antimony concentrations reported in cadaver 

bone are 0.015μg·g
-1

 in Sweden in the 1980s. This is analogous to the concentration found in 

white males in this sample population. This indicates that black individuals were likely 

significantly more exposed to antimony and had higher uptake of antimony than white 

individuals. Despite these few studies examining antimony in bone, there is no literature on 

the level of antimony at which clinical toxicity emerges, even in tissues other than bone 

(Filella et al. 2011).  

Unlike other elements measured in this study, antimony concentration changes considerably 

over time. Individuals who died in the 1960s had significantly higher bone antimony 

concentrations than individuals living in any other decade. This trend is significant in both 

black and white individuals. This trend was quite unexpected, given the presence of 

antimony in Pretoria and Johannesburg in the present day. It is unclear why there was a 
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decline following the 1960s and whether the sample population may have had higher 

antimony exposure than living populations in South Africa. Also unexpected, given present-

day data, is a lack of any difference in antimony concentration between individuals from 

Johannesburg and Pretoria in the sample population. Data from Monna et al., (2006) and 

Olowoyo et al. (2010) show that antimony levels are higher in lichen in Johannesburg than 

in Pretoria, yet that difference is not present in the sample population.  

It is unclear as to the source of antimony exposure in the sample population. Present day 

data shows a clear correlation between high-traffic areas and antimony. In all areas, 

antimony is highly and significantly correlated with lead, rs = .950, p < .001. There is no 

corresponding correlation between lead and antimony in any group in the sample population. 

Whether this is due to differences the uptake and kinetics of each element in humans is not 

clear. It could also be an indication that, at least in the sample population, the primary source 

of antimony exposure was not traffic-related as it appears to be in the present day. This 

hypothesis is further supported by the higher concentrations of bone lead found in white 

males, which are very strongly correlated with traffic. It would be expected that if antimony 

exposure in the sample population was linked to exposure to automobile emissions, white 

males would have the highest bone antimony concentrations as opposed to the lowest and 

that there may be some correlation between the two elements in white males.  

The difference in the degree of exposure to antimony between black and white individuals is 

striking. Were antimony largely atmospheric in origin, it would be expected that whilst 

differences in exposure may be present, the difference in antimony concentrations between 

any one group and another would be significantly smaller than the 15-fold difference 

between that occurs between black and white individuals. 

8.4.1.2 Arsenic 

Arsenic follows the same trend as antimony, in that it is significantly higher in black 

individuals than in white males in the sample population. Median bone arsenic concentration 

is 0.114μg·g
-1

 and 0.128μg·g
-1

 in black males and females respectively and 0.71μg·g
-1

 in 

white males. These concentrations fall within the values reported for individuals in Poland 

and significantly below those reported for populations in Taiwan or Korea.   

Arsenic concentration in the sample population changes significantly, but not substantially, 

over time, nor does it differ between individuals between cities. It is not possible to compare 

arsenic to either present day or historic concentrations. Arsenic is not and has not been 

widely monitored in South Africa and there is little environmental data with which to 

compare bone arsenic and environmental arsenic concentrations. It is also difficult to 
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determine the likely sources of arsenic in Gauteng. Arsenic has been associated with AMD 

and is present in mine tailings linked to gold mines in Johannesburg. It is unlikely to be 

associated with coal burning, as South African coal is unusually low in arsenic compared to 

coals from other regions (Wagner and Hlatshwayo 2005). Kempster (2007) has measured 

arsenic in ground water in Gauteng and found that arsenic in water in and around 

Johannesburg and Pretoria are elevated relative to other parts of the province. Other studies 

have found moderately high arsenic concentrations in groundwater and soil in the region. It 

is likely then that arsenic is ingested as opposed to inhaled, with water as the most likely 

source of the element in the sample population. Subsequently, it may be that the location of 

many of the townships and black residential areas adjacent to mine dumps may partially 

explain the higher bone arsenic concentrations in black individuals than in white, 

particularly given the poor quality of water used by residents of townships. In addition, most 

of the water consumed in Gauteng, particularly in the townships is surface water which is 

highly susceptible to the uptake of elements such as arsenic from AMD. Similarly to lead, in 

the case of arsenic, apartheid-era residential policies may have affected the distribution of 

arsenic exposure across the population.  

Bone arsenic concentration in the sample population is not correlated with lead in any group, 

which would be expected were arsenic exposure linked with pollution from traffic. Arsenic 

is not correlated with lead in AMD, a potentially significant source of arsenic in the 

environment and in the sample population. Arsenic is correlated with cadmium in both white 

and black males as it is in AMD, with rs = 0.618, p < .001, rs = 0.327, p < .001 and rs = 

0.888, p < .001 respectively. There is no correlation between bone arsenic and bone 

cadmium in black females. The correlation in males may be due to the greater exposure to 

AMD (living in the vicinity of mining operations as mine labour). It could also be due to 

presence of arsenic in cigarettes. Until the 1980s (and beyond, in many countries) arsenic 

was a widely-used pesticide in tobacco growing (Lindberg et al. 2010). This leads to 

elevated levels of arsenic in cigarettes. Smoking may also reduce arsenic methylation, 

leading to increased arsenic uptake in smokers. The correlation between arsenic and 

cadmium in males but not females may indicate that in males, smoking may be a source of 

arsenic. Also notable is the correlation between arsenic and manganese, again in white and 

black males but not in black females, another indication of different sources in males and 

females.   

Within the sample population, there is significant correlation between antimony and arsenic 

in all groups. This is expected, as the two elements are similar in chemical properties and are 

often co-contaminants from mining and industrial activities (Gebel 1998; Gebel et al. 1998). 

Unfortunately no studies of environmental pollution in South Africa have included both 
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elements or established a correlation between them in the South African environment. 

Nonetheless, the association between arsenic and antimony in bone tissue is not surprising, 

given the presence of mining activities in the region. What is surprising is that whilst 

antimony concentration in the sample population declines significantly over time, arsenic 

concentration does not decline nearly as sharply, even when its use in medicine is taken into 

account (see below). The cause of this remains unknown however, as discussed above, there 

were alternative sources for arsenic in the environment that are not associated with 

antimony. The significant drop in antimony concentrations and the more minor drop in 

arsenic concentration may indicate that one, antimony-arsenic producing exposure source 

diminished, but that other sources of arsenic persisted. 

Among the more interesting findings regarding arsenic in the sample population, is the 

association between high levels of arsenic (> 1μg·g
-1

) and cancer as cause of death. Arsenic 

is a known carsinogen (Buchet and Lison 1998; Mink et al. 2008; Moore et al. 2002; Ng et 

al. 2003; Park et al. 2012; Tsai et al. 1999). Arsenic is a well-known component of 

chemotherapeutic drugs and even in the present day, it is used in chemotherapy as arsenic 

trioxide for specific types of cancer (Waxman and Anderson 2001). In the 1960s, it was used 

to treat a broad spectrum of cancers before its toxic side effects caused a more targeted use. 

Approximately 30% of individuals across the sample population have bone arsenic 

concentrations well above what would be expected for environmental or even occupational 

exposure. Closer inspection of cadaver records shows that the cause of death for many of 

these individuals was cancer, and that a significant majority of individuals with high arsenic 

concentrations died in the 1960s. In individuals with bone arsenic concentrations above 

1μg·g
-1

, the chi-square distribution shows that the relationship between very high arsenic 

concentrations and decade of death is significant, X
2
(3) = 8.23, p < .05. This suggests that 

arsenic compounds may have been used for medicinal purposes in the 1960s, but was not 

used substantially in the following decades. Despite the carcinogenic properties of arsenic, 

as well as its use in cancer therapy, high concentrations of arsenic are present in individuals 

from the sample population whose cause of death was not cancer, causing a lack of 

significant correlation between cancer and arsenic. Thus the relationship between arsenic 

and cancer in this population can only be considered anecdotal, at best.  

8.4.1.3 Vanadium 

Vanadium is present in all individuals in the sample population, though at lower 

concentrations than suspected, given the use of vanadium in smelting and alloy production. 

Mean bone vanadium in the sample population is 0.026μg·g
-1

. Only one published study, 

from Korea, could be identified in which bone vanadium was included, and the mean bone 

vanadium concentration reported was 1.3μg·g
-1

, significantly higher than that reported here. 
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Navarro et al. (1992) measured similar values in cortical bone but significantly higher bone 

vanadium concentrations in individuals with chronic renal failure (2.3μg·g
-1

 ). No individual 

in the study population had a bone vanadium concentration above 0.125μg·g
-1

.  

Like antimony and arsenic, bone vanadium is significantly higher in black males and 

females than in white males at 0.026μg·g
-1

, 0.032μg·g
-1

 and 0.020μg·g
-1

 respectively. 

Between black males and females, the difference is significant, with black females having 

higher bone vanadium concentrations than black males. Also similar to arsenic and 

antimony, vanadium concentration is highest in black females. It is not clear why this would 

be so. Little is known about the toxicology of vanadium (or antimony) and there is little 

knowledge regarding sex differences, if any exist, in uptake and metabolism of either 

element. Research does suggest that iron is critical to the uptake of vanadium (Sabbioni and 

Marafante 1981). If the low bone iron concentration in white males is a reflection of in vivo 

iron status, it is possible that the low iron status of white males is suppressing iron uptake 

resulting in vanadium. It may also be possible that the higher iron status of black males and 

females is increasing vanadium uptake from the environment. Unfortunately, despite its 

affinity for bone, and the recent suggestions by some that bone tissue be explored as a 

potential biomonitor for vanadium exposure, there are no established reference values for 

vanadium in bone. There is a strong positive correlation between iron and vanadium in white 

males, rs = .611, p < .001, but not correlated in black males or females. And, despite a lack 

of statistical significance, it is clear that the low iron stores of white males in the sample 

population may be affecting bone vanadium concentration.  

There are two potential sources for vanadium in the sample population: metal smelting and 

steel production and fossil fuel burning. As discussed in Chapter 4, vanadium is mined in 

South Africa and processed in Gauteng, where it is used to make steel and other alloys. It is 

strongly correlated with manganese – also used in steel processing - in all individuals in the 

sample population. Vanadium is also a well-known component of PM throughout the world 

and is associated with fossil fuel (coal, petroleum) burning. Vanadium is significantly 

correlated with arsenic and cadmium in all males, but not in females which could indicate its 

presence in tobacco.  

 Arsenic, antimony and vanadium and health in the sample population 8.4.2

The toxicity of vanadium and antimony are not well understood, and levels of these elements 

in the sample population are likely below any toxicity threshold. Antimony in conjunction 

with arsenic is known to have carcinogenic properties and is associated with cancer in 

animals (Gebel 1997). Vanadium, particularly vanadium pentoxide, is associated with 

increased mortality in urban areas when inhaled as PM (Campen et al. 2001; Dominici et al. 
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2007; Woodin et al. 2000). To what extent the health of the sample population would be 

affected by these elements remains unclear.  

Low level exposure to arsenic is understudied, but several studies have found that low-level 

arsenic, particularly in conjunction with elements such as manganese and activities such as 

smoking, can result in significant health effects (Chen et al. 2009b; Mink et al. 2008; Moon 

et al. 2012).  Low concentrations of arsenic have been associated with the development of 

Type II diabetes in North America (Steinmaus et al. 2009). Arsenic in low concentrations 

may play a causative role in QT prolongation (the time between the Q wave and T wave of 

the heart beat), a risk factor for sudden cardiac arrest. It has been established that high levels 

of arsenic are associated with long QT intervals, however recent research suggests that even 

low-level arsenic may affect the QT interval (Mordukhovich et al. 2009). The cardiovascular 

effects of arsenic may be increased in the presence of manganese and cadmium. In adults, 

manganese and arsenic may cause hypertension and cardiovascular disease (Mordukhovich 

et al. 2012). The correlation between arsenic and manganese is significant in all groups in 

the sample population with rs = .418 (p < .001), .442 (p < .001) and .361 (p < .01) in black 

males, white males and black females respectively. In light of these correlations and the 

exposure of the sample population to low-level arsenic and manganese, there is the potential 

that some individuals in the sample population suffered from the cardiovascular effects of 

arsenic exposure.   

8.5 Summary and research objectives 

This project has set out to address six specific research objectives, each of which is 

discussed below.  

 Objective 1: Differences in element exposure between black Africans and 8.5.1

white South Africans 

This research has aimed to quantify the racial differences in toxic element exposure in the 

sample population. The bone concentration of six toxic elements was measured using 

cortical bone from 215 South African adults. Several clear racial trends were apparent when 

the results of this research were analysed. All toxic elements with the exception of 

manganese show clear racial disparities between black and white individuals. Most striking 

among these trends is that of lead exposure. White males show significantly higher bone 

lead concentration than either black males or females, at all age groups and across time. The 

potential causes of this are many-fold and include both lifestyle differences and political and 

social divisions between black and white individuals. In addition, the relationship between 

lead and other toxic and essential elements differs slightly for white males than for black 

males (and to a lesser extent black females) indicating that both degree and source of 
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exposure, as well as diet and health may be affecting the difference in lead concentration 

between black and white individuals. As discussed in Chapter 8, exposure to traffic is most 

likely the primary source of lead across the population.  

Other elements which are also traffic or vehicle-related do not show similar racial disparity 

in bone element concentration. Cadmium, often associated with traffic pollution and PM 

emissions, does not vary between black and white males. It does vary between black females 

and white males. This is somewhat counter to trends often reported in the literature, in which 

women tend to have higher tissue cadmium concentrations. In South Africa this reversal of a 

common trend may be due to the fact that a one potentially significant source of cadmium 

exposure is tobacco smoke. White males in South Africa are significantly more likely to 

smoke than black females, which may explain this disparity.  

Manganese concentration does not differ significantly between black and white individuals, 

indicating that between 1960 and 1999, manganese exposure may have been uniformly 

distributed across the population. The degree to which this may change in the future if South 

Africa continues to use MMT as a lead replacement in petrol will be discussed in Section 

8.5.  

There is little literature in South Africa regarding arsenic, antimony and vanadium exposure. 

To date, this is the first study to quantify these elements in human tissues in South Africa. 

Clear racial differences in bone antimony concentration are apparent. Unlike lead and 

cadmium, black individuals, both male and female, have substantially higher bone antimony 

concentrations than white males. This is surprising given the established association between 

traffic pollution and antimony, as it is the opposite of what would be expected given the 

clear trend in lead exposure. 

Like antimony, arsenic concentration is also significantly higher in black individuals than 

white individuals, though the reasons behind this, as with antimony, are not clear. Bone 

vanadium concentration is also higher in black individuals than in white individuals, 

particularly among black females. This could be due to differences in iron uptake between 

black individuals and white individuals as opposed to differences in overall exposure to the 

element.  

Overall, racial differences in toxic element exposure are prevalent in the sampled population. 

The causes of these differences are complex and vary between individual elements, but it is 

clear that overall, black individuals may suffer higher exposure to arsenic and antimony, 

whilst white individuals were more highly exposed to lead and cadmium.  
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 Objective 2: Toxic element exposure between black males and females 8.5.2

Sex differences between black males and females were investigated and quantified. This 

relationship could not be investigated in white individuals due to the lack of white females in 

the sample population. Several trends are visible in the data. Overall, that data show 

significant sex differences in all toxic elements except manganese within the black 

population. For lead and cadmium, males show significantly higher concentrations than 

females. Bone lead concentration, for example, differs between males and females, with 

black females showing significantly lower bone lead concentration than black males. This 

difference concurs with bone lead trends reported in the literature, in which women tend to 

have lower tissue lead concentrations than males even in instances of similar rates of 

exposure. The difference in bone lead concentration between black males and females is 

particularly prevalent at older ages, indicating an expected loss of lead from bone in post-

menopausal women, rather than a difference in exposure. At younger ages, particularly from 

the ages of 20-50, bone lead concentrations between males and females are rather similar 

and in some cases, are higher in females than in males.  

Bone cadmium concentrations in black males are significantly higher than those of black 

females. As discussed above, this may be due to the presence of cadmium in tobacco, and 

the low prevalence of smoking among black females in South Africa. Surprisingly, and 

similarly to lead, cadmium uptake is affected by iron uptake and iron status. For this reason 

women tend to have higher bone (or other tissue) concentrations of lead and cadmium. In 

this sample population however, it is white males with the lowest bone iron concentrations, 

which may have significantly affected cadmium (and lead) uptake in white males. 

The results for the elements antimony, arsenic and vanadium show the opposite trend. Black 

females have significantly higher bone element concentrations for these elements than black 

males. It remains unclear whether the higher levels of these elements in black women 

represent differences in exposure or metabolic differences.  

 Objective 3: Inferring the health consequences of toxic element exposure 8.5.3

in the sample population 

This objective aimed to infer the potential health effects of the recorded bone element 

concentrations in the population. Analysis of bone element concentration allows for the 

association between a given concentration and potential health effects that may occur as a 

result. This particularly true in the case of lead, for which decades of research into bone lead 

concentration and health has been conducted. In the sample population, it was determined 

that nearly all white males had bone lead concentrations above the threshold for 

hypertension and mild cognitive impairment. In black individuals the percentage is 
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significantly lower, yet over half of individuals still have bone lead concentrations at or 

below the threshold for hypertension or cognitive effects, indicating that with regards to 

health, lead exposure may have had a greater impact on the health of white individuals than 

black.  

What is clear from this research is that a significant number of individuals in the population 

were exposed to toxic elements in high enough concentrations to cause impaired health. In a 

developing country such as South Africa, these ill-effects may are likely to have contributed 

to overall poorer health among the most disadvantaged members of South African society. 

The hypertensive, neurological and renal effects of many of these elements may have 

contributed significantly to the overall burden of disease for all members of society. In the 

case of already poorly nourished individuals, dietary inadequacies were likely exacerbated 

by exposure to toxic metals.  

 Objective 4: Toxic element exposure rates in relation to the environment 8.5.4

in urban Gauteng and world-wide patterns 

This objective has entailed the comparison of bone element concentrations in the sample 

population with cortical bone element concentrations from other industrialised populations 

worldwide. Overall, the degree of toxic element exposure in the sample population is lower 

than that of many other industrial regions such as parts of Europe, North America or Asia. 

Given the highly industrial and mining-based economy, relatively lax environmental 

regulations and the use of leaded petrol, it was expected that toxic element concentrations in 

human bone would be higher, particularly in the case of lead. The literature regarding toxic 

elements in the Transvaal/Gauteng environment is scant, however it indicates that 

phenomena such as acid mine drainage and PM emissions are widespread. When compared 

to highly industrialised regions such as Silesia in Poland, the level of human exposure to 

elements such as lead is far lower than expected. Lead concentrations in particular are lower 

than expected given the urban environment and the use of leaded petrol until the early 

2000s.  

Other elements, such as cadmium and manganese are also not as high as expected. The 

presence of ferromanganese smelting and steelworks in the urban region have not resulted in 

high levels of environmental manganese, nor have they resulted in high levels of human 

exposure to manganese. This may change in the future however as South Africa replaces 

lead with MMT in petrol. It is expected that human exposure to manganese will increase in 

the future. Initial studies of blood manganese in South African school children would seem 

to confirm this. Whether manganese exposure follows the same demographic trends as lead, 

given that it is largely dependent on exposure to vehicle pollution remains to be seen.  



263 
 

Cadmium is not present in the Gauteng environment in large quantities. South African coal, 

which is burned for heating and cooking in many communities and is often a source of 

cadmium exposure worldwide, is very low in cadmium. The level of cadmium exposure in 

the sample population is significantly lower than in parts of Asia, particularly Japan. 

Tobacco is a major source of cadmium worldwide, and given the trend towards higher 

cadmium levels in males in the study population and the prevalence of smoking among 

South African males, it is likely a significant source in South Africa. Whilst there is known 

cadmium mining in the Gauteng region, it does not appear to significantly contaminate the 

atmosphere or soil to an extent that it is causing significant human exposure.  

Antimony concentrations in bone are significantly higher than in many European countries. 

Bone antimony concentrations in black individuals in this study are among the highest bone 

concentrations reported anywhere, and exceed previously reported bone antimony 

concentrations by an order of magnitude. Antimony is highly correlated with both lead and 

traffic in environmental studies, indicating that it is an atmospheric pollutant. This further 

confounds potential reasons behind the significant difference in antimony concentration 

between black and white individuals in the study who were likely less exposed to traffic 

pollution. It is unclear then, as to the source of antimony in the environment and human 

exposure rates are so high in the sample population.  

Vanadium is mined and processed extensively in Gauteng, and is present in the atmosphere, 

though little monitoring has taken place in the urban environment. Despite this bone 

vanadium concentration is lower in the sample population than in other populations. Bone 

arsenic is also low in the sample population relative to parts of Asia and is similar to values 

reported in bone tissue from Poland. Arsenic is present in Gauteng, in higher quantities than 

other regions of South Africa due primarily to its presence in AMD from gold mining.  

Overall, this research demonstrates that with the exception of antimony, toxic element 

concentrations in bone in the sample population are lower than in other 20
th

 century 

populations. These results were unexpected given the prevalence of mining, smelting and 

industrial activities in the region.  

 Objective 5: Exploring the role of apartheid in explaining demographic 8.5.5

differences in toxic element exposure 

The potential effect of apartheid on toxic element exposure was explored. Apartheid policy 

created a unique population distribution in urban South Africa. The strict separation of racial 

groups and the relegation of black residential areas to the urban periphery adjacent to mining 

and industrial activities led to the working hypothesis that black individuals would 
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experience higher rates of exposure to all toxic elements. This has not proven to be the case. 

However, all elements with the exception of manganese do show striking racial disparities in 

bone concentration. Such disparities are seen worldwide, and in this sense South Africa is 

not unique, however it would be naïve to dismiss the impact of apartheid policies, and the 

corresponding disparities in health and welfare, on toxic element exposure within this 

population. 

In the case of lead, the urban residential pattern created by apartheid policy seems to have 

highly influenced demographic patterns in lead exposure. The concentration of white 

residential areas in the urban core with the highest traffic and transportation activities has 

likely resulted in significantly higher lead exposure in the white population due to greater 

exposure to leaded petrol. Other studies in South Africa have linked blood lead in children to 

exposure to traffic, and the very clear residential patterns in both Pretoria and Johannesburg 

also confirm this. The inclusion of white females in this study may have provided more 

evidence of this.  

In the case of antimony, arsenic and vanadium, the higher exposure of black individuals to 

these elements may also in some part, be explained by apartheid. As has been discussed in 

Chapters 4 and 8, arsenic is generally water-borne, and in Gauteng is associated with AMD. 

It is likely that the formation of townships and the strict residential policies of the Group 

Areas Act, which relegated black individuals to the urban periphery near mine tailings are 

partly responsible for the racial difference in arsenic exposure in the population. The extent 

to which this is true of elements such as antimony and vanadium are unclear, however the 

very distinct racial disparities in exposure to these elements cannot be ignored. On balance, 

it is likely that apartheid contributed greatly to racial disparities in toxic element exposure, 

either by direct exposure differences or differences in health that lead to greater uptake of 

certain elements. In other regions of the world these differences exist as well, along 

socioeconomic lines, however in South Africa during apartheid, socioeconomic status and 

race are largely one and the same.  

 Objective 6: Comparison of results with present-day studies of toxic 8.5.6

element exposure and demographic trends in South Africa 

The limited but increasing body of knowledge regarding toxic element exposure in South 

Africa was compared with the results of this research. No studies of toxic elements in 

humans were conducted in South Africa prior to the 1980s. Those studies that have been 

conducted have largely centred on blood lead studies in children. Present day studies 

indicate that lead exposure is high enough in Gauteng to cause concern, particularly in 

developing children. Overall, these studies have shown that in children, lead exposure is 
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higher in children of lower socioeconomic status. The difference in the trend in children 

versus the trend in adults in the sample population is clear. Lower status adults (i.e. black 

adults) clearly have lower lead exposure, at least in the sampled population. Studies of 

children in Cape Town do indicate that children exposed to traffic and main roadways have 

greater lead exposure than children in more suburban or rural areas. Studies of rural versus 

urban long-distance runners also show a clear association between traffic and lead. No study 

has framed this exposure in a racial framework based on apartheid residential policies.  

Studies of manganese exposure in South Africa are only just emerging following on the use 

of MMT. These studies have shown an association with blood manganese and traffic in 

children. Though this trend is not seen in adults in the sample population, it is likely due to 

the fact that this population pre-dates the introduction of MMT. It may well be that in the 

future, white individuals in Gauteng suffer higher rates of manganese exposure and toxicity 

than black individuals due to residential patterns that persist in post-apartheid South Africa. 

However, residential patterns may be changing albeit slowly. In Chapter 4, post-apartheid 

demographic change is discussed. Since the end of apartheid many urban neighborhoods 

have become increasingly favoured by black individuals moving into the urban core that was 

once off-limits to them. There is a corresponding movement of white individuals to 

suburban neighborhoods. The result of this shift in residential patterns may be a shift or 

reversal of toxic element exposure in the population.  

 

 

 

 

 

 

 

 

 

 

 



266 
 

9 Conclusion 

The investigation of human exposure to toxic elements is one important facet, among many, 

in understanding the overall public health status of a given population. As such, the 

information yielded during such an investigation is of great value. The same can be said of 

historical investigations such as this project, which provides insight into a substantial public 

health issue in South Africa, during a period when such issues were largely overlooked. This 

research has generated quantitative data regarding human exposure to toxic elements in 

urban South Africa during apartheid. Several population-wide trends have been uncovered, 

as well as trends among specific race and sex groups. In addition, apartheid-driven racial 

disparities in toxic element exposure have been uncovered, some of which were unexpected, 

but which begin to make sense when framed by sociological, political and environmental 

trends. Toxic element exposure continues to be a public health hazard in South Africa in the 

present day. It is hoped that by collating quantitative data on toxic element exposure in the 

recent past, as has been done here, that present day trends may be examined on a more 

longitudinal scale. This in turn, may allow for a greater understanding of both present-day 

and future trends in toxic element exposure. 

This research began with one overall aim and six specific objectives. The overarching aim of 

the project was to establish a set of baseline data on toxic element exposure in urban South 

Africa during apartheid. The dataset generated has met this aim and provides valuable 

quantitative information regarding human bone element concentration for several toxic 

elements: lead, manganese, cadmium, arsenic, antimony and vanadium. The second major 

aim of this research was to investigate and provide quantitative data on the demographic and 

social trends and health implications of toxic element exposure within the study population, 

as well as the overall status of toxic element exposure in the study population in comparison 

with other industrialised nations.  

To achieve these aims, this project has quantified toxic element exposure in a small 

population of urban South Africans who lived and died during apartheid. It has also required 

the synthesis of biochemical data with detailed sociological, biological and environmental 

analysis to produce a complete picture of the factors affecting and influencing human toxic 

element exposure in South Africa during the 20
th

 century.  

Toxic element exposure, especially lead, is of growing concern in sub-Saharan Africa. In 

South Africa in particular, the dominance of mining, metallurgy and heavy industry within 

the economy makes exposure to inorganic pollution a significant public health hazard. 

However the traditional reluctance to regulate mining and industry along with the need to 
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address more pressing public health issues such as AIDS, has meant the relative neglect of 

this facet of health in the population.  

During apartheid, few studies of toxic element exposure were undertaken in South Africa 

and none concerned adult exposure in Gauteng. This research addresses that critical gap in 

knowledge and data. In addition this research provides important baseline data by which to 

contextualize and compare present and future trends in toxic element exposure in South 

Africa, particularly as the country continues to develop and grow beyond the legacy of 

apartheid.  

From a sociological and anthropological perspective, one question that begs asking is what 

role lead exposure played and potentially still plays in the violence and social unrest that has 

plagued South Africa during the latter half of the 20
th

 century. It is tempting to borrow from 

the philosophy of environmental determinism and infer that some of the social upheaval in 

the country is the result of less-than-ideal environmental conditions. If one considers that 

even moderate lead exposure causes a loss of IQ and a propensity towards violence, and 

many white individuals – males specifically – show lead levels high enough to been 

affected, it seems logical to conclude that the brutal way in which apartheid was enforced 

may be at least partly to blame on lead.  

Returning to Nevin’s (2000) now seminal research on the clear association between crime, 

violence and lead exposure, it is critical to consider the influence of lead on crime in South 

Africa. Nevin’s data show that the years in which lead concentration in petrol peaked were 

also the years in which assault, rape and murder peaked across the United States. In 2000, 

approximately 20 years after lead was removed from the US petrol supply, the rates of these 

violent crimes have fallen to their lowest point in 40 years. In South Africa cessation of the 

use of lead in petrol took place less than a decade ago. In South Africa in 1980, the 

approximate median year of this project, lead concentration in petrol peaked. By the late 

1990s, atmospheric lead concentrations were still elevated relative to Europe or North 

America. By Nevin’s calculation, the lag between the drop in crime which corresponds to 

the reduction or cessation of leaded petrol is 20 years. In 2000, South Africa had among the 

highest rates of rape and homicide in the world, which corresponds clearly with a peak in 

lead 20 years prior.  

In the urban environment of Pretoria and Johannesburg, the ejection of black individuals 

from the urban core and the sequestration of white residential areas in the most congested 

areas of the urban environment resulted in the high exposure of white individuals to lead for 

over 40 years during apartheid. As discussed in Chapter 1, one of the more bloody periods of 

apartheid occurred during the late 1980s and early 1990s, when white nationalists struggled, 
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often violently, to maintain white rule. This rise in apartheid-based violence also 

corresponds to a steady rise in the concentration of lead in South African petrol, as did the 

increasing anti-apartheid urban uprisings, which were also often marked by violence. Of 

course, violence in South Africa is as much a product of income inequity, abuse of human 

rights and racism as it is a product of environmental conditions, but it is highly likely that 

exposure to lead played a role. As the new generation of children born into a post-leaded 

petrol environment reach adulthood it will be most interesting to see if the rate of violence in 

South Africa declines as a result.  

With regards to the association with between lead exposure and IQ, the effects may have 

been significant on the population during apartheid. Generally speaking a reduction in IQ is 

more devastating for the most disadvantaged in a given society. In South Africa, although 

black individuals may have had lower rates of exposure to lead, inadequate education, 

socioeconomic stress and poor health may have exacerbated even minor reductions in IQ 

among the exposed population. Children with stable economic situations, educated parents 

and food security are often better equipped to succeed in school regardless of lead-induced 

difficulties in concentration and cognition due to greater access to educational resources and 

support. This is rarely the case with impoverished children who, in urban Transvaal in 

particular were often attending sub-standard schools, living in chaotic and overcrowded 

homes and potentially struggling with poor health. The families of these children likely did 

not have the resources to help lead-affected children compensate for deficiencies. Moreover, 

the data presented here show that these individuals were more highly exposed to other toxic 

elements than white individuals, which may have compounded the effects of lead. In this 

way, the effects of urban lead exposure, while lower in the black population, may have been 

more pronounced, particularly in children. In turn, the loss of productivity of affected adults 

may have contributed to reduced economic opportunities within the black population, further 

exacerbating poverty. The phasing out of leaded petrol can only positively affect this 

situation.  

The question arises however - has South Africa leapt from the frying pan and into the fire? 

The widespread use of MMT as a lead replacement in South Africa is troubling. The 

neurotoxic effects of manganese are clear, particularly as they relate to neurological 

disability. Whereas the population studied in this project had uniform and relatively low 

(compared to other countries) exposure to manganese, this will most certainly change. 

Increased manganese exposure is already being reported in urban school children. Will the 

pattern of manganese exposure mimic that of lead exposure during apartheid? It is not clear. 

Certainly, the heavy traffic areas of urban Gauteng include many white residential areas, and 

exposure to manganese in this population will rise. But the end of apartheid has meant the 
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unrestricted movement of the black African population, who are now free to live in 

neighborhoods once strictly off limits to them. Yet living conditions among new urban 

settlers haven’t changed significantly and hundreds of thousands of informal urban 

households have arisen, often near transport networks and potential employment 

opportunities. These individuals are now likely exposed to similar levels of manganese as 

their affluent white compatriots. Whilst the effects of manganese exposure are not as dire as 

those of lead, the potential for disability among the affected may be greater. To date, South 

Africa has only a fledgling national health service, which is underfunded and overburdened 

and serves primarily the black population. A rise in the rate of disability such as neurological 

impairment due to manganese exposure could have serious negative consequences for the 

already inefficient health service. White individuals, who are overwhelmingly treated in the 

private medical sector, may not suffer from poor, manganese related health outcomes despite 

similar exposure.  

There are many reasons why leaded petrol was used for so long in South Africa, and why 

MMT is used as a replacement despite being banned in many developed countries. The 

strong influence of the mining industry which seeks to protect its interests is one, although 

this is true of any mining operation in any country. The other is lax government control over 

the environment. It is easy to point a finger at both the apartheid and the new South African 

governments and lay the blame for poor environmental conditions at their feet, but to do so 

would be disingenuous and would ignore the very real and all-consuming tasks these 

governments have had to deal with in addition to the environment. The apartheid 

government had its hands full maintaining a brutal, racist regime along with the challenging 

job of oppressing over three-quarters of its population, a task which did not allow for time 

spent hand-wringing over the environment. 

The new South African government on the other hand, has had the overwhelming task of 

rebuilding a cohesive, peaceful society out of an angry, resentful and fearful population 

(both black and white), all whilst attempting to meet incredibly high expectations both 

internal and external. The construction of sanitary housing, the restructuring of education, 

the reduction in and treatment of AIDS and the maintenance of  peace and order have all 

taken precedence over the environment and perhaps rightfully so. Yet discussions with 

South African colleagues whilst conducting this research revealed anecdotal evidence that 

the state of the environment has become worse since the end of apartheid. Quantitative 

research by individuals such as Mathee confirms that inorganic pollution is still a very 

prevalent problem in urban South Africa. Herein lay the problem. Without a clean 

environment, the priorities of the new South Africa would appear to be just out of reach. 

Healthy and equitable housing development requires water that is not contaminated by 
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AMD. Equal educational opportunities for all is not possible when some children are faced 

with neurological and developmental impairment due to pollution. An efficient health 

service run on limited resources cannot survive the effects of widespread toxic pollution. 

The removal of lead from petrol was one important step in the right direction. If, in just over 

10 years’ time, South Africa experiences a drop in violent crime on par with that 

experienced in the United States the lives of everyone in the population will benefit.  

As with most research, as many questions are raised as have been answered by the results of 

this research. There is substantial work to be done in South Africa on both historical toxic 

element exposure and present-day exposure. First and foremost issue that needs to be 

addressed is that of the status of white women with regards to lead exposure during 

apartheid. Unfortunately, no white females could be included in this study. However the 

Pretoria Collection includes the remains of many white females, and the sampling of some 

of these females would shed light on the overall rate of exposure among white adults from 

1960 to 1999. It is hypothesized that white females would follow an exposure pattern which 

would yield higher bone lead concentration than black individuals, but slightly lower 

concentration than white males.  

Additionally, skeletal material from other South African collections, such as that which 

exists at the University of Cape Town would also be valuable in determining whether the 

element exposure patterns uncovered in Transvaal/Gauteng were present in other cities in 

South Africa. Cape Town was never as severely segregated as Pretoria or Johannesburg and 

it would be quite informative to see if toxic element exposure was as racially dichotomous in 

this city. In addition, data from more regions within South Africa would allow for greater 

context for present-day studies and the tracking of toxic element exposure over time.  

With regards to lead, lead concentrations in skeletal material from collections such as 

Pretoria, Witwatersrand and Cape Town can be measured non-destructively by X-ray 

fluorescence (XRF). This method would allow for the “sampling” of an entire collection, 

yielding information on thousands of individuals. Such a study could generate vast amounts 

of data which could be used to uncover population-wide trends in lead exposure.  

It is unclear whether all of the lead bioavailable to humans comes from petrol. Certainly 

Monna et al. show that atmospheric lead is dominated by lead from petrol, but that study did 

not take into account the potential role of indoor air pollution from coal burning in human 

exposure. Analysis of lead isotopes in a cross section of the sampled population may shed 

light on this. Data regarding the isotopic signature of both leaded petrol and South African 

coal is available and can be compared with the isotopic signature of lead in humans to 

investigate the source of exposure in different groups. A selection of 25 males among the 
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skeletal remains was sampled for lead isotope analysis. This analysis was conducted in the 

Summer of 2012. Black and white males with low, median and high bone concentrations 

were included for analysis to investigate whether lead source was the same in at all groups 

and at all exposure levels. The analysis of results was not yet underway at the time this 

document was submitted.  

With regards to present-day research into toxic element exposure in South Africa, there are 

numerous questions to be answered. Firstly, there are no studies of toxic elements other than 

lead and manganese in the present. Whilst cadmium, arsenic and antimony appear in low 

bone concentrations in the sampled population, other biomarkers exist that may be more 

accurate. These elements are not currently monitored in the South African population, 

making comparisons with historical data difficult. Has exposure to these elements changed 

significantly since the 1960s?  

In addition, there is little to no monitoring of adult element exposure, particularly to that of 

lead or manganese. The monitoring of these elements can be safely accomplished without 

the need for blood (a concern in a highly AIDS-affected country) by XRF. Such data would 

not only dovetail nicely with the historical data presented here, but would also allow for the 

monitoring of those groups most at risk for lead- and manganese-related health effects. It 

may also allow for targeted occupational and environmental intervention in high-risk groups.  

Lastly, there is no research to date regarding the effect of toxic element exposure on 

HIV/AIDS infection and vice versa. As both public health issues are prevalent in South 

Africa, data regarding the influences of one on the other may be quite valuable. Do 

individuals with HIV/AIDS have higher body burdens of some elements? If so, is this a 

cause or a consequence of infection?  

These are only a few of the potential research directions that could follow on the research 

presented here. However each question serves to highlight the need for further investigation 

into both present-day and historical toxic element exposure in South Africa.  

Despite the number of subsequent questions raised, the information yielded as a result of this 

project is both important and significant. Prior to this project, there was no published 

research on adult toxic element exposure in urban Transvaal/Gauteng either during apartheid 

or in the present day. As such, this project has generated quantitative data that addresses this 

gap. The analysis presented here has shown that exposure to most toxic elements in urban 

South Africa was determined by one’s racial group as classified by apartheid law, and that in 

most instances the difference in exposure between racial groups would have resulted in 

different degrees of  impaired health. In addition, the research has generated a database of 
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bone element concentration in 215 urban South Africans during the latter half of the 20
th

 

century that can be used to compare present-day toxic element studies. Such comparison 

allows for the identification of temporal and geographic trends in toxic element exposure in 

urban South Africa, which was heretofore impossible.  

The ongoing value in data such as those presented here is the way in which they can be used 

and built upon in the future. Studies such as Nevin’s are difficult to replicate in South Africa 

due to a lack of lead exposure monitoring. By generating a small data set and research which 

can hypothetically be expanded to include more data, it is possible to track human lead 

exposure from its peak in the 1980s to its decline in the future, and to juxtapose urban crime 

and social trends onto the data set across time. The data can also be used to track changes in 

the rate of toxic element exposure in at-risk populations. 

The racial divide in exposure for all but one toxic element investigated shows, quite 

succinctly, the way in which apartheid policy had a negative impact on all parts of the 

population. It highlights the extent of the racial division within South Africa during 

apartheid – to the point at which even the air that black and white individuals breathed was 

distinct. Above all else, this research has demonstrated that apartheid had hidden and 

unexpected impacts on South African society, many of which have yet to be uncovered. 
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Appendix A. Intra-individual comparisons of long bone element 

concentration  

It was hypothesized that different long bones within the same individual would yield no 

difference in mean element concentration for each element. This was hypothesis was 

explored statistically for two reasons. Firstly, if false, and not taken into consideration, it 

would greatly increase the odds of both Type I and Type II errors in any statistical analysis 

including all bones, due to either false degrees of variation or lack thereof. Secondly, the 

investigation of bone element concentrations between bones of the same individual may 

yield significant correlations that enable both the present author and subsequent researchers 

to compare bone element concentrations of different individuals with meaningful results. 

Not all bones were present in all individuals, however two individuals were complete (six 

bones). Mean element concentration for each bone in a compared pair varies depending on 

the individual.  

Differences in means: dependent t-tests vs. Repeated Measures ANOVA 

The use of a General Linear Model (GLM) was rejected in this analysis. This is due to the 

small number of complete individuals and the substantial number of missing values that 

result from incomplete individuals. RM ANOVA was explored, however, the missing data 

resulted in a substantially high α-level, that effectively rendered the results meaningless. 

Subsequently, it was decided that dependent, pairwise, two-tailed t-tests between each bone 

for mean each element concentration (using the log transformed concentration) would be a 

more appropriate method. For each element, 15 pairwise comparisons were analysed, and for 

all comparisons, a 95% confidence interval was calculated. Effect sizes (r) for dependent t-

tests were calculated from the following equation: 

   √
  

      
 

Bonferroni’s correction 

With any tests involving small sample sizes, the potential for Type I error, and the data 

analysed here is no different. To correct for this, and to ensure that H0 is not rejected in 

error, Bonferroni’s Correction was applied to all t-tests on each bone type. For all tests, H0 is 

rejected if p < 0.003 (0.05/15), where the number of comparisons is 15. 
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Correlation and Regression 

Correlation and regression were conducted on all bone pairs where the difference in mean 

element concentrations was significant and significant correlation was found to exist 

between bone element concentration. The correlation coefficient was compared with the 

critical value for Pearson’s correlation coefficient for a two-tailed test with sig. 0.05, (df = 

N-2) to determine whether Pearson’s r was legitimately significant or could have occurred 

by chance given the small sample size. These tests are included to show the potential 

relationships between long bone element concentrations. Due to small sample sizes, even 

significant r values below the critical value for r should be viewed with caution. Instead the 

results suggest that a significant linear relationship may exist between bones for certain 

elements, and a larger sample size is needed.  

Lead 

No significant differences in bone Pb concentration was apparent between any bone type.  

Table A-1.  Intra-individual bone Pb concentration.  

Element/Bone N t Df Sig. 

PbFemur - PbFibula 10 -2.068 9 .069 

PbFemur - PbTibia 8 -1.283 7 .240 

PbFemur - PbRadius 12 -1.399 11 .189 

PbFemur - PbUlna 8 -1.807 7 .114 

PbFemur - PbHumerus 8 -.764 7 .470 

PbFibula - PbTibia 3 3.554 2 .071 

PbFibula - PbRadius 6 -.227 5 .829 

PbFibula - PbUlna 4 -.186 3 .864 

PbFibula - PbHumerus 6 1.796 5 .132 

PbTibia - PbRadius 3 -.361 2 .753 

PbTibia - PbUlna 3 -2.801 2 .107 

PbTibia - PbHumerus 4 -1.626 3 .202 

PbRadius - PbUlna 6 -2.631 5 .046 

PbRadius - PbHumerus 6 .502 5 .637 

PbUlna - PbHumerus 3 1.222 2 .346 
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Manganese 

No significant difference in bone Mn was apparent in any bone type. 

Table A-2. Intra-individual bone Mn concentration. 
Element/Bone N t Df Sig. 

MnFemur - MnFibula 10 -2.505 9 .034 

MnFemur - MnTibia 8 .287 7 .783 

MnFemur - MnRadius 11 -.772 10 .458 

MnFemur - MnUlna 8 -1.428 7 .196 

MnFemur - MnHumerus 8 -1.027 7 .339 

MnFibula - MnTibia 3 .059 2 .959 

MnFibula - MnRadius 5 -.031 4 .977 

MnFibula - MnUlna 4 -1.477 3 .236 

MnFibula - MnHumerus 6 1.121 5 .313 

MnTibia - MnRadius 3 -.160 2 .888 

MnTibia - MnUlna 3 -.721 2 .546 

MnTibia - MnHumerus 4 -.268 3 .806 

MnRadius - MnUlna 6 -4.856 5 .005 

MnRadius - MnHumerus 5 2.030 4 .112 

MnUlna - MnHumerus 3 1.792 2 .215 

 

Cadmium 

No significant difference in bone Mn was apparent in any bone type. 

Table A-3. Intra-individual bone Cd concentration.. 
Element/Bone N t Df Sig. 

CdFemur - CdFibula 10 -3.451 9 .007 

CdFemur - CdRadius 11 -1.465 10 .174 

CdFemur - CdHumerus 8 -.441 7 .673 

CdFibula - CdRadius 5 .152 4 .887 

CdFibula - CdUlna 4 -.108 3 .921 

CdFibula - CdHumerus 6 4.337 5 .007 

CdRadius - CdUlna 6 -1.336 5 .239 

CdRadius - CdHumerus 5 2.300 4 .083 

CdUlna - CdHumerus 3 1.286 2 .327 
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Zinc 

No significant difference in bone Zn was apparent in any bone type. 

Table A-4. Intra-individual bone Zn concentration.  
Element/Bone N t Df Sig. 

ZnFemur - ZnFibula 10 -1.573 9 .150 

ZnFemur - ZnTibia 8 1.281 7 .241 

ZnFemur - ZnRadius 11 1.999 10 .073 

ZnFemur - ZnUlna 8 -.058 7 .955 

ZnFemur - ZnHumerus 8 1.056 7 .326 

ZnFibula - ZnTibia 3 1.416 2 .293 

ZnFibula - ZnRadius 5 1.055 4 .351 

ZnFibula - ZnUlna 4 .211 3 .846 

ZnFibula - ZnHumerus 6 1.930 5 .111 

ZnTibia - ZnRadius 3 -.083 2 .942 

ZnTibia - ZnUlna 3 -.426 2 .712 

ZnTibia - ZnHumerus 4 .228 3 .835 

ZnRadius - ZnUlna 6 -3.709 5 .014 

ZnRadius - ZnHumerus 5 1.962 4 .121 

ZnUlna - ZnHumerus 3 1.645 2 .242 

 

Antimony 

No significant difference in bone Sb was apparent in any bone type. 

Table A-5. Intra-individual bone Sb concentration.  
Element/Bone N t Df Sig. 

SbFemur - SbFibula 5 -2.820 4 .048 

SbFemur - SbTibia 7 -1.337 6 .230 

SbFemur - SbRadius 8 -1.204 7 .268 

SbFemur - SbUlna 7 .417 6 .691 

SbFemur - SbHumerus 5 -1.332 4 .254 

SbFibula - SbUlna 2 -.437 1 .737 

SbFibula - SbHumerus 2 2.388 1 .252 

SbTibia - SbRadius 2 -.084 1 .947 

SbTibia - SbUlna 2 .622 1 .646 

SbTibia - SbHumerus 2 -1.542 1 .366 

SbRadius - SbUlna 4 3.373 3 .043 

SbRadius - SbHumerus 3 .345 2 .763 

SbUlna - SbHumerus 2 -.985 1 .505 
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Arsenic 

No significant differences in As concentration were found between bones of the same 

individuals.  

Table A-6. Intra-individual bone As concentration.  
Element/Bone N t Df Sig. 

AsFemur & AsFibula 10 -1.794 9 .106 

AsFemur & AsTibia 8 1.539 7 .168 

AsFemur & AsRadius 10 -1.367 9 .205 

AsFemur & AsUlna 8 .093 7 .929 

AsFemur & AsHumerus 7 -.405 6 .700 

AsFibula & AsTibia 3 2.022 2 .181 

AsFibula & AsRadius 5 .508 4 .638 

AsFibula & AsUlna 4 .774 3 .495 

AsFibula & AsHumerus 6 1.780 5 .135 

AsTibia & AsRadius 3 -1.346 2 .311 

AsTibia & AsUlna 3 -.340 2 .766 

AsTibia & AsHumerus 4 -.029 3 .979 

AsRadius & AsUlna 6 .402 5 .704 

AsRadius & AsHumerus 4 1.237 3 .304 

AsUlna & AsHumerus 3 -.258 2 .820 
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Iron 

No significant differences in Fe concentration were found between bones of the same 

individuals.  

Table A-7. Intra-individual bone Fe concentration. 
Element/Bone N t Df Sig. 

FeFemur - FeFibula 10 -.884 9 .400 

FeFemur - FeTibia 8 .463 7 .657 

FeFemur - FeRadius 11 -.585 10 .571 

FeFemur - FeUlna 8 .776 7 .463 

FeFemur - FeHumerus 8 1.459 7 .188 

FeFibula - FeTibia 3 -.005 2 .997 

FeFibula - FeRadius 5 .674 4 .537 

FeFibula - FeUlna 4 .531 3 .632 

FeFibula - FeHumerus 6 1.524 5 .188 

FeTibia - FeRadius 3 2.033 2 .179 

FeTibia - FeUlna 3 1.352 2 .309 

FeTibia - FeHumerus 4 .966 3 .405 

FeRadius - FeUlna 6 .877 5 .421 

FeRadius - FeHumerus 5 .624 4 .567 

FeUlna - FeHumerus 3 3.570 2 .070 
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Magnesium 

No significant differences in Mg concentration were found between bones of the same 

individuals.  

Table A-8. Intra-individual bone Mg concentration.  
Element/Bone N t Df Sig. 

MgFemur & MgFibula 10 1.475 9 .174 

MgFemur & MgTibia 8 -.878 7 .409 

MgFemur & MgRadius 11 .522 10 .613 

MgFemur & MgUlna 8 -.375 7 .719 

MgFemur & MgHumerus 8 .793 7 .454 

MgFibula & MgTibia 3 -1.084 2 .392 

MgFibula & MgRadius 5 -.391 4 .716 

MgFibula & MgUlna 4 -2.139 3 .122 

MgFibula & MgHumerus 6 -.699 5 .515 

MgTibia & MgRadius 3 .224 2 .843 

MgTibia & MgUlna 3 -.777 2 .518 

MgTibia & MgHumerus 4 -1.168 3 .327 

MgRadius & MgUlna 6 -1.582 5 .174 

MgRadius & MgHumerus 5 -.912 4 .413 

MgUlna & MgHumerus 3 -.297 2 .794 
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Copper 

There are significant differences in mean bone Cu concentration between bones. For femora 

and fibulae, t(14) = 5.659, p < 0.00. In fibulae and humeri, t(6) = 8.306, p < 0.001. However, 

Cu is not among the primary elements of interest in this research. 

Table A-9. Intra-individual bone Cu concentration.  
Element/Bone N t Df Sig. 

CuFemur - CuFibula 15 -5.659 14 .000 

CuFemur - CuTibia 11 -.207 10 .840 

CuFemur - CuRadius 16 -.543 15 .595 

CuFemur - CuUlna 11 -2.480 10 .033 

CuFemur - CuHumerus 10 .601 9 .563 

CuFibula - CuTibia 5 1.844 4 .139 

CuFibula - CuRadius 9 .391 8 .706 

CuFibula - CuUlna 6 2.170 5 .082 

CuFibula - CuHumerus 7 8.306 6 .000 

CuTibia - CuRadius 4 -.013 3 .991 

CuTibia - CuUlna 4 .195 3 .858 

CuTibia - CuHumerus 5 1.952 4 .123 

CuRadius - CuUlna 7 -.357 6 .733 

CuRadius - CuHumerus 6 1.087 5 .327 

CuUlna - CuHumerus 4 1.029 3 .379 

 

 

 

 

 

 

 

 

 

 

 

 



323 
 

Calcium 

There are no differences in Ca concentration between bones.  

Table A-10. Intra-individual bone Ca concentration.  
Element/Bone N t Df Sig. 

CaFemur - CaFibula 15 -1.342 14 .201 

CaFemur - CaTibia 11 .155 10 .880 

CaFemur - CaRadius 16 .637 15 .534 

CaFemur - CaUlna 11 -4.003 10 .003 

CaFemur - CaHumerus 10 -1.826 9 .101 

CaFibula - CaTibia 5 1.071 4 .344 

CaFibula - CaRadius 9 -.795 8 .450 

CaFibula - CaUlna 6 -1.585 5 .174 

CaFibula - CaHumerus 7 -.787 6 .461 

CaTibia - CaRadius 4 -4.364 3 .022 

CaTibia - CaUlna 4 -4.134 3 .026 

CaTibia - CaHumerus 5 -3.743 4 .020 

CaRadius - CaUlna 7 -1.159 6 .291 

CaRadius - CaHumerus 6 .289 5 .784 

CaUlna - CaHumerus 4 -.852 3 .457 

 

Discussion 

These results demonstrate no significant differences in the mean bone element concentration 

between pairs of bones from the same individuals.  

Differences in means 

The presence of differences in mean bone element concentration among cortical bones of the 

same individual has immediate consequences for this and similar research. Firstly, it 

indicates that all long bones can be compared in the wider study. Secondly, the small sample 

sizes available in this study require a bit of caution. H0 was rejected in these analyses largely 

due to small sample sizes. Were a larger study to be conducted, it may be that there would 

be significant differences in mean bone element concentration between bones.  

To date, no studies have focused solely on calculating differences in bone element 

concentration between long bones of the same individual. Wittmers et al. (1988) analysed 

differences in relationships between several long bones and trabecular bone, in an attempt to 

model the relationship between the two bone types and to establish a model that allows for 

the prediction of whole body lead burden from the concentration of one or more bones. 

However researchers have long assumed that bone element concentration would be similar 



324 
 

among long bones of the same individual, and the results in this chapter do not challenge this 

assumption. There is evidence that bone element concentration can differ significantly 

within the same bone, for example bone samples removed along the diaphysis of the same 

bone can yield different concentrations (Aufderheide and Wittmers 1992). It is possible that 

the results above are influenced by this phenomenon, however every effort was made to 

sample each bone in precisely the same location along the diaphysis. In addition, 

Aufderheide and Wittmers (1992) point out that few studies of bone lead distribution across 

the skeleton have taken into account age and sex. This is true, and the above small study is 

no different. Sample sizes were simply too small to investigate whether age, sex or health 

influence differences in bone element concentration within the same individual (Rabinowitz 

1991).  

Among the potentially interesting questions that arise from these results is how variation in 

element concentration may be affected by age, sex and race. Wittmers et al. (1988) found 

that the variation in lead concentration between bones decreased with increasing age. These 

authors included both trabecular and cortical bone, unlike the present study which is 

concerned only with cortical bone. To date, there is scant research investigating the intra-

individual variability in trace element concentration among long bones. The variation in 

means found here, particularly between femora and fibulae and radii and ulnae suggest that 

even among bones with similar rates of turnover, trace element uptake and release may 

differ significantly.   
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Appendix B: Method 

Analytical Method: Theoretical considerations 

Pre-analytical Method – Theoretical considerations 

Trace element analysis of bone tissue consists of two distinct phases: the pre-treatment, or 

digestion phase, and the analysis phase. Digestion involves the dissolution of bone by acid, 

dilution of digested materials and preparation for analysis by ICP-MS or other method. As 

the science behind chemical analysis of bone is not new, there are myriad methods to choose 

from when conducting this type of analysis. The following sections discuss the most widely 

used methods for pre-analysis and the rationale behind the pre-analysis method used in this 

research. 

Sample pre-treatment 

Sample pre-treatment involves the decomposition of a sample of mixed organic and 

inorganic phases such as human bone. In the first instance, sample particles must be reduced 

in size in order to facilitate nebulisation by a mass spectrometer or any other analytical 

device. Mixed samples must also be both mineralised and dissolved prior to analysis. 

Mineralisation is the removal of the organic phase of the sample, leaving only the inorganic 

phase and analytes of interest. Dissolution is the process by which the remaining inorganic 

phase is dissolved into solution in preparation for analysis (Hoenig 2001). In bone samples 

this means the elimination of bone collagen, lipid material and any residual organic material 

that may have adhered to the bone tissue itself.  

Inorganic sample preparation consists of breaking down the substance of interest into 

inorganic components that can be easily dissolved into liquid form and analysed by the 

spectrometer. Bone is a highly complex matrix consisting of both inorganic (primarily 

calcium and phosphorus forming hydroxyapatite) and organic (collagen) components. In 

order for bone tissue to be analysed, it must first be mineralized and dissolved. 

Mineralisation consists of “digesting” the organic component of the bone. The remaining 

inorganic component is dissolved, dried, and reconstituted within an aqueous matrix suitable 

for ICP-MS analysis; generally 3 to 5% HNO3.  

There are several potential sample digestion methods that are widely used in trace elenment 

studies of human and animal bone tissue. Among these are dry ashing, and wet “ashing” or 

wet digestion. There are benefits and pitfalls to each method, and each is accepted in the 

literature as adequate for trace element analysis of bone. To date, there is no concensus 

regarding which method is best for trace element analysis of mixed samples (Hoenig 2001). 



326 
 

Table B-1, below lists several studies of trace elements in bone comparable in methods and 

objectives to the present study and the acid combinations used.  

 

Table B-1. Comparative digestion methods. Studies similar to the present study in which trace 

element concentration in bone was measured with ICP-AES, ICP-MS or AAS and the digestion 

acids used. 
Author, Year Acid Combination 

(Baranow ska et al. 1995) 

Degryse et al. 2004 

HNO3  

HNO3 (dry ashed) 

Drasch 1982 HNO3 (room temperature 10 days) 

Gonzalez-Reimers et al. 2005 HNO3 + H2O2 

(Grotti et al. 2005) 

Jaw orowski et al. 1985 

HNO3 

HNO3 + HClO4 

Klepinger et al. 1986 HFl + HCl 

Kosugi et al. 1986 HNO3 

Kuo et al. 2000 HNO3 

Martinez-Garcia et al. 2005 HNO3 + HClO4 (dry ashed) 

Özdemir et al. 2010 HNO3 (dry ashed) 

Reinhard & Ghazi 1992 HNO3 (dry ashed) 

Roberts et al. 1996 HNO3 + HCl 

Shafer et al. 2008 

(Todd et al. 2001) 

HNO3 (microw ave) 

HNO3 

 

The technology used in digestion procedures also varies. Dry ashing, the superheating of a 

sample (above 300º C) takes place with only small amounts of dilute acid and involves the 

use of a muffle furnace. Microwave digestion in either closed or open vessels uses a pre-set 

heating protocol on a microwave oven (laboratory quality) and high pressure in conjunction 

with acid to complete digestion. The advantages of microwave and dry ashing procedures 

are that they take a relatively short amount of time (hours as opposed to days) and can 

reduce contamination as samples are generally covered (Hoenig 2001) 

The primary benefit of dry ashing, particularly in regards to bone, is that after ashing, the 

ashed weight of the sample can be determined. This allows for the final element 
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concentration to be expressed in concentration per ashed weight, which is increasingly 

standard practice in anthropological and archaeological literature. Drawbacks to dry ashing 

are potentially slower processing times – particularly problematic when large numbers of 

samples are being analysed, and potential loss of some analytes due to high temperatures. 

Generally, however, heavy metals such as lead, cadmium and manganese are not lost.  

The alternative method is wet “ashing”, generally referred to as wet digestion. Wet digestion 

involves the dissolution of the bone sample in a highly concentrated acid or combination of 

acids with oxidative properties.Wet digestion aims to achieve the complete oxidation and 

elimination of the organic phase of the sample and the simultaneous dissolution of the 

inorganic phase (Hoenig 2001).   

Wet digestion is generally facilitated by heat, either on a conventional hotplate or heating 

block or by microwave digestion. Samples are dissolved in small quantities (< 5mL) of 

concentrated acid. Samples can then be evaporated to dryness and reconstituted with 

deionised water or dilute acid, or the acid containing the dissolved sample be diluted to a 

specific volume with deionised water. In some cases, subsequent digestions can be carried 

out if the sample is not digested completely, however this increases the potential for 

contamination. Insoluble materials that remain in the solution can also be filtered. Potential 

complications arising from wet digestion methods relate primarily to the potential for 

incomplete removal of organic material and contamination from impure reagents. Open tube 

digestion methods, while useful in regards to facilitating evaporation, leave samples 

vulnerable to lab contamination. Other pitfalls include the possibility of co-precipitation of 

an analyte of interest with the precipitate formed from a matrix element with the acid 

reagent.  

As is demonstrated in Table B-1, there are a range of potential acids that can be used in wet 

digestion. The choice of one particular acid over another is determined largely by the 

composition of the sample and the analytical objectives. The primary acids used in wet 

digestion are nitric, hydrochloric, sulphuric, perchloric, and hydrofluoric acids as well as 

hydrogen peroxide and aqua regia (hydrochloric and nitric acids). HFl is a highly dangerous, 

primarily used in geological sciences to dissolve silicate-based materials. It cannot be used 

with borosilicate glassware and requires specialized PTFE digestion containers. Another 

acid commonly used in digestion procedures is sulphuric acid. Sulphuric acid, when 

combined with a sample high in calcium, like bone, can result in the formation of calcium 

sulphate which can cause certain elements, namely lead, to precipitate and results in low 

analyte recovery (Hoenig 2001). 
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ICP-MS Analytical Method: Theoretical Considerations 

ICP-MS differs from axially viewed ICP-AES in that it measures the molecular weight of an 

element or compound. Ions of each element of interest are separated by the mass/charge 

ratio (m/z), which represents the atomic mass of a given element divided by its charge. 

Because the atoms are ionised by the ICP, i.e. an electron is removed from each neutral 

atom, the charge of each atom is generally positive. In this case, z=1.  

ICP-MS also allows for the quantification of different isotopes of a given element. This is 

referred to as resolution (R), and refers to the ability of the ICP-MS to detect two adjacent 

mz ratios.     

Sample introduction and quadrapole mass spectrometer 

Bone samples in solution of dilute (<5%) nitric acid are introduced into the ICP-MS via the 

nebuliser, which sprays the liquid sample into an argon jet. Droplets are directed into the 

argon ICP, where temperatures of approximately 8000ºC dry, decompose and dissociate the 

sample into individual atoms. These atoms are then ionised and introduced into the mass 

analyser (MS) via a multi-chambered vacuum system. Once in the MS, the ions are scanned 

across a m/z range. Each mass is passed into an electron multiplier (EM) where mass counts 

are measured. This information is then processed by the attached data processor (PC) and 

converted into analyte concentrations. 

Quadropole MS 

The standard mass analyser, and the one used in this research is the quadrapole mass 

spectrometer (QMS). The advantages of a QMS system is a relatively fast scan speed and a 

broad atomic mass unit (amu) range. This means that nearly all the natural and radiogenic 

isotopes can be detected. In addition, the high resolution of the QMS means that analytes 

separated by as little as 1 amu can be detected.  

Method validation and determination of analytical robustness 

Method validation is the process by which the method is deemed fit for purpose. The 

primary factors used in determining whether the methods used in this project are fit for 

purpose are: precision (including repeatability and robustness), bias, LoD and uncertainty. 

The following sections describe the theoretical aspects of analytical method and the 

theoretical considerations that must be made when choosing an analytical method.  

 



329 
 

 

Potential interferences 

Interferences in ICP-MS analysis are generally more readily overcome than those of ICP-

AES, but can still prove problematic. The primary types of interferences are spectral and 

non-spectral (Dean 2005).  

Spectral interferences 

Spectral interferences consist of molecular and isobaric interferences. Molecular 

interferences are further divided into polyatomic and doubly charged polyatomic 

interferences.  

Isobaric interferences occur when two different element isotopes have the same mass, for 

example, 
40

Ca and 
40

Ar and in fact, is among the most common potential isobaric 

interferences. Polyatomic interferences are those which occur as a result of the interaction 

between a given analyte, the sample matrix, aqueous solution into which the sample has 

been dissolved and the plasma (Dean 2005). Simply, the QMS cannot distinguish between 

polyatomic ions and atomic ions with the same m/z. As with isobaric interferences, these 

interferences can largely be avoided by the addition of a collision cell to the QMS or by 

selection of a different acid matrix (Dean, 2005). In the collision cell, the ion beam is passed 

through an additional cell filled with a given gas. Which gas is used is dependent on the 

analyte(s) of interest and the type(s) of interference needing correction. The selected gas 

interacts with the ions and removes the interfering species, allowing the analytes of interest 

to pass into the mass analyser. This project will use dilute nitric acid as a sample matrix. The 

choice to use nitric acid for sample dissolution was determined largely by its superior 

oxidative qualities and efficiency at digesting bone tissue. In addition, the analytical matrix 

will consist of dilute nitric acid (3%). There is some consensus regarding the preferential use 

of nitric acid as an analytical matrix, as many polyatomic interferences can be avoided 

(Mccurdy and Woods 2004). The only potential interferences with nitric acid come primarily 

from Ar, O, H (from water) and C (from the CO2 produced from any remaining organic 

residue). 

Non-spectral interferences 

Non-spectral interferences include those that affect the total mass range of analytes under 

analysis and generally include signal suppression or enhancement and drift. Signal 

suppression or enhancement occurs when there are changes in the number of ions reaching 

the detector (Linge and Jarvis 2009). Samples which area high in total dissolved solids 
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(TDS) can cause signal suppression and often this is caused by the sample matrix. Matrix 

effects, in which the sample matrix is so abundant as to interfere with ion detection.  

Signal drift is also caused primarily by high TDS in samples. When drift occurs it is 

generally due to deposition of particulate matter on the sampler, skimmer cone or ion lenses. 

These affect the ion extraction process and can result in signal suppression over time. As 

with signal suppression or enhancement, reduction of TDS is recommended to reduce drift. 

Normally, it is advisable to ensure that TDS in the sample solution are not higher than 200-

300 μg/mL
-1

 (Linge and Jarvis 2009).  

Monitoring and correcting non-spectral interferences and matrix effects 

The primary means by which to monitor and quantify non-spectral interferences is through 

the addition of internal or external standards. In both cases it is critical for standards to be 

matrix-matched as closely as possible to the matrix of the analytical sample (Vanhaecke et 

al. 1992). This is to allow for detection of matrix effects. Because non-spectral interferences 

depend on many factors, are unpredictable, and can vary from run-to-run and on given days, 

the use of standards becomes critical.  

Internal standards 

Internal standards involve the addition to each sample, blank and external standard, an 

analyte that is not present in the sample materials. Vanhaecke et al. (1992) noted that for 

certain acid matrices, such as sulphuric acid, signal suppression depended heavily on the 

mass number of the element or nuclide monitored and signal suppression dependent on the 

atomic mass of the target analyte, and where the lighter the nuclide the greater degree of 

signal suppression. Conversely, when the same analysis was conducted in a matrix of 

hydrochloric acid, mass dependent suppression was also observed, but with signal 

suppression of the heavier nuclides (Vanhaecke et al. 1992). In short, the choice of internal 

standards is critical to the accurate measurement of signal strength. Internal standards that 

closely match the target analyte behaviour will also undergo the same signal enhancement or 

suppression as the analyte (Agatemor and Beauchemin 2011). Because signal accuracy 

varies depending on element mass, elements across a range of masses (predominantly 

encompassing the total mass range of the target analytes) must be included in the internal 

standard.  

It should be noted that in many cases, specifically in any analysis that includes a wide range 

of elements, it is not always possible to include individual standards that closely match the 

mass and behaviour of the individual target analytes In this instance, multiple standards may 
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be used to compensate for matrix effects altering the signal for one specific element. 

Agatemore and Beauchemin (2011) offer a clear example of this: in ICP-MS analysis of 

samples containing platinum, it was discovered that using both 
197

Au and 
191

Ir as internal 

standards provided better detection of matrix effects than either element alone. 

An alternative method involves common analyte standardisation, in which only one analyte 

is added, but one that is highly susceptible to signal drift, suppression or enhancement. This 

addition need not be mass-matched or FIP-matched (first ionisation potential). A drift 

correction equation must then be calculated. This method however, is unproven in complex 

matrices (Al-Ammar 2003). 

Matrix-matched external standardisation 

The matrix includes both dissolved solids in the sample as well as the water and acid or 

solvent solution, can be minimised by matching calibration solutions to samples  and by 

dilution of the sample solution, both methods are employed here. In addition, matrix effects 

can be caused by the sample consistency and viscosity and equipment settings, including 

sample introduction systems, sample introduction flow-rate, size of droplets formed in the 

nebuliser, ion generation, ion movement into the sampler and ion transport into the mass 

detector (Agatemor and Beauchemin 2011). These effects can also vary from sample to 

sample, or across an entire sample run.  

Reducing matrix effects 

Ideally, matrix effects should be minimised as best as possible before ICP-MS analysis. 

There countless ways that this can be achieved and methods for matrix effect reduction are 

specific to the matrix itself, target analytes, and equipment set-up and calibration.  

Sample dilution 

When the sample matrix is of a high concentration, as is the case with human bone samples, 

among the first steps to reduce matrix effects is through sample dilution (Agatemor and 

Beauchemin 2011). When LoD are low enough to allow for sample dilution, it is possible to 

reduce the concentration of the matrix to levels low enough to reduce or eliminate matrix 

effects. This has the secondary effect of reducing the TDS in the matrix. Beyond this, a low 

sample uptake rate and low nebuliser gas flow rate can act as a secondary dilution by 

reducing the amount of sample that reaches the plasma.  
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Determining analytical fitness for purpose  

Precision 

Precision in this context is measured as standard deviation of the mean or standard error of 

the mean where n is the number of replicates and SE is the standard error:  

nSE   

In this case the mean is the mean percent recovery of the analytes of interest for each 

sample. A low standard of error relative to the sample mean indicates that the sample means 

are close to the population mean. Population mean in this case is 100%, or the ideal percent 

recovery of each element from the standard reference material. 

Precision is determined by repeatability, which is the process of repeating the same 

independent experiment with the same method under the same experimental conditions (in 

this case the experimental conditions are the method, the laboratory, the equipment and the 

researcher and all samples are treated independently of each other. The experiment is 

repeated n number of times and the results obtained for each repeat are used to determine the 

standard of error. The number of times the method will be repeated is determined by the 

confidence interval between the population (sample) and standard deviations of the sample. 

In this project it is assumed that the data are distributed normally and the confidence interval 

should be 95% so that z = 1.96. So where x  = the population mean and SE = the standard 

error: 

Lower confidence interval = )96.1( SEx   

Upper confidence interval = )96.1( SEx   

The probability of a normal distribution of means is assumed when number of samples (i.e. 

independent tests) is large because the larger the sample size, the more likely it is that the 

sample mean represents the population mean. However the number of repeat independent 

tests in this project is limited by time and the cost of the SRM. Fortunately, Cullen and 

Barwick (2004) have demonstrated that beyond 15, the number of replicate tests has little 

effect on confidence interval and that below six the interval is too high.  
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Trueness 

Trueness is the percentage variation between the reported value true value (i.e. actual analyte 

concentration) (Linge and Jarvis 2009). It is a measure of systemic error. Trueness cannot be 

calculated for unknown samples, but is measured by analysis of certified reference material  

Bias 

Bias refers to the measurement of two types of statistical error: systematic and random. Bias 

can be referred to as the degree of closeness between the average value of a set of results and 

the accepted reference value (Cullen and Barwick, 2004).  

Bias is measured through the use of NIST-SRM 1486 Bone Meal, which will be used to 

obtain the accepted reference value. During repeat testing, the average recovery of analyte is 

measured against the reference value. Accepted bias in this project is 15%. That is, a result 

within 15% of the accepted reference value will be accepted, as this is what is generally 

deemed acceptable within the literature.  

Limits of Detection and Limits of Quantification                              

LoD and LoQ were calculated using the raw counts per second (cps) data. The values given 

in Table 6-2 are for the analytical equipment.   

The following procedure is used to calculate LoD for each element: 

1. Calculate mean cps for blanks 

2. Calculate SD for cps for blanks 

3. Calculate LoD as mean blank cps +3SD 

4. Calculate LoQ as mean blank cps +10SD 

Sensitivity (blank corrected lowest standard cps) was measured using the following 

procedure: 

1. Subtract blank cps from lowest standard cps. 

LoD and LoQ are transformed to ppb: 

1. LoD and LoQ values are divided by sensitivity and then by 1000 to give LoD and 

LoQ in μg·g
-1

  

*Detection limits for the samples are calculated by multiplying the LoD and LoQ by the 

average dilution factor for the analytical samples which is 69.48.  
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LoD and LoQ are determined by running approximately ten blanks through the method from 

start to finish. In addition, internal standards are added at both the LoD and LoQ for each 

sample run to monitor these values. Blank solution is made up of 3% HNO3 in distilled 

water.  

Detection range and linearity 

The detection range is essentially the range of values across which the analyte can be 

detected and the method used. The working range must be calculated to ensure that it 

encompasses the entire range of values yielded by the analysis. In general, the lower limits 

of the working range are determined by the LoD and LoQ. The upper limits are determined 

by the concentration of a given analyte, at which detection sensitivity is compromised. The 

range of detection for a given analyte must fall between these two limits.  

The linear range falls within the working range. The linear range is that in which the 

response of the instrument to the analyte is directly proportional to its concentration. 

Linearity is established by the use of internal standards and is determined by conducting a 

least squares regression and correlation coefficient to the results for these standards.  

Role of CRM in method validation 

Certified reference material (CRM) is used to ensure quality control and fitness for purpose 

of the chosen analytical method. The CRM used must conform to ISO Guidelines in that any 

uncertainty in reference values must be small in comparison to the uncertainty in routine 

analytical data. CRM can also be used for equipment calibration, as the concentration of 

analytes in the material is known, however this was not the case in this project (Kane 2001). 

CRM should match as closely as possible the matrix of the analytical samples and contain 

each of the analytes of interest. The primary role of CRM in this analysis is not for 

calibration but for method validation.  
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Method for trace element analysis of human cortical bone. 

1. Samples were removed from bags and placed into clean, acid washed 13mL 

polyethelene tubes and weighed to 0.0001 accuracy.  

2. Samples are then rinsed 3 times in MilliQ Millipore water by filling each tube with 

water and agitating. 

3. Aspirate 1mL pipette 3 times in 6M HCl and rinse w/ MilliQ. 1mL concentrated 

(15.2M, or approx. 69%), sub-boiled HNO3 is added to each tube and tube is 

capped. 15 reagent blanks and CRM (NIST 1486 Bone Meal) prepared alongside 

analytical samples. 

4. Samples left to digest at room temperature (20°C) for 72 hours.  

5. 9mL MilliQ added to each tube. 

6. Samples placed in ultrasonic bath for 5 min.  

7. Each sample is diluted to 100ppm Ca by calculating dilution factor for each sample 

based on sample weight and estimated % Ca in bone material.  

8. Aliquot based on DF is transferred from tube to acid washed 20mL bottle by 

(cleaned and aspirated 3 times 6M HCl and MilliQ) pipette. Pipette tip is changed 

and cleaned in between each sample. Bottle is weighed, tared, and aliquot is added. 

3% HNO3 is added to bottle until total weight is 10g.  

9. 100μL internal standard solution is added to each sample. Solution: 0.5 ppm In, 0.5 

ppm Re, and 2 ppm Be in 3% HNO3. 

Matrix-matched standards 

Standards were calculated by determining the likely analyte concentrations in bone. 5 

working standards were prepared with the following element concentrations: 

 

 

 

 

 

 

 

 



336 
 

Secondary standards 

A set of 7 secondary standards were made adding aliquots of individual element solutions 

(Inorganic Ventures) to 3% HNO3 . After each aliquot was added, HNO3 was added to each 

acid washed bottle until total solution weight was 20mL. Secondary standards were 

formulated as follows: 

1. 5 ppm Sr and Zn 

2. 1000 ppm Fe and Mg 

3. 5 ppm Fe and Mg 

4. 5 ppm Cu, Se, V, Sn, Cd, Sb 

5. 5 ppm Ni, Pb, Mn, As 

6. 200 ppb Ni, Pb, Mn, As 

7. 200 ppb, Cu, Se, V Sn Cd, Sb 

Working standards 

Five working standards were created. Aliquots of each secondary standard were added to 

acid washed bottles with (aspirated) pipette tips. 200μL spike solution added to each bottle 

and 3% HNO3 added until total solution weight was 20g. The five working calibration 

standards were as follows:  

Std. Elements Target 
Conc. 

Std 5 Fe Mg 10 ppm 

 Zn Sr 150 ppb 

 Ni Pb Mn As 10 ppb 

Std 4 Fe Mg 4 ppm 

 Zn Sr 60ppb  

 Ni Pb Mn As 4ppb 

 Se V Sn Cd Sb Cu 4ppb 

Std 3 Fe Mg 1 ppm 

 Zn Sr 15 ppb 

 Ni Pb Mn As 1 ppb 

 Se V Sn Cd Sb Cu 1 ppb 

Std 2 Fe Mg 100 ppb 

 Zn Sr 1.5 ppb 

 Ni Pb Mn As 100 ppt 

 Se V Sn Cd Sb Cu 100 ppt 

Std 1 Fe Mg 5 ppb 

 Zn Sr 75 ppt 

 Ni Pb Mn As 5 ppt 

 Se V Sn Cd Sb Cu 5 ppt 
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Calcium standards 

Calcium standards were mixed separately. Five calcium standards were made using 1000 

ppm Ca solution. Ca solution was added to clean bottles with (aspirated) pipettes. 300μL 

spike solution was added to each bottle. 3% HNO3 was added until total solution weight was 

30g. Calcium standard concentrations were as follows: 

Standard 1: 70 ppm 

Standard 2: 80 ppm 

Standard 3: 90 ppm 

Standard 4: 100 ppm 

Standard 5: 110 ppm 
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Appendix C: Certified Reference Materials 
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Appendix D: Ethics Review 

 

This project was granted Ethics Approval by the Bournemouth University Research Ethics 

Committee on 27 April, 2010. 
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From: David Osselton 

Sent: 27 April 2010 13:40 

To: Catherine Hess 

Cc: Martin J. Smith 

Subject: FW: Ethics enquiry 

-----Original Message----- 

From: Geoffrey Rayment  

Sent: 27 April 2010 12:26 

To: David Osselton 

Cc: Noel Richardson 

Subject: RE: Ethics enquiry 

  

Dear David, 

  

Further to Noel's e-mail (below), I have consulted Dr Chapman, Chair of the University 

Research Ethics Committee, and he has agreed that this does not constitute a significant 

change to the original application and the previous ethical approval still stands.   You do 

not, therefore, need to submit a new request for approval. 

  

Regards 

  

Geoff Rayment, 

Committee Clerk, 

Student & Academic Services Directorate. 

  

Tel.  01202 961073 

E-mail. grayment@bournemouth.ac.uk 
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From: Noel Richardson  

Sent: 27 March 2010 13:58 

To: David Osselton 

Cc: Geoffrey Rayment 

Subject: RE: Ethics enquiry 

  

Dear David, 

  

In my view the prior approval should be sufficient if the work is of the same nature as that 

proposed with Sao Paulo.  It would, however, be prudent to inform the Ethics Committee 

that this extension of the scope of the work is proposed, so that you can't be accused of 

trying to evade due process! 

  

However, I'm not now in charge of these matters, so I've copied this to Geoff Rayment so 

that he can seek the opinion of the new Chair of Ethics Committee. 

  

Best Regards 

Noel 

  

Noel DG Richardson 

Clerk to The University Board 

Bournemouth University 

 

From: David Osselton 

Sent: 26 March 2010 11:59 

To: Noel Richardson 

Cc: Catherine Hess (i7801430) 

Subject: Ethics enquiry 
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Dear Noel 

You may recall that the ethics committee gave approval for us to work on tissues with the 

University of Sao Paulo.  One of my PhD students has been offered an opportunity to 

undertake analytical work on a bone collection in South Africa where subjects have donated 

their bodies for medical science.  Consent to undertake work has been given by the South 

African authorities.  In view of the fact that this is closely allied to the project which has 

already been granted approval, do I have to submit another request for consideration or can 

I take it that the prior approval can be applied? 

Best wishes 

David 
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Appendix E: Pretoria Agreement 
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Appendix F: Wits Agreement 

________________________________________ 

From: Desire Brits [Desire.Brits@wits.ac.za] 

Sent: Friday, July 29, 2011 5:06 PM 

To: Catherine Hess 

Cc: Brendon Billings 

Subject: RE: Dart Collection Inquiry 

 

Dear Catherine, 

 

The School of Anatomical Sciences has decided to allow you access to sample femora from 

the Teaching bone collection, however; as mentioned before the teaching collection has 

limited demographic information and therefore it was suggest that you spend a day in the 

collection to determine how much information you can obtain, if any.  Unfortunately we 

currently have no electronic database with demographic information for these specimens and 

you will have to manually document cadaver numbers and follow this up with the technical 

staff that has a book with all the necessary information. 

 

Best wishes, 

 

Desiré Brits 

University of the Witwatersrand 

Faculty of Health Sciences 

School of Anatomical Sciences 

7 York Road 

Park Town 

Johannesburg 

2193 

South Africa 

Tel: +27 11 717 2304 

Email: desire.brits@wits.ac.za 
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Appendix G: Data sets 

Datasets are provided in Microsoft Excel (2010) format on the CD attached to this 

document. The disc contains three data files: 

Main Dataset: This spread sheet includes the sample numbers, cadaver numbers, variable 

coding, sample weights, dilution factors and element concentrations for every sample, 

including duplicate bones from single individuals. 

Lichen: This spread sheet includes the data taken from Monna et al, 2006 and Olowoyo et al. 

2010, which was used to calculate element correlations in the urban environment in present-

day Gauteng.  

Precision: This dataset includes precision (%RSD) data for each element/sample repeat 

calculated by ICP-MS. 
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Appendix H: Lead exposure in adult males in urban Transvaal 

Province, South Africa during the apartheid era 

Hess CA, Cooper, MJ, Smith, MJ, Trueman CJ, Schutkowski H. In press. Lead exposure in 

adult males in urban Transvaal Province, South Africa during the apartheid era. PLoS One.  

Abstract 

Human exposure to lead is a substantial public health hazard worldwide and is particularly 

problematic in the Republic of South Africa given the country’s late cessation of leaded 

petrol. Lead exposure is associated with a number of serious health issues and diseases 

including developmental and cognitive deficiency, hypertension and heart disease. 

Understanding the distribution of lifetime lead burden within a given population is critical 

for reducing exposure rates. Femoral bone from 101 deceased adult males living in urban 

Transvaal Province (now Gauteng Province), South Africa between 1960 and 1998 were 

analyzed for lead concentration by Inductively Coupled Plasma Mass Spectrometry (ICP-

MS). Of the 72 black and 29 white individuals sampled, chronic lead exposure was apparent 

in nearly all individuals. White males showed significantly higher median bone lead 

concentration (ME = 10.04µg·g
-1

), than black males (ME = 3.80µg·g
-1

) despite higher 

socioeconomic status. Bone lead concentration covaries significantly, though weakly, with 

individual age. There was no significant temporal trend in bone lead concentration. These 

results indicate that long-term low to moderate lead exposure is the historical norm among 

South African males. Unexpectedly, this research indicates that white males in the sample 

population were more highly exposed to lead.  

Introduction 

Population-wide exposure to lead pollution is a problem that has, for the most part, been 

addressed in Europe and North America. However inorganic environmental pollution, 

specifically that of lead and other toxic heavy metals is a major public health concern in sub-

Saharan Africa [1-5]. Lead in particular, is of growing concern because of its known toxicity 

at low levels.  The problem of environmental lead pollution was largely overlooked in South 

Africa in the 20
th

 century, despite its substantial mining and industrial activities, and perhaps 

more surprisingly, despite the country’s persistent use of leaded petrol [1,6]. Few studies of 

human lead exposure in Transvaal were published prior to the formation of the New South 

African Republic in 1994, which has left a prominent lack of baseline data with which to 

compare the growing body of public health research into the issue. Among the aims of this 

research is to address this gap in data through analysis of the skeletal remains of South 

African individuals who died before 1998. The Pretoria Bone collection, from which the 
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study population derives, contains fully identified individuals and its use in this research 

comprises an unparalleled opportunity to study recent historical trends in human lead 

exposure. In addition, bone tissue is an endogenous repository for lead. Due to its low 

turnover rate compared to other human tissues – approximately 10 years for compact bone – 

bone lead concentration is an excellent indicator of chronic lead exposure [7]. Within Africa, 

the highly industrial Gauteng Province is among the more polluted regions. The region 

forms the backbone of the industrial and mining economy of South Africa and is home to the 

country’s most industrial city, Johannesburg and its capital, Pretoria. Urban pollution is a 

significant public health concern as is human exposure to lead [4,5]. The results of this 

research may provide valuable background information to more recent studies involving 

human blood lead concentration in the region.  

South Africa began monitoring lead exposure in children in the 1980s [8-11]. Studies 

conducted by von Schirnding et al. found that as many as 13 percent of children living in 

Cape Town had blood lead levels greater than or equal to 25μg/dL – more than twice the 

threshold considered dangerous by the US Centers for Disease Control - and noted that 

proximity to traffic was a significant risk factor for elevated blood lead, as was lower 

socioeconomic status, overcrowding and homes in disrepair [10-12]. Deveaux et al. also 

conducted blood lead monitoring in young children in Cape Town and  found that children 

whose blood lead was greater than or equal to 29μg/dL were also living in homes with 

leaded paint [9].  

Analysis of teeth from individuals buried in Cape Town before the introduction of leaded 

petrol show higher than expected lead concentrations which were also significantly higher 

than those measured in the mid-1980s and before the reduction in the lead concentration of 

petrol [13]. It was determined that the prevalent use of lead pipes in residential plumbing 

was responsible. To date only one study of bone lead has been conducted in South Africa. 

Todd et al. measured tibia lead in employees of a lead-acid battery factory [14]. They report 

a mean bone lead concentration of 53.4μg·g
-1

.  

Despite these early studies, as late as 2005 the country had no national lead monitoring 

program [15]. In addition, we could find no studies of lead exposure conducted in Transvaal 

during the apartheid era, leaving a gap in the understanding of the historical and 

demographic patterns associated with lead exposure. In addition, because of the cumulative 

nature of bone lead, this measure is widely considered to be a valuable indicator of chronic, 

as opposed to acute, lead exposure, and from an epidemiological standpoint, may be a more 

reliable indicator of demographic and long-term exposure patterns than blood lead [7,16-18]. 

In light of these observations, this study aims to quantify lead exposure among urban South 
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African males during apartheid by measuring bone lead concentration in an identified 

skeletal collection.  

The authors wish to note that the racial terms “black” and “white” are used in this study to 

denote ethnic ancestry. This is wholly due to the fact that that the sampled population is 

classified in this way in associated cadaver records and because the population would have 

been segregated purely by racial classification during the time period being studied. These 

terms have social, demographic and political connotations the implications of which appear 

to have influenced patterns of lead exposure within the study population.   

Materials 

Skeletal material was sampled from the Pretoria Identified Bone Collection at the University 

of Pretoria, South Africa and the Dart Student Bone Collection at Witwatersrand University, 

Johannesburg. The Pretoria Bone Collection is an identified reference collection held at the 

University of Pretoria, School of Medicine. The skeletal remains are those of individuals 

who died in the Pretoria area between 1943 and 2012 and whose bodies were either 

unclaimed or donated. In the former case, unclaimed bodies become the property of the 

University of Pretoria to be used for teaching and research, subject to the South Africa 

Human Tissues Act of 1983 [19]. The collection consists of individuals who range in age 

from neonates to 95 years of age. The predominant demographic within the collection is 

black males. This is largely to do with both overall demographic patterns within South 

Africa and to economic conditions during Apartheid, in which circulating migration brought 

black males to urban areas from Bantustans for work [19-21]. No information regarding the 

occupation of any of the individuals in either collection was available. The Raymond Dart 

Collection is housed at the University of Witwatersrand, School of Medicine and is similar 

in demographic composition to the Pretoria Collection. Skeletal remains in the Dart 

collection date to 1928 [22]. Only 12 of the femora included in this study are from the Dart 

collection. For both collections, ancestry was determined by the admitting hospital and 

based on the racial classification set forth in the 1950 Population Registration Act, which 

categorized  individuals as black, white or colored based on physical appearance, parentage 

(an individual with one white and one black or colored parent could not be classified as 

white) and socio-cultural considerations.  For the purpose of this paper, these classifications 

were not re-examined, as this research is primarily concerned with the way this racial 

division would have contributed to different lead exposure rates. In addition, because of the 

unique lack of fluidity between racial groups imposed by Apartheid, and because these 

groups largely defined socio-economic status at the time, the two factors are considered one 

and the same in this instance.  
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Ethics Statement 

This research was approved by the Bournemouth University Ethical Review Committee and 

the University of Pretoria, Department of Anatomy. In addition, the project met the 

requirements set by the UK Human Tissues Act (1994) and bone samples were imported 

into the UK and analyzed in accordance with the Act.  

Methods 

Analytical methods 

Cortical bone samples of approximately 0.250g were removed from the right or left femora 

of 101 individuals who lived in Gauteng Province at the time of their death between 1961 

and 1998. Bone samples were removed from femora with a 10mm diamond-tipped core drill 

attached to a drill press. Cores were taken from the posterior-distal surface of the right or left 

femur, just above the intercondylar fossa and placed into sealed plastic bags until analysis. 

Due to the demographic composition of the collections which are biased heavily towards 

black males, the remains sampled were primarily black males. Analysis was conducted at the 

University of Southampton Geochemistry Class 100 Clean laboratory at the National 

Oceanography Centre Southampton. All reagents used were Fisher Trace Element grade and 

further sub-boiled in Teflon® stills to ensure ultra-purity. Water used was MilliQ® 

Millipore ultra-pure water (18.2 MΩ).  

Sample preparation 

Samples were weighed, washed three times with MilliQ® water to remove any surface 

contaminants and placed into acid-washed 13mL polyethylene tubes. 1mL of concentrated, 

sub-boiled HNO3 (69%) was added to each tube and left at room temperature for 72 hours. 

After initial digestion, 9mL MilliQ® was added to each tube and samples were left to digest 

at room temperature (approx. 20° C) for a further 72 hours. To facilitate ICP-MS analysis, 

all samples were diluted to approximately 100µg·g
-1

 calcium concentration with 3% sub-

boiled HNO3.  

Sample analysis 

Samples were analyzed by ICP-MS (Thermo Scientific XSeries 2) calibrated with synthetic 

mixed element standards made from single element ICP-MS standards (Inorganic Ventures). 

All samples and standards contained 20ng·g
-1

 Be and 5ng·g
-1

 In and Re as internal standards. 

The elements were analyzed in one of two instrument modes depending on signal size and 

susceptibility to interferences. These were standard mode and CCT mode with 2mL/min. of 
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a mixed He/H2 gas added to reduce interferences. Ten reagent blanks of 3% HNO3 were 

analyzed and Pb concentration in all blanks was below the limit of detection. Detection limit 

for Pb is 0.0004 μg/L
-1

.  Method validation was established by the inclusion of ten, 0.1g 

samples of NIST SRM 1486 Bone Meal and Pb concentration is reported in Table 1. Mean 

Pb recovery rate in CRM was 90%. Sample duplicate precision was measured at 0.82 (SD = 

0.32). 

Statistical methods 

Kolmogorov-Smirnov tests confirmed that bone Pb concentration was not normally 

distributed for either black males, D(74) =0.255, p < 0.001 or white males D(29) = 0.277, p 

= 0.001. Pb concentration data was log transformed and was found to be normally 

distributed with D(74) = 0.084, p > 0.05 and D(29) = 0.133, p > 0.05, in black and white 

males respectively. Independent t-tests, ANCOVA and multiple regression were performed 

on log-transformed data. All Pb concentrations reported are back-transformed values.  

Results 

Median bone Pb by race and age group are presented in Table 2. There was a high degree of 

variability within the subject population as a whole.  Of 72 black males, the median Pb 

concentration is 3.80 µg·g
-1

. For the 29 white males median Pb concentration is 10.04 µg·g
-1

. 

Results of Pb concentration for black males are presented in Table 3 and white males in 

Table 4. In some cases, samples from both right and left femora were taken from the same 

individual, in these cases Pb concentration in both femora within a single individual was 

averaged and is indicated by an asterisk.  
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White males show significantly higher bone Pb concentration than black males (Fig. 1). An 

independent t-test confirmed that the difference in means is significant, t (100) =5.5, 

p<0.001. Among all samples, the highest individual concentrations occur in white males – 

samples 82 (64.09 µg·g
-1

) and 60 (24.8 µg·g
-1

). Among black males, the highest 

concentrations occur in samples 11 (32.23 µg·g
-1

) and 10 (18.05 µg·g
-1

).   

There were significant difference in bone Pb concentrations between the 12 black males 

from the Dart Collection, and black males in the Pretoria Collection, t (71) = 2.23, p < 0.05. 

Median bone Pb from males in the Dart collection is 6.14 μg·g
-1

 and 3.36μg·g
-1

 in males 

from the Pretoria Collection. However this result must be accepted with caution, as there are 

only 12 samples from the Dart collection and there is considerable overlap in the admitting 

hospitals between the two collections, indicating that the individual remains in the two 

collections did not come from two distinct populations.  

It is possible that some of the apparent differences in bone lead concentrations between 

black and white origin males could be attributed to age, as the white individuals are on 

average older than the black individuals (Table 2). Analysis of Covariance (ANCOVA) 

demonstrates that the covariate, age affects bone Pb concentration, F (1, 99) = 6.66, p < 

0.05, though the effect size is small, r = 0.06. After controlling for the effect of age, the 

effect of ancestry on bone Pb concentration remains significant, F (1, 99) = 19.20, p < 0.001, 

though the effect size is relatively small, r = 0.145.  

When multiple regression was used to test the relationship between age and ancestry, a 

significant linear trend between age, ancestry and bone Pb concentration is apparent. Both 

age and ancestry explain 28.4% of the variance in bone Pb concentration (R
2 
= .284, F(1, 

102) =19.82, p < .001). Both age and ancestry significantly predicts bone Pb (β=.235, p < 

.001 and β=.395, p > .001).  

Discussion 

Demographic trends and lead exposure 

The results of this study are particularly informative, in that they do not correspond to 

world-wide trends in human lead exposure. In general, and especially in developing 

countries, the poorest and most disadvantaged sectors within the population tend to 

encounter greater exposure to lead [23-25]. These groups also tend to yield the highest body 

concentrations of lead (bone or blood) [26,27]. This is the case in present day South Africa. 

von Schirnding et al. [10] have reported blood lead levels among children residing in Cape 

Town, with children from lower income households having the highest levels. Mathee et al. 
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[28] reported that high blood lead levels were associated with lower socioeconomic status in 

a study of children in Johannesburg. Other researchers have reported similar findings [2,3].  

The higher bone lead levels of white individuals reported in this study are interesting and 

may be the result of a variety of factors. The finding is counter to results of lead studies 

conducted in the United States. Research from the National Health and Nutrition 

Examination Surveys (NHANES) have consistently reported higher blood and bone lead 

concentrations in African American individuals regardless of age or sex [29,30]. Data from 

the US Veterans’ Association Normative Aging Survey have also shown that white males 

tend to have lower bone and blood lead than African American males[31]. Similar results 

were found in the Baltimore Memory Study, in which authors reported significantly higher 

cortical bone lead in African American versus white males [32]. These patterns have 

persisted in the United States, even as overall lead exposure rates have fallen [33]. Most 

notably, Hu et al. [31] report a median bone lead concentration of 20μg·g
-1

 in community 

exposed males living in Boston. This is higher than the median concentrations values found 

in South African males in this study. Hu et al. also report higher bone lead concentration in 

black males, and a significant increase in bone lead in males who did not complete high 

school versus those who completed graduate or professional school. The latter indicates a 

strong socioeconomic relationship with lead exposure.   

With regards to our study, apartheid-mandated urban residential patterns, with white 

residents living closer to urban core and major roadways (with subsequent exposure to lead 

from petrol), may be the significant factors. Recent studies have reported greater 

atmospheric lead concentration in central business areas in Pretoria and Johannesburg, 

which during Apartheid were primarily white areas [34-37]. von Schirnding et al. found that 

atmospheric lead levels in the Cape Town city center were 2.5 times greater than in 

suburban areas [38]. The presence of lead paint in residential buildings and the possibility 

that homes built in the early 20
th

 century and before may be plumbed with lead pipes is 

another, though the latter appears to be rare [39-42]. Investigation into the source of lead in 

bone by analysis of lead isotopic ratios is currently underway, which may shed light on this 

phenomenon. 

Bone lead and age 

This research confirms, though weakly, the previously reported association between age and 

bone lead concentration [43-45]. It has been estimated that 90% of the lead that is stored in 

the human body is stored in bone tissue [7,46,47]. This has the effect of sequestering lead 

from other tissues and organs where it may cause toxicity. However as individuals age and 

bone is resorbed, lead is released from bone tissue. The correlation between age and bone 
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lead is well established and given the likelihood that bone acts as an endogenous source of 

lead within the body, releasing lead into the bloodstream as bone is resorbed and remodeled, 

it is clear that high lead levels in old age may have a significant impact on individual 

health[17].  

Bone lead and public health 

With regards to toxicity, it has been previously reported that bone lead levels as low as 

5µg·g
-1 

have been associated with clinical symptoms of toxicity such as hypertension [48-

52]. In this study, 38% of black individuals and 86% of white individuals had bone lead 

levels above this threshold. Overall, however, the bone lead concentration in males in this 

study population is relatively moderate. Baranowska et al. [53] reported bone lead levels 

between 100 and 200 µg·g
-1 

in an industrial district in Poland. Nevertheless, in the past 

decade it has become increasingly clear that chronic low-level exposure to lead is a 

substantial threat to individual and public health [54].  

Reported health effects of chronic lead exposure include renal disease, diminished IQ and 

developmental delay (in children), and impaired cognitive function in adults [55-64]. Most 

recently, the drop in violent crime rates in urban areas in the United States has been 

attributed to the fall in lead pollution following the banning of lead in petrol [56,65,66]. 

Many of these pathologies are evident even at the subclinical level and at relatively low 

levels of exposure. Norman et al. [51] report that in South Africa in 2000, nearly 1,500 

deaths could be attributed directly to lead exposure. Other studies have found that low-level 

lead exposure in men leads to diminished cognitive function on the order of five years 

accelerated mental aging [67]. From the results of this study, it is likely the negative effects 

of lead on public health have been acting on the population for some time. In addition, the 

data above suggest that persistent lower-level exposure to lead may be the norm in South 

Africa (even after the cessation of the use of lead in petrol). This low but chronic level of 

exposure may be particularly pernicious, as subclinical or sub-acute symptoms are often 

overlooked in marginalised populations due, in part, to differential access to medical care 

and lifestyle [68-70]. Potentially then, despite lower lead exposure overall, black males may 

be more susceptible to unfavourable health effects.  

It is critical to acknowledge that, though black individuals may show lower bone lead 

concentrations, the burden of disease resulting from lead may be higher in this demographic 

group. Numerous studies have demonstrated that individuals who may be physically or 

nutritionally stressed are also likely to suffer from the effects of lead toxicity at lower 

exposure levels than healthier individuals [71-73]. Within these populations lead exposure 
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may also be associated with other illnesses such as asthma and iron deficiency anemia, both 

of which are prevalent in low income households in South Africa [74-78].  

In summary, bone lead analysis of apartheid-era skeletal remains has yielded unexpected 

results. White males show significantly higher bone lead concentration than black males. 

This difference could be attributed to use of exposure to leaded petrol and exacerbated by 

residential patterns in urban areas in which white individuals resided closer to the congested 

urban core.  
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 Figure 1. Boxplot of median bone Pb concentrations (in µg·g
-1

) in black and white 

males. White males show significantly higher bone Pb concentration than black males. 

Horizontal line = median, boxes = 2
nd

 and 3
rd

 quartiles, error bars = range.  

 

 

Table 1. Pb concentration and recovery rate for NIST 1486 Bone Meal. 

Sample Pb % Recovery 

 µg·g
-1 

 

NIST 1486 1.33±.014 - 

CRM 1 1.166 87.2 

CRM2 1.034 78.0 

CRM3 1.167 87.7 

CRM4 1.217 92.0 

CRM5 1.344 101.0 

CRM7 1.229 92.4 

CRM 8 1.248 75.1 

CRM 10 1.259 95.0 

Avg.  88.5 
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Table 2. Median bone Pb (μg·g
-1

) in black and white urban South African males in 

relation to age. 

Race 

 
N Pb SD IRQ Min.  Max. 

 
Black 72 3.92 5.69 4.12 1.22 32.23 

 
White 29 10.04 13.61 9.58 1.55 64.09 

        

 
Black 

      Age 20-29 9 2.22 2.7 

 
1.7 9.25 

 
30-39 12 4.14 3.47 

 
1.87 13.56 

 
40-49 18 3.3 2.48 

 
1.22 11.56 

 
50-59 12 3.67 5.1 

 
1.61 18.1 

 
60-69 11 4.53 1.72 

 
1.9 6.73 

 
70-79 10 7.2 11.66 

 
2.02 32.23 

 
80-89 1 12.95 

    Median 49 

    
18 80 

        

 
White 

      

 
20-29 0 

     

 
30-39 0 

     

 
40-49 5 10.04 7.9 

 
7.53 26.54 

 
50-59 7 10.85 7.02 

 
6.38 27.6 

 
60-69 9 12.7 10.7 

 
2.78 37 

 
70-79 3 3.41 12.56 

 
1.55 24.18 

 
80-89 3 7.59 0.22 

 
7.45 7.88 

 
90-99 2 49.07 21.25 

 
34.04 64.1 

Median 62     42 95 
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Table 3. Total bone lead concentration in µg·g
-1 

dry weight in femora of black males. 

*Denotes averaged Pb concentration between right and left femora. 

Specimen Age Death Pb Specimen Age Death Pb 

 (years) (year) µg·g
-

1
 

 (years) (year) µg·g
-

1 
2 30 1987 4.26 134 20 1964 1.80 

3 38 1988 6.60 137 50 1965 14.71 

4 36 1988 7.89 141 40 1961 2.19 

5 67 1991 2.23 143 49 1966 4.49 

6 40 1988 3.92 144 70 1969 7.63 

7 30 1987 7.93 147 42 1979 2.72* 

8 65 1985 4.76 148 48 1975 1.95 

9 50 1988 3.45 150 61 1983 4.17 

10 59 1987 18.05 151 65 1972 6.19 

11 75 1988 32.23 152 50 1979 3.60 

12 51 1991 6.14 156 55 1972 1.61 

20 35 1988 2.51 158 50 1972 8.79 

23 50 1983 2.95* 159 60 1982 4.53 

29 30 1984 2.44 168 70 1979 6.74 

48 30 1970 13.56 169 69 1983 1.85 

51 58 1975 3.65 174 65 1979 6.73 

61 56 1983 3.37 192 35 1967 1.87 

63 48 1967 7.65 198 27 1964 6.00 

64 40 1967 2.98 199 35 1966 2.48 

79 45 1979 5.52 300 44 1979 3.53 

83 40 1972 2.96 301 65 1965 2.72 

86 44 1979 2.05 306 49 1976 3.05 

88 24 1967 9.25 312 25 1966 2.13 

89 80 1970 12.95 313 66 1967 6.02 

90 70 1966 8.56 314 70 1966 15.66 

92 56 1979 5.81 315 26 1972 3.08 

95 47 1963 1.91 317 60 1983 4.95 

99 40 1965 4.37 319 49 1967 11.56 

101 48 1969 1.22 320 37 1966 4.36* 

104 26 1966 1.69 321 43 1967 5.76 

113 20 1979 2.18* 325 72 1979 2.99 

115 70 1979 2.02 326 73 1980 32.13 

121 40 1965 3.83 329 70 1983 3.93 

123 59 1964 3.69 333 28 1965 6.46 

125 70 1973 2.25 334 60 1982 2.38* 

131 34   1970 4.03 335 18 1982 2.22 
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Table 4. Total bone lead concentration in µg·g
-1

 dry weight in femora of white males. 

*Denotes averaged Pb concentration between right and left femora. 

Specimen Age Death Pb Specimen Age Death Pb 

 (years) (year) µg·g
-1

  (years) (year) µg·g
-1

 

17 67 1983 15.18 124 83 1993 7.59 

39 62 1980 9.70 126 56 1982 8.30 

59 84 1998 7.45 178 47 1977 7.53 

60 71 1977 24.18 183 62 1983 12.70* 

74 72 1998 3.40 185 68 1975 2.95 

78 52 1983 6.38 190 66 1997 3.91 

82 95 1982 64.09 191 74 1972 1.55 

84 82 1997 7.88* 195 60 1973 2.78* 

85 50 1976 13.26 295 44 1977 12.30 

93 56 1979 9.34* 298 67 1976 37.00 

94 42 1977 10.04 305 68 1964 18.44* 

105 43 1964 26.54 322 69 1984 15.69 

116 59 1982 10.85 324 57 1976 27.58 

119 56 1982 12.15* 332 48 1973 7.82 

120 91 1979 34.04     

 

 

 


