

1	Applying fluid biomarkers to Alzheimer's disease
2	
3	Henrik Zetterberg ^{1,2,3}
4	
5	¹ Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the
6	Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
7	² Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
8	³ Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London,
9	UK
10	⁴ UK Dementia Research Institute, London, UK
11	
12	Corresponding author:
13	Henrik Zetterberg, MD, PhD
14	Institute of Neuroscience and Physiology
15	Department of Psychiatry and Neurochemistry
16	The Sahlgrenska Academy at the University of Gothenburg
17	S-431 80 Mölndal
18	SWEDEN
19	Tel (office): +46 31 3430142
20	Tel (cell): +46 768 672647
21	Tel (secretary): +46 31 3430025
22	Fax: +46 31 3432426
23	E-mail: henrik.zetterberg@gu.se
24	
25	Keywords: Alzheimer's disease; biomarkers; cerebrospinal fluid; blood; plasma; serum; tau;
26	amyloid; neurofilament; neurogranin
27	
28	Conflict of interest statement:
29	Henrik Zetterberg is co-founder of Brain Biomarker Solutions in Gothenburg AB, a GU
30	Venture-based platform company at the University of Gothenburg, and has served at advisory

31 boards for Roche Diagnostics, Eli Lilly and Pharmasum Therapeutics.

32 Abstract

33 Alzheimer's disease (AD) is a common neurodegenerative disease that starts with a clinically 34 silent phase of a decade or more during which brain pathologies accumulate predominantly in 35 the medial temporal lobe but also elsewhere in the brain. Network dysfunction and clinical 36 symptoms typically appear when senile plaque (amyloid β) and neurofibrillary tangle (tau) 37 pathologies meet in the brain parenchyma, producing synapse and neuronal loss. For plaque 38 and tangle pathologies, reliable fluid biomarkers have been developed. These require 39 sampling of cerebrospinal fluid. Reliable blood tests for plaque and tangle pathologies are 40 currently lacking, but blood tests for general neurodegeneration have recently been developed. 41 In AD, plaques and tangles often co-exist with other pathologies, including Lewy bodies, and 42 to what extent these contribute to symptoms, is currently unknown. There are also important 43 differential diagnoses that may be possible to distinguish from AD with the aid of biomarkers. 44 The scope of this review is fluid biomarkers for AD and related pathologies. The purpose is to 45 provide the reader with an updated account of currently available fluid biomarkers for AD and 46 clinically relevant differential diagnoses. 47

....

48

49 Introduction

50 Neurodegenerative dementias constitute a broad category of brain diseases that cause a long 51 term and often gradual decrease in the ability to think and remember that is great enough to 52 affect a person's daily functioning. The most common type of dementia is Alzheimer's 53 disease (AD) that makes up 50% to 70% of the cases (98). AD causes a progressive loss of 54 cognitive abilities with short-term memory impairment being the most typical initial 55 symptom. However, there are also atypical clinical presentations of AD, e.g., primary 56 progressive aphasia or posterior cortical atrophy (52), and there are many other dementia-57 causing diseases that may be important differential diagnoses (70).

58

59 A dementia diagnosis is usually based on the history of the illness, the pattern of cognitive 60 deficits, with investigations including, e.g., blood work used to rule out other possible (non-61 cerebral) causes, and imaging both to rule out alternative diagnoses and to provide positive 62 evidence for a given diagnosis. Specific dementia diagnoses can be made using clinical 63 criteria that may be supplemented by information from biomarkers (20), but a definite 64 diagnosis requires autopsy confirmation, based on the fact that each of the degenerative 65 dementia-causing brain disorders is characterised by more or less distinct neuropathology 66 (35). A striking feature is that most neurodegenerative dementias show aggregates or 67 inclusions of specific proteins in the brain extracellular matrix or within neurons or other cell 68 types of the brain (43). Some researchers have even classified them as "proteopathies" (90). 69 70 Neuropathologically, AD is characterized by neuronal loss in specific brain regions,

71 intraneuronal neurofibrillary tangles composed of aggregated and often hyperphosphorylated

tau protein, and extracellular neuritic plaques that are deposits of amyloid β (A β) peptides,

73 mainly ending at amino acid 42 (7). Additionally, synapse loss (71) and microglial activation

74 (89) have been suggested as integral, albeit non-specific, parts of AD pathology. Other

75 neurodegenerative diseases that may cause AD-like symptoms include frontotemporal

76 dementia (FTD), where tau and/or TDP-43 may form inclusions, Parkinson's disease

77 dementia (PDD) and dementia with Lewy bodies (DLB), where α -synuclein inclusions are

78 important parts of the pathology, and cerebral small vessel disease, where demyelination of

regions is prominent. There is often also a considerable degree of multi-

80 morbidity in neurodegenerative pathologies, suggesting that pathologically deposited proteins

81 may interact and are influenced by other factors to promote cognitive decline and other

82 clinical symptoms. Here, I discuss how biomarkers for different neuropathological changes

may help inform clinical decision-making and potentially also in the future help to personalize
treatment. Table 1 summarizes replicated fluid biomarker findings in this context.

85

86 In regards to the biomarkers discussed, CSF indicates lumbar CSF collected according to 87 published standard operating procedures (8); biomarker results derived from ventricular CSF 88 may be quite different. Further, it is important how samples are collected, processed and 89 stored, which is also detailed in published protocols (8). Regarding blood-based biomarkers, 90 the sample matrix (plasma or serum) is specified wherever important. It should also be 91 mentioned that the potential clinical context of use of the biomarkers discussed below is in a 92 memory or neurology clinic. It is important to ensure that the patient has not had any acute 93 CNS disease at least 3-6 months before sampling of the fluid, as for example a stroke, head 94 trauma or meningitis may affect biomarker concentrations for this time window. 95 96 97 Fluid biomarkers for plaque pathology

98

99 *CSF*

100 The 42 amino acid isoform of amyloid β (A β 42) is a major component of senile plaques in 101 AD (51). It is a breakdown product of unclear physiological function, which is released from 102 neurons when the type I transmembrane protein amyloid precursor protein (APP) is 103 metabolized by β - and γ -secretases in synaptic vesicles (APP is metabolized by many cell 104 types but AB42 secretion is by far the highest from neurons and seems to depend on synaptic 105 activity (14)). AB42 can be measured in cerebrospinal fluid (CSF) by antibody-dependent 106 techniques such as enzyme-linked immunosorbent assay (ELISA), as well as by antibody-107 independent techniques such as mass spectrometry (44). AD patients have decreased CSF 108 concentrations of A β 42, a finding that has been replicated and verified in hundreds of papers 109 (62). This decrease reflects A β 42 sequestration in senile plaques in the brain, as evidenced by 110 both autopsy and *in vivo* amyloid positron emission tomography (PET) imaging studies (9). 111 CSF Aβ42 concentration is fully altered already in mild cognitive impairment (MCI) as well 112 as pre-clinical stages of AD (4, 62). A plaque pathology-associated decrease in CSF A β 42 113 concentration is also seen in DLB, another disease characterized by cerebral AB aggregation 114 (1).

115

116	Blood
117	It has been much more difficult to establish robust blood biomarkers for plaque pathology. A β
118	proteins can be measured in plasma but the correlation with cerebral β -amyloidosis is absent
119	or weak (statistically significant but clinically meaningless) (38, 61), and plasma A β
120	concentrations are probably influenced by production in platelets and other extra-cerebral
121	tissues (103). Pilot data suggest associations of the concentrations of a number of plasma
122	proteins (e.g., pancreatic polypeptide Y, IgM, chemokine ligand 13, interleukin 17, vascular
123	cell adhesion protein 1, α 2-macroglobulin, apolipoprotein A1 and complement proteins) with
124	amyloid burden in the brain (12, 97, 100). However, these data should be interpreted with
125	some caution, as they are derived from multi-marker panels and as a mechanistic
126	understanding of the associations is currently lacking.
127	
128	
129	Fluid biomarkers for tangle pathology
130	
131	CSF
132	Abnormally phosphorylated and truncated tau proteins are the major components of
133	neurofibrillary tangles in AD and other so called tauopathies (26). The normal function of tau
134	is to bind to and stabilize tubulin multimers in neuronal axons. Tangle-marked neurons
135	release phosphorylated tau that can be measured in CSF by ELISA using antibody
136	combinations specific against mid-domain phospho-tau epitopes. AD patients have increased
137	CSF P-tau concentrations (62). CSF P-tau concentration correlates weakly with
138	neurofibrillary tangle pathology in AD (11, 72); a finding that has been replicated in recent
139	tau PET imaging studies (13), although the results are less clear than for CSF A β 42. A major
140	outstanding research question is why other tauopathies, including some forms of FTD and
141	progressive supranuclear palsy, do not show P-tau increase, at least not as systematically as
142	seen in AD. It is possible that these disorders show disease-specific tau phosphorylation, or
143	that tau is processed or truncated in a way that is not recognized by available assays. Another
144	potential explanation for the AD specificity of CSF P-tau is if the amount of pathology were
145	simply greater in AD than in other tauopathies (there is to the best of my knowledge no
146	published data addressing this hypothesis). CSF P-tau is currently considered the most
147	specific biomarker for AD; except for herpes encephalitis (25) and superficial CNS siderosis
148	(36, 42), no other condition shows systematic increase in this biomarker (104).

149	
150	Blood
151	There are so far no reliable blood biomarkers for neurofibrillary tangle pathology, although
152	there is an emerging literature on P-tau concentrations in neuronally derived blood exosomes
153	with contrasting results in regards to association with AD (75, 99).
154	
155	
156	Fluid biomarkers for neuroaxonal degeneration
157	
158	CSF
159	Total tau (T-tau), measured using assays with antibodies against mid-domain tau amino acid
160	sequences that are not phosphorylated, can be used as a general marker of neuroaxonal
161	degeneration/injury in AD. AD patients have increased CSF T-tau concentrations (62), and
162	the higher the increase, the more intense neurodegenerative process (92). However, CSF T-tau
163	increase is not specific for AD; it is also seen in, e.g., Creutzfeldt-Jakob disease (CJD) (67)
164	and following stroke (33). Similar results have been reported using CSF visinin-like protein 1
165	(VLP-1) and fatty acid-binding protein (FABP) that are enriched in neurons, but the
166	associations with AD are less strong than for CSF T-tau (62). Neuron-specific enolase (NSE)
167	has been proposed as another candidate biomarker for neuronal loss in AD, but the association
168	with AD is variable (62) and the results are easily confounded by blood contamination, as
169	NSE (in contrast to what its name implies) is highly expressed in erythrocytes (66).
170	
171	Another CSF biomarker for axonal degeneration is neurofilament light (NF-L), which is a
172	structural protein in long axons (102). CSF NF-L concentration is increased in AD and
173	especially so in patients with rapid disease progress (105), but among the dementias, the
174	highest concentrations are seen in FTD and vascular dementia (VaD) (18, 47, 76); a result that
175	was recently confirmed in a large retrospective analysis of data from the Swedish Dementia
176	Registry (77), as well as in atypical parkinsonian disorders (28, 49). As for T-tau, the highest
177	CSF concentrations of NF-L are seen in CJD (80, 93).
178	
179	Blood
180	CSF assays for T-tau and NF-L were recently developed into ultrasensitive blood tests using
181	Single molecule array (Simoa) technology (2). Serum or plasma NF-L concentration (either

182 sample matrix works well) correlates with CSF (correlation coefficients of 0.75 to 0.97) and

183	most CSF findings (increased NF-L concentrations in AD, FTD, VaD and atypical			
184	parkinsonian disorders) have been replicated in blood (102). For tau, the situation is			
185	promising but less clear. Firstly, for unknown reasons, tau concentrations are higher in plasma			
186	than in serum (unpublished observation). Secondly, the correlation with the corresponding			
187	CSF concentration is absent (106) or weak (54). Plasma T-tau concentration in AD is			
188	increased but less so than in CSF and there is no detectable increase in the MCI stage of the			
189	disease (54, 106).			
190				
191				
192	Fluid biomarkers for synaptic pathology			
193				
194	CSF			
195	Neurogranin (Ng) is a neural-enriched dendritic protein involved in long-term potentiation of			
196	synapses, particularly so in the hippocampus and basal forebrain. Recently, several			
197	independent studies have shown that the CSF concentration of Ng is increased in AD (31, 41,			
198	45, 46, 85), but not in other neurodegenerative disorders (95), and that the marker predicts			
199	future cognitive decline, brain atrophy and reduction in glucose metabolism in prodromal			
200	disease stages (65, 83). Currently, CSF Ng is the best established CSF biomarker for synapse			
201	loss or dysfunction in AD, although there are other promising markers, including SNAP-25			
202	and Rab3A, in development (5, 10).			
203				
204	Blood			
205	There are so far no reliable blood biomarkers for synaptic pathology. Ng concentration in			
206	plasma is unchanged in AD (19).			
207				
208				
209	Fluid biomarkers for microglial activation			
210				
211	CSF			
212	Recent reports suggest that the CSF concentration of the secreted ectodomain of triggering			
213	receptor expressed on myeloid cells 2 (Trem2), a molecule that is selectively expressed on			
214	microglia in the CNS (48, 82) and genetically linked to AD (27, 39), is increased in AD in a			
215	disease-specific manner and correlates with CSF T-tau and P-tau (32, 64, 81). These results			
216	are backed by an abundant literature showing increased CSF concentrations of several other			

217	microglia- and/or macrophage-derived proteins, including chitotriosidase (53, 94), CD14
218	(101) and YKL-40 (16, 60). Another microglial marker, the C-C chemokine receptor 2, is
219	expressed on monocytes and one of its ligands, C-C chemokine ligand 2 (CCL2), that can be
220	produced by microglia, is present at increased concentration in AD CSF (15, 23, 24). Most
221	studies suggest that these increases are modest with large overlaps between cases and
222	controls, if compared to the more prominent changes seen in traditional neuroinflammatory
223	conditions, such as multiple sclerosis (58) or HIV-associated neurocognitive dysfunction (63).
224	It should also be noted that most proteins mentioned above may also be released from
225	activated astrocytes; microglial and astrocytic activation are difficult to tease apart using fluid
226	biomarkers.
227	
228	Blood
229	When measured in plasma or serum, the concentrations of most of the microglia-related
230	proteins mentioned above are higher than in CSF and probably reflect release from monocytes
231	and macrophages in peripheral blood rather than CNS-related changes. However, a few
232	studies suggest a slightly increased plasma concentration of YKL-40 in blood from AD
233	patients (61).
224	
234	
234 235	
234 235 236	Fluid biomarkers for Lewy body pathology
234 235 236 237	Fluid biomarkers for Lewy body pathology
234 235 236 237 238	Fluid biomarkers for Lewy body pathology <i>CSF</i>
234 235 236 237 238 239	Fluid biomarkers for Lewy body pathology CSF α-Synuclein is the major component of Lewy bodies that are characteristic inclusions of
234 235 236 237 238 239 240	Fluid biomarkers for Lewy body pathology <i>CSF</i> α-Synuclein is the major component of Lewy bodies that are characteristic inclusions of Parkinson's disease (PD) and DLB (55) but often also seen in AD (69). In PD and other
234 235 236 237 238 239 240 241	Fluid biomarkers for Lewy body pathology <i>CSF</i> α-Synuclein is the major component of Lewy bodies that are characteristic inclusions of Parkinson's disease (PD) and DLB (55) but often also seen in AD (69). In PD and other synucleinopathies, CSF α-synuclein concentrations are typically lower than in controls (29,
234 235 236 237 238 239 240 241 242	 Fluid biomarkers for Lewy body pathology <i>CSF</i> α-Synuclein is the major component of Lewy bodies that are characteristic inclusions of Parkinson's disease (PD) and DLB (55) but often also seen in AD (69). In PD and other synucleinopathies, CSF α-synuclein concentrations are typically lower than in controls (29, 56), whilst in AD and CJD, the concentrations are increased and correlate with T-tau,
234 235 236 237 238 239 240 241 242 243	 Fluid biomarkers for Lewy body pathology CSF α-Synuclein is the major component of Lewy bodies that are characteristic inclusions of Parkinson's disease (PD) and DLB (55) but often also seen in AD (69). In PD and other synucleinopathies, CSF α-synuclein concentrations are typically lower than in controls (29, 56), whilst in AD and CJD, the concentrations are increased and correlate with T-tau, suggesting that α-synuclein may also be an non-specific marker of neurodegeneration (56, 59,
234 235 236 237 238 239 240 241 242 243 244	 Fluid biomarkers for Lewy body pathology <i>CSF</i> α-Synuclein is the major component of Lewy bodies that are characteristic inclusions of Parkinson's disease (PD) and DLB (55) but often also seen in AD (69). In PD and other synucleinopathies, CSF α-synuclein concentrations are typically lower than in controls (29, 56), whilst in AD and CJD, the concentrations are increased and correlate with T-tau, suggesting that α-synuclein may also be an non-specific marker of neurodegeneration (56, 59, 79, 84, 96). This has been reported not only in AD and CJD, but also in DLB, where there
234 235 236 237 238 239 240 241 242 243 244 245	Fluid biomarkers for Lewy body pathology <i>CSF</i> α -Synuclein is the major component of Lewy bodies that are characteristic inclusions of Parkinson's disease (PD) and DLB (55) but often also seen in AD (69). In PD and other synucleinopathies, CSF α -synuclein concentrations are typically lower than in controls (29, 56), whilst in AD and CJD, the concentrations are increased and correlate with T-tau, suggesting that α -synuclein may also be an non-specific marker of neurodegeneration (56, 59, 79, 84, 96). This has been reported not only in AD and CJD, but also in DLB, where there may be a competition between aggregation of α -synuclein into Lewy bodies and release of the
234 235 236 237 238 239 240 241 242 243 244 245 246	Fluid biomarkers for Lewy body pathology <i>CSF</i> α -Synuclein is the major component of Lewy bodies that are characteristic inclusions of Parkinson's disease (PD) and DLB (55) but often also seen in AD (69). In PD and other synucleinopathies, CSF α -synuclein concentrations are typically lower than in controls (29, 56), whilst in AD and CJD, the concentrations are increased and correlate with T-tau, suggesting that α -synuclein may also be an non-specific marker of neurodegeneration (56, 59, 79, 84, 96). This has been reported not only in AD and CJD, but also in DLB, where there may be a competition between aggregation of α -synuclein into Lewy bodies and release of the protein from degenerating synapses, making the data complex to interpret (40). Currently
234 235 236 237 238 239 240 241 242 243 244 245 246 247	 Fluid biomarkers for Lewy body pathology CSF α-Synuclein is the major component of Lewy bodies that are characteristic inclusions of Parkinson's disease (PD) and DLB (55) but often also seen in AD (69). In PD and other synucleinopathies, CSF α-synuclein concentrations are typically lower than in controls (29, 56), whilst in AD and CJD, the concentrations are increased and correlate with T-tau, suggesting that α-synuclein may also be an non-specific marker of neurodegeneration (56, 59, 79, 84, 96). This has been reported not only in AD and CJD, but also in DLB, where there may be a competition between aggregation of α-synuclein into Lewy bodies and release of the protein from degenerating synapses, making the data complex to interpret (40). Currently available assays for α-synuclein measure total amounts of the protein and not Lewy body-
234 235 236 237 238 239 240 241 242 243 244 245 244 245 246 247 248	Fluid biomarkers for Lewy body pathology <i>CSF</i> α -Synuclein is the major component of Lewy bodies that are characteristic inclusions of Parkinson's disease (PD) and DLB (55) but often also seen in AD (69). In PD and other synucleinopathies, CSF α -synuclein concentrations are typically lower than in controls (29, 56), whilst in AD and CJD, the concentrations are increased and correlate with T-tau, suggesting that α -synuclein may also be an non-specific marker of neurodegeneration (56, 59, 79, 84, 96). This has been reported not only in AD and CJD, but also in DLB, where there may be a competition between aggregation of α -synuclein into Lewy bodies and release of the protein from degenerating synapses, making the data complex to interpret (40). Currently available assays for α -synuclein measure total amounts of the protein and not Lewy body- specific isoforms; sensitive and specific assays for the latter would resolve this issue.
234 235 236 237 238 239 240 241 242 243 244 245 244 245 246 247 248 249	Fluid biomarkers for Lewy body pathology <i>CSF</i> α -Synuclein is the major component of Lewy bodies that are characteristic inclusions of Parkinson's disease (PD) and DLB (55) but often also seen in AD (69). In PD and other synucleinopathies, CSF α -synuclein concentrations are typically lower than in controls (29, 56), whilst in AD and CJD, the concentrations are increased and correlate with T-tau, suggesting that α -synuclein may also be an non-specific marker of neurodegeneration (56, 59, 79, 84, 96). This has been reported not only in AD and CJD, but also in DLB, where there may be a competition between aggregation of α -synuclein into Lewy bodies and release of the protein from degenerating synapses, making the data complex to interpret (40). Currently available assays for α -synuclein measure total amounts of the protein and not Lewy body- specific isoforms; sensitive and specific assays for the latter would resolve this issue. However, there are some preliminary reports on increased CSF concentrations of α -synuclein
234 235 236 237 238 239 240 241 242 243 244 245 244 245 246 247 248 249	Fluid biomarkers for Lewy body pathology <i>CSF</i> α -Synuclein is the major component of Lewy bodies that are characteristic inclusions of Parkinson's disease (PD) and DLB (55) but often also seen in AD (69). In PD and other synucleinopathies, CSF α -synuclein concentrations are typically lower than in controls (29, 56), whilst in AD and CJD, the concentrations are increased and correlate with T-tau, suggesting that α -synuclein may also be an non-specific marker of neurodegeneration (56, 59, 79, 84, 96). This has been reported not only in AD and CJD, but also in DLB, where there may be a competition between aggregation of α -synuclein into Lewy bodies and release of the protein from degenerating synapses, making the data complex to interpret (40). Currently available assays for α -synuclein measure total amounts of the protein and not Lewy body- specific isoforms; sensitive and specific assays for the latter would resolve this issue. However, there are some preliminary reports on increased CSF concentrations of α -synuclein

250	oligomers in CSF from PD patients (30, 87) and very recently a sensitive assay that detects			
251	and amplifies the biochemical signal of seeds of α -synuclein oligomers in CSF was published			
252	giving positive test results in 67 out of 76 PD patients, 10 out of 10 DLB patients and in eight			
253	out of 10 people with MSA (73). Additionally, 12 out of 97 non-PD controls tested positive,			
254	most of whom had AD (73), which might indicate concomitant AD and Lewy body			
255	pathologies.			
256				
257	Blood			
258	α -Synuclein is highly expressed in red blood cells, a reason why blood contamination during			
259	CSF collection may limit the diagnostic value (3, 34). For the very same reason, blood tests			
260	for α -synuclein pathology in the brain may prove hard to develop. Nevertheless, as peripheral			
261	Lewy body pathology, e.g., in the salivary gland and gut, has been reported in PD (88), blood			
262	or salivary tests for α -synuclein seeds may be something to explore in the future.			
263				
264				
265	Fluid biomarkers for TDP-43 pathology			
266				
267	CSF			
268	Hyperphosphorylated transactive response DNA-binding protein 43 (TDP-43) proteinopathy			
269	accounts for about 50% of FTD patients and has recently been described in aging and in			
270	association with cognitive impairment, especially in the context of AD pathology (37). TDP-			
271	43 can be measured in CSF but, unfortunately, most of the protein appears to be blood-			
272	derived and its CSF concentration does not reflect TDP-43 pathology and is unaltered in FTD			
273	(22).			
274				
275	Blood			
276	No reliable blood test for TDP-43 pathology in the CNS exists.			
277				
278				
279				
280				
281				
282				

283 Fluid biomarkers for blood-brain barrier (BBB) integrity

CSF

286	The BBB is the interface between the blood and the brain, regulating the transport of
287	molecules between the blood and the central nervous system. Its primary function is to
288	maintain the tightly controlled microenvironment of the brain, which is a critical part in
289	sustaining a healthy nervous system. The most commonly used measure of BBB function in
290	clinical laboratory practice is the CSF/serum albumin ratio (86). Proteins cross the BBB at
291	different rates, depending on their hydrodynamic radii, with passage of larger proteins being
292	more restricted than that of smaller proteins (21). As albumin is not produced in the CNS,
293	CSF/serum albumin ratio can be used to assess the integrity of the BBB. A large number of
294	studies have examined the CSF/serum albumin ratio in AD without finding any clear increase
295	(61). In contrast, CSF/serum albumin ratio is increased in VaD, suggesting that
296	cerebrovascular changes are associated with a leakier barrier (78, 91).
297	
298	Blood
299	There are no established blood tests for BBB function, although a number of candidates do
300	exist. One such protein is occludin, a 65-kDa integral membrane protein that contributes to
301	tight junction stabilization at barriers (17). However, this protein is not specific to the brain,
302	but also expressed at high levels in testis, kidney, liver and lung (68), which may explain why
303	this marker, at least when examined in traumatic brain injury, has failed to produce
304	interpretable results (74).
305	
306	
307	Increasing the interpretability of fluid biomarker test results by physiological studies in
308	cell and animal models
309	When we try to relate concentrations of different proteins in human-derived biofluids to
310	cellular and/or pathological changes in the CNS, we struggle to know if what we measure is a
311	breakdown product of dying cells, a cellular reaction to a pathogenic exposure, what cell type
312	is responsible for the biomarker signal and to what extent the measured change reflects
313	increased production or decreased clearance. For example, we assume that increased T-tau
314	concentration in lumbar CSF reflects neuroaxonal breakdown, but are currently failing to give
315	an answer to why this increase appears rather AD-specific and is absent in most other
316	neurodegenerative diseases. One potential answer comes from recent studies in disease

317 models, where it appears like neurons may respond to $A\beta$ exposure by increasing their 318 secretion of tau in the absence of frank neuronal death (50). Thus, extracellular T-tau 319 concentration may be more of an A β response marker than a direct marker of neuroaxonal 320 injury (the temporal disconnect of 5 years or more between onset of amyloid deposition and 321 CSF T-tau increase could hypothetically be an indicator of differences between an inert build-322 up and a toxic breakdown/diffusion/leakage phase of A β pathology). Similar studies could 323 potentially shed light on mechanisms by which concentrations of other biomarkers discussed 324 in this review change in different diseases. Here, recent advances in the generation of 325 neuronal cell models from stem cells may prove important (6, 57). Such models could easily 326 be used to test the effects of exposure of neurons to disease-promoting agents and the release 327 and concentration of biomarkers could be monitored over time and related to cellular markers 328 of disease.

- 329
- 330

331 Concluding remarks

332 Three CSF biomarkers reflecting the core pathological features of AD have been established 333 and are in common use in clinical neurochemistry laboratories worldwide: T-tau (broadly, but 334 not exclusively, reflecting neurodegeneration), P-tau (reflecting tau phosphorylation and 335 tangle formation) and A β 42 (which inversely correlates with plaque pathology). According to 336 revised clinical criteria, these markers may help diagnose AD more accurately and open up 337 the possibility of detecting pre-dementia stages of the disease. A number of additional 338 biomarkers for other pathologies common in AD and other neurodegenerative proteopathies 339 do exist. In the future, such biomarker tests could be applied in longitudinal studies to sort out 340 the temporal appearance of different pathologies during disease progression and assess how 341 they may interact to produce clinical symptoms. As multi-morbidity appears common, one 342 potential future scenario is that the biomarkers may be used to sub-classify clinical syndromes 343 in individual patients according to their pathological signature and, hopefully, individualize 344 treatment. 345

346

347 Acknowledgements

348 Work in the author's laboratories in Mölndal and London is supported by the Swedish

349 Research Council, the European Research Council, the Knut and Alice Wallenberg

- 350 Foundation, Alzheimer's Association, Swedish State Support for Clinical Research, the
- 351 Wellcome Trust and the Leonard Wolfson Experimental Neurology Centre.

References

355	1.	Abdelnour C. van Steenoven I. Londos F. Blanc F. Auestad B. Kramberger
356		MG. Zetterberg H. Mollenhauer B. Boada M. and Aarsland D. Alzheimer's
357		disease cerebrospinal fluid biomarkers predict cognitive decline in lewy body
358		dementia Mov Disord 31: 1203-1208, 2016.
359	2	Andreasson II. Blennow K. and Zetterberg H. Undate on ultrasensitive
360	2.	technologies to facilitate research on blood biomarkers for central nervous system
361		disorders Alzheimers Dement (Amst) 3: 98-102 2016
362	3	Barbour R. Kling K. Anderson JP. Banducci K. Cole T. Dien L. Fox M.
363	5.	Goldstein JM. Soriano F. Seubert P. and Chilcote T.J. Red blood cells are the
364		major source of alpha-synuclein in blood. <i>Neurodegener Dis</i> 5: 55-59, 2008
365	4.	Bateman RJ. Xiong C. Benzinger TL. Fagan AM. Goate A. Fox NC. Marcus DS.
366		Cairns NJ. Xie X. Blazev TM. Holtzman DM. Santacruz A. Buckles V. Oliver A.
367		Moulder K. Aisen PS. Ghetti B. Klunk WF. McDade E. Martins RN. Masters
368		CL. Mayeux R. Ringman JM. Rossor MN. Schofield PR. Sperling RA. Salloway
369		S. and Morris JC . Clinical and Biomarker Changes in Dominantly Inherited
370		Alzheimer's Disease. N Engl I Med 2012.
371	5.	Bereczki E. Francis PT. Howlett D. Pereira JB. Hoglund K. Bogstedt A.
372		Cedazo-Minguez A. Baek JH. Hortobagvi T. Attems J. Ballard C. and Aarsland
373		D . Synaptic proteins predict cognitive decline in Alzheimer's disease and Lewy body
374		dementia. Alzheimers Dement 12: 1149-1158, 2016.
375	6.	Bergstrom P. Agholme L. Nazir FH. Satir TM. Toombs J. Wellington H.
376	-	Strandberg J, Bontell TO, Kvartsberg H, Holmstrom M, Borestrom C,
377		Simonsson S, Kunath T, Lindahl A, Blennow K, Hanse E, Portelius E, Wray S,
378		and Zetterberg H. Amyloid precursor protein expression and processing are
379		differentially regulated during cortical neuron differentiation. Sci Rep 6: 29200.
380		2016.
381	7.	Blennow K, de Leon MJ, and Zetterberg H. Alzheimer's disease. Lancet 368: 387-
382		403, 2006.
383	8.	Blennow K, Hampel H, Weiner M, and Zetterberg H. Cerebrospinal fluid and
384		plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6: 131-144, 2010.
385	9.	Blennow K, Mattsson N, Scholl M, Hansson O, and Zetterberg H. Amyloid
386		biomarkers in Alzheimer's disease. Trends Pharmacol Sci 36: 297-309, 2015.
387	10.	Brinkmalm A, Brinkmalm G, Honer WG, Frolich L, Hausner L, Minthon L,
388		Hansson O, Wallin A, Zetterberg H, Blennow K, and Ohrfelt A. SNAP-25 is a
389		promising novel cerebrospinal fluid biomarker for synapse degeneration in
390		Alzheimer's disease. Mol Neurodegener 9: 53, 2014.
391	11.	Buerger K, Ewers M, Pirttila T, Zinkowski R, Alafuzoff I, Teipel SJ,
392		DeBernardis J, Kerkman D, McCulloch C, Soininen H, and Hampel H. CSF
393		phosphorylated tau protein correlates with neocortical neurofibrillary pathology in
394		Alzheimer's disease. Brain 129: 3035-3041, 2006.
395	12.	Burnham SC, Rowe CC, Baker D, Bush AI, Doecke JD, Faux NG, Laws SM,
396		Martins RN, Maruff P, Macaulay SL, Rainey-Smith S, Savage G, Ames D,
397		Masters CL, Wilson W, and Villemagne VL. Predicting Alzheimer disease from a

398		blood-based biomarker profile: A 54-month follow-up. Neurology 87: 1093-1101,
399		2016.
400	13.	Chhatwal JP, Schultz AP, Marshall GA, Boot B, Gomez-Isla T, Dumurgier J,
401		LaPoint M, Scherzer C, Roe AD, Hyman BT, Sperling RA, and Johnson KA.
402		Temporal T807 binding correlates with CSF tau and phospho-tau in normal elderly.
403		<i>Neurology</i> 87: 920-926, 2016.
404	14.	Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, Schoepp
405		DD, Paul SM, Mennerick S, and Holtzman DM. Synaptic activity regulates
406		interstitial fluid amyloid-beta levels in vivo. Neuron 48: 913-922, 2005.
407	15.	Correa JD, Starling D, Teixeira AL, Caramelli P, and Silva TA. Chemokines in
408		CSF of Alzheimer's disease patients. Arq Neuropsiquiatr 69: 455-459, 2011.
409	16.	Craig-Schapiro R, Perrin RJ, Roe CM, Xiong C, Carter D, Cairns NJ, Mintun
410		MA, Peskind ER, Li G, Galasko DR, Clark CM, Quinn JF, D'Angelo G, Malone
411		JP, Townsend RR, Morris JC, Fagan AM, and Holtzman DM. YKL-40: a novel
412		prognostic fluid biomarker for preclinical Alzheimer's disease. Biol Psychiatry 68:
413		903-912, 2010.
414	17.	Cummins PM. Occludin: one protein, many forms. Mol Cell Biol 32: 242-250,
415		2012.
416	18.	de Jong D, Jansen RW, Pijnenburg YA, van Geel WJ, Borm GF, Kremer HP,
417		and Verbeek MM. CSF neurofilament proteins in the differential diagnosis of
418		dementia. J Neurol Neurosurg Psychiatry 78: 936-938, 2007.
419	19.	De Vos A, Jacobs D, Struyfs H, Fransen E, Andersson K, Portelius E,
420		Andreasson U, De Surgeloose D, Hernalsteen D, Sleegers K, Robberecht C, Van
421		Broeckhoven C, Zetterberg H, Blennow K, Engelborghs S, and Vanmechelen E.
422		C-terminal neurogranin is increased in cerebrospinal fluid but unchanged in plasma
423		in Alzheimer's disease. Alzheimers Dement 2015.
424	20.	Dubois B. Feldman HH. Jacova C. Hampel H. Molinuevo JL. Blennow K.
425		DeKosky ST, Gauthier S, Selkoe D, Bateman R, Cappa S, Crutch S,
426		Engelborghs S, Frisoni GB, Fox NC, Galasko D, Habert MO, Jicha GA,
427		Nordberg A. Pasquier F. Rabinovici G. Robert P. Rowe C. Salloway S. Sarazin
428		M. Epelbaum S. de Souza LC. Vellas B. Visser PJ. Schneider L. Stern Y.
429		Scheltens P. and Cummings JL. Advancing research diagnostic criteria for
430		Alzheimer's disease: the IWG-2 criteria. <i>Lancet Neurol</i> 13: 614-629, 2014.
431	21.	Felgenhauer K. and Renner E. Hydrodynamic radii versus molecular weights in
432		clearance studies of urine and cerebrospinal fluid. Ann Clin Biochem 14: 100-104.
433		1977.
434	22.	Feneberg E. Steinacker P. Lehnert S. Schneider A. Walther P. Thal DR.
435		Linsenmeier M. Ludolph AC. and Otto M. Limited role of free TDP-43 as a
436		diagnostic tool in neurodegenerative diseases. Amyotroph Lateral Scler
437		Frontotemporal Degener 15: 351-356 2014
438	23	Galimberti D. Schoonenboom N. Scheltens P. Fenoglio C. Bouwman F.
439	23.	Venturelli F. Guidi I. Blankenstein MA. Bresolin N. and Scarnini F. Intrathecal
440		chemokine synthesis in mild cognitive impairment and Alzheimer disease Arch
441		Neurol 63: 538-543 2006
442	24	Galimberti D. Schoonenboom N. Scheltens P. Fenoglio C. Venturelli F.
443	<i>2</i> 1.	Piinenburg VA. Bresolin N. and Scarnini F. Intrathecal chemokine levels in
444		Alzheimer disease and frontotemporal lobar degeneration <i>Neurology</i> 66. 146-147
445		2006.

446	25.	Grahn A, Hagberg L, Nilsson S, Blennow K, Zetterberg H, and Studahl M.
447		Cerebrospinal fluid biomarkers in patients with varicella-zoster virus CNS infections.
448		J Neurol 260: 1813-1821, 2013.
449	26.	Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, and Binder
450		LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in
451		Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83: 4913-4917, 1986.
452	27.	Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E,
453		Cruchaga C, Sassi C, Kauwe JS, Younkin S, Hazrati L, Collinge J, Pocock J,
454		Lashley T. Williams J. Lambert JC. Amouvel P. Goate A. Rademakers R.
455		Morgan K, Powell J, St George-Hyslop P, Singleton A, and Hardy J. TREM2
456		variants in Alzheimer's disease. N Engl J Med 368: 117-127, 2013.
457	28.	Hall S. Ohrfelt A. Constantinescu R. Andreasson U. Surova Y. Bostrom F.
458		Nilsson C. Hakan W. Decraemer H. Nagga K. Minthon L. Londos E.
459		Vanmechelen E. Holmberg B. Zetterberg H. Blennow K. and Hansson O.
460		Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis
461		of patients with dementia and/or parkinsonian disorders. Arch Neurol 69: 1445-1452
462		2012.
463	29	Hall S. Ohrfelt A. Constantinescu R. Andreasson U. Surova Y. Bostrom F.
464	_,.	Nilsson C. Widner H. Decraemer H. Nagga K. Minthon L. Londos E.
465		Vanmechelen F., Holmberg B. Zetterberg H. Blennow K. and Hansson O.
466		Accuracy of a Panel of 5 Cerebrospinal Fluid Biomarkers in the Differential
467		Diagnosis of Patients With Dementia and/or Parkinsonian Disorders. Arch Neurol 1-
468		8 2012
469	30	Hansson O. Hall S. Ohrfelt A. Zetterberg H. Blennow K. Minthon L. Nagga K.
470	50.	Londos E. Varghese S. Maibour NK. Al-Havani A. and El-Agnaf OM. Levels of
471		cerebrospinal fluid alpha-synuclein oligomers are increased in Parkinson's disease
472		with dementia and dementia with Lewy bodies compared to Alzheimer's disease.
473		Alzheimers Res Ther 6: 25, 2014.
474	31.	Hellwig K. Kvartsberg H. Portelius E. Andreasson U. Oberstein T.J. Lewczuk P.
475	011	Blennow K. Kornhuber J. Maler JM. Zetterberg H. and Snitzer P. Neurogranin
476		and YKL-40: independent markers of synaptic degeneration and neuroinflammation
477		in Alzheimer's disease. Alzheimers Res Ther 7: 74, 2015.
478	32.	Heslegrave A. Heywood W. Paterson R. Magdalinou N. Svensson J. Johansson
479		P. Ohrfelt A. Blennow K. Hardy J. Schott J. Mills K. and Zetterberg H.
480		Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer's disease.
481		Mol Neurodegener 11: 3, 2016.
482	33.	Hesse C. Rosengren L. Andreasen N. Davidsson P. Vanderstichele H.
483		Vanmechelen E. and Blennow K. Transient increase in total tau but not phospho-
484		tau in human cerebrospinal fluid after acute stroke. <i>Neurosci Lett</i> 297: 187-190.
485		2001.
486	34.	Hong Z. Shi M. Chung KA. Ouinn JF. Peskind ER. Galasko D. Jankovic J.
487		Zabetian CP. Leverenz JB. Baird G. Montine TJ. Hancock AM. Hwang H. Pan
488		C. Bradner J. Kang U.J. Jensen PH. and Zhang J. DJ-1 and alpha-synuclein in
489		human cerebrospinal fluid as biomarkers of Parkinson's disease. <i>Brain</i> 133: 713-726.
490		2010.
491	35.	Hyman BT. Phelps CH. Beach TG. Bigio EH. Cairns NJ. Carrillo MC. Dickson
492		DW. Duvckaerts C. Frosch MP. Masliah E. Mirra SS. Nelson PT. Schneider JA.
493		Thal DR. Thies B. Trojanowski JO. Vinters HV. and Montine TJ. National
494		Institute on Aging-Alzheimer's Association guidelines for the neuropathologic
495		assessment of Alzheimer's disease. Alzheimers Dement 8: 1-13. 2012.
		* , -

496	36.	Ikeda T, Noto D, Noguchi-Shinohara M, Ono K, Takahashi K, Ishida C, Yoshita
497		M, Kawaguchi M, Kawahara N, Iwasa K, Tomita K, and Yamada M. CSF tau
498		protein is a useful marker for effective treatment of superficial siderosis of the central
499		nervous system: two case reports. Clin Neurol Neurosurg 112: 62-64, 2010.
500	37.	James BD, Wilson RS, Boyle PA, Trojanowski JQ, Bennett DA, and Schneider
501		JA. TDP-43 stage, mixed pathologies, and clinical Alzheimer's-type dementia. Brain
502		2016.
503	38.	Janelidze S, Stomrud E, Palmqvist S, Zetterberg H, van Westen D, Jeromin A,
504		Song L, Hanlon D, Tan Hehir CA, Baker D, Blennow K, and Hansson O. Plasma
505		beta-amyloid in Alzheimer's disease and vascular disease. Sci Rep 6: 26801, 2016.
506	39.	Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J,
507		Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling
508		I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C,
509		Hofman A. Ikram MA. van Duijn CM. Thorsteinsdottir U. Kong A. and
510		Stefansson K. Variant of TREM2 associated with the risk of Alzheimer's disease. N
511		Engl J Med 368: 107-116, 2013.
512	40.	Kanaki E. Paraskeyas GP. Emmanouilidou E. and Vekrellis K. The diagnostic
513		value of CSF alpha-synuclein in the differential diagnosis of dementia with Lewy
514		bodies vs. normal subjects and patients with Alzheimer's disease. <i>PLoS ONE</i> 8:
515		e81654. 2013.
516	41	Kester MI. Teunissen CE. Crimmins DL. Herries EM. Ladenson JH. Scheltens
517		P. van der Flier WM. Morris JC. Holtzman DM. and Fagan AM . Neurogranin as
518		a Cerebrospinal Fluid Biomarker for Synaptic Loss in Symptomatic Alzheimer
519		Disease JAMA Neurol 72: 1275-1280, 2015
520	42.	Kondziella D. and Zetterberg H. Hyperphosphorylation of tau protein in superficial
521		CNS siderosis. J Neurol Sci 273: 130-132, 2008.
522	43.	Kovacs GG . Molecular Pathological Classification of Neurodegenerative Diseases:
523		Turning towards Precision Medicine. Int J Mol Sci 17: 2016.
524	44.	Kuhlmann J. Andreasson U. Pannee J. Bierke M. Portelius E. Leinenbach A.
525		Bittner T. Korecka M. Jenkins RG. Vanderstichele H. Stoops E. Lewczuk P.
526		Shaw LM, Zegers I. Schimmel H. Zetterberg H. and Blennow K. CSF Abeta1-42
527		- an excellent but complicated Alzheimer's biomarker - a route to standardisation.
528		Clin Chim Acta 2016.
529	45.	Kvartsberg H. Duits FH. Ingelsson M. Andreasen N. Ohrfelt A. Andersson K.
530		Brinkmalm G. Lannfelt L. Minthon L. Hansson O. Andreasson U. Teunissen
531		CE. Scheltens P. Van der Flier WM. Zetterberg H. Portelius E. and Blennow K.
532		Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with
533		cognitive decline in prodromal Alzheimer's disease. <i>Alzheimers Dement</i> 11: 1180-
534		1190. 2015.
535	46.	Kvartsberg H. Portelius E. Andreasson U. Brinkmalm G. Hellwig K. Lelental N.
536		Kornhuber J. Hansson O. Minthon L. Spitzer P. Maler JM. Zetterberg H.
537		Blennow K. and Lewczuk P. Characterization of the postsynaptic protein
538		neurogranin in paired cerebrospinal fluid and plasma samples from Alzheimer's
539		disease patients and healthy controls. <i>Alzheimers Res Ther</i> 7: 40, 2015.
540	47.	Landqvist Waldo M, Frizell Santillo A, Passant U, Zetterberg H, Rosengren L,
541		Nilsson C. and Englund E. Cerebrospinal fluid neurofilament light chain protein
542		levels in subtypes of frontotemporal dementia. <i>BMC Neurol</i> 13: 54. 2013.
543	48.	Lue LF, Schmitz CT, Serrano G. Sue LI. Beach TG. and Walker DG. TREM2
544	-	Protein Expression Changes Correlate with Alzheimer's Disease Neurodegenerative
545		Pathologies in Post-Mortem Temporal Cortices. Brain Pathol 25: 469-480, 2015.

546	49.	Magdalinou NK, Paterson RW, Schott JM, Fox NC, Mummery C, Blennow K,
547		Bhatia K, Morris HR, Giunti P, Warner TT, de Silva R, Lees AJ, and
548		Zetterberg H. A panel of nine cerebrospinal fluid biomarkers may identify patients
549		with atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry 86: 1240-
550		1247, 2015.
551	50.	Maia LF, Kaeser SA, Reichwald J, Hruscha M, Martus P, Staufenbiel M, and
552		Jucker M. Changes in Amyloid-beta and Tau in the Cerebrospinal Fluid of
553		Transgenic Mice Overexpressing Amyloid Precursor Protein. Sci Transl Med 5:
554		194re192, 2013.
555	51.	Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, and
556		Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down
557		syndrome. Proc Natl Acad Sci U S A 82: 4245-4249, 1985.
558	52.	Mattsson N, Schott JM, Hardy J, Turner MR, and Zetterberg H. Selective
559		vulnerability in neurodegeneration: insights from clinical variants of Alzheimer's
560		disease. J Neurol Neurosurg Psychiatry 87: 1000-1004, 2016.
561	53.	Mattsson N, Tabatabaei S, Johansson P, Hansson O, Andreasson U, Mansson
562		JE, Johansson JO, Olsson B, Wallin A, Svensson J, Blennow K, and Zetterberg
563		H. Cerebrospinal fluid microglial markers in Alzheimer's disease: elevated
564		chitotriosidase activity but lack of diagnostic utility. Neuromolecular Med 13: 151-
565		159, 2011.
566	54.	Mattsson N, Zetterberg H, Janelidze S, Insel PS, Andreasson U, Stomrud E,
567		Palmqvist S, Baker D, Tan Hehir CA, Jeromin A, Hanlon D, Song L, Shaw LM,
568		Trojanowski JQ, Weiner MW, Hansson O, and Blennow K. Plasma tau in
569		Alzheimer disease. Neurology 87: 1827-1835, 2016.
570	55.	Mollenhauer B, El-Agnaf OM, Marcus K, Trenkwalder C, and Schlossmacher
571		MG. Quantification of alpha-synuclein in cerebrospinal fluid as a biomarker
572		candidate: review of the literature and considerations for future studies. Biomark
573		<i>Med</i> 4: 683-699, 2010.
574	56.	Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, Sixel-Doring F, Trenkwalder
575		C, and Schlossmacher MG. alpha-Synuclein and tau concentrations in
576		cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet
577		Neurol 10: 230-240, 2011.
578	57.	Moore S, Evans LD, Andersson T, Portelius E, Smith J, Dias TB, Saurat N,
579		McGlade A, Kirwan P, Blennow K, Hardy J, Zetterberg H, and Livesey FJ. APP
580		metabolism regulates tau proteostasis in human cerebral cortex neurons. Cell Rep 11:
581		689-696, 2015.
582	58.	Ohrfelt A, Axelsson M, Malmestrom C, Novakova L, Heslegrave A, Blennow K,
583		Lycke J, and Zetterberg H. Soluble TREM-2 in cerebrospinal fluid from patients
584		with multiple sclerosis treated with natalizumab or mitoxantrone. <i>Mult Scler</i> 2016.
585	59.	Ohrfelt A, Grognet P, Andreasen N, Wallin A, Vanmechelen E, Blennow K, and
586		Zetterberg H. Cerebrospinal fluid alpha-synuclein in neurodegenerative disorders-a
587		marker of synapse loss? Neurosci Lett 450: 332-335, 2009.
588	60.	Olsson B, Hertze J, Lautner R, Zetterberg H, Nagga K, Hoglund K, Basun H,
589		Annas P, Lannfelt L, Andreasen N, Minthon L, Blennow K, and Hansson O.
590		Microglial markers are elevated in the prodromal phase of Alzheimer's disease and
591		vascular dementia. J Alzheimers Dis 33: 45-53, 2013.
592	61.	Olsson B, Lautner R, Andreasson U, Ohrfelt A, Portelius E, Bjerke M, Holtta
593		M, Rosen C, Olsson C, Strobel G, Wu E, Dakin K, Petzold M, Blennow K, and
594		Zetterberg H . CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a
595		systematic review and meta-analysis. <i>Lancet Neurol</i> 15: 673-684, 2016.

50	(()	
59	6 62.	Olsson B, Lautner R, Andreasson U, Ohrfelt A, Portelius E, Bjerke M, Holtta
59	/	M, Rosen C, Olsson C, Strobel G, Wu E, Dakin K, Petzold M, Blennow K, and
59	8	Zetterberg H. CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a
59	9	systematic review and meta-analysis. <i>Lancet Neurol</i> In press: 2016.
60	0 63.	Peluso MJ, Valcour V, Phanuphak N, Ananworanich J, Fletcher JL,
60	1	Chalermchai T, Krebs SJ, Robb ML, Hellmuth J, Gisslen M, Zetterberg H, and
60	2	Spudich S. Immediate initiation of cART is associated with lower levels of
60	3	cerebrospinal fluid YKL-40, a marker of microglial activation, in HIV-1 infection.
60	4	<i>AIDS</i> 31: 247-252, 2017.
60	5 64.	Piccio L, Deming Y, Del-Aguila JL, Ghezzi L, Holtzman DM, Fagan AM,
60	6	Fenoglio C, Galimberti D, Borroni B, and Cruchaga C. Cerebrospinal fluid
60	7	soluble TREM2 is higher in Alzheimer disease and associated with mutation status.
60	8	Acta Neuropathol 2016.
60	9 65.	Portelius E, Zetterberg H, Skillback T, Tornqvist U, Andreasson U,
61	0	Trojanowski JQ, Weiner MW, Shaw LM, Mattsson N, and Blennow K.
61	1	Cerebrospinal fluid neurogranin: relation to cognition and neurodegeneration in
61	2	Alzheimer's disease. Brain 138: 3373-3385, 2015.
61	3 66.	Ramont L, Thoannes H, Volondat A, Chastang F, Millet MC, and Maquart FX.
61	4	Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in
61	5	cerebrospinal fluid and serum: implications in clinical practice. Clin Chem Lab Med
61	6	43: 1215-1217, 2005.
61	7 67.	Riemenschneider M, Wagenpfeil S, Vanderstichele H, Otto M, Wiltfang J,
61	8	Kretzschmar H, Vanmechelen E, Forstl H, and Kurz A. Phospho-tau/total tau
61	9	ratio in cerebrospinal fluid discriminates Creutzfeldt-Jakob disease from other
62	0	dementias. Mol Psychiatry 8: 343-347, 2003.
62	1 68.	Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Inazawa J, Fujimoto K, and
62	2	Tsukita S. Mammalian occludin in epithelial cells: its expression and subcellular
62	3	distribution. Eur J Cell Biol 73: 222-231, 1997.
62	4 69.	Schneider JA, Arvanitakis Z, Leurgans SE, and Bennett DA. The neuropathology
62	5	of probable Alzheimer disease and mild cognitive impairment. Ann Neurol 66: 200-
62	6	208, 2009.
62	7 70.	Schott JM, and Warren JD. Alzheimer's disease: mimics and chameleons. Pract
62	8	Neurol 12: 358-366, 2012.
62	9 71.	Selkoe DJ. Alzheimer's disease is a synaptic failure. Science 298: 789-791, 2002.
63	0 72.	Seppala TT, Nerg O, Koivisto AM, Rummukainen J, Puli L, Zetterberg H,
63	1	Pyykko OT, Helisalmi S, Alafuzoff I, Hiltunen M, Jaaskelainen JE, Rinne J,
63	2	Soininen H, Leinonen V, and Herukka SK. CSF biomarkers for Alzheimer disease
63	3	correlate with cortical brain biopsy findings. <i>Neurology</i> 78: 1568-1575, 2012.
63	4 73.	Shahnawaz M, Tokuda T, Waragai M, Mendez N, Ishii R, Trenkwalder C,
63	5	Mollenhauer B, and Soto C. Development of a Biochemical Diagnosis of Parkinson
63	6	Disease by Detection of alpha-Synuclein Misfolded Aggregates in Cerebrospinal
63	7	Fluid. JAMA Neurol 2016.
63	8 74.	Shan R. Szmydynger-Chodobska J. Warren OU, Mohammad F. Zink BJ. and
63	9	Chodobski A . A New Panel of Blood Biomarkers for the Diagnosis of Mild
64	0	Traumatic Brain Injury/Concussion in Adults. <i>J Neurotrauma</i> 33: 49-57, 2016.
64	1 75.	Shi M, Kovac A, Korff A, Cook TJ, Ginghina C. Bullock KM. Yang L. Stewart
64	2	T. Zheng D. Aro P. Atik A. Kerr KF. Zabetian CP. Peskind ER. Hu SC. Ouinn
64	3	JF. Galasko DR. Montine TJ. Banks WA. and Zhang J. CNS tau efflux via
64	4	exosomes is likely increased in Parkinson's disease but not in Alzheimer's disease.
64	5	Alzheimers Dement 12: 1125-1131, 2016.

646	76.	Sjogren M, Rosengren L, Minthon L, Davidsson P, Blennow K, and Wallin A.
647		Cytoskeleton proteins in CSF distinguish frontotemporal dementia from AD.
648		Neurology 54: 1960-1964, 2000.
649	77.	Skillback T, Farahmand B, Bartlett JW, Rosen C, Mattsson N, Nagga K,
650		Kilander L, Religa D, Wimo A, Winblad B, Rosengren L, Schott JM, Blennow
651		K, Eriksdotter M, and Zetterberg H. CSF neurofilament light differs in
652		neurodegenerative diseases and predicts severity and survival. <i>Neurology</i> 83: 1945-
653		1953, 2014.
654	78.	Skoog I, Wallin A, Fredman P, Hesse C, Aevarsson O, Karlsson I, Gottfries CG,
655		and Blennow K. A population study on blood-brain barrier function in 85-year-olds:
656		relation to Alzheimer's disease and vascular dementia. <i>Neurology</i> 50: 966-971, 1998.
657	79.	Slaets S. Vanmechelen E. Le Bastard N. Decraemer H. Vandiick M. Martin J.J.
658		De Devn PP. and Engelborghs S. Increased CSF alpha-synuclein levels in
659		Alzheimer's disease: correlation with tau levels. <i>Alzheimers Dement</i> 10: S290-298.
660		2014.
661	80.	Steinacker P. Blennow K. Halbgebauer S. Shi S. Ruf V. Oeckl P. Giese A. Kuhle
662	00.	J. Slivarichova D. Zetterberg H. and Otto M Neurofilaments in blood and CSF
663		for diagnosis and prediction of onset in Creutzfeldt-Jakob disease. Sci Ren 6: 38737
664		2016
665	81	Suarez-Calvet M Kleinherger G Araque Cahallero MA Brendel M Rominger
666	01.	A Alcolea D Fortea I Lleo A Blesa R Cisnert ID Sanchez-Valle R Antonell
667		A Rami L. Molinuevo II. Brosseron F. Traschutz A. Heneka MT. Struvfs H
668		Fngelhorghs S Sleegers K Van Broeckhoven C Zetterherg H Nellgard B
669		Blennow K Crisnin A Ewers M and Haass C sTREM2 cerebrospinal fluid levels
670		are a notential biomarker for microglia activity in early-stage Alzheimer's disease
671		and associate with neuronal injury markers FMBO Mol Med 2016
672	82	Takahashi K Rochford CD and Neumann H Clearance of anontotic neurons
673	02.	without inflammation by microalial triggering recentor expressed on myeloid cells-?
674		<i>LEvn Mad</i> 201: 647-657–2005
675	83	Tarawneh B. D'Angelo C. Crimmins D. Herries F. Criest T. Fagan AM. Zinfel
676	05.	GI Ladenson IH Morris IC and Holtzman DM Diagnostic and Prognostic
677		Utility of the Synantic Marker Neurogranin in Alzheimer Disease IAMA Neurol
678		2016
679	84	Tateno F. Sakakibara R. Kawai T. Kishi M. and Murano T. Alpha-synuclein in
680	04.	the cerebrospinal fluid differentiates synucleinonathies (Parkinson Disease dementia
681		with Lewy bodies multiple system atronby) from Alzbeimer disease. Alzbeimer Dis
682		Assoc Disord 26: 212-216-2012
683	85	Assoc Disolu 20. 213-210, 2012. Thorsell A. Biorko M. Cohom I. Brunhago F. Vanmachalan F. Androason N
684	65.	Hansson O Minthon I. Zotterborg H and Blannow K Neurogranin in
685		archrogring I fluid as a marker of superior degeneration in Alzheimer's disease
686		Brain Pag 1262: 12-22, 2010
687	86	Tibbling C Link H and Ohman S Principles of albumin and IgG analyses in
688	80.	nourological disorders. I. Establishment of reference values. Seand I. Clin I ab Invest
000 600		27, 285 200 1077
600	97	J1. J0J-J70, 17/1. Taluda T. Ourashi MM. Andah MT. Vanghasa S. Shahah S.A. Vassi T. Jakigami
090 601	0/.	N Tomooka A Nakagawa M and El Agnaf OM Detection of alevated levels of
602		IN, I AIHAUKA A, INAKAgawa IN, AHU EI-AGHAI UNI. Detection of elevated levels of
092 (02		aipna-synuclein oligomers in CSF from patients with Parkinson disease. <i>Neurology</i>
693		/5: 1/00-1//2, 2010.

694	88.	Uchihara T, and Giasson BI. Propagation of alpha-synuclein pathology:
695		hypotheses, discoveries, and yet unresolved questions from experimental and human
696		brain studies. Acta Neuropathol 131: 49-73, 2016.
697	89.	Ulrich JD, and Holtzman DM. TREM2 Function in Alzheimer's Disease and
698		Neurodegeneration. ACS Chem Neurosci 2016.
699	90.	Walker LC, and Jucker M. Neurodegenerative diseases: expanding the prion
700		concept. Annu Rev Neurosci 38: 87-103, 2015.
701	91.	Wallin A, Blennow K, Fredman P, Gottfries CG, Karlsson I, and Svennerholm
702		L. Blood brain barrier function in vascular dementia. Acta Neurol Scand 81: 318-
703		322, 1990.
704	92.	Wallin AK, Blennow K, Zetterberg H, Londos E, Minthon L, and Hansson O.
705	,	CSF biomarkers predict a more malignant outcome in Alzheimer disease. <i>Neurology</i>
706		74: 1531-1537, 2010
707	93	van Fijk II van Everbroeck B Abdo WE Kremer BP and Verbeek MM CSE
708	<i>))</i> .	neurofilament proteins levels are elevated in sporadic Creutzfeldt-Iakob disease I
700		Alzhaimars Dis 21: 569-576, 2010
710	94	Watahe-Rudolnh M. Song 7. Lausser I. Schnack C. Regus-Nahrmann V
711	74.	Schaithauar MO Battingar C Otto M Tumani H Thal DB Attams I Jallingar
712		KA Kastlar HA von Arnim CA and Rudolnh KI. Chitinase enzyme activity in
712		CSE is a powerful biomarker of Alzheimer disease Neurology 78: 560 577 2012
717	05	Wallington H. Patarson DW. Portalius F. Tornavist II. Magdalinou N. Fox NC
714	95.	Rionnow K. Schott IM and Zetterbarg H. Increased CSE neurographin
715		appendiction is specific to Alzheimer disease. Neurology 86: 820-825, 2016
710	06	Wonnetteem M. Sureve V. Hell S. Nilsson C. Minthen L. Bestrem F. Hansson O.
/1/	90.	weinstrom M, Surova I, nan S, Misson C, Minthon L, Dostrom F, nansson C,
710		ally Neisen HW. Low CSF levels of both alpha-synuclein and the alpha-synuclein alexying any managing in nation to with sumuclain another. DL of ONE 9, 552250
719		cleaving enzyme neurosin in patients with synucleinopathy. <i>PLoS ONE</i> 8: e55250,
720	07	2015. Wasterand S. Leon; F. Hue A. Lymborn S. Khandalson MD. Ashter NJ. Kiddle
721	97.	Westwood S, Leoni E, Hye A, Lynnam S, Knondoker MR, Asnton NJ, Kiddle SJ, Daird AJ, Saing Eventes D, Leong D, Cref J, Hebin CT, Baker D, Canada C,
722		SJ, Baird AL, Sainz-Fueries K, Leung K, Grai J, Henir CT, Baker D, Cereda C,
723		Bazenet C, ward M, I nambisetty M, and Lovestone S. Blood-Based Blomarker
724		Candidates of Cerebral Amyloid Using PIB PET in Non-Demented Elderly. J
125	00	Alzheimers Dis 52 : $561-572$, 2016.
/26	98.	Windlad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Cedazo-
121		Minguez A, Dubois B, Edvardsson D, Feldman H, Fratiglioni L, Frisoni GB,
/28		Gauthier S, Georges J, Graff C, Iqbal K, Jessen F, Johansson G, Jonsson L,
729		Kivipeito M, Knapp M, Mangialasche F, Mells R, Nordberg A, Rikkert MO,
/30		Qiu C, Sakmar TP, Scheitens P, Schneider LS, Sperling R, Ijernberg LO,
731		Waldemar G, Wimo A, and Zetterberg H. Defeating Alzheimer's disease and
732		other dementias: a priority for European science and society. <i>Lancet Neurol</i> 15: 455-
733		532, 2016.
734	99.	Winston CN, Goetzl EJ, Akers JC, Carter BS, Rockenstein EM, Galasko D,
735		Masliah E, and Rissman RA. Prediction of conversion from mild cognitive
736		impairment to dementia with neuronally derived blood exosome protein profile.
737		Alzheimers Dement (Amst) 3: 63-72, 2016.
738	100.	Voyle N, Baker D, Burnham SC, Covin A, Zhang Z, Sangurdekar DP, Tan
739		Hehir CA, Bazenet C, Lovestone S, Kiddle S, and Dobson RJ. Blood Protein
740		Markers of Neocortical Amyloid-beta Burden: A Candidate Study Using SOMAscan
741		Technology. J Alzheimers Dis 46: 947-961, 2015.

742	101.	Yin GN, Jeon H, Lee S, Lee HW, Cho JY, and Suk K. Role of soluble CD14 in
743		cerebrospinal fluid as a regulator of glial functions. J Neurosci Res 87: 2578-2590,
744		2009.
745	102.	Zetterberg H. Neurofilament Light: A Dynamic Cross-Disease Fluid Biomarker for
746		Neurodegeneration. Neuron 91: 1-3, 2016.
747	103.	Zetterberg H. Plasma amyloid beta-quo vadis? Neurobiol Aging 36: 2671-2673,
748		2015.
749	104.	Zetterberg H. Review: Tau in biofluids - relation to pathology, imaging and clinical
750		features. Neuropathol Appl Neurobiol 2017.
751	105.	Zetterberg H, Skillback T, Mattsson N, Trojanowski JQ, Portelius E, Shaw LM,
752		Weiner MW, and Blennow K. Association of Cerebrospinal Fluid Neurofilament
753		Light Concentration With Alzheimer Disease Progression. JAMA Neurol 73: 60-67,
754		2016.
755	106.	Zetterberg H, Wilson D, Andreasson U, Minthon L, Blennow K, Randall J, and
756		Hansson O. Plasma tau levels in Alzheimer's disease. Alzheimers Res Ther 5: 9,
757		2013.
758		
759		
760		
761		

762 **Table 1.** Replicated fluid biomarker candidates that correlate with AD-related

763

pathologies

Pathology	Biomarker	Biofluid	Direction of Change	Context of use
Plaque pathology	Αβ42	CSF	Decrease in AD	Clinical and
				research
Neurofibrillary	P-tau	CSF	Increase in AD	Clinical and
tangle pathology				research
Neurodegeneration	T-tau	CSF	Increase in AD	Clinical and
				research
		Plasma	Slight increase in AD	Research
	NF-L	CSF	Increase in AD	Clinical and
				research
		Plasma/serum	Increase in AD	Research
	VLP-1	CSF	Increase in AD	Research
	FABP	CSF	Increase in AD	Research
Synaptic	Ng	CSF	Increase in AD	Research
pathology				
Astroglial	sTREM2	CSF	Slight increase in AD	Research
activation	YKL-40	CSF	Slight increase in AD	Research
Blood-brain	CSF/serum	CSF/serum	Normal to slight	Clinical and
(blood-CSF)	albumin		increase in AD	research
barrier impairment	ratio			

764

Abbreviations: AD, Alzheimer's disease; A β 42, the 42 amino acid form of amyloid β ;

765 P-tau, phosphorylated tau; T-tau, total tau; NF-L, neurofilament light; VLP-1, visinin-

766 like protein 1; FABP, fatty acid-binding protein; Ng, neurogranin; sTREM2, secreted

767 triggering receptor expressed on myeloid cells 2; CSF, cerebrospinal fluid.

768