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Abstract 
 

Teachers are among the most important school inputs for pupil attainment (Hanushek, 2011). Despite 

this, economically-advanced countries experience recurring shortages of teachers, resulting in sub-

optimal hiring and deployment of teachers and reduced pupil attainment. This thesis investigates the 

determinants of entry to and exit from the teaching profession in order to understand how these 

shortages can be reduced. 

Very little is known about the correlates of entry to the teaching profession. Non-cognitive skills and 

personality-type have been shown to be important predictors of occupational choice in general (Cobb-

Clark & Tan, 2011; Nieken & Stormer, 2010). However, these have not been used to model entry to 

the teaching profession. Chapter 2 of this thesis uses rich data from a household panel survey to 

model entry to the profession. The model identifies groups of people who are up to four times more 

likely to enter teaching than the typical graduate. This information can be used to target recruitment 

efforts. 

Retaining teachers is also important for ensuring sufficient supply. Research using administrative data 

generally finds the proportion of disadvantaged pupils in a school to be the strongest correlate of 

turnover. However, recent literature suggests that working conditions are important omitted variables 

in such analysis. Chapter 3 uses data on teachers from thirty-five countries to develop a rich set of 

working conditions measures and uses these to model teacher job satisfaction and intention to quit. 

The results highlight the importance of school leadership and assigning teachers to subjects in which 

they have been trained. Chapter 4 builds on this analysis by evaluating the impact of a subject-specific 

professional development intervention for science teacher retention. Double- and triple-difference 

models suggest that participation in the programme improves retention in the profession, though not 

in the participant’s original school. 
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Impact Statement 
 

The discoveries made in this PhD can be put to beneficial use in several ways. The Department for 

Education regularly states that teacher retention has been broadly stable for the last twenty years. 

Contrary to this, Chapter 1 demonstrates that the decline in early career retention is a major 

contributor to the current teacher shortage. I have recently written about this in the tes (Sims, 2018a). 

The Department’s policy should shift to reflect this fact by placing a stronger emphasis on retaining 

more teachers, rather than just trying to increase recruitment. Chapter 3 identifies robust school-level 

correlates of teacher job satisfaction and turnover intentions. I am currently working with the 

Association of School and College Leaders (ASCL) to pilot a shortened version of the questionnaire 

used in Chapter 3 to help 14 schools self-assess the quality of working conditions they provide for 

their teachers. The aim is to help schools identify and address areas in which they have weaknesses. If 

the pilot proves a success, then ASCL plan to offer this service to their full membership in over 

18,000 schools. Chapter 4 reports on an evaluation of the National STEM Learning Centre 

professional development courses for science teachers. The results from this evaluation are now being 

used by STEM Learning as part of the evidence base in their bid to have public funding for the 

programme renewed. This research was covered in the Times, the i, tes and Schools Week. Finally, 

Chapter 2 established that just four variables are able to identify individuals up to four times more 

likely to enter the teaching profession than the average graduate. Given the current shortage of 

teachers, this information can be used by policymakers to improve the targeting of marketing aimed at 

increasing recruitment.  
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Chapter 1: Introduction 
 

Teachers have an important influence on their pupils. A one standard deviation (SD) increase in 

teacher quality is associated with a 0.1 to 0.2 SD increase in pupil attainment (Burgess, 2015). This is 

a strong relationship, at least when compared to other school level inputs. Indeed, Hanushek claims 

that “no other attribute of schools comes close to having this much influence on student achievement” 

(2011, p. 467). Good teachers improve equity as well as efficiency, because they have a 

disproportionately large impact on the attainment of poor pupils (Hamre & Pianta, 2005; Slater et al., 

2012). Teachers also have an important influence on their pupils’ wider socio-emotional skills 

(Jackson, 2016; Kraft, 2018). It is perhaps not surprising then that the effects of good teachers can be 

detected in their pupils’ earnings long after leaving school (Chetty et al., 2014). Ensuring a sufficient 

supply of high quality teachers should therefore be a priority for education policymakers.  

Despite this, shortages of qualified teachers are a widespread and recurring problem in advanced 

economies (Dolton, 2006). The 2013 Teaching and Learning International Survey (TALIS) collected 

data from a representative sample of school principals in over thirty countries. When these school 

leaders were asked about the biggest constraint they faced in improving the quality of instruction, the 

most common response was the lack of appropriately qualified staff (OECD, 2014). Faced with such 

shortages, school leaders are forced to lower recruitment standards, increase their use of temporary 

teachers or increase class sizes (Smithers & Robinson, 2000). This has prompted organisations 

including the UN, World Bank, OECD and the EU to warn that teacher recruitment efforts need to be 

stepped up (Figazzolo, 2012; Ranguelov et al., 2012; Schleicher, 2011).  

This thesis aims to address the problem of teacher shortages by providing new evidence on why 

people enter and exit the teaching profession. In Chapter 2, I use household panel data to analyse long 

terms trends in the types of people who become teachers and then utilise the rich data to conduct 

detailed modelling of the reasons why people choose to become teachers. In Chapter 3, I switch focus 

to investigate teacher retention, utilising the TALIS survey data to develop a set of working 

conditions measures which allow me to model the determinants of teacher job satisfaction and desire 

to move school. Then in Chapter 4, I focus on identifying the causal impact of one important aspect of 

working conditions, professional development, on teacher retention. Chapter 5 concludes by 

summarising the findings of the research.   

This thesis is part of a wider programme of research which I have been conducting on the teacher 

labour market, including work on socio-economic inequalities in access to good teachers (Allen & 

Sims, 2018a; 2018b), the quality of teacher working conditions across countries (Zieger et al., 2018), 

the effects of targeted salary supplements on early-career teacher retention (Sims, 2018b), and the 
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effect of leadership training (Knibbs et al., 2017) and school inspections (Sims, 2016) on teacher 

retention. 

1.1 Teacher Shortages 

Teacher shortages are a cyclical phenomenon. Long run cycles occur as demographic bulges, such as 

the post-war Baby Boom, work their way through the age distribution (Dolton, 2006). As these 

demographic bulges reach school age the number of pupils increases, thus increasing the demand for 

teachers; as they reach adulthood and enter the labour market, the supply of teachers increases (see 

Chapter 2); and as they reach retirement there can be sharp contractions in the supply of teachers. The 

post-war baby boom generation (born 1945-64), for example, began attending school in the fifties, 

began entering the labour market in the sixties and are now entering retirement (Callanan & 

Greenhaus, 2008; Chevalier & Dolton, 2004a). England and Wales experience peaks in the number of 

live births approximately once every twenty to thirty years (ONS, 2015).  

As well as being influenced by demographic cycles, teacher shortages are also related to economic 

cycles. When recessions occur, employment opportunities in teaching are relatively prevalent. In the 

two years immediately following the 2008 recession for example, there was a 30% increase in the 

number of graduates choosing to train as teachers (Howson & McNamara, 2012). In periods of 

economic expansion however, relative wages in other occupations rise, incentivising graduates to 

choose occupations other than teaching (Chevalier et al., 2007). Demographic and economic cycles 

therefore conspire to ensure that teacher shortages are a recurring public policy challenge. 

England is currently experiencing something of a perfect storm in terms of the demographics and 

economics of teacher supply. First, a demographic bulge is currently working its way through the 

secondary school-age population (DfE, 2016), with the result that there is forecast to be a 13% 

increase in pupil numbers between 2015 and 2024 (Lynch et al., 2016). Second, Baby Boom teachers 

have now largely retired, increasing the need for additional recruitment (Chevalier & Dolton 2004a). 

Third, England has recently experienced an improvement in graduate (un)employment (DfE, 2017a) 

and an increasing gap in median earnings between teachers and other professions in the majority of 

regions in England (STRB, 2017), drawing graduates away from teaching. 

It is perhaps not surprising then that there is a growing shortage of teachers in England. The 

Department for Education (DfE) uses a sophisticated model to estimate the number of teachers it will 

need to train each year in order to ensure a sufficient supply of classroom teachers. On the supply 

side, the model takes into account all flows into and out of the profession, which vary depending on 

the state of the economy and the age profile of the teaching workforce, among other factors. On the 

demand side, the model takes into account the number of pupils of school age, determinants of which 

include the number of births and net migration patterns. The difference between these two numbers 

can then be used to calculate the number of teachers that need to be recruited each year in order to 
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balance supply and demand, within recent (though not necessarily optimal) pupil teacher ratios. 

Further information on how sufficient levels of recruitment are calculated can be found in DfE (2013). 

Figure 1 shows recruitment to initial teacher training (ITT) since 2010 as a proportion of the 

government’s target, for both primary and secondary. It shows that the shortages are largely confined 

to secondary teachers and that there has only been an overall shortage of secondary teachers since the 

2013/14 academic year. Measured in absolute terms, the secondary recruitment shortage in 2017/18 

was 3,731. 

 

Figure 1: Annual post-graduate ITT recruitment against targets 

 
Notes: Source: Initial Teacher Training Census Main Tables. Post-grad ITT was 83% of ITT in 2017 (DfE, 2017d). 

 

The picture is considerably more varied at subject level. Figure 2 shows the absolute teacher balance 

for the English Baccalaureate (EBACC) science, technology, engineering and mathematics (STEM) 

subjects. Figure 3 shows the same for EBACC Non-STEM subjects. The two are shown separately to 

improve visual clarity. The subject-specific estimates of sufficiency are calculated using the same 

method as those shown in Figure 1, but also taking into account pupil subject choices at GCSE. For 

further detail on how this is calculated see DfE (2013). The absolute teacher balance has been 

calculated by taking the subject-specific absolute recruitment shortage in each year and deflating it by 

the DfE’s assumptions about the proportion of initial teacher trainees who take up jobs in state 

schools in England after qualification. A number above zero represents a surplus of teachers for a 

given subject and a number below zero indicates a shortage. Figure 2 and Figure 3 show that none of 

the EBACC subjects had a shortage of teachers in the 2010/11 or 2011 academic years. Mathematics, 

overall science and computing went into shortage in 2012; followed by MFL in 2013; geography, 
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biology and physics in 2014; chemistry in 2015; then English in 2016. By 2017, the only EBACC 

subject not in shortage was history. Among non-EBACC subjects (not shown here for space reasons) 

art, music, religious studies and business are also in shortage. Indeed, physical education is the only 

non-EBACC subject included in the data which was not in shortage in 2017. 

 

Figure 2: Teacher balance by subject (STEM) 2010-17 

 
Notes: Source: Initial Teacher Training Census Main Tables and Teacher Supply Model. Figures for computing first 

reported for 2012/13. Figures for the three sciences first reported separately for 2014. 

 

 

Despite being foreseeable based on demographic and economic trends, the current teacher shortage 

has an additional, less predictable component: declining early-career retention. Figure 4 shows 

retention of each cohort of newly qualified teachers (NQT) in England. The 2005 to 2009 cohorts 

follow a broadly similar trajectory. From 2010 onwards however, there is a clear decline in retention, 

with each new cohort having a steeper downward gradient than the last. Early-career retention is 

worse among shortage-subject teachers such as scientists (Kelly, 2004; Worth & De Lazzari, 2017), 

perhaps because they face higher outside pay ratios (MAC, 2016). Early-career retention is also worse 

among certain initial teacher training routes such as Teach First, which has expanded over this period 

(Allen et al., 2013). This decline in early-career retention is materially significant. As shown in Table 

14 in Appendix A, if early-career retention rates had been frozen at 2009 levels, there would now be 

an additional 4,398 teachers working in England. To put this figure in context, the total shortfall of 

EBACC teachers is currently 2,080. Declining early-career teacher retention is therefore a major 

contributor to the current teacher shortage. 
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Figure 3: Teacher balance by subject (Non STEM) 2010-17

 

Notes: Source: Initial Teacher Training Census Main Tables (see: https://www.gov.uk/government/collections/statistics-

teacher-training) and DfE(2013). 

 

Figure 4: Proportion of NQT cohort retained 

  

Notes: Source: School Workforce in England 2017 (see: https://www.gov.uk/government/statistics/school-workforce-in-

england-november-2017) 
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1.2 Teacher Supply Policy 

Policymakers have responded to these shortages by offering a range of financial incentives for 

teachers. Scholarships and bursaries have been introduced which award teachers a tax-free sum of 

money to support them through initial teacher training. The value of these incentives changes from 

year to year and depends on a trainee’s degree class and degree subject. Among EBACC subjects in 

2017 the value of these payments ranges from £4,000 for those with a 2:1 in history, up to £28,000 for 

those awarded a scholarship (requiring a 2:1) in physics, chemistry, languages, computing or 

geography.1  

In recognition of the problem of decling early-career retention, policymakers have recently 

supplemented these recruitment incentives with retention incentives. In October 2017, the government 

announced two new policies in this area. The first involves reimbursing science and modern foreign 

language teachers’ student loan repayments, which will be worth around £540 per year for a teacher in 

the fifth year of their career.2 The second involves paying maths teachers who train in the 2018-19 

academic year £5,000 in both the third and fifth years of their career, conditional on uninterrupted 

service in state funded schools in England after qualification. Those working in a list of priority areas 

are eligible for an additional £2,500 at each payment point (DfE, 2017b). Evidence from evaluations 

of three similar policies in the USA (Bueno & Sass, 2016; Clotfelter et al., 2008; Feng & Sass, 2016) 

suggests that teachers do respond to these sorts of incentives. Simulations applying the estimates from 

these evaluations to data on teachers in England suggest that the maths retention bonuses in England 

are large enough to substantially reduce, if not eliminate shortages in that subject (Sims, 2018b). 

Unfortunately, many of these policies were introduced too late to be evaluated in this PhD. 

A second strand of government policy has focused on the non-pecuniary aspects of teachers’ jobs, 

specifically their satisfaction with their working lives. This has primarily been motivated by 

widespread complaints about increasing workload in the profession. Workload surveys show that 

teachers’ self-reported workload has increased by five hours per week over the past five years (Deakin 

et al., 2010; Higton et al., 2017). Full time secondary teachers in England now report spending an 

average of 55.3 hours per week working during term time, with 26% working 60 hours or more. On 

average, 17.4 hours of teachers’ working time was reported as occurring during evenings and 

weekends, or otherwise outside of school time. Perhaps more important than the total number of hours 

spent at work is the composition of this workload. Of the 55.3 hours per week, only 20.9 hours were 

spent teaching – which is comparable to the average among TALIS countries (Higton et al., 2017; 

Micklewright et al., 2014). The additional workload in England is due instead to the 21 hours per 

week spent on planning, marking and admin – which is well above the TALIS average (Higton et al., 

                                                           
1 https://getintoteaching.education.gov.uk/funding-and-salary/overview accessed 06/12/2017 
2 https://www.gov.uk/guidance/teachers-student-loan-reimbursement-guidance-for-teachers-and-schools 

accessed 06/12/2017 

https://getintoteaching.education.gov.uk/funding-and-salary/overview
https://www.gov.uk/guidance/teachers-student-loan-reimbursement-guidance-for-teachers-and-schools
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2017; Micklewright et al., 2014). It is these sorts of administrative tasks and the overly detailed, 

bureaucratic nature in which they are conducted which teachers identify as being the aspects of 

workload that they like least (Gibson et al., 2015). This research has prompted policymakers to work 

with unions and school leaders to try to reduce unnecessary workload in schools (DfE, 2017c). 

 

1.3 Working Conditions 

Workload is however only one aspect of the working conditions which influence teachers’ decisions 

about whether to remain in the profession. For years, researchers using administrative datasets found 

that pupil characteristics, particularly the deprivation of a school’s intake, were the best predictor of 

high teacher turnover in schools (Boyd et al., 2005; Hanushek et al., 2004; Scafidi et al., 2007; Allen 

et al., 2018). However, following pioneering research by Eileen Weiss (1999) and Richard Ingersoll 

(2001), a new wave of research utilising survey data has demonstrated that the association between 

pupil deprivation and teacher retention is largely eliminated when measures of working conditions are 

included in the models (Simon & Johnson, 2015). The best articles in this literature utilise linked 

survey and administrative data and use factor analysis to identify latent variables measuring working 

conditions in schools (Boyd et al., 2010; Johnson et al., 2012; Ladd 2011). These studies generally 

find that the social aspects of school life, such as leadership/management and staff collaboration, are 

the best predictors of teacher retention (Simon & Johnson, 2015). Interestingly, two studies which 

analyse experienced teachers and early-career teachers separately found that working conditions have 

a stronger influence on the retention of those that have recently qualified (Boyd et al., 2011; Kukla-

Acavedo, 2009), making working conditions a candidate for explaining the recent decline in early 

career retention. 

Since 2015, two important extensions have been made to this literature. First, Kraft et al. (2016) have 

conducted the first analysis of working conditions using school panel data, allowing them to get closer 

to a causal analysis. Echoing previous research, they find that the nature of leadership and teacher 

relationships are strongly associated with retention. The robust relationship between 

leadership/management and retention across this literature begs questions about which specific 

leadership practices matter most. The second development in the literature has begun to address this 

question. Bloom et al. (2015) use data from the World Management Survey, which measures the use 

of evidence-based management practices in 1,800 schools across eight countries. Although they study 

pupil attainment as their outcome, their findings are largely consistent with those from the education 

literature in that “people management” practices - such as rewarding high performers and managing 

talent - are the strongest predictors of school performance. Fryer (2017) reports on a field trial in 

which school principals were given intensive training in a related set of practices – including teacher 

observation and coaching – and find a positive causal effect on attainment. The latest studies on 
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working conditions therefore suggest that working conditions really matter, both for teachers and their 

pupils. 

1.4 This Thesis 

In Chapter 2 of this thesis, I take a detailed look at entry into the teaching profession. Existing 

research in this area tends to be limited to interviews or surveys with either in-service teachers or 

trainees (Matthias, 2014; Richardson et al., 2006; Roness & Smith, 2009; Roness & Smith, 2010; 

Sinclair, 2008; Watt & Richardson, 2007; Watt et al., 2012). Research using objective measures and 

following cohorts from education into the labour market is comparatively rare, perhaps because of the 

demanding data requirements for conducting such a study. I am aware of only four papers that 

conduct such an analysis for teachers (Bacolod, 2007b; Chevalier et al., 2007; Goldhaber & Liu, 

2003; Reback, 2004). All four use graduate cohort surveys, which have the advantage of following 

individuals into the labour market, allowing a comparison of the characteristics of those who do and 

do not choose to become teachers. However graduate cohort datasets are also limited by the narrow 

set of variables that they tend to include. In particular, they do not include a range of variables such as 

personality type, self-efficacy, social networks, and values which have been shown to predict 

occupational choice (Bentolila et al., 2010; Borghans et al., 2008; Cobb-Clark & Tan, 2010; Filer, 

1986; Krueger & Schkade, 2008; Lyons et al., 2006; Nieken & Stormer, 2010; Quimby & Santis, 

2006). 

Chapter 2 provides new evidence on this by analysing rich data on entry to the teaching profession in 

the UK stretching back to 1938. It begins by documenting a number of new descriptive findings: the 

proportion of ethnic minority teachers has risen with each new generation of entrants, but the 

conditional odds of somebody from an ethnic minority entering the profession have fallen 

substantially over the same period; the proportion of teachers whose parents also taught has steadily 

increased across four generations; and the well-known twentieth century trend towards a less female, 

more graduate workforce has levelled off among the most recent generation of teachers. I also model 

entry to the profession and show for the first time that personality type, particularly openness to new 

experience, is a very strong predictor of entry to the teaching profession. Using these models, I am 

able to identify groups of people who are up to four times more likely to enter the teaching profession 

than the average graduate. The findings of this study can be used to target future teacher recruitment 

efforts. 

In Chapter 3, I return to the issue of working conditions. The existing research using survey data to 

model teacher retention is limited by the breadth of the questionnaires used to measure working 

conditions, which often contain around 20 questions (Boyd et al., 2011; Ladd, 2011; Johnson et al. 

2012; Kraft et al., 2016).  Moreover, the data they use in these studies covers only a single US state in 

each case. I extend this literature by modelling teacher job satisfaction and desire to move school 
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across all 35 countries for which there is usable data in TALIS 2013. I also utilise the additional 

working conditions measures included in the England-specific survey (48 items in total) and use 

factor analysis to derive a more comprehensive set of working conditions measures. I am also able to 

link this survey data to school-level administrative data on pupil intake characteristics. 

The findings from Chapter 3 corroborate those reviewed by Simon & Johnson (2015) in that, 

conditional on working conditions, pupil disadvantage is not predictive of teacher job satisfaction or 

desire to move school. In the international sample, teacher cooperation and professional development 

are predictive of both outcomes and these results hold in almost all of the 35 national sub-samples. In 

the England-only models however, when I add five more working conditions derived from the factor 

analysis, neither of these associations remain statistically significant. The nature of school leadership 

and preparation for teaching assignments (Donaldson & Johnson, 2010) are instead the best predictors 

of both job satisfaction and desire to move school. These findings are robust to checks for common 

method bias, including measuring the independent variable using responses from teachers’ 

departmental colleagues. These findings have the potential to inform the practice of school leaders facing 

staffing difficulties in their schools. 

In Chapter 4, I focus on one potentially important aspect of working conditions: professional 

development. Detailed qualitative research has been used to construct theoretical arguments that 

professional development can improve retention by enhancing teachers’ knowledge, self-efficacy and 

motivation (Coldwell, 2017; Taylor et al., 2011; Wolstenholme et al., 2012). Some quantitative evidence exists 

for the links between these variables. Subject-specific professional development has been shown to improve 

teachers’ knowledge of their subject (Goldschmidt & Phelps, 2010; Kutaka et al., 2017; Polly et al., 2015; van 

Driel et al., 2012) and increase the self-efficacy of both science (Lakshmanan et al., 2011) and maths teachers 

(Ross & Bruce, 2007). However evaluation research has found mixed results on retention, with one observational 

study finding that intensive CPD does help keep experienced teachers in the profession (Knibbs et al., 2017) but 

one randomised controlled trial finding that intensive professional development for new teachers had no effect on 

retention (Glazerman et al., 2010).  

Chapter 4 provides new evidence on this point by evaluating the effect of science teachers attending National 

STEM Learning Network (NSLN) courses in England. The NSLN CPD is distinctive in that it is aimed 

specifically at science teachers and focuses on providing participants with both enhanced subject knowledge and 

closely linked pedagogical knowledge about how to teach this knowledge in the classroom. I use double- and 

triple-difference models to try and identify the causal impact of the programme on retention in participants’ original 

school and in the profession overall. I find that participation is associated with a three percentage point reduction in 

departmental wastage rates two years after first observed participation, which is equivalent to around a third of 

average wastage in science departments. This finding is robust across several model specifications and survives a 

placebo test. Despite increasing retention in the profession, participation is not associated with retention in 
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participants’ original school. This research represents some of the first credible findings that subject-

specific CPD has a positive causal impact on teacher retention. 
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Chapter 2: Entry to the Teaching Profession 

 

2.1 Introduction 
 

Teacher shortages are prevalent in public school systems around the world (Dolton, 2006). In the 

thirty-three countries and regions included in the main report on the Teaching and Learning 

International Survey 2013, over a third of teachers work in schools in which the head teacher reported 

significant difficulties with recruitment (OECD, 2014). Indeed, staff shortages were on average cited 

by head teachers as the most important constraint on good quality teaching. In recent years, 

demographic trends and policy changes have contributed to an increase in the severity of these 

shortages in many countries, prompting organisations including the UN, World Bank, OECD and the 

EU to warn that recruitment efforts need to be stepped up (Figazzolo, 2012; World Bank, 2013; 

Schleicher, 2011; Ranguelov et al., 2012). 

In England, the context for this study, shortages are also a growing problem. The Department for 

Education (DfE) uses its Teacher Supply Model to estimate the number of teachers required in the 

English school system each year. On the supply side, the model takes into account all flows into and 

out of the profession, which vary depending on the state of the economy and the age profile of the 

teaching workforce, among other factors. On the demand side, the model takes into account the 

number of pupils of school age, determinants of which include the number of births and net migration 

patterns. The difference between these two numbers can then be used to calculate the number of 

teachers who need to be recruited each year in order to balance supply and need, within current class 

size limits. As the pupil population has begun to grow in recent years however, the DfE has been 

missing these recruitment targets by increasing amounts: 1% in 2012/13, 5% in 2013/2014 and 9% in 

2014/2015 (NAO, 2016).  

School leaders tend to respond to teacher shortages by either lowering recruitment standards, 

increasing use of temporary teachers or increasing class sizes (Smithers & Robinson, 2000), all of 

which have been linked with reduced pupil attainment (Fredriksson et al., 2012; Mocetti, 2012; 

Schanzenbach, 2006). There is also some evidence to suggest that pupils from poorer families are 

most likely to suffer from such sub-optimal staffing arrangements (Allen & Sims, 2018a; Clotfelter et 

al., 2006). Governments have responded to these shortages with policies designed to attract and retain 

teachers. In England, for example, the Department for Education currently spends £167m per year on 

bursaries to try and incentivise people to train as teachers and a further £16.6m on marketing 

campaigns (NAO, 2016). However, a lack of knowledge about which types of people have the highest 

propensity to enter teaching (Goldhaber et al., 2014a) has hampered policymakers’ efforts to target 

such policies. 
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Existing research on the determinants of entering the profession largely uses interviews (Matthias, 

2014) or surveys with existing teachers or trainees (Müller et al., 2009; Richardson et al., 2006; 

Roness & Smith, 2009; Roness & Smith, 2010; Sinclair, 2008; Watt et al., 2012; Watt & Richardson, 

2007). However, such studies provide limited information about why people begin teaching, since 

they lack any comparison group capable of providing a counterfactual and likely suffer from social-

desirability (Krumpal, 2013) and attrition bias. The analysis of objective information about teachers 

before they enter the profession has been hindered by the fact that administrative datasets only contain 

information on teachers from the point at which they joined the profession. To my knowledge, only 

four studies manage to overcome these problems. Goldhaber and Lui (2003) study the correlates of 

applying for a teacher training course and find that being female, from a lower income family, having 

a mother who is a teacher, having a non-STEM major, and having a higher undergraduate GPA are all 

associated with an increased chance of becoming a teacher. Reback (2004) adds to this the findings 

that those with parents without post-graduate degrees are also more likely to enter teaching and 

Bacolod (2007b) finds that being married, living in a state with lower proportions of poor pupils, 

lower proportions of minority pupils, lower minority/majority pupil ratios, or higher relative teacher 

wages all increase the chances of going into teaching. Chevalier et al. (2007) replicate many of these 

findings using data from the UK.  

Goldhaber & Liu (2003), Reback (2004) and Bacolod (2007b) use the Baccalaureate and Beyond 

graduate cohort study data from the US, while Chevalier et al. (2007) use the UK Graduate Cohort 

Studies. The major benefit of graduate cohort studies is that they collect information both before and 

after entry into the labour market and, by extension, teaching. This allows prospective data collection 

from before the point that many people decide to enter teaching and enables comparison of those that 

do and do not go into teaching. However, graduate cohort studies also have important limitations, in 

that they tend to collect only a narrow range of variables. Crucially, neither Baccalaureate and Beyond 

nor the Graduate Cohort Studies contain information on variables that have been linked with job 

choice in the occupational choice literature, including: personality type (Nieken & Stormer, 2010; 

Cobb-Clark & Tan, 2010); self-efficacy or locus of control (Cobb-Clarke & Tan, 2010); social 

interactions (Borghans et al., 2008; Krueger & Schkade, 2008) and job values/preferences (Filer, 

1986; Lyons et al., 2006). The studies reviewed above are therefore likely to suffer from omitted 

variable bias. 

I use exceptionally rich data on entry to the teaching profession stretching back to 1938 to analyse the 

changing patterns of entry to the teaching profession in the UK. This allows me to document a 

number of new stylised facts. First, the proportion of ethnic minority teachers has risen with each new 

generation of entrants, reflecting the increase in the proportion of ethnic minorities in the population 

as a whole. At the same time however, the odds of ethnic minorities entering teaching have fallen, 

conditional on other characteristics. Second, the proportion of teachers whose parents also taught has 
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steadily increased across four generations. Third, the well-known twentieth century trend towards a 

more gender-balanced workforce has halted among the most recent generation of teachers. The 

current stock of teachers have relatively high job- and life-satisfaction relative to comparable 

occupational groups and graduates in general, but are also relatively dissatisfied with their leisure time 

compared to other graduates. I model entry to teaching and provide what is, to my knowledge, the 

first evidence on how personality types affect entry to the teaching profession. In particular, the 

openness to new experience dimension of personality type has a strong and robust association with 

entry to the profession. Using these models, I am able to identify groups of people who are up to four 

times more likely to enter the teaching profession than the average graduate. The findings of this 

paper can help policymakers refine their approach to teacher recruitment by targeting those with a 

high propensity to enter the profession. 

 

2.2 Data 
 

This study utilises the UK Household Longitudinal Study, also known as Understanding Society, or 

USoc (University of Essex. Institute for Social and Economic Research, NatCen Social Research and 

Kantar Public, 2009-2015). USoc is a panel of 40,000 UK households, beginning in 2009. 

Households are sampled using a clustered, stratified sampling design. Cross-sectional and longitudinal 

weights are supplied with the data in adjust for this complex survey design, as well as non-response, 

order to make the sample data representative of the UK population at the time of data collection. The 

analysis in this chapter is cross-sectional, in the sense that I never analyse more than one observation 

per individual. I also want to avoid dropping individuals who failed to respond in just one or two of 

the six waves (longitudinal weights are non-zero for those who have responded in all six waves of 

data collection). I therefore use the relevant cross-sectional weights at each stage of the analysis. 

Unfortunately, weights are not provided for combinations of waves due to the very high number of 

possible combinations of non-response (Lynn & Kaminska, 2010). When I am using data from across 

waves in my model I therefore use the Wave 1 weights. This is not ideal in the sense that adjustments 

for non-response should be wave specific. This will mean that data drawn from Waves 2-6, such as 

self-efficacy, will not be entirely representative of the target population. Due to the complexity of the 

survey design however, there is little alternative in this case. 

 

Data is collected through face to face interviews with all adult members of a household, conducted in 

the home once every twenty-four months. As of 2017, six waves of data were available for analysis 

and household response rates for each wave are around 60%. The survey collects very rich 

information on all participants including a range of demographic, economic and psychological 

measures. Retrospective information is also collected on all adults in the original sample, which 
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allows me to observe data before labour market entry for both those who become teachers and those 

who do not. I also utilise data on UK over-sixteen unemployment rates stretching back to 1971 taken 

from Office for National Statistics. 

 

The dependent variable for this study, entry to the teaching profession, is measured in USoc through 

the collection of partial employment histories. All participants are asked about their first job after 

leaving full time education and their current job at each data collection wave. Participants who left 

their first job before the first data collection wave (2009/10) therefore have an interval in which their 

occupation is censored. For example, somebody who started their first job after fulltime education in 

2000 would have this job recorded in the data (because it is their first job) and would have their job in 

2009/10 recorded in the data (because this is the year in which data collection began). If their job in 

2009/10 was their second job after fulltime education, they would have a full employment history 

recorded in the data. However, if they had a second job which finished before 2009/10 then this would 

be censored, since it was neither their first job after fulltime education nor during the data collection 

period.  

Information about the specific type of job is recorded as free text and then converted to ONS Standard 

Occupational Codes (SOC) using a computer assisted package. I define a teacher as anyone who has 

the SOC code 2314 (Secondary education teaching professionals), 2315 (Primary and nursery 

education teaching professionals), or 2316 (Special needs education teaching professionals). This 

definition includes assistant or deputy heads but does not include head teachers, executive heads, local 

authority or academy chain staff or inspectors. Table 15 (Appendix B) contains counts of people who 

fit this definition across different waves of the dataset. The USoc data contains 2,458 people who can 

be identified as having worked in teaching at some point during their careers, evenly split between 

secondary and primary/nursery teachers. Of these, 1,761 have worked as teachers during the data 

collection period (2009-2016) and 1,123 worked as teachers in their first job after full time education. 

Only 234 teachers taught for their first job after full time education and were still teaching in the most 

recent available wave of the data (collected in 2014-15).  

Figure 5 shows the historical reach of the dataset. The left panel of the graph shows the frequency 

distribution of the year in which USoc panel members can be first identified as entering the teaching 

profession. The first panel member to enter teaching did so in 1938, there is then a peak around 1970, 

as the so-called Baby Boomer generation enter the labour market, and a second peak around the turn 

of the century. Table 15 (Appendix B) shows that 56 teachers can be identified as entering the 

profession between 1935 and 1965, 439 between 1955 and 1974, 358 between 1975 and 1994, and 

another 263 since 1995. The right panel of the graph shows the same information but restricted to 

those who are observed teaching between Wave 1 (2009/10) and Wave 6 (2014/15) of data collection. 



24 
 

I refer to these as W1-W6 teachers. The first W1-W6 teacher doesn’t enter the profession until the 

1960s. 

Figure 5: Histograms showing year of entry to the teaching profession  

 

Notes: The left-hand side histogram shows the year in which each teacher can first be identified as entering the teaching profession. The 

right-hand side diagram shows the same but only for those who have taught between Wave 1 and Wave 6 (W1-W6) of the data (2009-14). 

 

2.3 Comparing teachers with other occupational groups 
 

This section presents detailed descriptive statistics on teachers compared to other professions, in order 

to place entry to the profession into comparative perspective. Table 1 compares time-invariant 

characteristics of all those who have ever been teachers in the USoc data to all those that have ever 

been nurses3, ever been a government/administrative officer4, or ever been a protective officer5. These 

three occupations were chosen as comparison groups because global surveys show that they are 

considered to be of comparable social status by the general public (Dolton & Marcenaro-Gutierrez, 

2013) and because they are relatively large occupational groups, which enables more precise 

                                                           
3 Standard Occupational Code (2010) 2231. 
4 Civil servants below grade 5 and their private/charitable equivalents. Standard Occupational Codes (2010) 

4112, 4113, and 4114. 
5 NCOs, police officers (sergeant and below), fire service officers (watch manager and below), prison service 

officers (below principal officer). Standard Occupational Codes (2010) 3311, 3312, 3313 and 3314.  
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estimates of population characteristics. For completeness, I also show descriptive statistics for all 

other occupations in the final column. The teachers are 71% female, which is lower than nurses (91%) 

but higher than government/administrative (60%), protective officers (13%) and other occupational 

groups (50%). The teachers are 16% ethnic minority and 10% born overseas, which is lower than 

nurses (22%, 18%) and other occupations (20%, 12%) but higher than government/administrative 

workers (13%, 7%). Teachers are far more likely to have a degree (72%) than nurses (31%), 

government/administrative occupations (32%), protective officers (19%) and other occupations 

(19%). 

 

Table 1: Comparing all teachers with other occupational groups 

 
Ever a 

Teacher 

Ever a 

Nurse 

Ever a 

Govt/ 

Admin 

Ever a 

Protective 

Officer 

All 

Others 

Female (% Cross Wave) 70.6 90.7** 59.9** 12.8** 49.8** 

Ethnic Minority (% Wave 1) 15.9 21.6** 12.6* 15.2 20.3** 

Born Overseas (% Wave 1) 10.3 18.0** 7.2* 8.5 12.2* 

Has a Degree (% Wave 1) 71.9 31.1** 31.8** 18.5** 18.9** 

Father has a Degree (% Cross Wave) 24.5 23.1 23.5 20.7 15.7** 

Number in Occupational Group 2,485 1,623 913 725 109,614 

Notes: N=50,994 (At Wave 1). All Others includes those who have never been a teacher, a nurse, or a government official. Government officials 
does not include senior civil servants (Grade 5 and above). ** = p< 0.01, ** = p< 0.05. 
 

 

Many of the variables collected in USoc, such as income, are time-varying and are therefore best 

compared amongst those teaching (or in comparable professions) during the period the data was 

collected. Table 2 shows how these characteristics compare between teachers, the three comparison 

occupation groups, and all other graduates, at Wave 1 (2009/10). Looking across the five groups, 

teachers are less likely to have permanent contracts than the three comparison occupation groups, but 

more likely to have a permanent contract than all other graduates. Teachers have higher net income 

than nurses and govt/admins, but not protective officers or all other graduates. Teachers spend less 

time commuting to work than the other groups, except for nurses. USoc measures job, income, leisure 

and overall life satisfaction on a seven-point scale stretching from “Completely dissatisfied” to 

“Completely satisfied”. Teachers have higher job and income satisfaction than nurses, govt/admins 

and other graduates, but not protective officers. Teachers have comparable satisfaction with leisure 

time to nurses and govt/admins but worse than protective officers and other graduates. Finally, 

teachers have higher overall satisfaction than govt/admins and all other graduates, but similar to 

nurses and protective officers. Because these satisfaction measures are Z transformed, the results 

depend on the assumption that the seven responses are evenly spaced. In Table 16 (Appendix B) I 
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report the proportions of each professional group reporting that they are at least “Mostly Satisfied” on 

each measure, which does not rely on this assumption. The relative satisfaction of teachers, nurses, 

govt/admins and protective officers are qualitatively very similar. 

 

Table 2: Comparing W1 teachers with other occupational groups 

 
Teachers Nurses 

Govt/ 

Admins 

Protective  

Officers 

Other 

Graduates 

Permanent Contract (%) 88% 95%** 96%** 99%** 66%** 

Net Personal Income (£/Month) 1,950   1,667**   1,389**  1,963   1,939  

Travel to Work Time (Mins) 23 24 27** 30** 34** 

Satisfaction Job (Z Score) 0.13 0.00* -0.13** 0.10 0.01** 

Satisfaction Income (Z Score) 0.33 0.17** 0.01** 0.28 0.22** 

Satisfaction Leisure Time (Z Score) -0.17 -0.12 -0.20 -0.03* -0.04** 

Satisfaction Overall (Z Score) 0.18 0.15 -0.01** 0.15 0.10* 

No. in Occupation Group (W1) 725 604 313 278 10,118 

Notes: N=50,994 (At Wave 1). All Others includes those who have never been a teacher, a nurse, or a government official. Government officials does 

not include senior civil servants (Grade 5 and above). ** = p< 0.01, * = p< 0.05. Standard errors are not clustered by workplace, since this is not 

observable in the data. However the number of, e.g. teachers is very small compared to the number of schools, making it unlikely that any USoc teachers 
work in the same school. 

 

As well as providing information about entry to the teaching profession over the long run, USoc also 

includes four sets of variables which have been shown to predict occupational choice. The first of 

these is personality type. Aspects of personality type, particularly openness to new experience, have 

previously been shown to be associated with being a teacher (Nieken & Stormer, 2010; Cobb-Clark & 

Tan, 2010). USoc includes measures of personality type collected in Wave 3 (2011-2012) using an 

adapted version of the Big Five Inventory (John & Srivastara, 1999) measured on a seven-point scale. 

This instrument has been developed to yield distinct dimensions of personality and I confirm this by 

showing the low pairwise correlations between the five dimensions in Table 16B (Appendix B). 

Personality type is not fixed over time (Hampson & Goldberg, 2006) meaning that measures of 

personality collected in 2011/12 cannot confidently be used to explain entry to the teaching profession 

in, e.g. the 1980s. This measure can therefore only be used for those who are observed entering the 

teaching profession during or immediately before the data collection period (2009-2015).  

The second set of USoc variables related to occupational choice measure self-efficacy. This is defined 

as a person’s belief in their ability to succeed and has previously been linked to entering the teaching 

profession (Cobb-Clarke & Tan, 2010). USoc collected measures of self-efficacy in Wave 5 (2010-

2011) using the 10-item version of the Generalized Self-Efficacy Scale (Schwarzer & Jerusalem, 
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1995). Self-efficacy also changes over time, meaning that it can only be used to model entry to the 

profession during or shortly before the data collection period.  

The third set of variables included in Usoc relevant to occupational choice relate to social networks. 

People who are more sociable in their private lives are more likely to choose jobs which involve 

dealing with people, such as teaching, counselling, advising or caring for others (Borghans et al., 

2008; Krueger & Schkade, 2008). USoc includes data on social networks collected in Wave 3 (2011-

2012), in particular a question asking people how many close friends they have.  

Finally, USoc collects information on respondents’ preferences for job attributes, which have 

unsurprisingly been shown to predict occupational choice (Filer, 1986; Lyons et al., 2006). This was 

measured through a set of questions which asked respondents to rate the importance of seven job 

attributes – job security, income, leisure time, interesting tasks, contribution to society, time for 

family, and opportunities to help others – measured on a four-point scale from “Not at all important” 

to “Very important”. These questions were asked to a subsample of 10% of respondents in each of 

waves 2 (2010-11), 3 (2011-12) and 5 (2013-14).  

Table 3 shows the mean characteristics across the same five groups used in Table 2 and across 

graduates in general. It replicates the findings from existing literature that those currently working in 

teaching tend to have personality types that display greater openness to new experience – which 

manifests in curiosity and the pursuit of variety - than other occupational groups. The table also shows 

that teachers have personality types that display greater neuroticism - which manifests in anxious and 

self-conscious behaviour - than nurses, protective officers or graduates in general. Teachers also 

report having more close friends than protective officer and other graduates. The job preference 

characteristics were, by design, only asked to a sub-sample of 10% of USoc panel members, meaning 

there are larger standard errors. Despite this, teachers express: stronger preferences for a job which 

contributes to society than govt/admins; and a stronger preference for helping others than both 

govt/admins and graduates in general. Teachers report higher levels of self-efficacy than both nurses 

and govt/admins. 
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Table 3: Comparing covariates of W1-W6 teachers with those in other occupational groups 

 
Teachers Nurses 

Govt/ 

Admins 

Protective  

Officers 

Other 

Graduates 

Personality (Z Score)      

   Agreeableness  0.24 0.16 0.24 0.18 0.10** 

   Conscientiousness  0.23 0.19 0.21 0.25 0.13** 

   Extraversion  0.25 0.15* 0.19 0.26 0.11** 

   Neuroticism  0.25 0.13** 0.26 0.12* 0.11** 

   Openness  0.34 0.14** 0.23* 0.24* 0.23** 

Social networks (Z Score)      

   Number close friends 0.19 0.10 0.08 -0.15** 0.09** 

Job preferences (Z Score)      

   Job security  0.20 0.29 0.41 0.12 0.18 

   High income -0.48 -0.30 -0.20 -0.12 -0.27 

   High leisure time -0.02 -0.16 0.15 -0.44 0.22 

   Interesting tasks 0.36 0.53 0.17 -0.34 0.10 

   Contribution to society 0.81 0.51 -0.46** 0.54 0.57 

   Time for family 0.21 -0.09 0.12 -0.08 0.40 

   Help others 0.89 0.63 -0.53** -0.06 0.31* 

Self-Efficacy (Z Score) 0.21 0.05** -0.07** 0.23 0.20 

N 1,716 1,162 656 519 11,701 

Notes: Teachers includes anyone who has taught between W1 and W6. Nurses, Govt/Admin and Protective officers include all those 
who have not been a teacher in W1 to W6 but have worked in the relevant occupation between W1 and W6. Other Graduates includes 

all those not in one of the other four occupation between W1 and W6 who have an undergraduate or postgraduate degree. Government 

officials does not include senior civil servants (Grade 5 and above). Job preferences were only asked from a 10% subsample. ** = p< 
0.01, * = p< 0.05. 

 

2.4 Long Run Changes in Teacher Characteristics 
 

In this section, I present statistics describing long-run change in the characteristics of those entering 

teaching. Ideally, I would analyse change in the characteristics of teachers at the point they begin 

teaching. However, USoc only includes information on whether respondents were teachers in their 

first job after leaving full time education and in each year during the data collection period (2009-

2015). Information between first job and 2009 is therefore censored, making it hard to ascertain 

exactly when somebody entered teaching. In order to analyse long run change in entry to teaching, I 

therefore look at all those in the dataset who I can identify as teaching at any time and analyse change 

based on the period in which the teacher was born. I refer to these as birth cohorts to distinguish them 

from either trainee cohorts or familial generations. I argue that looking at entry in this way captures 

the influence of formative social and cultural experiences that would have had a distinctive, common 
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influence on each birth-cohorts’ attitudes towards work and occupational choice (Mannheim, 1970). 

There is an ongoing debate about the best way to define the different birth-cohorts (Parry & Urwin, 

2011) but I follow the standard approach in dividing all teachers in the dataset into four commonly-

used birth cohorts (Strauss & Howe, 1991; How & Strauss, 2009). These are: those born up to 1945 

(Pre 1945, N=13,865 ); those born 1946-1964, who entered the labour market no earlier than 1961 

(Baby Boomers; N=23,457); those born 1965-76, who entered the labour market no earlier than 1980 

(Generation X; N=18,380); and those born 1977-1995, who entered the labour market no earlier than 

1993 (Millennials; N=31,066). 

Figure 6 shows changes in the characteristics of teachers based on which of these four birth-cohorts 

they belong to. Because data collection only began in 2009, I compare teachers only in terms of time-

invariant characteristics. The proportion of female teachers dropped from 80% in the pre-1945 birth 

cohort to 66% in the Gen X birth cohort. It then increased slightly among Millenials, but the 

difference with Gen X is not statistically significant at the 5% level. This long run decline in the 

proportion of female teachers is consistent with evidence from the US and likely reflects the increase 

in employment opportunities for women in other professions (Bacolod, 2007a). Figure 6 also reveals a 

steady increase in the proportion of ethnic minority teachers, from 8% among the Pre 1945 birth-

cohort to 21% in the Gen X and Millenial birth-cohorts. Table 17 in Appendix B shows that the odds 

of those from an ethnic minority teaching, conditional on other characteristics, has actually fallen 

across cohorts. This suggests that the increase in ethnic minority teachers is being driven by the 

increase in the proportion of ethnic minority people in the population as a whole, rather than an 

underlying increase in the propensity to enter the profession. The next set of bars shows the 

proportion of teachers who had either a mother or father who was a teacher. The point estimates 

increase steadily across the four birth-cohorts from around 4% among the Pre 1945 birth cohort of 

teachers to around 12% among Millenials. The difference between the Pre 1945 and Millenial birth-

cohorts is statistically significant at the 5% level. The final set of columns shows the proportion of 

teachers in each birth cohort whose father was a university graduate. The point estimates among Pre 

1945, Baby Boomers and Millenials are very similar, varying between 21% and 24%. The point 

estimate for Gen X is closer to 23% but this difference is not statistically significant at the 5% level. 
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Figure 6: Generational change in characteristics of entrants to the teaching profession. 

 

Notes: Figure 6 shows the characteristics of teachers from four different birth cohorts. Teachers are defined as anyone who can be identified 
as teaching at any point in their career. N (number of teachers) = 2,485. Pre ‘45 includes all those born before 1945. Boomer includes all 

those born 1946-1964. Gen X includes all those born 1965-76. Millennials include all those born 1977-1995. Error bars show 95% 
confidence intervals. 

 

2.5 Modelling Entry to Teaching 
 

In this section I use the full breadth of variables included in Understanding Society to model the 

choice to become a teacher. Many of the variables relevant to occupational choice are only measured 

during the data collection period, rather than retrospectively. For example, it would be very hard to 

accurately measure in 2009, which is the first year of data collection, what somebody’s personality 

was like in 2001. This means that, for many of the teachers in the dataset, these variables are 

measured long after they made the decision to enter the teaching profession and are therefore 

potentially endogenous to that choice. This makes them of little use for predicting entry. I take two 

approaches to dealing with this problem. First, I follow Chevalier et al. (2007) and model teaching 

status. That is, whether or not an individual is working as a teacher in any year since the dataset was 

first collected. This has the advantage of maintaining sample size. However, strictly speaking, this is 

not a measure of entry to the teaching profession, since being in service requires not just entry to the 

profession, but also a lack of exit from the profession. The results from this analysis are shown in 

Table 4 below. My second approach is to run the models with those who I can genuinely observe 
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entering the teaching profession during the period of data collection and use their characteristics 

measured at or after 2009. This approach will reduce sample size and the precision of my estimates 

but will reduce measurement error due to both lags in measurement and endogeneity in my estimates. 

The results from these models are shown in Table 5 below. 

 

I use logistic regression to model teaching status and entry into the teaching profession using variants 

of the following model: 

 

𝑙𝑜𝑔 (
𝑝(𝑒𝑛𝑡𝑟𝑦𝑖)

1 − 𝑝(𝑒𝑛𝑡𝑟𝑦𝑖)
) =  𝛽0 + 𝛽1𝐷𝑖 + 𝛽2𝐸𝑖 + 𝛽3𝐹𝑖 + 𝛽4𝑃𝑖 + 𝛽5𝑆𝑖 + 𝛽6𝑆𝐸𝑖 + 𝛽6𝑍𝑖 +  𝑢𝑖 

Where: 

- 𝑝(𝑒𝑛𝑡𝑟𝑦𝑖) is the probability that individual i enters the teaching profession 

- 𝐷𝑖 is a vector of individual demographic characteristics including gender, ethnic minority 

status, whether they are a university graduate, whether they are a first generation immigrant, 

and whether they are a second (or higher) generation immigrant 

- 𝐸𝑖 is a measure of the unemployment rate among over 16s at the time an individual was 21 

- 𝐹𝑖 is a vector of individual i’s family characteristics including whether their father has a 

degree, whether their mother was a teacher and whether their father was a teacher 

- 𝑃𝑖 is a vector of personality measures for individual i covering the Big Five dimension of 

personality: openness to new experience, conscientiousness, extraversion, agreeableness and 

neuroticism 

- 𝑆𝑖 is a vector of individual i’s social network characteristics including number of close friends 

and an interaction term which takes the value one if somebody is a graduate and has a 

majority of friends who are graduates 

- 𝑆𝐸𝑖 is a single variable containing the average score of the ten item measures in the short 

Generalized Self-Efficacy Scale 

- 𝑍𝑖are country dummies for the four nations of the United Kingdom 

Descriptive statistics for all the independent variables are available in Table 18. Job preferences 

variables are not included in the model because they were only collected for a small subset of USoc 

panel members. 

I begin by modelling whether or not somebody taught at any point during the data collection period 

(2009-2014) among all those who were of working age during this period (N=18,022). Column 1 of 

Table 4 reports results from a model which includes only demographic and family background 

variables. Column 2 adds to this measures of the big five personality traits. Personality traits were 

only measured in Wave 3 of the survey and are therefore only available for a subset of my 
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respondents, meaning the number of observations drops to 14,760.  It should be noted that only 16 of 

the units that drop out have missing data on specific personality traits, with the rest being attributable 

to the question not being administered. Column 3 adds a measures of the size of an individual’s social 

networks. The number of observations in this model drops by 93, which is accounted for by the 

questions about number of close friends only being asked in Wave 3 and Wave 6, not due to specific 

item non-response. Finally, column 4 adds a measure of self-efficacy. The number of observations 

drops by 1,474 because this question was only asked in Wave 5. Despite these small changes in the 

sample across models, the coefficients and statistical significance of the coefficients are very stable 

across the different models. 

  

Table 4 replicates a number of findings from previous research. The odds of females teaching are 

around 125% higher than men, conditional on the other covariates. Graduates are also significantly 

more likely to teach than non-graduates, which is not surprising given that teachers in the UK have 

been required to have a graduate level qualification in order to achieve qualified teacher status since 

the abolition of the Licensed Teacher Scheme in 1998 (Furlong et al., 2000). I also replicate the 

finding from Cobb-Clarke & Tan (2011) that people with a personality type characterised by more 

openness to experience are more likely to teach. A one standard deviation increase in openness is 

associated with a 28% increase in the odds of teaching. 

 

Table 19 in Appendix B shows results from the same analysis using mean imputation and missing 

dummies. This findings remain virtually unchanged in this alternative specification, and the missing 

dummies for the different dimensions of personality type do not indicate any systematic association 

between missing values and the outcome, conditional on other covariates. Table 20 in Appendix B 

shows a third version of Table 4, this time with the Column 4 sample (N=13,649) used across all four 

columns. The results are again virtually unchanged. These two appendix tables provides reassurance 

that the sub-sample of individuals who had these questions administered to them constitute a 

representative sample of the full USoc sample. 
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Table 4: Logistic regression models of current teaching status 

 (1) (2) (3) (4) 
 

Demographics Demographics & 

Personality 

Demographics & 

Personality & 

Networks 

Demographics & 

Personality & 

Networks & 

Efficacy 

Female 2.251** 2.231** 2.235** 2.267** 
 

(0.189) (0.212) (0.214) (0.224) 

Ethnic minority 0.890 0.858 0.859 0.861 
 

(0.138) (0.154) (0.154) (0.163) 

Graduate  10.89** 10.28** 10.15** 9.431** 
 

(1.114) (1.211) (1.201) (1.168) 

First gen immigrant 0.399** 0.444* 0.443* 0.541 
 

(0.0981) (0.130) (0.130) (0.166) 

Second plus gen immigrant 0.918 0.977 0.975 1.110 
 

(0.161) (0.205) (0.205) (0.253) 

Father is a graduate 0.985 0.993 0.990 0.980 
 

(0.0941) (0.101) (0.101) (0.103) 

Mother/father taught when 14 1.219 1.193 1.188 1.254 
 

(0.171) (0.177) (0.177) (0.190) 

Personality (z scored):     

   Agreeableness  1.171* 1.167* 1.161* 
 

 (0.0588) (0.0586) (0.0612) 

   Conscientiousness  0.958 0.961 0.966 

  (0.0481) (0.0483) (0.0520) 

   Extraversion  1.018 1.009 0.983 

  (0.0477) (0.0480) (0.0487) 

   Neuroticism  1.063 1.065 1.104 

  (0.0521) (0.0522) (0.0605) 

   Openness  1.277** 1.277** 1.289** 

  (0.0699) (0.0702) (0.0746) 

No. of close friends (z scored)   1.056 1.056 
 

  (0.0411) (0.0420) 

Self-efficacy  (z scored)    1.144 
 

   (0.0626) 

Pseudo R-squared 0.055 0.117 0.121 0.122 

Number of Observations 18,022 14,760 14,667 13,649 

Notes: Each column is a separate logistic regression on a separate group of teachers. Coefficients are odd ratios. ** = p< 0.01, * = p< 0.05. 

Numbers in parentheses are standard errors. Models also contains country dummies for the four nations of the UK. Number of observation 
drops due to personality, social network and self-efficacy questions only be asked in certain waves. Pseudo R Squared is McFadden’s Pseudo 

R Squared. 
 

Table 4 also includes a number of new findings. Contrary to existing literature such as Goldhaber and 

Liu (2003), I do not find a relationship between having a parent who taught and being a teacher. The 

coefficients do show a stable and positive association but are not statistically significant at 
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conventional levels, conditional on other characteristics. Being from an ethnic minority is not 

associated with the odds of teaching between 2009 and 2015, conditional on other characteristics. 

However, being a first generation immigrant does reduce the odds of teaching by around 50%. One 

other personality characteristic, besides openness, is also associated with teaching. A one standard 

deviation increase in agreeableness – which manifests in cooperative and considerate behaviour - is 

associated with a 16-17% increase in the odds of teaching. Conscientiousness, extraversion and 

neuroticism do not have any statistically significant relationship with teaching status. Contrary to 

Borghans et al. (2008) and Krueger and Schkade (2008), I do not find any statistically significant 

relationship between how sociable somebody is in their private life, as measured by number of close 

friends, and whether they teach. Finally, self-efficacy also has a positive relationship with teaching, 

with a one standard deviation increase being associated with a 14% increase in the odds of teaching. 

However, this is not statistically significant at the 5% level. Again, the imputation dummies in Table 

19 do not indicate any association between missing values and the outcome variable, conditional on 

other covariates. In Table 21 in Appendix B, I enter each of the sets of variables into the model 

separately in order to check that the associations are not being driven by correlations between the 

variables. All statistically significant relationships from the prior analysis are reproduced using this 

alternative approach. 

 

Because of the timing of measurement, the characteristics of teachers identified in Table 4 may be the 

result of people choosing to become teachers, rather than the reason they chose teaching in the first 

place. Because of this, the results in Table 4 are best interpreted as rich descriptions of people who are 

in teaching. In the next steps of the analysis, I use the same set of variables to model entry to the 

profession. Each column in Table 5 uses a slightly different operationalisation of entry to the 

profession. Column 5 defines the entry outcome as one for anybody who is not teaching in Wave 1 of 

the dataset (2009-10) but is teaching in any subsequent year and zero for everybody else of working 

age. Column 6 defines the entry outcome as one for anybody who does not work as a teacher in their 

first job after leaving fulltime education and is not working as a teacher in Wave 1, but is working as 

a teacher in a subsequent year; and zero for everybody else of working age. Finally, column 7 defines 

the entry outcome as one for anybody who is not working as a teacher in Wave 1-6 and is less than 30 

years of age at Wave 1, and zero for anybody else who is of working age but is less than thirty years 

of age at Wave 1. Models 6 and 7 are intended to exclude those who made the decision to enter 

teaching long before the covariates were measured. Column 6 excludes those who taught at the 

beginning of their career but then left and returned after Wave 1. Column 7 excludes all those who are 

not in the early stage of their career. Column 6 and Column 7 are therefore more likely to be 

measuring the covariates at or near the point of entry to the profession. As a result, there should be 

less measurement error and less endogeneity present in the estimates. However, as the falling number 
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of observations and rising standard errors in Table 5 show, this is achieved at the cost of reduced 

precision in the estimates. Models 5, 6 and 7 also include the rate of unemployment (measured as a z 

score) at the time each person in the data was 21, in order to account for the effect of macro-economic 

cycles on graduate occupational choice.  

 

Being female and being a graduate has a strong positive association with the odds of entry to teaching 

across all three models. Being a first generation immigrant again has a strong negative association 

with entry to the teaching profession, although this not statistically significant at the 5% level. The 

self-efficacy and social network measures show consistently positive associations but these are also 

not statistically significant at conventional levels. The variable measuring unemployment rate at 21 

enters with the expected sign, but is larger and only statistically significant at conventional levels, in 

column 7. This is the model that only includes those under 30 in 2009 and may therefore be picking 

up the effect of the financial crisis, which had a particularly large effect on graduate unemployment. 

The five personality variables appear in the middle of Table 5. As in Table 4, openness to experience 

shows a positive relationship with the odds of entry to teaching. In Models 5 and 6, a one SD increase 

in openness is associated with a 71-77% increase in the odds of entry to teaching, statistically 

significant at the 5% level. This is around three times stronger than the associations with current 

teaching status in Table 4, suggesting that openness plays a particularly important role in attracting 

people into teaching in the first place, as opposed to keeping them in the profession. In Model 7, the 

association remains positive, but is weaker and no longer statistically significant at conventional 

levels. While agreeableness showed a robust association with current teaching status in Table 4, it 

shows no relationship with entry to teaching in Table 5. Conversely to openness, this suggests that 

agreeableness plays a particularly important role in keeping people in teaching, rather than attracting 

them in the first place. As in Table 4, extraversion and neuroticism show no relationship with entry to 

teaching, at conventional levels of statistical significance. Indeed, the only dimension of personality 

type, other than openness, which shows a relationship with entry to teaching in Table 5 is 

conscientiousness. In particular, a one standard deviation increase in conscientiousness is associated 

with an approximately 25% reduction in the odds of entry to teaching. As with agreeableness, this 

association is statistically significant in Models 5 and 6, but not in Model 7. The coefficient remains 

stable in Model 7 but the smaller sample size increases the standard errors. 

This raises the question of how and why openness, agreeableness and conscientiousness affect 

people’s decision to teach. Psychologists define personality as the pattern of dispositional tendencies, 

motivations and values, and self-narratives (ways of interpreting or attributing meaning) specific to 

each individual (McAdams & Pals, 2006). Openness to new experience is associated with both current 

teaching status and entry to teaching in Table 4 and Table 5. People with personality types 

characterised by high openness to new experience are: disposed to seek out new experiences and 
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make connections between ideas, value and are motived by variety and novelty, and see themselves as 

learners (Sutin, 2017). Empirical studies show that individuals with high openness to new experience 

seek out and acquire jobs that provide autonomy and opportunities for growth (Bipp, 2010; Sutin & 

Costa, 2010). Interestingly, educationalists have highlighted both autonomy and opportunities for 

growth as notable and distinctive characteristics of teaching (Labaree, 2000; Loewenberg, Ball & 

Forzani, 2009). This may explain the strong associations found between openness, current teaching 

status and entry to teaching in this study.  

 

I also find that agreeableness is positively related to current teaching status (Table 4) though not entry 

to teaching (Table 5). People with personality types characterised by high agreeableness are: disposed 

to being considerate and flexible, value and are motived by maintaining positive relations with others, 

and see themselves as social types (Graziano & Tobin, 2017). There is currently little research on the 

links between agreeableness and job characteristics that help shed light on this link. However, the 

need for teachers to maintain positive working relationships with very high numbers of pupils are well 

known (Labaree, 2000) and this may be harder for individuals who do not display agreeableness. This 

interpretation is also consistent with my finding that agreeableness is associated with current teaching 

status, rather than entry. Agreeableness therefore seems to have protective effect on teaching status. 

 

The third and final personality dimension which is associated with teaching in my data is 

Conscientiousness, which I find to be negatively associated with entry to teaching (Table 5) but not 

related to current teaching status (Table 4). People with personality types characterised by high 

conscientiousness tend to be on the one hand goal oriented and hardworking and on the other hand 

self-controlled, orderly and rule abiding (Jackson & Roberts, 2017). Unfortunately, there is precious 

little research available to help explain why conscientious individuals would be less likely to enter 

teaching. It is plausible that highly goal-oriented individuals have already adopted specific career 

plans prior to reaching the end of their undergraduate degree, which is when most teachers begin their 

training. This is however only a hypothesis and needs to be tested empirically using other data. 
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Table 5: Modelling entry to the profession using three definitions of entry 

 (5) (6) (7) 
 

Not teaching W1 

& teaching W2-W6 

Not teaching W1 

& not teaching 1st job 

& teaching W2-W6 

Teaching W1-W6 

& under 30 at W1 

Female 2.722** 2.695** 2.309* 
 

(0.575) (0.619) (0.744) 

Ethnic minority 1.362 1.306 1.034 
 

(0.378) (0.390) (0.362) 

Graduate  3.880** 3.716** 6.705** 
 

(0.806) (0.817) (2.276) 

First gen immigrant 0.274 0.239 0.131 
 

(0.150) (0.137) (0.125) 

Second plus gen immigrant 1.079 0.904 0.881 
 

(0.423) (0.347) (0.402) 

Unemployment rate at 21 1.045 1.091 4.291** 

 (0.0746) (0.0833) (1.058) 

Father is a graduate 0.855 0.786 0.884 
 

(0.184) (0.189) (0.289) 

Mother/father taught when 14 1.913 1.956 1.376 

 (0.547) (0.600) (0.601) 

Personality (z scored):    

    Agreeableness 1.032 1.025 1.247 
 

(0.103) (0.107) (0.177) 

   Conscientiousness 0.754* 0.762* 0.868 

 (0.0705) (0.0752) (0.133) 

   Extraversion 1.063 1.007 0.975 

 (0.0930) (0.0907) (0.133) 

   Neuroticism 1.164 1.063 1.122 

 (0.132) (0.123) (0.188) 

   Openness 1.712** 1.771** 1.376 

 (0.183) (0.212) (0.212) 

No. of close friends (z scored) 1.097 1.108 1.034 
 

(0.0590) (0.0617) (0.132) 

Self-efficacy  (z scored) 1.166 1.187 1.187 
 

(0.128) (0.139) (0.217) 

Pseudo R-squared 0.103 0.097 0.113 

Number of Observations 15,239 15,269 3,513 

Notes: Each column is a separate logistic regression. Column 5 defines entry as not teaching in Wave 1 of the dataset but teaching subsequently, 

column 6 as not teaching in first job after fulltime education or in Wave 1 but teaching subsequently, column 7  as working as a teacher in Wave 
1-6 and being <30 years old at Wave 1. ** = p< 0.01, * = p< 0.05. Numbers in parentheses are standard errors. Models also contain country 

dummies for the four nations of the UK. Pseudo R Squared is McFadden’s Pseudo R Squared. 
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2.6 Predictive Margins 
 

I now use the result from Section 2.5 to compare the predicted probability of different groups entering 

the teaching profession. Figure 7 shows the predictive margins for different values of three of the 

variables that showed consistently strong associations with teaching in Table 5: gender, openness and 

conscientiousness, when all other variables are evaluated at their mean (continuous) or mode 

(categorical) values. The vertical axis shows the predicted probability of entry to teaching from 

column 6 with 0.01 representing a 1% probability, 0.1 representing a 10% probability, and so on. The 

left hand panel plots this against the seven point openness scale (7 being the most open) and the right 

hand side does the same for conscientiousness. The black circles show the predicted probability of 

entry for women and the grey circles for men. In the left hand panel conscientiousness is being held 

constant at the mean; in the right hand panel openness is being held constant at the mean. The error 

bars around these points show the 95% confidence interval on these estimates. The chart shows that 

the predicted probability of entry to the teaching profession varies from close to 0%, to just under 1% 

(men) and just over 2% (women). To put this in context, the predicted probability of the average 

person entering teaching based on column 6 is around 0.5%. The findings are consistent with existing 

research which suggests that personality type has a stronger association with occupational choice for 

women than for men (Ham et al., 2009). 
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Figure 7: Predictive margins for entry to the teaching profession 

 

Notes: Figure 7 shows the predicted probability of entering the teaching profession for men and women for different values of openness and 

conscientiousness, when all other variables are set to their mean (continuous variables) or mode (categorical variables) values. The predicted 

probabilities are calculated using column 6 from Table 5. The Y axes shows probability measured on a scale of zero to one. The X axes 

shows personality traits measured on a seven point scale with 7 representing a highly open/conscientious person. 

 

Figure 8 provides estimates of the predicted probability of entry for groups of graduates with 

particular combinations of four of the characteristics that showed consistently strong associations with 

entry to teaching in Table 5: Female, Parent teacher, Conscientiousness and Openness. The sixteen 

groups defined by these four variables are shown in Table 6. The sample is restricted to graduates, 

since all those entering teaching in column 5 were required to have an undergraduate qualification. 

The vertical axis of Figure 8 again shows predicted probability of entry to the teaching profession. 

The error bars show the 90% interval estimate of the predicted probability of entry for each of the 

sixteen groups, using the coefficients from Model 6. The group labelled Typical Grad shows the 

predicted probability of entry for the average graduate. Figure 8 reveals that there is wide variation in 

the predicted probability of entry to the teaching profession: from 0.8% for group 1 to 8% for Group 

16. However, the estimates are also quite imprecise, with the average interval estimate being 3.3 

percentage points wide. The only group with an interval estimate that is clearly non-overlapping with 

that for the typical graduate is group 16. This is the group of female graduates who had at least one 

parent who taught, have low levels of conscientiousness and high levels of openness to new 

experience. The predicted probability of entering teaching for this group is 8%, which is around four 

times higher than that for the typical graduate. Despite having overlapping confidence intervals, 
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groups 14 and 15 - females with parent teachers with only one of the two desirable personality 

characteristics – also have point estimates two to three times higher than the typical graduate. 

Figure 8: Predicted probability of entry to the teaching profession 

 

Notes: Figure 8 shows the predicted probability of entry to the teaching profession for sixteen different types of individuals, calculated using 
column 6 from Table 5. The vertical bars show the 90% confidence intervals. 

 

 

Table 6: Groups in Figure 8 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Characteristic 

        ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Female 

    ✓ ✓ ✓ ✓     ✓ ✓ ✓ ✓ Parent was teacher 

  ✓ ✓   ✓ ✓   ✓ ✓   ✓ ✓ Low conscientiousness 

 ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓ High openness 

Notes: “Low” (“High”) is operationalised as one standard deviation above (below) the mean value. 

 

 

2.7 Conclusion 
 

Despite the importance of teachers for pupils’ academic attainment, and persistent shortages of 

teachers in many developed nations, we still know relatively little about the reasons that people 

choose to enter the teaching profession. This is in part because of the limited set of variables included 

in the graduate cohort datasets which have so far been used to track progression into the profession. 

This research has addressed this gap in the literature by using rich data from a household panel survey 

to shed new light on entry to the teaching profession.  

 

The proportion of ethnic minority teachers in each new birth cohort has increased steadily over time. 

However, the odds of those from an ethnic minority going into teaching have fallen with each new 
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birth cohort, suggesting that the unconditional increase over time is due to the overall increase in the 

proportion of ethnic minority people in the UK. Another notable change is that each new birth cohort 

of teachers has seen an increase in the proportion of teachers whose parents also taught. Finally, the 

long-established trend towards an equalisation of the proportion of male and female teachers seems to 

have flattened off among the most recent birth cohort of teachers. Data on the current stock of 

teachers shows that they have relatively high job- and life-satisfaction relative to comparable 

occupational groups and graduates in general, but are also relatively dissatisfied with their leisure time 

compared to other graduates.  

 

This research has also provided new evidence on the determinants of entry to teaching. In particular, 

the importance of personality type emerges clearly from this research. In particular, openness to new 

experience shows robust associations with current teaching status and entry to teaching. 

Agreeableness is also robustly related to current teaching status, though not entry to teaching, 

suggesting perhaps that it helps keep teachers in the profession. Conscientiousness is also negatively 

associated with entry to teaching. Indeed, groups with particular sets of characteristics are up to four 

times more likely to enter the teaching profession than the average graduate, suggesting that these 

relationships are of substantive importance for policymakers looking to tackle teacher shortages.  

 

While these findings do not provide causal evidence on why people enter teaching, the richness of the 

data used to model entry to the profession means that they are likely to have predictive value. For 

example, the results from Section 5 and 6 could potentially be used by policymakers to target 

recruitment efforts. This is of course dependent on being able to observe the characteristics I find to 

be associated with entry to teaching in the population as a whole. The obvious place to get a larger 

sample of graduates is in graduate surveys. In the UK a new graduate survey, the New Destination of 

Leavers of Higher Education (NDLHE), is currently being developed and is set to be implemented in 

December 2018. This survey aims to collect information from at least 70% of all university-leavers, 

fifteen months after graduation. While the fifteen month delay is not ideal, since many graduates will 

already have made important career choices at this stage, the NDLHE survey does represent a good 

opportunity to gather data on, e.g. personality type that could help identify those with a high 

propensity to enter teaching. This data source also includes detailed information on the degree subject 

of graduates, which would allow targeted approaches to be made to those with qualifications in 

subjects in which there is currently a shortage, such as maths, physics and modern foreign languages 

(Chapter 1). Once those with a high-propensity for teaching had been identified, it would then be 

possible to target them with information about entering the teaching profession. This would also 

provide an opportunity to conduct an independent test of the predictions made in this paper about the 

propensity of certain groups to enter teaching.  
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Chapter 3: How are Working Conditions associated with Teacher Job 

Satisfaction and Desire to Move School? 
 

3.1 Introduction 

High teacher turnover in a school is associated with reduced pupil attainment, both because of the 

disruption caused by having to hire replacements and because the replacement teachers tend to be 

initially less effective (Atteberry et al., 2016; Gibbons et al., 2018; Ronfeldt et al., 2013). High levels 

of turnover in a school can also create acute staffing shortages. School leaders tend to respond to such 

shortages by making increased use of temporary teachers, lowering recruitment standards, or 

increasing class sizes (Smithers & Robinson, 2000), all of which have been linked with reduced pupil 

attainment (Mocetti, 2012; Fredriksson et al., 2012; Schanzenbach, 2006).  

Where turnover reflects teachers leaving the profession altogether, there are also high opportunity 

costs incurred in training replacements. In England, approximately 33,000 people begin teacher 

training each year at an annual cost of around £700m to the public purse (NAO, 2016). However, 40% 

of those who enter teacher training are no longer teaching in public schools after five years (Allen et 

al., 2016). With a sufficient supply of teachers, such turnover has ambiguous effects on the quality of 

education, depending on the quality of the departing teacher. However, when there is an overall 

shortage of teachers, such wastage is unambiguously costly. Understanding the determinants of 

teacher job satisfaction and turnover is therefore important. 

Early research using administrative data found that teachers are much more likely to leave their job if 

they work in schools with high levels of deprived, minority or low attaining children and those that 

stayed in the profession tend to move to schools with more affluent intakes (Boyd et al., 2005; 

Hanushek et al., 2004; Scafidi et al., 2007; Allen et al., 2018). This research prompted many to 

conclude that teachers were fleeing “difficult to teach” pupils and that there was little policy could do 

to address this. However, a recent reinterpretation of the literature on teacher turnover has begun to 

change this view.  

Simon and Johnson (2015, p10) point out that in six studies in which efforts were made to control for 

the quality of teachers’ working environment “all or most” of the relationship between student 

characteristics and teacher turnover disappeared. The inter-personal aspects of working conditions, 

such as leadership and teacher collaboration, appear to have the strongest relationship with retention 

(Simon & Johnson, 2015). As well as being associated with teacher retention, working conditions also 

predict job satisfaction (Collie et al., 2012; Malinen & Savolainen, 2016; Skaalvik & Skaalvik, 2009; 

Reeves et al., 2017). Indeed, some research suggests that job satisfaction mediates the relationship 

between conditions and turnover (Skaalvik & Skaalvik, 2011). This has important implications for 
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policy since it creates the potential for improving teacher retention by improving working conditions 

in schools.  

Despite these recent advances, there is currently very little research using data from outside the USA, 

which raises questions about the applicability of these findings in other school systems. A number of 

papers have analysed bivariate relationships using the TALIS 2013 data (Micklewright et al., 2014; 

Sellen, 2016) and one paper has modelled job satisfaction using the 2008 data (Duyar et al., 2013; 

Fackler & Malmberg, 2016). This paper goes beyond the existing literature in three main ways. First, 

it uses exploratory factor analysis (EFA) to develop a new way of categorising and quantifying the 

working conditions measures in the TALIS survey. Second, this paper is the first to model the 

determinants of teachers’ desire to leave their school using the TALIS data. Third, in later stages of 

the analysis, I link the TALIS data to department-level administrative data on teachers in England, 

including objective measures of pupil deprivation, to provide a richer set of control variables. 

I find that the nature of leadership and management has a particularly strong association with both 

satisfaction and desire to leave, highlighting the central importance of school leaders in improving 

retention. This is consistent with findings from research using other datasets (Boyd et al., 2011; 

Ingersoll, 2001; Ladd, 2011). As well as replicating these findings, I identify a number of new 

correlates of improved teacher job satisfaction including feedback, student discipline and scope for 

career progression. Teachers being assigned to teach classes and subjects for which they feel well 

prepared is also strongly associated with reduced desire to move school. 

These findings come from cross-sectional survey data, which makes it hard to rule out reverse 

causation. My interpretation of the associations in this paper therefore relies on two additional 

sources. First, theoretical accounts which provide descriptions of the psychological mechanisms by 

which poor working conditions increase the demands on teachers and/or reduce the resources 

available to them, leading to teacher burnout and then turnover (Bakker & Demerouti, 2007; 

Crawford et al., 2010; Fernet et al., 2013). Second, previous research using longitudinal data which 

has shown that changes in working conditions predict changes in teacher retention outcomes at later 

times points (Boyd et al., 2011; Donaldson and Johnson, 2010) and not the other way round (Kraft et 

al., 2016). Both sources of evidence help reduce concerns about reverse causality with respect to the 

associations identified in this paper. 

The rest of the paper is organised as follows. Section 2 describes the data. Section 3 presents the 

results using the international data. Section 4 describes the factor analytic methods used to derive the 

latent working conditions variables used in the England-only data. Section 5 provides the results from 

models using the England-only data. Finally, section 6 concludes by discussing implications for 

research and policy. 
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3.2 Data 

TALIS is an international teacher survey that collects information on teachers’ beliefs, practices and 

working conditions. TALIS was first conducted in 2008 and then again in 2013; the next survey will 

be in 2018. The teacher questionnaire for the 2013 survey contains 50 question groups covering 

teacher and school characteristics, professional development, feedback, pedagogy, attitudes to 

teaching, school climate and job satisfaction. The survey employs a complex design in which schools 

are sampled with probability proportional to size (with some countries also employing stratification at 

this stage) and then teachers are randomly sampled from within sampled schools (Dumais & 

LaRoche, 2014). The target sample in each country is 20 teachers in 200 schools, or 4,000 

respondents. The final teacher dataset for 2013 contains just under 120,000 respondents, though 

responses vary in their level of completeness and some items have high non-response rates. The 

TALIS data is supplied with weights that account for the complex survey design and non-response. 

These weights are applied to all estimates in this research using the REPEST command in the STATA 

software, which uses balanced repeated replication (Kish & Frankel, 1970) to account for all 

clustering in the complex survey design when estimating standard errors (Avvisati & Keslair, 2016). 

The weighting method used here means that larger countries such as Japan contribute proportionally 

more information to the results when pooling data across countries. 

The TALIS data covers 35 different countries.6 International surveys such as TALIS are often subject 

to concerns that responses cannot be compared across respondents who read and respond to the survey 

in different languages and may interpret the questions through different cultural lenses (Rutkowski & 

Svetina, 2014). Ideally, international surveys will display measurement invariance, which suggests 

that the questions have been interpreted in a similar way across countries. The TALIS 2013 data has 

been subjected to extensive empirical testing for invariance (Desa, 2016; Desa et al., 2014) through 

multi-group confirmatory factor analysis. These tests have shown that the data display weak or metric 

invariance, which allows the sort of cross-country regression analysis employed in this paper. 

However, the same tests generally show that the data do not show strong or scalar invariance, 

meaning average scores cannot be compared across different linguistic and cultural groups. 

 

There are two outcome variables for this study: teacher job satisfaction and teacher desire to move 

school. The job satisfaction variable in the TALIS dataset, TJOBSATS, is a composite measure made 

up of eight different items from question 46, all relating to teachers’ evaluations of their job (Desa et 

al., 2014), for example “The advantages of being a teacher outweigh the disadvantages” and “I would 

recommend my school as a good place to work.” Responses to each item are measured on a four-point 

scale from Strongly Disagree to Strongly Agree. Negative statements are reverse coded so that a 

                                                           
6 Technically, it includes 36. However, the USA is generally excluded from such analyses due to low response 

rates (Becker et al., 2014, p8). 
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higher score on TJOBSATS indicates higher job satisfaction. Table 22 in Appendix C shows the 

means (2.9-3.3) and standard deviations (0.6-0.8) of the responses to each question in the international 

sample. It is slightly negatively skewed, with a median value of 11.7 and a mean of 11.9. The 

distribution is bimodal, with peaks around 12 and 16, which likely correspond with respondents 

scoring 3 out of 4 and 4 out of 4 on all the component questions. In the rest of the analysis, this 

variable is standardised to give it a mean of zero and a standard deviation of one. 

Figure 9: Histogram of the teacher job satisfaction variable 

  

Notes: N = 112,120. The Job Satisfaction variable is calculated as an average of the satisfaction with working environment 

and satisfaction with profession complex scale scores. Each of these complex scale scores is created using confirmatory factor 

analysis and rescaled to have a mean 10 and standard deviation of 2 across the international sample. For more detail see Desa 

et al. (2014). 

 

The second outcome measure for this study is desire to move to another school. This is measured 

using a single item from question 46, which asks teachers whether they agree with the statement “I 

would like to change to another school if that were possible”, measured on the same four-point scale. 

It is worth noting that this item also makes up part of the job satisfaction score, but it is used 

separately here because it is of specific interest. As can be seen from Table 22 in Appendix C, this 

question has a mean (reversed) score of three (equivalent to responding Disagree) and standard 

deviation of 0.8. 
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3.3 Modelling Using International Data 

The TALIS data contain many variables that are relevant to analysing teacher job satisfaction and 

retention (Borman & Dowling. 2008; Simon & Johnson, 2015). In order to enhance interpretability of 

my results, I make use of several of the latent variables that come in the data: professional 

development (the TEFFPROS variable in the TALIS data), teacher cooperation (TCCOOPS) and 

stakeholder engagement (TSCSTAKES). All three of these latent variables have been shown to 

display metric invariance and can therefore be used to model outcomes across the TALIS countries 

(Desa, 2016; Desa et al., 2014). I standardise all three variables to have mean zero and a standard 

deviation of one. Discipline is another aspect of working conditions that is relevant to teacher 

retention (Kraft et al., 2016; Simon & Johnson, 2015) and there is a composite score for this in the 

TALIS data (TCDISCS). However, this only relates to a single “target class” rather than the school in 

general. I therefore do not include it in my models in this section. In section 4 and 5 however, I 

develop my own measure of school discipline that helps avoids these pitfalls. Table 24 shows the 

pairwise correlations between the three latent variables, all of which have an absolute value lower 

than 0.3. This suggests that they are all measuring distinct latent variables.  

The professional development latent variable captures how often the professional development at a 

school includes a range of features suggested by research to be associated with more effective 

professional development. It is measured by four manifest variables, each of which are measured on a 

four-point scale from “Not in any activities” to “Yes, in all activities.” It is therefore intended as a 

measure of the quality of professional development. The four features of professional development it 

captures are: whether it involves learning with colleagues; whether it involves active learning 

methods; whether it involves collaborative learning activities; whether it takes place over an extended 

period of time, rather than being one off. Professional development has been shown to be related to 

teacher retention and job satisfaction in existing research (Kraft et al., 2016; Skaalvik & Skaalvik, 

2011; Simon & Johnson, 2015). 

The teacher cooperation latent variable captures how often teachers participate in a range of 

collaborative activities relating to their teaching. This is measured by eight manifest variables, which 

each refer to specific collaborative practices, such as “Exchange teaching materials with colleagues” 

or “Teach jointly as a team in the same class.” Responses are measured on a six point scale from 

“Never” to “Once a week or more”. Teacher cooperation has been shown to be related to teacher 

retention in existing research (Kraft et al., 2016; Simon & Johnson, 2015). 

The stakeholder engagement latent variable captures teachers’ responses to five statements relating to 

the engagement of important groups in the life of the school, e.g. “This school provides parents or 

guardians with opportunities to participate actively in school decisions”. This is measured on a four-
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point Likert type scale from “Strongly Disagree” to “Strongly Agree”.  Again, this has been shown to 

be relevant in the existing literature (Skaalvik & Skaalvik, 2011).  

Besides these working conditions variables, the model includes: age (measured in years); a dummy 

indicating female gender; experience in teaching (measured in years); a dummy indicating whether a 

teacher has a permanent contract; a dummy indicting whether they have a Science, Technology, 

Engineering or Maths (STEM) degree, which has been shown to be relevant to retention (Allen & 

Sims, 2017); and a country indicator. Unfortunately, the international TALIS sample does not include 

information on the deprivation of pupils in the school, other than a categorical teacher self-report that 

is related to a single “target class”. I therefore postpone use of pupil deprivation measures until 

Section 4, when I use linked survey and administrative data for England.  

Table 7 shows the results from regressing the various working conditions measures, demographic 

variables and country indicators on the two outcome measures. Column 1 is an ordinary least squares 

(OLS) regression on the standardised teacher job satisfaction score. The coefficients show the 

standard deviation change in job satisfaction for a one unit change in each variable, holding the other 

covariates constant. Column 2 is an ordinal logistic regression on the four-point (Strongly Disagree to 

Strongly Agree) Likert response to whether a teacher would like to move schools. The coefficients are 

odds ratios and show the change in odds of moving one category towards the highest category 

(Strongly Agree) associated with a one unit change in each variable, holding the other covariates 

constant. A coefficient of less than one indicates a reduction in the odds. Both models include country 

fixed effects. 

The models are based on around 85,000 observations with the missing observations largely due to the 

effective professional development variable, which is missing for 23,980 (20.6%) of respondents. The 

missing proportion is high because if any of the four underlying manifest variables used to create the 

scaled score were missing for an individual, the scaled score was not calculated for that individual. 

The analysis in Table 7 is therefore based on listwise deletion to of the cases with missing data. This 

is clearly undesirable in the sense that the data can no longer be claimed to be representative of the 

target population. The obvious alternative would be to impute the data using multiple imputation, 

which would maintain unbiased coefficient and standard error estimates (Cheema, 2014). However, 

guidelines on the imputation of missing data in education recommend that any variable with more 

than 15% of values missing should not be imputed because the necessary assumption of missing at 

random is untenable in such cases (Cheema, 2014). I therefore refrain from imputing the CPD 

complex scale score variable in this part of the analysis. In Section 3.5 I address this shortcoming by 

using multiple imputation on the underlying manifest variables (all of which have less than 15% of 

cases missing) and then derive my own complex scale scores based on these imputed manifest 

variables. The results with full imputation (Appendix C, Table 32) are very similar to the results 
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without imputation (Table 9, Table 10) which provides some reassurance that missing data is not 

likely to be biasing the results to a great extent in Table 7. 

Table 7: Modelling job satisfaction and desire to move school across TALIS countries 

 
(1) 

Job Satisfaction 

(Z scored) 

(2) 

Want to Move School 

(Likert) 

Prof Development (Z scored) 0.10** 0.90** 

(0.01) (0.01) 

Teacher Cooperation (Z scored) 0.19** 0.81** 

(0.01) (0.01) 

Stakeholder Engagement (Z scored) -0.01 1.00 

 (0.01) (0.01) 

STEM Degree (Dummy) 

 
0.01 0.93* 

(0.01) (0.02) 

Age (Years) 

 
0.01** 0.99 

(0.001) (0.01) 

Female (Dummy) 

 
0.02 0.96 

(0.02) (0.03) 

Experience (Years) 

 
0.01 0.99** 

(0.01) (0.001) 

Permanent Contract (Dummy) 

 
0.08** 1.00 

(0.02) (0.04) 

R Squared / Pseudo R Squared 0.13 0.10 

N 85,116 84,559 
Notes: Column 1 is an OLS regression and coefficients are marginal effects. Column 2 is a logistic regression and 

coefficients are odds ratios. Numbers in parentheses are standard errors. Standard errors are adjusted for clustering 

through the application of final and replicate weights. ** = p< 0.01, * = p< 0.05. Pseudo R Squared is McFadden’s Pseudo R 

Squared. Both models include country fixed effects. 

 

Looking first at column 1, effective professional development and teacher cooperation both have a 

positive relationship with job satisfaction, statistically significant at the 1% level. A one standard 

deviation (SD) increase in professional development is associated with a 0.1 SD increase in job 

satisfaction. I also find that a one SD increase in teacher cooperation is associated with a 0.2 SD 

increase in job satisfaction. This is somewhat smaller than the finding from Johnson et al. (2012) that 

a one SD increase in collegial support is associated with a 0.52 SD increase in job satisfaction. The 

third working condition, stakeholder engagement, has no statistically significant relationship with job 

satisfaction. This contrasts with the positive, statistically significant association with “community 

support” identified by Johnson et al. (2012). Age and having a permanent contract are both weakly 

positively correlated with job satisfaction. Column 2 shows the results of modelling teachers’ desire to 

move school. Teacher cooperation is associated with reduced desire to move school, statistically 

significant at the 1% level. The coefficient indicates that a one SD increase in teacher cooperation is 

associated with around a 19% reduction in the odds that a teacher move one category towards strongly 

agreeing that they want to move school. Again, this is smaller than the finding from Johnson et al. 

(2012) that a one SD increase in collegial support is associated with a 57% reduction in odds of 
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wanting to move schools. A one SD increase in professional development is associated with a 10% 

reduction in the odds of moving one category up the response scale towards strongly agreeing that 

they want to move school, statistically significant at the 1% level. This finding contrasts with the 

finding from Ladd (2011) that there is no relationship between profession development and intention 

to move school. The final finding from Table 7 is that having a STEM degree and being more 

experienced are both negatively associated with desire to move school.  

3.4 Measuring Working Conditions in English Schools 

In the remainder of the paper, the sample is restricted to TALIS teachers in England. This has three 

advantages. First, it removes doubts about measurement invariance based on whether responses to the 

survey questions are comparable across different linguistic and cultural groups. This allows a much 

wider range of working conditions variables to be used in the analysis. Second, it allows the use of a 

set of variables derived from questions that were asked exclusively in the England version of the 

TALIS questionnaire (see Table 25 and Table 26 in Appendix C for more details). Third, it allows me 

to link in extra (school level) data on TALIS respondents in England from the School Workforce 

Census (SWC) dataset, including objective measures of pupil disadvantage, the proportion of pupils 

from ethnic minority backgrounds and the region and rural-urban status of the school. This allows a 

wider range of variables to be held constant in the analysis, while looking at the relationship between 

working conditions and the two outcome measures. The disadvantage of using only the English data is 

that the sample size falls to 2,060 linked teachers. 

This dataset includes more than forty different variables measuring working conditions (Borman & 

Dowling, 2008; Simon & Johnson, 2015). Table 23 in Appendix C shows the level of missing values 

for each of these variables, ranging between 0.8 and 14.5%. Guidance in the literature states that 

variables with up to 15% of missing values should be dealt with through multiple imputation 

(Cheema, 2014). Multiple imputation has the benefit of ensuring the sample remains representative of 

the target population and allowing the estimation of unbiased standard errors. The corresponding 

downside is that it relies on the (strong) missing at random assumption. In the rest of this chapter I 

therefore present my main results using both the complete case (no imputation) sample and multiple 

imputation approaches. The results are qualitatively very similar. 

Including all of these variables in the regression and interpreting the coefficients on each of them 

separately would be difficult. Moreover, some of the variables are likely to be measuring very similar 

concepts. Indeed, other research measuring working conditions in schools has identified groups of 

working conditions measures underlying the questionnaire responses (Corbell et al., 2008; Kraft et al., 

2016; Ladd, 2011; Weiss, 1999). In the presence of a clear theoretical framework to guide 

aggregation, confirmatory factor analysis could be used to create composite scores. However, there 

are a number of competing theoretical frameworks (Deci & Ryan, 2008; Demerouti et al., 2001; 
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Eisenberger, 1986) and existing research has not settled on a dominant conceptualisation of working 

conditions. I therefore use exploratory factor analysis (EFA) because it is capable of both identifying 

latent variables underlying the measured working conditions variables and reducing the number of 

dimensions in the data in the process. This approach is common in related literature (Kraft et al., 

2016; Ladd, 2011; Weiss, 1999). 

Exploratory factor analysis aims to parcel common variance between groups of measured variables 

into distinct latent variables. A necessary condition for being able to identify latent variables is that 

groups of the measured variables share some common variance, otherwise the data is not factorable. 

The Kaiser-Meyer-Olkin (KMO) test quantifies this by comparing the pairwise association between 

measured variables (conditional on the other variables) with the sum of correlations. The rationale 

behind the KMO is that, if there are indeed latent factors to be identified, then pairwise conditional 

correlations should be relatively low, because conditioning on the other variables would remove the 

variation associated with the shared latent variable. A value close to zero means that partial 

correlations are relatively large compared to the sum of correlations and thus there appears to be little 

variation shared between groups of variables. A value close to one means that partial correlations are 

small relative to the sum of correlations and thus a high proportion of the variation appears to be 

shared between groups of measured variables. In this case, the KMO statistic has a value of 0.83, 

which is generally considered to merit factor analysis (Kaiser & Rice, 1974).  

A second precondition for conducting an informative factor analysis is that the data comes from a 

large heterogeneous sample (Yong & Pearce, 2013). To see why, consider that if all observations 

varied in the same way along the same dimensions then there may be other latent variables present in 

the data, but not identifiable from observed variation (Gaskin et al., 2017). For the purpose of 

modelling, failing to identify a latent variable could create omitted variable bias even while the 

variable is measureable in the dataset. I argue that the TALIS data does indeed constitute a large 

heterogeneous sample. My dataset includes 2,060 teachers across 154 schools and Table 26 

(Appendix C) shows substantial variation across the variables used in the analysis. The data is 

therefore appropriate for conducting an EFA. 

The first step in conducting an EFA is to calculate the pairwise correlation between all the variables 

included in the analysis. Because many of the working conditions variables are ordinal I construct the 

correlation matrix using polychoric correlations, which assumes that the ordinal variables are 

imperfect measures of underlying, theorised-continuous variables. Simulations suggest this produces 

more accurate identification of latent variables than simply treating the variables as if they were 

continuous (Holgado-Tello et al., 2010). I construct the correlation matrix using the Polychoric 

command in the STATA software (Kolenikov & Angeles, 2004).  
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The process of extracting latent variables from the data begins by identifying the group of measured 

variables that are most strongly correlated with each other. Following this, the EFA process proceeds 

to identify the second group of measured variables which explain the most variation in each other, and 

so on. In order to ensure that this second set is distinct from the first, EFA involves rotating the factor 

axis in between extracting each factor. The two main types of factor rotation available are orthogonal, 

which rotates the factor axis by ninety degrees between extracting each factor, and oblique, which 

may rotate the axis by less than ninety degrees. Almost without exception, the other articles in this 

literature (Kraft et al., 2016; Ladd, 2011; Weiss, 1999) employ orthogonal (Varimax) rotation. 

However, the use of orthogonal rotation methods has been strongly criticised on the grounds that it 

assumes the latent variables are uncorrelated and this is unlikely to be true in many social scientific 

settings (Preacher & MacCallum, 2003). For example, it is plausible that schools with good leadership 

also offer good professional development. In any case, as Preacher and MacCallum (2003) point out, 

if the data is indeed suited to an orthogonal factor structure, then an oblique rotation will resemble 

that achieved by an orthogonal rotation. I therefore employ an oblique (Promax) factor rotation. Table 

28 in Appendix C shows the factor loadings after rotation, which can be thought of as the weight with 

which each variable contributes to each latent variable. The uniqueness column shows the proportion 

of variance of each variable that is not shared with other variables. The rotated factor structure is very 

simple, with no variables loading on more than one factor. 

An important question when conducting EFA is: how many factors should be retained? One 

commonly used method for deciding this is to retain all factors with an eigenvalue larger than one. An 

eigenvalue measures how much of the variance in the underlying variables the marginal factor can 

account for. An eigenvalue of one means the factor explains as much as one of the original variables. 

Intuitively then, an eigenvalue of less than one for the marginal factor suggests that the gain in terms 

of capturing more variation from the variables no longer outweigh the costs in terms of reduced 

parsimony. As can be seen from Figure 10 below, eight of the factors from the EFA have an 

eigenvalue of more than one. However, this method of choosing how many factors to retain relies on 

strong assumptions which cannot be empirically verified (Preacher & MacCallum, 2003). An 

alternative criterion is to retain as many factors as come before the last large drop, or “elbow point”, 

on a plot of the marginal eigenvalues (Figure 10). The rationale for this is that the gradient of the plot 

captures the trade-off between parsimony (which is declining in the number of factors retained) and 

variance captured (which is declining in the eigenvalues). A discontinuous change in the gradient at 

an elbow point therefore reflects a sharp decline in the desirability of this trade-off and therefore a 

sensible place to optimise. In this case, both methods of determining how many factors to retain give 

the same answer: eight. I therefore retain the first eight factors. 
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Figure 10: Eigenvalues for each marginal factor in the EFA 

 

Notes: The red line indicates an eigenvalue of one. 

 

I give each of the eight factors a name based on my own interpretation of what unifies the variables 

which make them up. They are: Leadership/Management; Teacher Cooperation (which is very similar 

to the variable of the same name used in Section 3); Feedback; Scope for Progression; Effective 

Professional Development (which is very similar to the variable of the same name used in Section 3); 

Preparation for Teaching Assignments; Discipline; Workload. Table 8 lists the specific questions 

associated with each factor and readers may wish to review these to satisfy themselves that the factors 

are coherent and meaningful. Between them, these eight factors are able to explain 94.5% of all the 

variation captured in the TALIS working conditions variables. Table 24 (Appendix C) shows the 

pairwise correlations for the eight factors, six of which have an absolute value of 0.3 or higher. The 

correlations between the different working conditions measures justify the use of oblique rotation in 

this case. The factors that emerge from the EFA are broadly consistent with what the existing 

literature has found to be important for determining job satisfaction and retention, e.g. school 

leadership (Boyd et al., 2011; Ingersoll, 2001; Ladd, 2011; Skaalvik & Skaalvik, 2011); teacher 

cooperation (Borman & Dowling, 2008; Boyd et al., 2011; Kraft et al., 2016; Reeves et al., 2017); 

discipline (Ingersoll, 2001); preparation for the job (Bogler & Nir, 2015; Donaldson & Johnson, 
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2010); and workload (Betoret, 2006; Collie et al., 2012; Ladd, 2011; Marinell et al., 2013; Smith & 

Ingersoll, 2004). 

I use the information from the EFA to calculate predicted factor scores based on teachers’ responses 

to the 42 manifest working conditions variables. Measuring each factor using a single number like this 

requires that the factor can indeed be measured on a unidimensional scale. Internal consistency 

(interrelatedness) of items is a necessary condition for such unidimensionality (Green et al., 1977). 

Cronbach’s alpha (Chronbach, 1951) is a commonly used measure of inter-relatedness which 

calculates the mean of all split half reliabilities for items in the scale. The convention in the literature 

is to require a value of alpha between 0.7 and 0.9 on the grounds that anything lower suggests 

multidimensionality and anything higher suggests redundancy of items (Tavakol & Dennick, 2011). 

Table 29 shows the standardised alphas for the items that load on each factor. There is a debate about 

whether Alpha is an appropriate measure of reliability for two-item scales, so I also report the 

Spearman-Brown statistic for the discipline factor, as recommend by Eisinga et al. (2013). Workload 

has a very low alpha of 0.5. One plausible reason for the low reliability is that the sample contains 

both full-time (87%) and part-time (13%) teachers. However, recalculating the alpha only among full-

time teachers gives the exact same value. In order to avoid using a scale with low reliability, and 

simplify making workload comparisons across full-time and part-time teachers, the models below use 

a single variable measuring whether teachers feel their workload is unmanageable on a four-point 

Likert scale from Strongly Disagree to Strongly Agree. Aside from Workload, the groups of manifest 

variables that measure each latent variable all have alphas above or very close to 0.7 (Feedback is 

0.69) and are therefore retained. 
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Table 8: Wording of questions/variables that load on each factor 

Factor Wording of question which makes up that factor 

TALIS 

Variable 

Code 

Leadership/ 

Management 

School provides staff with opportunities to participate in school decisions 44A 

I do not have the autonomy I need to do a good job as a teacher 47E 

Feedback provided based on a thorough assessment of teaching 31E 

The school has an effective school management team 47C 

The school management team give clear vision and direction 47D 

There is a collaborative school culture characterized by mutual support 44E 

There is a lack of employer support (for professional development) 27C 

The school has a culture of shared responsibility for school issues 44D 

Teacher  

Cooperation 

(How often) Teach jointly as a team in same class  33A 

(How often) Observe other teachers’ classes and provide feedback 33B 

(How often) Engage in joint activities across different classes and age groups 33C 

(How often) Exchange teaching materials with colleagues 33D 

(How often) Engage in discussion about the learning of specific students 33E 

(How often) Work with other teachers to ensure common evaluations 33F 

(How often) Attend team conferences 33G 

(How often) Take part in collaborative professional learning 33H 

Feedback (Do you get) Feedback from student surveys about your teaching 28B 

(Do you get) Feedback following an assessment of your content knowledge 28C 

(Do you get) Feedback following a review of your students’ tests scores 28D 

(Do you get) Feedback following self-assessment of your work 28E 

(Do you get) Feedback following surveys or discussions with parents 28F 

Scope for  

Progression 

I have scope to progress to a higher pay level 47L 

I have scope to progress into a leadership team role 47M 

I have scope to progress as a classroom teacher 47N 

Effective  

Professional  

Development 

(To what extent does PD) include a group of colleagues from my school/subject 25A 

(To what extent does PD) include opportunities to use active learning methods 25B 

(To what extent does PD) include collaborative learning with other teachers 25C 

(To what extent does PD) occur over several occasions spread out over weeks 25D 

Preparation Were contents of subjects you teach included in your formal education/training 12A 

Was pedagogy of subjects you teach included in your formal education/training 12B 

 (Do you feel prepared for) Content of the subjects you teach  13A 

 (Do you feel prepared for) Pedagogy of the subjects you teach  13B 

Discipline (Can you) Control disruptive behaviour in the classroom 34D 

(Can you) Get students to follow classroom rules 34H 

Workload (How many hours did you spend on) Your job last week 16 

(How many hours did you spend on) Planning and lesson preparation last week  18A 

(How many hours did you spend on) Marking/correcting students work last week 18C 

Notes: For space reasons, not all questions are reproduced in full. Only questions with loadings >|0.3| are shown.  
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3.5 Modelling Using English Data 

Table 9 shows the results from modelling teachers’ desire to move school based on their personal 

characteristics, the characteristics of their school and the working conditions in their school. As in 

section 3, desire to move school is measured on a four-point scale from Strongly Disagree to Strongly 

Agree. All four models are therefore ordered logistic regressions and the coefficients show the 

percentage change in odds of being one category higher (closer to Strongly Agree), associated with a 

one unit change in the independent variable, holding the other variables constant. The demographic 

variables included in the model but not shown in the results are listed in the notes to Table 9.  

Column 1 shows the relationship between the proportion of pupils who qualify for free school meals 

(FSM) and teachers’ desire to move school, conditional on teacher demographic characteristics and 

school characteristics. It reveals the expected positive association, statistically significant at the 1% 

level. However in column 2, which also includes the seven working conditions, this association drops 

substantially and is no longer statistically significant. This is consistent with the findings from Simon 

and Johnson (2015). Four of the coefficients on the working condition variables reach statistical 

significance at conventional levels. The strongest relationship is with leadership. A one standard 

deviation in my measure of leadership reported by a teacher is associated with a 61% reduction in the 

odds that a teacher is one category higher (closer to Strongly Agree). This is very similar to the 

equivalent finding from Johnson et al. (2012) and Ladd (2011) who find a one SD increase in 

leadership is associated with a 60% and 52% reduction in the odds that a teacher intends to switch 

schools, respectively. I also find that a one SD increase in scope for progression is associated with a 

28% reduction in the odds of being one category closer to Strongly Agree, and a one SD increase in 

Preparation is associated with a 13% reduction in the odds of being one category closer to Strongly 

Agree. Finally, moving one category closer to Strongly Agree that workload is unmanageable is 

associated with a 20% increase in desire to move school. This is comparable with the finding from 

Johnson et al. (2012) that a one SD improvement in workload is associated with a 37% reduction in 

the odds of intended turnover. The other four working conditions measures – collaboration, feedback, 

professional development and discipline – all show very little association with desire to move school.  

Table 31 in Appendix C shows analogous results when the working condition variables are entered 

into the model one by one. The associations are generally slightly stronger than when added 

simultaneously, but remain in the same direction. Interestingly, the coefficients on leadership 

(preparation) are similar to those in column 2 when leadership (preparation) is entered into the model 

without the other working conditions or FSM. This suggests that the other working conditions 

measures and pupil deprivation have a separate relationship with job satisfaction, rather than being 

mediators or mechanisms between, e.g. leadership and satisfaction. In Table 32 (Appendix C) I run 

the same model using multiple imputation by chained equations to account for missing data on the 

covariates. The results are qualitatively very similar. 
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A serious concern when using survey data in this way is that the results will be affected by common 

source bias (Meier & O’Toole, 2010; Podsakoff & Organ, 1986). This occurs when both the 

dependent and independent variables contain measurement error due to being from a common source, 

such as a single questionnaire. The shared measurement error emanating from the common source in 

effect acts as an omitted variable and can cause large bias in the regression coefficients (Podsakoff et 

al., 2012). Favero and Bullock (2015) distinguish individual common source bias and environmental 

common source bias. In this setting, individual common source bias could result from the affective 

state of the teachers responding to the survey. For example, if a teacher is having a particularly bad 

day when they respond to the TALIS questionnaire, this might influence them to report more 

negatively on the working conditions in the school and report more negatively on their job satisfaction 

or desire to leave. A teacher having a particularly good day may do the opposite. This would inflate 

the estimate of the relationship between working conditions and the two outcome variables. 

Environmental common source bias may also be a concern in this setting if, for example, the 

organisational culture in a particular school affects the way that teachers interpret and respond to the 

TALIS questionnaire. Teachers in schools with a deferential culture, for example, may feel less 

inclined to give an honest assessment of leadership in their school, which would give a downward 

bias to the coefficient on the leadership variable.  

I run two additional specifications of my model in Table 9 to test for common source bias. Column 3 

includes school fixed effects to try and capture unobserved school-level environmental influences on 

teachers’ survey responses. It also includes a measure of happiness at work as an independent 

variable, in order to try and capture individual-level time-varying affective state at the point a teacher 

responded to the survey. The coefficient on leadership and preparation are fairly stable and both 

remain statistically significant at the 5% level or higher. However, the association with scope for 

progression and workload become weaker and are no longer statistically significant. Column 4 takes a 

different approach to testing for individual-level common source bias by measuring working 

conditions W for teacher i in department j, using the mean of working conditions reported by other 

teachers in their department 𝑊̅𝑖≠𝑖,𝑗 . The coefficient on leadership falls noticeably compared to 

column 2, but remains statistically significant at the 5% level. The coefficient on scope for 

progression switches sign and is no longer statistically significant at conventional levels. The 

coefficient on preparation remains stable and statistically significant at the 5% level. While neither of 

these additional specifications can eliminate the problem entirely (Favero & Bullock, 2015), they do 

provide some reassurance that the relationship between leadership, preparation and desire to move 

schools are robust to checks for common source bias. By contrast, the results from column 3 and 4 

mean common source bias cannot be ruled out as the reason for the observed relationship between 

scope for progression and workload.  
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Table 9: Modelling desire to move school (ordered logit regression) 

 (1) (2) (3) (4) 

FSM (%) 1.091** 1.008 0.918 1.002 

 (0.007) (0.007) (0.050) (0.007) 

Leadership (Z score)  0.393** 0.565** 0.698* 

  (0.031) (0.052) (0.102) 

Collaboration (Z score)  0.946 0.902 0.995 

  (0.064) (0.095) (0.111) 

Scope for Progression (Z score)  0.723** 0.88 1.212 

  (0.076) (0.097) 0.186 

Feedback (Z score)  1.072 1.122 0.966 

  (0.083) (0.098) (0.116) 

Prof Development (Z score)  1.016 1.005 1.052 

  (0.085) (0.099) (0.14) 

Preparation (Z score)  0.87* 0.817* 0.755* 

  (0.047) (0.049) (0.085) 

Discipline (Z score)  1.030 1.137 0.857 

  (0.071) (0.09) (0.114) 

Workload is Unmanageable (Likert†)   1.20* 1.01 0.99 

  (0.1) (0.099) (0.058) 

Enjoy Working at This School (Likert†)   0.146**  

   (0.025)  

Pseudo R Squared 0.04 0.14 0.89 0.04 

N 1,933 1,508 1,505 785 

Demographics Y Y Y Y 

School Fixed Effects   Y  

Colleague Report    Y 
Notes: Coefficients are odds ratios. Numbers in parentheses are standard errors. Standard errors are adjusted for 

clustering through the application of final and replicate weights. Demographic controls included in the model: female 

(dummy), age (years), full time (dummy), experience in teaching (years), pupils female (%), pupils ethnic minority (%), 

academy school (dummy). FSM = Free School Meals. Prof Development = effective professional development. Each 

column is a separate ordered logistic regression. Colleague report involves measuring working conditions W for teacher 

i in department j, using the mean of working conditions reported by other teachers in their department 𝑊̅𝑖≠𝑖,𝑗 . Numbers 

in parentheses are standard errors. ** = p< 0.01, * = p< 0.05. † = measured on a four-point scale from Strongly 

Disagree (1) to Strongly Agree (4). Happiness with Job is derived from Question 46E “I enjoy working at this school”. 

Workload is Unmanageable is derived from Question 47H “My workload is unmanageable”. Pseudo R Squared is 

McFadden’s Pseudo R Squared. 

 

In order to give a sense of the material significance of these associations, Figure 11 shows predictive 

margins for the relationship between working conditions and whether a teacher wants to leave their 

school. In order to maximise interpretive clarity, the graphs below are based on a model identical to 

that in column 2 of Table 9, but with the outcome measured as a dummy indicating whether teachers 

agree (32.8% of respondents in England) or disagree (67.2% of respondents in England) that they 

would like to move schools. The model is therefore estimated using binary logistic regression. The 

graphs show the predicted probability of a teacher reporting that they either Disagree or Strongly 

Disagree that they would like to move to another school, for varying values of leadership, scope for 
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progression and preparation, when the other variables are set to their average values. The x axes are 

again measured as z scores and the y axes as probabilities between zero and one. Leadership shows by 

far the strongest correlation with desire to stay: a move from one SD below the mean to one SD above 

the mean is associated with around a 30 percentage point increase in the probability that a teacher 

desires to stay. The same change for scope for progression and preparation are associated with an 

increase of less than 0.1 in the probability that a teacher wishes to remain in their current school. 

 

Figure 11: Predicted margins that a teacher wants to remain at their current school 

 

Notes: Shows the predicted margins from a binary logistic regression of whether or not a teacher wants to stay in their 

school (dummy) and the seven working conditions variables, plus the demographic and school variables included in column 

2 of Table 9. All other variables in the model are evaluated at the mean (continuous variables) and mode (dummy variables). 

The x axes show z scores and the y axes show probabilities. 67.2% of respondents (after weighting) want to remain at their 

current school. 

 

Table 10 repeats the analysis in Table 9 but using job satisfaction (z scored) as the outcome variable. 

Ordinary least squares is used to estimate the regression and the coefficients therefore show the 

standard deviation increase in job satisfaction associated with a one unit increase in each independent 

variable, conditional on the other independent variables. Unlike in Table 9, column 5 in Table 10 does 

not show any association between deprivation of the pupil intake and the outcome. Column 6 also 

shows no association, conditional on teacher demographics and school characteristics. In column 6, 
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Leadership again has the strongest association with the outcome, with a one SD increase in the former 

associated with a 0.38 SD increase in job satisfaction. This is comparable to the finding from Johnson 

et al. (2012) that a one SD increase in leadership is associated with a 0.51 SD increase in job 

satisfaction. This association is robust to the addition of school fixed effects in column 7 and using 

colleague scores for the independent variables in column 8. In column 6 a one SD increase in scope 

for progression and discipline is associated with a 0.07 SD and 0.18 SD increase in job satisfaction, 

respectively. The workload finding is comparable to Johnson et al. (2012) who find a one SD 

improvement in workload is associated with a 0.26 SD improvement in job satisfaction. Both 

coefficients are similar in column 7 and remain statistically significant at the 5% level. However in 

column 8 they change sign and are not statistically significant, which is consistent with the presence 

of individual-level common source bias. The coefficient on workload follows a similar pattern, 

remaining stable across column 6 and 7, but changing in magnitude and no longer being statistically 

significant at conventional levels in column 8. The coefficient on preparation is positive and fairly 

stable (between 0.03 and 0.1) across all models but is not statistically significant at conventional 

levels in column 6 or 7. Table 30 in Appendix C shows the results when the working conditions latent 

variables are added one-by-one. The associations are generally slightly stronger than when the 

variables are added simultaneously, but do not change sign. Table 32 in Appendix C shows the results 

from column 6 after imputation has been used to account for missing data on the covariates and the 

results are again qualitatively very similar to the complete case version. 
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Table 10: Modelling job satisfaction (OLS regression) 

 (5) (6) (7) (8) 

FSM (%) -0.003 -0.004 -0.005 -0.002 

 (0.003) (0.002) (0.015) (0.004) 

Leadership (Z score)  0.379** 0.377** 0.159* 

  (0.034) (0.037) (0.059) 

Collaboration (Z score)  0.026 0.055 0.013 

  (0.031) (0.034) (0.06) 

Scope for Progression (Z score)  0.183** 0.180** -0.078 

  (0.029) (0.034) (0.074) 

Feedback (Z score)  -0.045* -0.055* 0.047 

  (0.025) (0.026) (0.057) 

Prof Development (Z score)  -0.022 0.020 -0.078 

  (0.025) (0.028) (0.059) 

Preparation (Z score)  0.041 0.026 0.111* 

  (0.025) (0.027) (0.049) 

Discipline (Z score)  0.073* 0.073** -0.036 

  (0.024) (0.024) (0.051) 

Workload is Unmanageable (Likert†)  -0.305** -0.287** -0.03 

  (0.033) (0.037) (0.029) 

R Squared 0.015 0.41 0.50 0.04 

N 1,945 1,510 1,510 758 

Demographics Y Y Y Y 

School Fixed Effects   Y  

Colleague Report    Y 
Notes: Demographic controls include in the model: female (dummy), age (years), full time (dummy), experience in teaching 

(years), pupils female (%), pupils ethnic minority (%), academy school (dummy). FSM = Free School Meals. Prof Development 

= effective professional development. Each column is a separate ordinary least squares regression. Colleague report involves 

measuring working conditions W for teacher i in department j, using the mean of working conditions reported by other teachers 

in their department 𝑊̅𝑖≠𝑖,𝑗 . Numbers in parentheses are standard errors. ** = p< 0.01, * = p< 0.05. † = measured on a Likert scale 

from Strongly Disagree (1) to Strongly Agree (4). Happiness with Job is derived from Question 46C “I enjoy working at this 

school”. Workload is Unmanageable is derived from Question 47H “My workload is unmanageable”. 

 

3.6 Conclusion 

Consistent with research from the USA (Simon & Johnson, 2015), the results show that the 

disadvantage of a school’s intake does not have an association with either reduced teacher job 

satisfaction or increased turnover intentions, once working conditions have been controlled for. This 

has important implications for policy since it suggests that there is potential for improving teacher 

retention by improving working conditions in schools. 

This research also highlights which aspects of working conditions are most important. The nature of 

leadership and management in a school consistently emerges as having the strongest association with 

both satisfaction and desire to move school. This association is robust to a number of checks for 

common source bias and is consistent with other research using different datasets (Boyd et al., 2011; 

Ingersoll, 2001; Ladd, 2011). The manifest variables which load most heavily on the leadership latent 
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variable (see Table 8 and also Table 28 in Appendix C) emphasise leadership that sets a clear 

direction and vision for the school, whilst also allowing opportunities for teachers to participate in 

decision making and support each other. While this research is not able to identify which aspects or 

types of leadership are most important, this combination of direction setting and enabling leadership 

behaviours is consistent with other research on the types of leadership that are the best predictors of 

teacher job satisfaction and commitment to their schools (Nguni et al., 2006; Bogler, 2001). 

Interestingly, four of the six pairwise correlations among the working conditions latent variables 

include leadership, which suggests that the other working conditions may be mediators between 

leadership and the outcomes. Further research should test the strengths of both the direct and mediated 

effects of leadership on job satisfaction and retention.  

The relationship between preparation and desire to move school is also robust across my model 

specifications. As can be seen from Table 8, the manifest variables that make up the preparation latent 

variable focus on whether teachers have had formal or informal training in the subjects they teach. 

This is consistent with findings from Donaldson & Johnson (2010) who use longitudinal survey data 

to show that early-career teachers who are asked to teach outside of the subject in which they have 

been trained are more likely to leave both their school and the profession. This suggests that school 

leaders should try to give teachers, particularly those with less experience, assignments in the subjects 

in which they have a degree. Where this is not possible due to staffing shortages, additional subject 

training should be provided. 

Several other variables were predictive of teacher job satisfaction, such as scope for progression 

(whether teachers feel they can gain new skills and promotions), discipline and workload. However, 

while all three of these variables had a statistically significant relationship with job satisfaction 

conditional on school fixed effects, they did not show an association when the working conditions 

variables were measured using colleague reports. This is suggestive of individual-level common 

source bias. However it may also be due to intra-departmental variations in working conditions. Scope 

for progression, for example, may be very different for teachers in the same department. Other studies 

have found that discipline (Ingersoll, 2001); and workload (Betoret, 2006; Collie et al., 2012; Ladd, 

2011; Marinell et al., 2013; Smith & Ingersoll, 2004) are related to retention. Nevertheless, future 

research should therefore identify alternative data sources for measuring the outcome variables that do 

not share measurement error with the independent variables, such as administrative data on observed 

turnover and retention. 

Despite these limitations, these results should be interpreted with respect to the limitations of this 

data. In particular, the cross-sectional nature of the data means that I cannot rule out changes in 

working conditions preceding changes in retention or job satisfaction, e.g. head teachers assigning 

teachers they expect to leave to classes for which the school has no appropriately trained teachers. 
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Interpretation of the results in this paper therefore relies on two other sources of evidence. First, 

psychologists have developed theoretical accounts (Bakker & Demerouti, 2007) which specify the 

mechanisms by which poor working conditions increase the demands on teachers (e.g. having to teach 

courses for which they are not prepared) and/or reduce the resources (e.g. help from colleagues) 

available to them. This imbalance between resources and demands leads to a depletion of energy 

levels and eventually results in teacher burnout and turnover (Crawford et al., 2010; Fernet et al., 

2013). Second, other research using longitudinal data has shown that changes in working conditions 

precede changes in teacher retention outcomes. For example, the quality of school leadership (Boyd et 

al., 2011) and teachers assigned to classes for which they have not had appropriate training 

(Donaldson & Johnson, 2010) is predictive of turnover measured in subsequent years. Similarly, Kraft 

et al. (2016) find that school leadership, teacher collaboration and orderliness predict turnover at later 

time points, not the other way round. Theory and empirical results therefore help reduce concerns 

about reverse causality explaining the correlations in my cross-sectional data. 

As well as potential reverse causality, there are also questions about mediation in the models. Table 

27 in Appendix C shows that leadership has non-trivial correlations with four of the other working 

conditions latent variables. If the other working conditions are mediators or mechanisms through 

which leadership affects job satisfaction and desire to leave, rather than just covariates, then the 

coefficients in my regression can no longer be interpreted as ceteris paribus associations. In order to 

address both of these limitations, future research should utilise panel data on working conditions both 

to control for unobserved potential confounders and to try and rule out this sort of reverse causality. 

This research can be of direct use to school leaders looking to improve the morale and retention of 

their teachers. Ultimately however, school leaders can only act on the findings of this research if they 

have the skills and resources to go about improving working conditions. It may therefore be necessary 

to find ways of sharing good practice between schools with variation in the quality of their working 

conditions. The provisions of interventions like those studied in Fryer (2017) and Jacob et al. (2015), 

would also help leaders to improve teachers’ working conditions. Such training interventions also 

provide an opportunity to go beyond the conditional associations documented in this paper to identify 

causal effects using experimental research designs. 
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Chapter 4: Does Subject-Specific Professional Development Improve 

the Retention of Science Teachers? 
 

4.1 Introduction 

Teacher shortages are a persistent and widespread problem in public school systems and are 

particularly severe among science teachers (Dolton, 2006). While other subjects generally see shortages 

eliminated during economic downturns, shortages of science teachers tend to persist between economic cycles 

(Goldhaber et al., 2014b; Smithers & Robinson, 2008). Where no appropriately qualified teachers are available, 

research shows that school leaders tend to lower recruitment standards, make increased use of temporary teachers 

or increase class sizes (Moor, 2006; Smithers & Robinson, 2000), all of which have been linked with reduced pupil 

attainment (Fredriksson et al., 2012; Mocetti, 2012; Schanzenbach, 2006). Finding ways to reduce the 

shortage of appropriately qualified science teachers is therefore important. 

The shortage of these teachers is due in part to the higher rates at which science teachers leave the 

profession (Kelly, 2004; Worth & De Lazzari, 2017). This in turn reflects the fact that teachers with STEM 

degrees face a higher outside pay ratio than other teachers (MAC, 2016), providing them with monetary incentives 

to move to jobs in other sectors. Several evaluations have shown that increasing science teacher pay towards what 

science teachers could earn outside of the profession has a positive effect on retention, at least in the short term 

(Bueno & Sass, 2016; Clotfelter et al., 2008; Feng & Sass, 2016).  

Science teaching is also in some ways more demanding than teaching in other subjects, in that science teachers 

generally have to teach one or two subjects in which they do not have a degree. For example, a chemistry graduate 

will generally be expected to teach biology and physics, as well as chemistry. The high numbers of physicists 

choosing to teach mathematics instead of mixed science (Smithers & Robinson, 2008), suggests perhaps that this is 

seen as undesirable by teachers. Early-career teachers who are given multiple subjects to teach are also more likely 

to leave the profession (Donaldson & Johnson, 2010). The demands of teaching science therefore also help to 

explain the higher levels of wastage (leaving the profession) among science teachers.  

Concerns about teacher retention have led to calls for improved continuing professional development (CPD) as a 

way of improving retention (Borman & Dowling, 2008). Detailed qualitative research has been used to suggest 

that professional development can improve retention through improving teachers’ knowledge, self-efficacy and 

motivation (Coldwell, 2017; Taylor et al., 2011; Wolstenholme et al., 2012). However, the limited quantitative 

research which has been conducted in this area has so far yielded mixed findings. Kraft et al. (2016) use linked 

survey and administrative data and find that professional development is predictive of teacher turnover. An 

evaluation by Knibbs et al. (2017) also finds that a two-year intensive professional development programme 

improved retention. However, a randomised controlled trial of an intensive mentoring and professional 

development programme for beginning teachers in the US found no effects on retention (Glazerman et al., 2010). 

In Chapter 3 of this thesis, I also did not find a robust relationship between CPD and teachers’ job satisfaction or 



64 
 

desire to move school. Further research is therefore required to identify which types of CPD do and do not help 

with retention. 

Reviews of research on CPD have recommended that programmes should focus on developing teachers’ subject 

knowledge, as well as how to teach that knowledge (Blank & de las Alas, 2009), making this one promising 

avenue for exploration. Unfortunately, research on the links between subject-specific professional development 

and retention is even more limited. Subject-specific professional development has been shown to improve 

teachers’ knowledge of their subject (Goldschmidt & Phelps, 2010; Kutaka et al., 2017; Polly et al., 2015; van 

Driel et al., 2012) and increase the self-efficacy of both science (Lakshmanan et al., 2011) and maths teachers 

(Ross & Bruce, 2007). However, very little research has been conducted on whether this ultimately feeds through 

into improved retention. Reviews of the literature on science CPD have therefore called for more research on the 

importance of subject knowledge and effects of subject-specific CPD on other outcomes, including retention (Luft 

et al., 2015; van Driel et al., 2012). 

I address this gap in the literature by evaluating the effect of science teacher participation in National STEM 

Learning Network (NSLN) courses in England. NSLN was set up in 2005 to provide courses aimed at improving 

science teachers’ subject and pedagogical knowledge, career progression and, ultimately, retention in the 

profession (Wolstenholme et al., 2012).  Courses vary from one day (71% of all records) to residential courses of 

three or more days in length (11%). Many courses are free to participants and there is a generous system of 

bursaries, which is jointly funded by charitable and public sector bodies. Courses cover a range of subjects from 

classroom management through to astronomy, but most focus on science content that is directly relevant to the 

national science curriculum. NSLN is delivered through a mixture of regional networks and the National STEM 

Learning Centre in the North of England, giving it broad coverage: 25% of all science teachers in England attended 

at least one course between the 2010/11 and 2012/13 school years. Wolstenholme et al. (2012) used data from 

a survey of 519 participants and telephone interviews with a further 25 to develop a detailed programme theory for 

the NSLN intervention, describing the mechanism or channels through which it is hypothesised to affect teacher 

retention. Their data suggests that participation in NSLN would affect retention in the profession through two 

routes: increased motivation and job satisfaction, and increasing teacher knowledge and self-efficacy. 

My first set of results come from teacher-level cross-section regression models, which show that 

participation in NSLN courses is associated with increases in the odds of both retention in the 

participant’s original school and in the profession overall. However, these findings are open to the 

obvious objection that unobservable variables that affect both participation in the programme and 

retention in the profession are confounding these estimates. For example, more motivated teachers 

may be both more likely to take an NSLN course and more likely to remain in the profession. In order 

to address this limitation I create a balanced, stacked panel of science departments and estimate 

double-difference models (comparing changes in retention in participating science departments to 

changes in retention in similar non-participating science departments) which show that participation is 
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associated with a reduction in wastage of around two percentage points, two years after first-

participation. Estimates from triple-difference models (which further net out changes in retention in 

English departments in schools where the science department participates) also show that 

participation is associated with a reduction in wastage of around three percentage points. This is 

equivalent to around a third of average science department wastage, which was 9% in 2011. A 

placebo test in the year prior to treatment provides no reason to doubt the common trends assumption. 

This paper is therefore one of the first to provide evidence that subject-specific CPD can improve 

science teacher retention.  

The rest of the paper is structured as follows: section 2 describes the data, section 3 presents the 

results from teacher-level regression models, section 4 presents the results from the department-level 

double- and triple-difference models, and section 5 concludes by discussing the implication for policy 

and future research.  

4.2 Data and Descriptive Statistics 

The first source of data used for this research is a record-level dataset of every time a person 

participates in an NSLN course between the 2010/11 and 2012/13 academic years. This data was 

supplied by NSLN. It contains an identifier for each participant, the school they were working in at 

the time, and the length and subject-focus of the course they attended. Individuals are free to 

participate in multiple NSLN courses if desired. Most participants (61%) only attend one NSLN 

course but many do attend more than one, and 10% attend four or more. Figure 13 in Appendix D 

shows the full distribution of dosage across participants, across all years in the data, and in the first 

year that an individual participates. In this analysis, I look at the effect of first observed participation 

one and two years after the first year that a teacher or department first participates. This has the 

disadvantage of ignoring variation in dosage that occurs through repeated participation. However, it 

also has the important advantage of avoiding the endogeneity of repeat participation, in the sense that 

those participants who have a positive first experience of NSLN are more likely to participate in 

future, and vice versa. In order to investigate the role of dosage, I investigate the effect of different 

numbers of days attended within the first year of participation in some of my models, which should 

keep the endogeneity of repeat participation to a minimum, while providing some insight into dose-

response patterns.  

The second source of data is National Pupil Database (NPD) and School Workforce Census (SWC) 

administrative data. Information on pupils and schools comes from the NPD, which is an 

administrative dataset containing information on all pupils in England since before 2010. This 

includes information on school type (e.g. academy), school location, pupil demographics and prior 

attainment, and school Ofsted rating. Information on teachers is taken from the SWC, which contains 

information on teachers’ demographic characteristics (e.g. age, ethnicity, gender), professional 
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characteristics (e.g. years of experience, pay, degree subject) and class assignments, including which 

subjects they teach. In total, 3,016 records of the 26,776 (11%) obtained from NSLN could not be 

matched to teachers in the SWC. A large part of this is likely because NSLN courses are open to (non-

teaching) science technicians working in schools and other science educators not based in publicly-

funded schools, neither of whom would show up in SWC data. 

The SWC also provides the information from which I construct my primary outcome variable, 

wastage, and my secondary outcome variable, turnover. Wastage measures teachers leaving the 

profession. When I am analysing individual-level data, the wastage variable takes the value one in 

period t for any individual who is teaching in a state funded school in England in period t-1 but is not 

in period t, and zero otherwise. When I am analysing data at the departmental level, the wastage 

variables for department d in period t is defined as the proportion of teachers who were teaching in 

department d in period t-1 who are no longer teaching in department d in period t. Turnover measures 

teachers leaving their school. When I am analysing individual level data, the turnover variables takes 

the value one in period t for any teacher who is teaching in school s in period t-1 but is no longer 

teaching in school s in period t, and zero otherwise. When I am analysing data at the departmental 

level, the turnover variable for department d in period t is defined as the proportion of teachers who 

were teaching in period t-1 in department d who are no longer teaching in department d in period t. 

Figure 12 shows the retention of the 2010 cohort of newly qualified teachers (NQTs) in their original 

2010 school and in the profession overall. It shows that science teachers leave their original school 

and the profession at a slightly faster rate than teachers of other subjects. 

Table 11 compares the characteristics of science teachers in general, science teachers who participate 

in NSLN courses and science teachers who participate in more than two days of NSLN courses in 

total. Compared to science teachers in general, NLSN participants are more likely to be male, 

unqualified, or on a temporary contract and tend to be younger, less experienced, have been at their 

school for less time and are paid slightly less. They also tend to work in schools with more 

disadvantaged pupils and slightly lower attainment. Heavy NSLN participants (those that take part in 

two days or more) are even younger and less experienced. This suggests that NSLN courses may be 

being used strategically to improve the knowledge of junior science teachers. These observable 

characteristics are controlled for in all models in sections 4.3 and 4.4. Information on the distributions 

of these variables for participants can be found in Table 33 in Appendix D. 
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Figure 12: Science and non-science teacher retention for the 2010 NQT cohort 

 

Notes: N = 16,048. The 2010 NQT cohort are the teachers who received newly qualified teacher status in the 2010/11 academic year. 

Teachers still in 2010 school are those who remain in the school in which they worked in the 2010/11 academic year. 

 

Table 11: Comparing science teachers by participation levels 

 

Non-NSLN 

Science Teachers 

NSLN  

Science Teachers 

Heavy NSLN 

Science Teachers 

NSLN Days Attended 2010-13 (mean) 0 1.2 6.9 

Female (%) 63.4 17.7 8.3 

Age (mean) 39.4 37.3 36.5 

Qualified Status (%) 63.4 17.7 8.3 

Permanent Contract (%) 63.4 17.8 8.4 

Years Since Qualified (mean) 12.6 10.3 9.3 

Years at Current School (mean) 6.9 5.9 5.4 

Annual Pay £1,000 (mean) 38 35.4 34.7 

Free School Meals (%) 14 16 16 

Best 8 GCSE Point Score (mean) 353 349 347 

N 22,672 6,342 2,980 
Notes: Table includes only science teachers who were in service in 2012. Science teachers are those who teach science for most of their 
timetabled hours. Heavy participants are those that take part in more than two days of NLSN courses between 2010 and 2013.  

 

4.3 Individual-Level Cross-Section Models 

I begin by using logistic regression to model the log odds that teacher i exits either their school or the 

profession based on participation in an NSLN course (𝑃𝑖), characteristics of the teacher (𝑇𝑖), their 

school (𝑆𝑖) and the calendar-year in which they first participate (𝑍𝑖), which captures year-specific 

unmeasured influences on retention: 
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1) log (
𝑝(𝑒𝑥𝑖𝑡𝑖)

1−𝑝(𝑒𝑥𝑖𝑡𝑖)
)  𝛽0 + 𝛽1𝑃𝑖 + 𝛽2𝑇𝑖 + 𝛽3𝑆𝑖 + 𝛽4𝑍𝑖 + 𝜀𝑖    

 

Table 12 shows the results from several variants of this model. While I am analysing individual level 

data, both the wastage and turnover variables are binary, so all models use logistic regression and all 

coefficients are odds ratios. Standard errors are clustered at the school level. Column 1 reports the 

results of a regression of participation in NSLN courses on retention in the profession after one year. 

Columns 2 and 3 both report the results of regressing participation on retention in the profession after 

two years, but column 3 uses a high-dosage (>2 days in the first year) indicator of participation. 

Columns 4 to 6 repeat this pattern but with retention in original school as the outcome, instead of 

retention in the profession. 

Looking first at the covariates in the lower panel of Table 12, the results corroborate previous findings 

that science teachers have much lower retention than teachers of other subjects. Looking at columns 2 

and 5, I find that the odds of a science teacher remaining in their school or in the profession overall 

are lower than all other subjects, including maths. More specifically, the odds of a science teacher 

remaining in the profession two years later are 21% lower than all other subjects (excluding maths) 

and the odds of a science teachers remaining in their original school are 32% lower than all other 

subjects (excluding maths). Both of these findings are statistically significant at the 1% level. As can 

be seen from Table 34 and Table 35 in Appendix D, the other variables all enter the model with the 

expected sign. Higher pay, higher school inspection (Ofsted) ratings, higher pupil attainment and 

more experience are all associated with higher retention; while a higher proportion of deprived pupils 

is associated with reduced retention.  

Turning to the coefficients on the treatment variables, there is a clear pattern visible. The first row of 

the table shows that first observed participation is associated with an 87% increase in the odds that a 

teacher is still in the profession one year later and a 43% increase in the odds that a teacher is still in 

the profession two years later. Heavy participation is associated with a 65% increase in the odds of 

being in the profession two years later, which is consistent with a positive dose-response gradient. All 

three of these coefficients are statistically significant at the 5% level or higher. By contrast, there is no 

clear relationship between participation and retention of teachers in the school they were working in at 

the time of participation, even among those heavy participants taking two or more days of courses.  
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Table 12: Individual-level cross-section regression results 

 
Remain in Teaching Remain in Original School 

 
1 Year 

Later 

2 Years 

Later 

2 Years 

Later 

1 Year 

Later 

2 Years 

Later 

2 Years 

Later 

 (1) (2) (3) (4) (5) (6) 

NSLN Participation 
1.869** 1.426**  1.174 0.920  

(0.216) (0.118)  (0.091) (0.053)  

Heavy NSLN Participation  
  1.645*   1.057 

  (0.318)   (0.140) 

Subject Taught (ref = other)       

     Science 0.777** 0.793** 0.774** 0.720** 0.685** 0.677** 

(0.036) (0.029) (0.029) (0.026) (0.019) (0.020) 

     Maths 1.040 1.079 1.077 0.821** 0.810** 0.810** 

(0.043) (0.035) (0.035) (0.025) (0.019) (0.020) 

Has Science Degree 0.961 0.980 0.986 1.053 1.109** 1.114** 

 (0.035) (0.028) (0.028) (0.029) (0.024) (0.025) 

N  100,009   100,007   95,276   100,009   100,009   95,278  

Pseudo R-Squared 0.052 0.054 0.054 0.049 0.039 0.039 
Notes: Each column is a separate logistic regression on individual-level teacher data. Coefficients are odds ratios. All models control for the 

following teacher and school characteristics: teacher gender, teacher experience, whether the teacher has a permanent contract, their fulltime 

equivalent hours, pay, the proportion of pupils at the school on free school meals, the proportion of pupils who are from an ethnic minority, the 

school’s Key Stage 4 attainment measured using Best 8, the school’s prior (KS2) attainment, and the school’s Ofsted grade. Also included in the 

regression are region dummies, urban/rural indicators and calendar year dummies. A full version of the regression output can be found in Table 34 

and Table 35 in Appendix D. Covariates for non-participating (control) individuals all take 2010 values. Standard errors are shown in parentheses 

and are clustered at the school level. ** = p< 0.01, * = p< 0.05. Pseudo R Squared is McFadden’s Pseudo R Squared. 

 

The results from these models are informative, but also have important limitations. First, the models 

are likely to suffer from omitted variable bias, not least because they do not control for working 

conditions (see Chapter 3 of this thesis). My data does not contain measures of these variables, so they 

cannot be explicitly controlled for. Second, and relatedly, to identify the causal effect of the 

programme, this model relies on the strong assumption of selection-on-observables. In order to 

address these weaknesses, in the next section I exploit the longitudinal nature of my data and 

introduce a number of panel data techniques. 

 

4.4 Department-Level Panel-Data Models 

I begin by aggregating the data to department-level by assigning teachers to departments based on the 

subject in which they do most of their teaching. This has several advantages for the analysis. First, 

because departments do not leave the data when turnover occurs, it allows me to observe turnover and 

wastage across a stable set of units. Second, it helps minimise concerns around the endogeneity of 

which individuals departments choose to send on NSLN course. Third, it allows me to utilise 
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continuous variation in the outcome variables, which are now measured as departmental turnover and 

wastage rates. 

I create a balanced, stacked, three-year panel of science departments. For treated departments, 

variables in the first year of the panel take the values from the calendar year in which they first 

participated in NSLN, variables in the second year of the panel take the values from the year after 

first-participation occurs and variables in the third year of the panel take the values of variables from 

the second year after participation occurs. Ideally, I would include more pre-intervention years in the 

panel, as this would allow me to visually assess common trends over multiple periods (see Wong et 

al., 2015) and potentially allow me to relax the common trends assumption by modelling 

heterogeneous linear trends (Angrist & Pischke, 2014). Unfortunately however, the SWC data only 

begins in 2010, meaning that turnover and wastage can first be calculated in 2011 (with 2010 acting 

as the t-1 period). Including two pre-intervention years in my panel would therefore require dropping 

departments which first participated in 2011 from my panel. Given that I only have data on 

departments first participating up to 2012, this would have undesirable consequences for the precision 

of my estimates. I therefore stick to having just one pre-intervention period in my panel. 

When constructing a stacked panel it is obvious that treated units should use data from both the pre-

intervention and post-intervention period. However, an important question remains about which years 

of data should be used by untreated units in each of the three panel years. My approach is to use 

matching to construct my stacked panel. I first take all departments which first participated in 2011 

and match them on 2011 characteristics to departments which I never observe participating using 

nearest neighbour matching and a caliper of 0.1. I then apply the propensity score weights which 

effectively drops all units which could not be matched. All untreated departments still in the data then 

use information from the variables in 2011, 2012 and 2013 in the first, second and third panel year 

respectively. I then repeat this process for departments which first participated in 2012, with 

department which I never observe participating using information from the variables in 2012, 2013 

and 2014 in the first, second and third panel year respectively. Figure 14 and Figure 15 in Appendix D 

show the estimated propensity scores, provide information on how they were estimated, and illustrate 

the extent of common support. I do not present balance tests because I rely on regression analysis for 

covariate adjustment. The matching is only intended to 1) provide a principled way of constructing 

the balanced panel for never-treated departments and 2) enforce common support. This leaves me 

with a balanced, stacked, three-year, department-level panel. 

I use a difference-in-difference strategy (Equation 2 below) to analyse this panel. The outcome (𝑌𝑑𝑡) 

is now the proportion of teachers that leave department d in year t. The T, S and Z terms all now have 

d and t subscripts to indicate that they are measured at the department level (d), in a given school year 

(t). The calendar year term now allows me to capture differences in year-specific changes in turnover 
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and wastage across the years included in my stacked panel. Equation 2 also includes departmental 

fixed effects (D) which capture time-invariant, department-level characteristics. I argue that within the 

narrow (three year) window of observation in my panel this helps to capture important aspects of 

working conditions as well as, for example, the level of motivation of teachers working in that 

department. Equation 2 also includes a panel-year dummy (K) which takes the value of 0 in the pre-

treatment period and 1 in the treatment period. The final change I make in Equation 2 is to add an 

interaction term between the participation dummy (P) and the panel year term (K) which takes the 

value of 1 for participating departments in the treatment period and zero otherwise. In practice, I have 

two K dummies and two interactions, one for the year after treatment and one for the second year after 

treatment. The coefficient 𝛽3 on these interactions shows the association of retention with 

participation, conditional on covariates and changes in retention in other non-participating science 

departments. Under the assumption that retention in participating and non-participating departments 

conditional on covariates would have changed in the same way over this period in the absence of the 

treatment (common trends), 𝛽3 is therefore the causal effect of first observed participation on NSLN 

courses. By using non-participating science departments as a control structure, this specification 

allows me to account for unmeasured, time-varying factors which are common between participating 

science departments and non-participating science departments, such as changes in national policy 

relating to science teaching. 

  

2) 𝑌𝑑𝑡 = 𝛽0 + 𝛽1𝑃𝑑 + 𝛽2𝐾𝑡 + 𝛽3(𝑃𝑑 ∗ 𝐾𝑡) + 𝛽4𝑇𝑑𝑡 + 𝛽5𝑆𝑑𝑡 + 𝛽6𝐷𝑑 + 𝛽7𝑍𝑑𝑡 + 𝜀𝑑𝑡   

 

Utilising non-participating science departments as a control structure accounts for a number of 

important unmeasured variables which are common between schools. However, it does not account 

for unmeasured variables which differ between schools, such as the quality of senior leadership. 

Fortunately, because NSLN courses are only available to science educators, I can also exploit other 

untreated departments within the same school as the participating science department as an additional 

control structure. English and maths departments are both good candidates for this, since they share 

with science departments the characteristic of being compulsory subjects, meaning the pupils in those 

departments do not vary within a school due to the subject choices made by pupils. However, using 

maths departments as the additional control structure is not desirable, since many NSLN participants 

also teach in maths departments, meaning this could introduce treatment contamination. I therefore 

use English departments, adding an additional dummy (SE) to indicate whether a department is an 

English department. Adding two further two-way interactions and the three way interaction between 

P, K and SE gives the triple-difference specification in Equation 3. 𝛽7 is now the coefficient of 

interests, since it shows the association between retention and being in a participating science 

department, conditional on both changes in retention in non-participating science departments in other 



72 
 

schools and English departments in participating schools. Under the assumption that all variation in 

the outcome measure not due to observables is either shared between the participating science 

department and the matched science department, or between the participating science department and 

the English department in the same school, 𝛽7 shows the causal effect of participating in NSLN 

courses. By using English departments as an additional control structure, this specification also allows 

me to account for unmeasured, time-varying factors which are common between participating science 

departments and non-participating English departments in the same school. This specification is 

therefore able to account for, e.g. the changing quality of senior leadership in a school over time. 

Figure 16 in Appendix D provides a graphical illustration of the rationale for the double- and triple-

difference approaches. 

 

3) 𝑌𝑑𝑡 = 𝛽0 + 𝛽1𝑃𝑑 + 𝛽2𝐾𝑡 + 𝛽3𝑆𝐸𝑑 + 𝛽4(𝑃𝑑 ∗ 𝐾𝑡) + 𝛽5(𝑃𝑡 ∗ 𝑆𝐸𝑑) + 𝛽6(𝐾𝑡 ∗ 𝑆𝐸𝑑) +

𝛽7(𝐾𝑡 ∗ 𝑆𝐸𝑑 ∗ 𝑃𝑡) + 𝛽8𝑇𝑑𝑡 + 𝛽9𝑆𝑑𝑡 + 𝛽10𝐷𝑑 + 𝛽11𝑍𝑑𝑡 + 𝜀𝑑𝑡    

 

 

 

Table 13 shows the results from these models. The outcome variables are now continuous and the 

regressions are therefore estimated using ordinary least squares. The coefficients show the percentage 

point change in turnover/wastage associated with a one unit increase in the relevant independent 

variable. Column 7 shows the results from the double-difference turnover model. The coefficients are 

very close to zero and not statistically significant at conventional levels. The results in the triple-

difference turnover model (Column 8) are also not statistically significant at conventional levels. The 

results from the departmental turnover models are therefore consistent with those from the individual 

logistic regression models in showing no effect. 

Column 9 shows the results of the double-difference wastage model. One year after treatment the 

coefficient is again close to zero and not statistically significant at conventional levels. Two years 

after treatment however, participation is associated with a 2 percentage point reduction in wastage, 

statistically significant at the 1% level. In the triple-difference wastage model in column 10 

participation is associated with a 2 percentage point reduction in wastage one year after participation, 

though this is not statistically significant at conventional levels. The coefficient on the treatment effect 

two years after participation shows a 3 percentage point reduction in wastage, which is again 

statistically significant at the 1% level. In summary, the double- and triple-difference models suggest 

that participation in subject-specific CPD reduces departmental wastage by between 2 and 3 

percentage points after two years. This is equivalent to around a third of the average wastage rate for 

science departments, which was 9% in 2011. While participation is associated with improved 
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retention in the profession, it is not associated with increased retention in a participant’s original 

school. The panel data wastage models also show a similar pattern of results to the individual level 

wastage models. Full output from the models in Table 13 can be found in Table 36 in Appendix D.   

 

Table 13: Percentage point change in turnover/wastage associated with NSLN participation 

 Turnover Wastage 

 Double-Diff Triple-Diff Double-Diff Triple-Diff 

 (7) (8) (9) (10) 

One Year After Participation 
-0.004 0.0004 -0.008 -0.018 

(0.010) (0.012) (0.006) (0.008) 

Two Years After Participation 
-0.006 0.027 -0.021** -0.029** 

(0.010) (0.012) (0.006) (0.008) 

N 4,579 4,579 4,579 4,579 

R-Squared 0.69 0.74 0.59 0.64 

Placebo (Year of  Participation) 

 

0.006 0.006 -0.005 -0.014 

(0.015) (0.019) (0.010) (0.013) 
Notes: Each column is a separate OLS regression. Also included in all regressions are region dummies, urban/rural indicators and 

calendar year dummies, as well as all of the time-varying covariates from the models in Table 11. Standard errors are shown in 

parentheses and are clustered at the school level. ** = p< 0.01, * = p< 0.05. N = number of groups. N for the placebo test is 1,595. Those 
who first participate in 2011 cannot be used in the placebo test as there is no turnover and wastage data for 2010 due to it being the first 

year of the data.  
 

In order to identify the causal impact of the programme on retention, double-difference and triple-

difference models rely on the assumption that the outcomes for participating departments and control 

departments move along common trends during the treatment period, conditional on observables. This 

assumption is necessary because these models cannot control for time-varying factors which are not 

common between treatment and control observations. A placebo test aims to indirectly falsify the 

common trends assumption by looking at whether there are differences in retention prior to the 

treatment occurring, conditional on the other covariates. If differences can be detected in the year 

prior to treatment occurring then it is implausible that the common trends assumption holds during the 

treatment period. If no difference can be detected in the year prior to treatment then this does not 

provide evidence against the common trends assumption. In order to test this I create a new stacked 

panel in which the first year of the panel contains data on departments in the year prior to first-

participation (rather than the year of first-participation) and the second year of the panel contains data 

on departments in the year that first-participation occurs (rather than the year after). I then run the 

same models and look for any differences in the trajectory of turnover and wastage in this period. The 

bottom panel of  

 

Table 13 reports the results of the placebo test, with coefficients very close to zero and not statistically 

significant at conventional levels. The placebo test therefore does not provide any reason to doubt the 
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common trends assumption. Figure 17 in Appendix D plots the coefficient from the triple-difference 

turnover and wastage models to allow for visual inspection of how the treatment effects emerge over 

time. 

 

4.5 Conclusion 

Advanced economies regularly suffer from shortages of qualified science teachers. This is in part 

because scientists leave the teaching profession at a faster rate than their peers. Finding ways to 

improve the retention of these teachers is therefore important. However, there has been very little 

research evaluating specific interventions for achieving this. This chapter is among the first to 

investigate the link between subject-specific CPD, which combines training on subject knowledge 

with training on pedagogical techniques, and the retention of science teachers.  

I replicate existing findings (Kelly, 2004; Worth & De Lazzari, 2017) that science teachers are both more 

likely to leave their current school and to leave the teaching profession as a whole than non-science 

teachers. Fortunately, this evaluation of the NSLN suggests that subject-specific CPD can help 

address this issue. My individual-level cross sectional models show that participation in NSLN 

programmes is associated with a 43% increase in the odds that a teacher remains at their school two 

years after first observed participation, rising to 65% among those who participate in more than two 

days of courses in the first year of participation. However, participation is not associated with 

increased retention in a teacher’s original school. My department-level panel data models, which 

account for a range of unobserved variables, come to qualitatively similar conclusions: first observed 

participation in NSLN courses is associated with a drop in wastage of between two to three 

percentage points after two years. This result is materially significant: average science department 

wastage was 9% in 2011. The findings support the use of such courses in order to retain science 

teachers in the profession. 

The findings of this research should of course be interpreted in light of its limitations. The placebo 

test in the year prior to first observed participation does not show any statistically significant 

‘treatment’ effect, suggesting treated and untreated departments do not differ systematically in terms 

of changes in  turnover or wastage immediately prior to treatment. This is reassuring. However, it 

would be preferable to be able to investigate the trends in outcomes over additional periods in the pre-

intervention period. Unfortunately, the panel data used to measure the outcome variables begins only 

shortly before the treated schools used in this evaluation begin to participate. A second important 

limitation that should be borne in mind while interpreting the findings from this evaluation is that any 

treatment effects identified here are, strictly speaking, only relevant to those who have participated in 

the programme in the period for which I have data. There is no guarantee that the same effects would 
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result should the programme to be expanded beyond the relatively young and inexperienced group of 

teachers who have tended to participate up until now.  

A third important limitation relates to the definition of my treatment variable. The NSLN data only 

covers 2010 onwards meaning that I am forced to define treatment as first observed participation. It is 

therefore possible that some of the schools which I use as “never treated” control schools have been 

treated at some point between 2005 (when the programme began) and 2009 (which is the last year for 

which I do not have data). How might this affect my results? The double and triple difference models 

employed in this chapter control for prior levels of turnover and wastage in both treatment and control 

schools. To the extent that control schools treated between 2005 and 2009 have already benefited 

from the programme by 2011 (which is the first year of treatment I evaluate) my models will therefor 

net out the effects of treatment prior to 2010. Nevertheless, I cannot rule out that some control schools 

are still benefiting from receiving the treatment three of more years after participation. If so, this will 

downward bias my estimates of the programme impact, making my estimates of the treatment effect 

conservative. While these limitations are important, the downward bias they would introduce are 

unlikely to change the overall conclusion of this paper that participation in NSLN courses reduced 

wastage from science departments. 

The finding that participation increases retention in the profession but does not increase retention in 

participating schools is interesting. Wastage is a component of turnover since anyone who leaves the 

profession also leaves their school (the average turnover rate among science departments in 2011 was 

14%). This implies that the reduced number of teachers leaving the profession from a participating 

department is being offset by an increased number of teachers leaving their department to move to 

another school. Further research is needed to understand why participants move schools more often 

than non-participants. In the meantime however, this finding has important implications for the way in 

which NSLN courses are funded, because individual schools are unlikely to capture the benefits of 

investing in their staff through sending them on the programme. Government and the charitable sector 

should therefore continue to fund the programme on the grounds that it benefits the school system 

overall, through reducing teacher shortages.  

Future research should also investigate the mechanism through which NSLN participation affects 

retention by collecting longitudinal survey data on the mechanisms outlined in Wolstenholme et al. 

(2012) such as self-efficacy and career progression, neither of which are observable in the school 

workforce census.  
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Chapter 5: Conclusion 
 

Teachers have a powerful influence on their pupils (Hanushek, 2011). Despite this, public school 

systems suffer from recurring shortages of qualified, experienced staff (Dolton, 2006). England is 

currently in the midst of one such shortage caused, in part, by declining early-career retention. This 

thesis has investigated why people enter and exit the teaching profession, adding to existing 

knowledge by using better data, studying the subject in new contexts, or answering questions which 

have not previously been addressed by academic research. The advent of very large survey datasets 

has enabled me to model the processes of entry and exit in greater detail than previous research, going 

beyond demographic characteristics to investigate the importance of personality in influencing entry 

to the profession. Similarly, I have been able to quantify the nature and importance of teachers’ 

working environments for their job satisfaction and intention to leave. The rich descriptive analysis of 

survey datasets in Chapter 2 and 3 is complemented by the causal analysis in Chapter 4, which 

exploits panel data on teachers in England. This conclusion summarises the findings and contribution 

of each of the three papers, and considers future directions for research on the recruitment and 

retention of teachers. 

Chapter 2 reports on the first analysis of entry to the teaching profession to use household panel 

survey data. This data allows me to describe the changing characteristics of those entering the 

teaching profession from full time education, stretching back 75 years. The analysis reveals that the 

well-established trend toward a more male workforce has halted among the most recent cohort of 

teachers. The data also puts teachers’ attitudes to their jobs in comparative perspective, showing that 

they have higher job satisfaction, but lower satisfaction with their leisure time than graduates in 

general. Teachers are also much more likely to have personalities characterised by high levels of 

openness to new experience than graduates in general. When modelling entry to the profession, I also 

find strong, robust associations between openness and choosing to become a teacher. I show that just 

four characteristics of teachers can be used to identify groups with a predicted probability of entry up 

to four times higher than the average graduate, information that could be used to improve the targeting 

of efforts to recruit teachers. 

Further research could empirically test the predictions made by these models. For example, as the 

Millennium Cohort Study (MCS) participants move into the Labour market over the next five years, 

the information contained within that dataset could be used to assess the validity of the predictions 

made by the models in this paper. Alternatively, if it were possible to collect information on the four 

variables referred to above in the New Destination of Leavers of Higher Education (NDLHE), then it 

would be possible to test whether groups with high predicted propensities to enter teaching are more 

likely to respond to postal information about a career in teaching. Survey experiments (Mutz, 2011) 

could also be used to test whether those with a high propensity to enter teaching were more likely to 



77 
 

subsequently begin teacher training, following the receipt of marketing materials. In any case, future 

research on entry to the teaching profession should include personality measures, particularly 

openness to new experience and neuroticism.  

Chapter 3 reports on one of the first analysis of the relationship between working conditions and 

retention outside of America. Indeed, the international survey data used allow me to model this 

relationship across 35 different countries. The TALIS data provide unusually rich and comprehensive 

measures of teacher working conditions. My analysis therefore includes a number of working 

conditions such as scope for progression, feedback and preparation, which have not previously been 

used to model teacher job satisfaction and turnover intentions. By using oblique rotation methods in 

my factors analysis, which is unusual in this literature but methodologically more appropriate, I am 

also able to document how working conditions are correlated within and across schools. I replicate the 

finding from the literature on US schools that school leadership has the strongest relationship with 

retention. I also extend existing knowledge by showing that preparation and scope for progression are 

both related to teachers’ desire to move school. 

An important limitation of this chapter is the lack of data on observed turnover behaviour. Fortunately 

the next round of TALIS, due to be collected in 2018, will be linked to the School Workforce Census 

in England, which will allow actual turnover and attrition to be modelled using the same working 

conditions measures. Currently Kraft et al. (2016) is the only paper to utilise a school-level panel of 

working conditions, which enables them to use fixed effects and a number of other methods able to 

get closer to a causal analysis. The arrival of the TALIS 2018 data will also allow comparisons to be 

made within countries across time. A final direction for research in this area is to integrate the 

working conditions literature, which focuses on aspects of teachers working lives, and has largely 

been developed by economists, with the school climate literature (Thapa et al., 2013), which focuses 

on a broader set of measures related to school life such as norms and values, and has largely been 

developed by psychologists. 

The research reported in Chapter 4 is some of the first to evaluate the effects of subject-specific 

professional development on teacher retention. My double- and triple-difference models, combined 

with panel data on all teachers in England, provide evidence on the causal impact of participation 

under the standard common-trends assumption. Using both science departments in non-participating 

schools and non-science departments in participating schools simultaneously as control structures 

enables me to rule out a number of the most plausible threats to the internal validity of the evaluation. 

The results suggest that participation in the NSLN programmes does indeed improve retention of 

teachers in the profession, although not necessarily in their original school. The research therefore 

suggests that the NSLN is an effective way of reducing the current shortage of science teachers. The 



78 
 

findings suggest that the benefits of increased retention are not captured by participants’ original 

schools, which suggests an ongoing role for government in funding this training. 

This evaluation does have a number of important limitations. Foremost among these is that it relies on 

the common trends assumption. Given that quasi-experimental evidence suggests that it helps retain 

teachers, it may be worth conducting a randomised controlled trial of the NSLN intervention to see if 

the findings can be reproduced experimentally. An RCT might also allow individual-level analysis, 

which would provide more precise information about dose-response relationships. A related direction 

for future research would be to conduct a cost-benefit analysis in order to determine whether the 

enhanced retention from the programme represents good value for money. This would require 

estimating the cost per participant, per day and the benefits, evaluated in terms of the reduction in 

training and recruitment costs achieved through enhanced retention. 

Thinking more generally about research on the supply of teachers, there is a need for more research 

on the effectiveness of incentives for both recruitment and retention. In the US, a number of recent 

studies have found that bonus payments can be effective ways of increasing the supply of teachers, at 

least in the short run (Bueno & Sass, 2016; Clotfelter et al., 2008; Feng & Sass, 2016). In particular, 

there is potential to evaluate the effects of the bursary and scholarship training incentives currently 

available for shortage subject teachers. The subject-eligibility and value of these payments have 

varied across years, which provides useful, plausibly-exogenous variation to identify both the impact 

of the incentives on recruitment and the dose-response relationship. In addition, the recent 

announcement that student loan forgiveness will be offered to MFL and science teachers and the 

early-career bonus payments to maths teachers provide an opportunity to investigate the effects of 

incentives on retention. 
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Appendix A: Supplementary results from Chapter 1 
 

Table 14: Net retention by ITT cohort with wastage rates frozen at 2009 levels 

  Net retention by cohort, true historic rates of wastage Net retention by cohort, wastage frozen at 2009 levels 

  (Years Since NQT) (Years Since NQT) 

Cohort NQTS +1 +2 +3 +4 +5 +6 +7 +1 +2 +3 +4 +5 +6 +7 

2009 

   

22,300  
87% 83% 79% 76% 72% 68% 67% 87% 83% 79% 76% 72% 68% 67% 

2010 

   

24,100  
87% 82% 77% 73% 70% 66%  87% 83% 79% 76% 72% 68%  

2011 

   

20,600  
88% 83% 77% 73% 69%   87% 83% 79% 76% 72%   

2012 

   

23,000  
88% 81% 75% 71%    87% 83% 79% 76%    

2013 

   

23,600  
87% 80% 74%     87% 83% 79%     

2014 

   

24,200  
87% 79%      87% 83%      

2015 

   

25,500  
87%       87%       

2009 

   

22,300  
19,401 18,509 17,617 16,948 16,056 15,164 14,941 19,401 18,509 17,617 16,948 16,056 15,164 14,941 

2010 

   

24,100  
20,967 19,762 18,557 17,593 16,870 15,906  20,967 20,003 19,039 18,316 17,352 16,388  

2011 

   

20,600  
18,128 17,098 15,862 15,038 14,214   17,922 17,098 16,274 15,656 14,832   

2012 

   

23,000  
20,240 18,630 17,250 16,330    20,010 19,090 18,170 17,480    

2013 

   

23,600  
20,532 18,880 17,464     20,532 19,588 18,644     

2014 

   

24,200  
21,054 19,118      21,054 20,086      

2015 

   

25,500  
22,185       22,185       

 

Notes:  

The top two panels show the net retention rates for each cohort of NQTs in each year. The top left panel shows the historically accurate 

retention rates, as observed in each cohort/year. The top right panel shows the historically accurate retention rates for the 2009 cohort and 

the same 2009 retention rates applied to each subsequent cohort, as if retention rates had been frozen at 2009 level.  

The bottom two panels show the number of NQTs still working in state funded schools in England for each cohort in each year. The 

numbers in the bottom left panel are the historically accurate retention figures implied by the wastage rates in the top left panel. The 

numbers in the bottom right panel are fictional retention figures calculated using the fictional (frozen at 2009) retention rates shown in the 

top right panel.  

The total retained NQTs since 2009 can be found by summing the diagonals (highlighted in grey) in the two lower panels. The total retained 

NQTs in the bottom left panel (using the historically accurate retention rates) is 105,217. The total retained NQTs in bottom right panel 

(using the fictional 2009 cohort retention rates) is 109,615. The additional net wastage that has occurred since 2009 due to increasing early-

career wastage is the difference between these two figures: 4,398. To put this in context, the total shortfall of EBACC teachers in 2017/18 is 

2,080. Declining early-career retention is therefore an important reason for the current teacher shortage.  

Source: ITT Number Census Main Tables 2017, SFR 68.  
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Appendix B: Supplementary results from Chapter 2 
 

Table 15: Counts of teachers in the Understanding Society data 

 In the Teaching Profession Entering the Teaching Profession 

Ever 1st Job W1-W6 
1st Job & 

W6 
1935-54 1955-74 1975-94 95-2016 

Any Type of 

Teacher 
2,485 1,123 1,761 234 56 439 358 263 

Notes: Table 15 shows unweighted frequencies of teachers who can be identified as either being in or entering the profession, conditional on 

interval censoring of individual employment histories. W1 is Wave 1 of Understanding Society data collection (2009-10), W6 is Wave 6 (2014-
15). The left panel and right panel do not match up because of censoring. 
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Table 16: Dichotomised measures of job/income/leisure-time/life satisfaction by professional group 

Satisfaction with… Teachers Nurses 
Govt/ 

Admins 

Protective 

Officers 

All Other  

Graduates 

 Job (Dummy) 71.5% 63.9%** 56.2%** 69.4% 73.3% 

 Income (Dummy) 59.1% 52.8%* 48.7%** 56.4% 57.0% 

 Leisure Time (Dummy) 
43.6% 45.4% 43.3% 46.6% 51.0%** 

 Overall (Dummy) 73.1% 71.9% 62.4%** 71.5% 70.2% 

Notes: All satisfaction variables have been dichotomised, with all responses at or above “Mostly or completely satisfied given a value of 1 and 

all others given a value of 0. ** = p< 0.01, * = p< 0.05. 

 

Table 16B: Pairwise correlations between big five personality variables 

 F1 F2 F3 F4 F5 

F1: Agreeableness 1.00     

F2: Conscientiousness 0.33 1.00    

F3: Extraversion 0.16 0.20 1.00   

F4: Neuroticism -0.06 -0.18 -0.18 1.00  
F5: Openness 0.19 0.21 0.25 -0.10 1.00 
Notes: The table shows the pairwise correlations between the five dimensions of personality. Only one of the ten correlations (highlighted in 

bold) has an absolute value greater than 0.3. These low correlations suggest that the five dimensions capture distinct underlying latent 

variables, which is necessary for a ceteris paribus interpretation of the coefficient in my models. 
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Table 17: Population-level conditional associations with teaching, by birth cohort 

 (1) (2) (3) (4) 

 Pre 1945 Baby Boomers Gen X Millennials 

Ethnic Minority 0.836 0.730 0.609* 0.496** 

 (0.190) (0.0904) (0.107) (0.0746) 

Female 5.865** 2.637** 2.006** 2.792** 

 (0.979) (0.226) (0.261) (0.362) 

Graduate 13.79** 11.19** 17.38** 10.58** 

 (2.225) (1.077) (3.803) (1.527) 

Mother/Father Teach 2.562 1.810** 1.340 1.341 

 (1.044) (0.305) (0.253) (0.238) 

Father Graduate 1.641* 1.075 1.238 1.141 

 (0.314) (0.115) (0.190) (0.176) 

N 9,613 15,337 11,698 14,211 

Notes: Table 17 probes the bivariate associations in Figure 6 by looking at associations conditional on other characteristics, across each birth-

cohort. Each column is a separate logistic regression on a separate group of teachers. The outcome being modelled is whether somebody can 

be identified as having taught at some point in their life. The coefficients are odds ratios. The conditional odds of a female from the Pre 1945 

birth cohort are 487% higher than males from the same generation, but this reduces in the next two birth-cohorts, before increasing slightly 

among millennials. Figure 6 showed a steady increase in the proportion of teachers who have a mother or father who taught. By contrast, 

Table 17 shows that those with a parent teacher have higher odds of becoming teachers in the Pre 1945 and Baby Boomer generations, but the 

association becomes smaller and no longer statistically significant at conventional levels among Gen Y and Millennials. Similarly, the 

conditional association between having a graduate father and choosing teaching that is visible among the Pre 1945 generation is no longer 

visible in later birth-cohorts. ** = p< 0.01, * = p< 0.05. Numbers in parentheses are standard errors. The N in the final row is the number of 

individuals in the data from each birth cohort. 
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Table 18: Descriptive statistics for the independent variables in Chapter 2 

 

 
Min Max Mean SD Missing (%) 

Female 0 1 0.51  0 

Ethnic minority 0 1 0.20  0 

Graduate  0 1 0.21  0 

First gen immigrant 0 1 0.12  0 

Second plus gen immigrant 0 1 0.77  0 

Father is a graduate 0 1 0.16  0 

Mother/father taught when 14 0 1 0.04  0 

Personality:      

   Agreeableness 1 7 5.63    0.01 64.8 

   Conscientiousness 1 7 5.50 0.01 64.8 

   Extraversion 1 7 4.59 0.01 64.8 

   Neuroticism 1 7 3.54 0.01 64.8 

   Openness 1 7 4.55    0.01 64.8 

No. of close friends 0 100 5.25 0.04 60.6 

Self-efficacy 1 4 3.12 0.01 68 

Notes: Weights applied for the wave in which the data was collected. Missing values are due overwhelmingly to non-

administration rather than non-response (see Section 2.5 for a discussion).  
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Table 19: Logistic regression models of current teaching status with imputed missing variables and 

dummies indicating missingness 

 (1) (2) (3) (4) 

Female 2.251** 2.210** 2.234** 2.267** 
 

(0.189) (0.195) (0.198) (0.200) 

Ethnic minority 0.890 0.873 0.853 0.854 
 

(0.138) (0.137) (0.135) (0.137) 

Graduate  10.89** 10.47** 10.43** 10.13** 
 

(1.114) (1.119) (1.120) (1.092) 

First gen immigrant 0.399** 0.388** 0.403** 0.395** 
 

(0.0981) (0.0970) (0.101) (0.0989) 

Second plus gen immigrant 0.918 0.890 0.905 0.888 
 

(0.161) (0.159) (0.163) (0.160) 

Father is a graduate 0.985 0.968 0.967 0.964 
 

(0.0941) (0.0931) (0.0930) (0.0928) 

Mother/father taught when 14 1.219 1.182 1.166 1.164 
 

(0.171) (0.166) (0.165) (0.164) 

Personality (z scored):     

   Agreeableness  1.174* 1.172* 1.174* 
 

 (0.0587) (0.0587) (0.0587) 

   Conscientiousness  0.958 0.956 0.934 

  (0.0482) (0.0482) (0.0475) 

   Extraversion  1.019 1.011 0.999 

  (0.0476) (0.0479) (0.0476) 

   Neuroticism  1.064 1.065 1.116* 

  (0.0521) (0.0520) (0.0569) 

   Openness  1.276** 1.272** 1.247** 

  (0.0694) (0.0695) (0.0690) 

   Missing dummy for Personality  1.047 0.736 0.748 

  (0.141) (0.143) (0.147) 

No. of close friends (z scored)   1.059 1.057 
 

  (0.0398) (0.0400) 

    Missing dummy for friend   1.735 1.738 

   (0.396) (0.400) 

Self-efficacy  (z scored)    1.169* 
 

   (0.0583) 

   Missing dummy for self-efficacy    0.934 

    (0.136) 

Number of Observations 18,022 18,022 18,022 18,022 

Notes: Each column is a separate logistic regression on a separate group of teachers. Coefficients are odd ratios. ** = p< 0.01, * = p< 0.05. 
Numbers in parentheses are standard errors. Models also contains country dummies for the four nations of the UK. 
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Table 20: Table 4 but with the sample held constant across columns 

 (1) (2) (3) (4) 
 

Demographics Demographics & 

Personality 

Demographics & 

Personality & 

Networks 

Demographics & 

Personality & 

Networks & 

Efficacy 

Female 2.211** 2.179** 2.180** 2.208** 
 

(0.206) (0.214) (0.214) (0.216) 

Ethnic minority 0.859 0.843 0.846 0.843 
 

(0.160) (0.157) (0.157) (0.158) 

Graduate  10.40** 9.904** 9.817** 9.606** 
 

(1.196) (1.185) (1.179) (1.159) 

First gen immigrant 0.605 0.584 0.585 0.580 
 

(0.178) (0.175) (0.175) (0.173) 

Second plus gen immigrant 1.135 1.105 1.103 1.089 
 

(0.250) (0.246) (0.246) (0.243) 

Father is a graduate 1.001 0.985 0.983 0.980 
 

(0.103) (0.102) (0.102) (0.102) 

Mother/father taught when 14 1.293 1.259 1.246 1.243 
 

(0.193) (0.187) (0.186) (0.185) 

Personality (z scored):     

   Agreeableness  1.157* 1.156* 1.158* 
 

 (0.0598) (0.0596) (0.0596) 

   Conscientiousness  1.000 0.999 0.980 

  (0.0525) (0.0524) (0.0523) 

   Extraversion  0.995 0.987 0.977 

  (0.0476) (0.0479) (0.0474) 

   Neuroticism  1.047 1.049 1.091 

  (0.0530) (0.0530) (0.0588) 

   Openness  1.285** 1.280** 1.260** 

  (0.0714) (0.0714) (0.0714) 

No. of close friends (z scored)   1.066 1.064 
 

  (0.0413) (0.0414) 

Self-efficacy  (z scored)    1.126 
 

   (0.0608) 

Number of Observations 13,649 13,649 13,649 13,649 

Notes: Each column is a separate logistic regression on a separate group of teachers. Coefficients are odd ratios. ** = p< 0.01, * = p< 0.05. 
Numbers in parentheses are standard errors. Models also contains country dummies for the four nations of the UK. Number of observation 

drops due to personality, social network and self-efficacy questions only be asked in certain waves. Pseudo R Squared is McFadden’s Pseudo 

R Squared. 
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Table 21: Associations between teaching and different sets of variables 

 
(1) (2) (3) 

Personality (z scored):    

   Agreeableness 1.171*   

 (0.0588)   

   Conscientiousness 0.958   

 (0.0481)   

   Extraversion 1.018   

 (0.0477)   

   Neuroticism 1.063   

 (0.0521)   

   Openness 1.277**   

 
(0.0699) 

  

No. of close friends (z scored)  1.086  

  (0.0387)  

Self-efficacy  (z scored)   1.174** 

   (0.0538) 

Number of Observations 13,714 14,834 13,900 

Notes: Each column is a separate logistic regression. ** = p< 0.01, * = p< 0.05. Numbers in parentheses are standard errors. Models also 

contain demographic and family background variables, as well as country dummies for the four nations of the UK. Pseudo R Squared is 

McFadden’s Pseudo R Squared.  
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Appendix C: Supplementary results from Chapter 3 
 

Table 22: Components of the teacher job satisfaction score 

TALIS  

Variable 
Question Wording 

Mean  

Score 

Standard 

Deviation 

TT2G46A The advantages of being a teacher outweigh the disadvantages 2.9 0.8 

TT2G46B If I could decide again, I would still choose to work as a teacher 3.0 0.8 

TT2G46C I would like to change to another school if that were possible 3.0 0.8 

TT2G46D I regret that I decided to become a teacher 3.3 0.7 

TT2G46E I enjoy working at this school 3.2 0.7 

TT2G46F I wonder whether it would have been better to choose another profession 3.0 0.8 

TT2G46G I would recommend my school as a good place to work 3.1 0.7 

TT2G46J All in all I am satisfied with my job 3.2 0.6 

Notes: The table lists the mean and standard deviation (across the TALIS sample) of the variables which make up the teacher job 

satisfaction score. C, D and F are reverse scored, making a higher score “better” in all cases. 
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Table 23: Missing Data in the England Sample 

Variable Percent Missing 

TT2G12A 0.72 

TT2G12B 0.72 

TT2G13A 0.8 

TT2G13B 1 

TT2G16 1.96 

TT2G18A 2.96 

TT2G18C 3.45 

TT2G20A 2.56 

TT2G20B 3.29 

TT2G25A 13.5 

TT2G25B 13.94 

TT2G25C 13.86 

TT2G25D 14.5 

TT2G28B6 7.41 

TT2G28C6 7.29 

TT2G28D6 6.29 

TT2G28E6 7.49 

TT2G28F6 6.97 

TT2G31A 7.05 

TT2G31D 7.01 

TT2G31E 6.89 

TT2G31H 7.93 

TT2G33A 5.93 

TT2G33B 6.09 

TT2G33C 6.05 

TT2G33D 6.09 

TT2G33E 6.17 

TT2G33F 6.29 

TT2G33G 6.25 

TT2G33H 6.45 

TT2G34D 6.17 

TT2G34H 6.17 

TT2G44A 6.57 

TT2G44D 6.65 

TT2G44E 6.89 

TT2G27C 4.89 

TT2G47C_EN~2 7.01 

TT2G47D_EN~2 7.17 

TT2G47E_EN~2 7.25 

TT2G47L_EN~2 7.01 

TT2G47M_EN~2 7.33 

TT2G47N_EN~2 7.17 

Notes: Levels of missing data on the working conditions variables in the 

England sample. All variables are below 15% which makes multiple 

imputation appropriate (Cheema, 2014). Results from the analysis with 

multiple imputation can be found in Table 32. 
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Table 24: Pairwise correlations between the complex scale scores used in the international modelling 

 STEFFPROS STCOOPS TCSTAKES 

Profession Development (STEFFPROS) 1.00   

Teacher Cooperation (STCOOPS) 0.27 1.00  

Stakeholder Engagement (TCSTAKES) 0.002 -0.009 1.00 
Notes: The table shows the pairwise correlations between the three complex scale scores measuring working conditions in the international 
analysis. Zero of the three correlations have an absolute value greater than 0.3. This suggests that the three complex scale scores are 

measuring distinct latent variables, which is necessary for a ceteris paribus interpretation of the coefficients in Table 7. 
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Table 25:  England-Specific variables included in the england-only analysis 

TALIS Variable Code TALIS Item Wording 

TT2G47C_ENGX This school has an effective school management team. 

TT2G47D_ENGX The school management team give clear vision and direction. 

TT2G47E_ENGX I do not have the autonomy I need to do a good job as a teacher. 

TT2G47J_ENGX Parents are supportive of my role as their children’s teacher. 

TT2G47L_ENGX I have scope to progress as a classroom teacher. 

TT2G47M_ENGX I have scope to progress into a leadership team role. 

TT2G47N_ENGX I have scope to progress to a higher pay level. 
Notes: Table 25 lists the eight working conditions variables that were asked exclusively to the England samples in TALIS 2013. 
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Table 26: Variation in the variables used in the exploratory factor analysis 

Variable Mean S.D. Min 
25th 

Percentile 
Median 

75th 

Percentile 
Max 

TT2G44A 2.53 0.79 1 2 3 3 4 

TT2G34D 3.42 0.69 1 3 4 4 4 

TT2G34H 3.51 0.62 1 3 4 4 4 

TT2G20A 0.8 0.4 0 1 1 1 1 

TT2G20B 1.67 0.47 1 1 2 2 2 

TT2G31H 2.84 0.75 1 2 3 3 4 

TT2G12A 1.77 0.42 1 2 2 2 2 

TT2G12B 1.74 0.52 0 2 2 2 2 

TT2G28B6 0.87 0.99 0 0 0 2 2 

TT2G28C6 0.79 0.98 0 0 0 2 2 

TT2G28D6 1.47 0.89 0 0 2 2 2 

TT2G28E6 0.97 1 0 0 0 2 2 

TT2G28F6 0.81 0.98 0 0 0 2 2 

TT2G31A 2.31 0.85 1 2 2 3 4 

TT2G31D 2.7 0.73 1 2 3 3 4 

TT2G31E 2.6 0.74 1 2 3 3 4 

TT2G16 51.11 11.01 30 44 50 60 91 

TT2G18A 8.46 5.44 0 5 7 10 50 

TT2G18C 6.67 5.13 0 3 5 10 90 

TT2G42F 3.06 0.71 1 3 3 3 4 

TT2G43D 2.95 0.68 1 3 3 3 4 

TT2G27C 2.07 0.86 1 1 2 3 4 

TT2G44D 2.66 0.74 1 2 3 3 4 

TT2G33A 2.53 1.7 1 1 2 3 6 

TT2G33B 2.9 1.34 1 2 3 4 6 

TT2G33C 2.32 1.31 1 1 2 3 6 

TT2G33D 4.98 1.22 1 4 5 6 6 

TT2G33E 5.2 1.16 1 5 6 6 6 

TT2G33F 4.2 1.43 1 3 4 5 6 

TT2G33G 3.65 1.84 1 2 4 5 6 

TT2G33H 3.76 1.41 1 3 4 5 6 

TT2G25A 2.52 0.9 1 2 2 3 4 

TT2G25B 2.33 0.79 1 2 2 3 4 

TT2G25C 2.16 0.83 1 2 2 3 4 

TT2G25D 1.87 0.87 1 1 2 2 4 

TT2G44E 2.68 0.78 1 2 3 3 4 

TT2G47N_ENGX2 2.67 0.78 1 2 3 3 4 

TT2G47M_ENGX2 2.66 0.77 1 2 3 3 4 

TT2G47L_ENGX2 2.85 0.67 1 3 3 3 4 

TT2G47C_ENGX2 2.76 0.78 1 2 3 3 4 

TT2G47D_ENGX2 2.73 0.81 1 2 3 3 4 

TT2G47E_ENGX2 2.78 0.76 1 2 3 3 4 
Notes: The table shows the variation in the set of variables used in the exploratory factor analysis. 
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Table 27: Pairwise correlations between the eight working conditions latent variables 

 F1 F2 F3 F4 F5 F6 F7 F8 

F1: Leadership 1.00        

F2: Collaboration 0.34 1.00       

F3: Feedback 0.54 0.42 1.00      

F4: Scope for Progression 0.41 0.44 0.28 1.00     

F5: Prof Development 0.40 0.25 0.29 0.19 1.00    

F6: Preparation 0.19 0.24 0.25 0.16 0.16 1.00   

F7: Discipline 0.00 0.05 0.01 0.14 -0.20 0.13 1.00  
F8: Workload -0.22 0.35 0.06 0.01 -0.12 0.12 -0.11 1.00 

Notes: The table shows the pairwise correlations between the eight factors initially extracted from the exploratory factor analysis. Six of the 

pairwise correlations (highlighted in bold) have an absolute value greater than 0.3. These correlations suggest that an orthogonal factor 

rotation would have been inappropriate. This provides justification for my decision to use an oblique (Promax) factor rotation. 
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Table 28: Factors loadings 

Variable F1 F2 F3 F4 F5 F6 F7 F8 Uniqueness 

12A 
     

0.77 
  

0.43 

12B 
     

0.78 
  

0.37 

13A 
     

0.70 
  

0.40 

13B 
     

0.63 
  

0.44 

16 
       

0.60 0.63 

18A 
       

0.49 0.73 

18C 
       

0.55 0.72 

20A 
        

0.85 

20B 
        

0.79 

25A 
    

0.61 
   

0.66 

25B 
    

0.76 
   

0.41 

25C 
    

0.73 
   

0.43 

25D 
    

0.63 
   

0.60 

28B6 
   

0.71 
    

0.56 

28C6 
   

0.72 
    

0.53 

28D6 
   

0.67 
    

0.56 

28E6 
   

0.68 
    

0.52 

28F6 
   

0.85 
    

0.37 

31A 
        

0.83 

31D 
        

0.62 

31E 0.33 
       

0.58 

31H 
        

0.70 

33A 
 

0.39 
      

0.82 

33B 
 

0.45 
      

0.64 

33C 
 

0.42 
      

0.73 

33D 
 

0.66 
      

0.63 

33E 
 

0.76 
      

0.48 

33F 
 

0.80 
      

0.46 

33G 
 

0.61 
      

0.66 

33H 
 

0.67 
      

0.48 

34D 
      

0.82 
 

0.34 

34H 
      

0.80 
 

0.34 

44A 0.79 
       

0.35 

44D 0.89 
       

0.27 

44E 0.91 
       

0.25 

27C 0.40 
       

0.64 

47C 0.98 
       

0.18 

47D 0.97 
       

0.19 

47E 0.33 
       

0.79 

47L 
  

0.75 
     

0.38 

47M 
  

0.91 
     

0.19 

47N 
  

0.90 
     

0.28 

Notes: The table shows the factor loadings following Promax rotation. Loadings less than 0.32 are not 

included in the table. All variables load only on a single factor. F1 = Leadership, F2 = Collaboration, F3 

= Feedback, F4 = Scope for Progression, F5 = Prof Development, F6 = Preparation, F7 = Discipline, F8 

= Workload. See Table 8 for question wording for each variable (not shown here for space reasons). 
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Table 29: Testing the interrelatedness of items 

 Factor No. of Items Alpha Spearman-Brown 

1 Leadership 8 0.86  

2 Teacher Cooperation 8 0.76  

3 Scope for Progression 3 0.70  

4 Feedback 5 0.84  

5 Effective PD 4 0.74  

6 Preparation 4 0.69  

7 Discipline 2  0.78 

8 Workload 3 0.5  

Notes: The table shows Cronbach’s Alpha for the eight working conditions latent variables and the Spearman-Brown for the two working 

conditions variables composed of only two manifest variables. Values above 0.7 are generally considered acceptable. The Cronbach’s Alpha 

for Workload is clearly below 0.7 and this factor is therefore not used in the analysis. 
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Table 30: Regressing working conditions on job satisfaction one-by-one 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Leadership 0.548        

(Z Score) **        

 (0.028)        

Collaboration   0.237       

(Z Score)  **       

  (0.026)       

Scope Progression   0.464      

(Z Score)   **      

   (0.024)      

Feedback    0.21     

(Z Score)    **     

    (0.025)     

Prof Development     0.207    

(Z Score)     **    

     (0.026)    

Preparation      0.178   

(Z Score)      **   

      (0.028)   

Discipline       0.086  

(Z Score)       *  

       (0.026)  

Workload         -0.509 

Unmanageable        ** 

(Likert)        (0.024) 
Notes: Demographic controls included in the model: female (dummy), age (years), full time (dummy), experience in teaching (years), pupils 

female (%), pupils ethnic minority (%), academy school (dummy). Prof Development = effective professional development. Column 1 is an 

ordinary least squares regression, column 2 is an ordered logistic regression. Numbers in parentheses are standard errors. ** = p< 0.01, * = p< 

0.05. Workload is unmanageable is measured on a Likert scale from Strongly Disagree (1) to Strongly Agree (4). 
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Table 31: Regressing working conditions on desire to move school one-by-one 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Leadership 0.317        

(Z Score) **        

 (0.021)        

Collaboration   0.647       

(Z Score)  **       

  (0.032)       

Scope Progression   0.415      

(Z Score)   **      

   (0.034)      

Feedback    0.684     

(Z Score)    **     

    (0.04)     

Prof Development     0.664    

(Z Score)     **    

     (0.047)    

Preparation      0.731   

(Z Score)      **   

      (0.037)   

Discipline       1.02  

(Z Score)       n.s.  

       (0.082)  

Workload is         1.87 

Unmanageable        ** 

(Likert)        (0.127) 
Notes: Demographic controls included in the model: female (dummy), age (years), full time (dummy), experience in teaching (years), pupils 

female (%), pupils ethnic minority (%), academy school (dummy). Prof Development = effective professional development. Column 1 is an 

ordinary least squares regression, column 2 is an ordered logistic regression. Numbers in parentheses are standard errors. ** = p< 0.01, * = p< 

0.05. 
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Table 32: Modelling job satisfaction and desire to move schools with multiple imputation 

 

(1) 

Job  

Satisfaction 

(2) 

Desire to 

Move School 

FSM (%) -0.007 -0.017 

 (0.004) (0.025) 

Leadership (Z score) 0.463** 0.512** 

 (0.026) (0.029) 

Collaboration (Z score) 0.029 1.004 

 (0.031) (0.031) 

Scope for Progression (Z score) 0.212** 0.879* 

 (0.026) (0.029) 

Feedback (Z score) -0.018 0.994 

 (0.031) (0.039) 

Prof Development (Z score) -0.047 1.018 

 (0.026) (0.04) 

Preparation (Z score) 0.055* 0.936* 

 (0.022) (0.027) 

Discipline (Z score) 0.113** 1.004 

 (0.023) (0.027) 

Workload Unmanageable -0.141** 1.005 

(Likert) (0.019) (0.023) 

(Pseudo) R Squared 0.40 0.14 

N 2,028 2,028 

Notes: Multiple imputation by chained equations was used to account for missing covariate data by creating five imputed datasets. 

Missing covariates were imputed using all other covariates included in the model. Prior to imputation, all variables had less than 5% 

of observations missing, except 25A-D which has between 10 and 11% of observations missing. After imputation all covariates had 

no missing data. Demographic controls included in the model: female (dummy), age (years), full time (dummy), experience in 

teaching (years), pupils female (%), pupils ethnic minority (%), academy school (dummy). FSM = Free School Meals. Prof 

Development = effective professional development. Column 1 is an ordinary least squares regression. The coefficients show the 

standard deviation change in job satisfaction associated with a one unit increase in the relevant independent variable, conditional on 

the other variables in the model. Column 2 is an ordered logistic regression. The coefficients show the odds ratio of being one 

category higher (stronger desire of wanting to move school) associated with a one unit increase in the relevant independent variable, 

conditional on the other variables in the model. Numbers in parentheses are standard errors. ** = p< 0.01, * = p< 0.05. Pseudo R 

Squared is McFadden’s Pseudo R Squared. 
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Appendix D: Supplementary results from Chapter 4 
 

Figure 13: Dosage histograms for NSLN participants 

 

Notes: The figure shows the distribution of the number of days of training that all NSLN participants experienced. The left hand panel 

shows this for all years in the data. The right hand panel shows this for the first year in which a participant attended a course. Non-

participants are not included. N=12,521 teachers. Teachers with more than 30 days of participation are also not included in the graph, in 

order to increase visual clarity. This amounts to 65 participants in the left hand panel and 20 participants in the right hand panel.  
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Figure 14: Common support graph for the 2011 first-participant matching 

 

Notes: Shows the propensity scores for those departments that first participated in 2011 (orange & blue) and never-treated departments 

(green). 371 observations could not be matched within the caliper and were therefore dropped from the analysis. Propensity scores are 

estimated using the following variables: % teachers ethnic minority, % teachers female, mean age teacher, mean experience teachers, % 

teachers permanent contract, mean teacher pay, mean full-time equivalent, % female pupils in school, % pupils free school meals in school, 

average pupil grade on best 8 GCSE qualifications, mean KS2 prior attainment, school Ofsted grade, school sixth form indicator, school 

type indicator, school region indicator, urban/rural indicator. 
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Figure 15: Common support graph for the 2012 first-participant matching 

 

Notes: Shows the propensity scores for those departments that first participated in 2012 (orange & blue) and never-treated departments 

(green). 406 observations could not be matched within the caliper and were therefore dropped from the analysis. Propensity scores are 

estimated using the following variables: % teachers ethnic minority, % teachers female, mean age teacher, mean experience teachers, % 
teachers permanent contract, mean teacher pay, mean full-time equivalent, % female pupils in school, % pupils free school meals in school, 

average pupil grade on best 8 GCSE qualifications, mean KS2 prior attainment, school Ofsted grade, school sixth form indicator, school 

type indicator, school region indicator, urban/rural indicator.  
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Figure 16: Illustrating the rationale for a triple-difference specification 

 

Notes: Figure 16 shows the change in retention in three school departments. The first bar shows that there has been a three percentage point 

increase in retention in sciences departments in schools that do not participate in NSLN courses. The second bar shows that there has been a 

2 percentage point increase in retention in English departments in schools that do participate in NSLN courses. The third bar shows that 

there has been a 7 percentage point increase in retention in science departments in schools that do participate in NSLN courses. 

A naïve estimate of the impact of NSLN attendance might conclude that it improves retention by seven percentage points. This would be 

inaccurate in cases where unobservable time-varying factors are also influencing retention, even when conditioning on observed variables. 

However, if we assume that all time-varying factors are common between participating and non-participating departments, then we can net 

out the effect of these time-varying common factors by conditioning on the change in retention in other departments.  

The double-difference specification nets out the change in observed retention in science departments in non-participating schools by 

conditioning on the change in retention in non-participating science departments 𝑃𝑑 = 0 (the light grey area in the first and third bars of 

Figure 16.)  

The triple-difference strategy goes one step further by also netting out the change in observed retention in English departments in 

participating schools. It does this by conditioning on both the change in retention in non-participating science departments (the light grey 

area in the first and third bar) and the change in retention in English departments in participating schools (the dark grey area in the second 

and third bar in Figure 16). These two types of non-participating departments therefore act as “control structures”, which capture the effect 

of two different types of unobserved time-varying factors.  

Under the common trends assumptions that all time varying unobserved factors have a common influence on treated and untreated 

departments, any remaining variation therefore represents the effect of NSLN participation. This is captured by the white area in the third 

bar of Figure 16.  
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Figure 17: Coefficient plots for turnover and wastage from the triple-difference models 

 

Notes: Figure 17 plots the point estimates and 95% confidence interval estimates (error bars) for the treatment effects in the year of first-
participation (placebo), the year after first observed participation and the second year after participation. The left-hand side graph shows the 

triple-difference estimates for the turnover dependent variable taken from column 3 in Table 12. The right-hand side shows the triple-
difference estimates for wastage dependent variable taken from column 6 in Table 12. 
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Table 33: Participant characteristics 

 Proportion (%) 25th Percentile 50th Percentile 75th Percentile 

NLSN Attendance (days)  1 1 3 

Age (years)  28 35 44 

Experience (years)  2.3 7.2 14.2 

Tenure (years)  1.2 3.2 7.3 

Annual Pay (£, 1000)  27 35.2 41.3 

Free School Meals (%)  6.3 11.4 22.4 

Best 8 GCSE Point Score  323 341 359 

Female 57.7    

Qualified Status 96.4    

Permanent Contract 91.4    

Ofsted Outstanding  23.6    

   Good 42.9    

   Requires Improvement 30.2    

   Inadequate 3.3    
Notes: N = 11,642. Data are for all secondary participants, with values taken from the year that a teacher first participates. Ofsted is the 
National Schools Inspectorate for England.  
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Table 34: Logistic regression of NSLN participation on retention in the teaching profession 

 One Year Later Two Years Later Two Years Later 

NSLN Participant (0/1)  
1.869** 1.426**  

(0.216) (0.118)  

Heavy (>2 days) NSLN participant  

(0/1) 

  1.645* 

  (0.318) 

Subject Taught (ref = other subjects)    

     Majority Science Teacher 
0.777** 0.793** 0.774** 

(0.0362) (0.0290) (0.0285) 

     Majority Maths Teacher 
1.040 1.079 1.077 

(0.0429) (0.0345) (0.0346) 

Has Science Degree (0/1) 
0.961 0.980 0.986 

(0.0351) (0.0276) (0.0282) 

Female (0/1) 
1.047 1.034 1.032 

(0.0280) (0.0214) (0.0218) 

Ethnic Minority (0/1) 
0.777** 0.769** 0.764** 

(0.0281) (0.0217) (0.0220) 

Age (years) 
0.970** 0.965** 0.965** 

(0.00192) (0.00150) (0.00153) 

Experience (years) 
0.977** 0.971** 0.971** 

(0.00222) (0.00172) (0.00174) 

Permanent Contract (0/1) 
3.122** 2.179** 2.210** 

(0.127) (0.0780) (0.0806) 

Full Time Equivalent (%) 
1.252 1.186 1.175 

(0.259) (0.201) (0.201) 

Pay (£1000) 
1.004** 1.004** 1.004** 

(0.000192) (0.000150) (0.000151) 

Pupils Receiving Free School Meals (%) 
0.480** 0.331** 0.350** 

(0.0827) (0.0429) (0.0463) 

Pupils ethnic minority (%) 
1.131 1.182** 1.160* 

(0.0906) (0.0719) (0.0717) 

Average best 8 grades at Key Stage 4 
1.002 1.001 1.001 

(0.000802) (0.000614) (0.000628) 

Prior (Key Stage 2) attainment  
0.984 0.961 0.959 

(0.0621) (0.0467) (0.0475) 

Ofsted Rating (ref = ‘Outstanding’)    

     Ofsted ‘Good’  
1.036 0.996 1.000 

(0.0381) (0.0282) (0.0289) 

     Ofsted ‘Requires Improvement’ 
0.877* 0.844** 0.847** 

(0.0361) (0.0266) (0.0273) 

     Ofsted ‘Inadequate’ 
0.700** 0.651** 0.647** 

(0.0547) (0.0398) (0.0403) 

N  100,009   100,007   95,276  

Pseudo R-Squared 0.052 0.054 0.054 
Notes: Each column is a separate logistic regression. Coefficients are odds ratios. Also included in the regression are region dummies, 

urban/rural indicators and calendar year dummies. Covariates for non-participating (control) individuals all take 2010 values. Standard 

errors are in parentheses. ** = p< 0.01, * = p< 0.05. Ref = reference category for am ordinal variable. (0/1) = dummy variable. Pseudo R 

Squared is McFadden’s Pseudo R Squared.  
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Table 35: Logistic regression of NSLN participation on retention in original school 

 
One Year 

Later 

Two Years 

Later 

Two Years 

Later 

NSLN Participant (0/1)  
1.174* 0.920  

(0.0909) (0.0529)  

Heavy (>2 days) NSLN participant  (0/1) 
  1.057 

  (0.140) 

Subject Taught (ref = all other subjects)    

     Majority Science Teacher 
0.720** 0.685** 0.677** 

(0.0259) (0.0193) (0.0195) 

     Majority Maths Teacher 
0.821** 0.810** 0.810** 

(0.0253) (0.0193) (0.0195) 

Has Science Degree (0/1) 
1.053 1.109** 1.114** 

(0.0294) (0.0240) (0.0246) 

Female (0/1) 
1.082** 1.099** 1.098** 

(0.0225) (0.0176) (0.0181) 

Ethnic Minority (0/1) 
0.970 0.975 0.972 

(0.0281) (0.0218) (0.0223) 

Age (years) 
0.995* 0.997 0.997 

(0.00161) (0.00128) (0.00132) 

Experience (years) 
0.989** 0.987** 0.986** 

(0.00202) (0.00157) (0.00160) 

Permanent Contract (0/1) 
4.078** 2.980** 3.039** 

(0.125) (0.0841) (0.0879) 

Full Time Equivalent (%) 
0.585 0.650* 0.644* 

(0.128) (0.106) (0.106) 

Pay (£1000) 
1.002** 1.002** 1.002** 

(0.000145) (0.000111) (0.000112) 

Pupils Receiving Free School Meals (%) 
0.685* 0.460** 0.477** 

(0.0937) (0.0479) (0.0508) 

Pupils ethnic minority (%) 
1.079 1.113* 1.080 

(0.0667) (0.0522) (0.0519) 

Average best 8 grades at Key Stage 4 
1.003** 1.002** 1.002** 

(0.000620) (0.000471) (0.000485) 

Prior (Key Stage 2) attainment  
1.044 1.066 1.058 

(0.0513) (0.0401) (0.0407) 

Ofsted Rating (ref = ‘Outstanding’)    

     Ofsted ‘Good’  
1.021 0.990 0.992 

(0.0291) (0.0216) (0.0222) 

     Ofsted ‘Requires Improvement’ 
0.874** 0.832** 0.828** 

(0.0277) (0.0202) (0.0207) 

    Ofsted ‘inadequate’ 
0.661** 0.620** 0.613** 

(0.0402) (0.0299) (0.0303) 

N  100,009   100,009   95,278  

Pseudo R-Squared 0.049 0.039 0.039 
Notes: Each column is a separate logistic regression. Coefficients are odds ratios. Also included in the regression are region dummies, 

urban/rural indicators and calendar year dummies. Covariates for non-participating (control) individuals all take 2010 values. Standard 

errors are in parentheses. ** = p< 0.01, * = p< 0.05. Reference category for Ofsted rating is Outstanding. Pseudo R Squared is McFadden’s 

Pseudo R Squared. 
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Table 36: Full regression output from the double- and triple-difference models 

 Turnover Wastage 

 Double-Diff Triple-Diff Double-Diff Triple-Diff 

 (7) (8) (9) (10) 

Effect Year 2 
-0.00412 0.000433 -0.00808 -0.0182 

(0.00959) (0.0116) (0.00628) (0.00813) 

Effect Year 3  

 

-0.00593 0.0265* -0.0211** -0.0285** 

(0.00960) (0.0116) (0.00629) (0.00814) 

Science  

Degree 

-0.0137 0.0301 -0.0423 0.00706 

(0.0308) (0.0373) (0.0194) (0.0268) 

Female 
-0.0203 -0.123** -0.0586* -0.120** 

(0.0287) (0.0346) (0.0188) (0.0243) 

Ethnic  

Minority 

0.0714 0.121* 0.00647 0.0322 

(0.0329) (0.0397) (0.0216) (0.0279) 

Age 
-0.0171** -0.00784* -0.0106** -0.00558* 

(0.00206) (0.00248) (0.00135) (0.00175) 

Experience 
0.00572* -0.00153 0.000968 -0.00312 

(0.00234) (0.00282) (0.00153) (0.00198) 

Tenure 
-0.0130** -0.0104** -0.00595** -0.00450* 

(0.00167) (0.00202) (0.00109) (0.00142) 

Permanent Contract 
0.0880* 0.103* 0.0623** 0.0393 

(0.0272) (0.0328) (0.0178) (0.0231) 

Full Time  

Equivalent 

0.0350 0.0404 0.0544 0.100* 

(0.0440) (0.0531) (0.0288) (0.0373) 

Pay 
0.00000207 0.00000161 0.00000113 0.00000252** 

(0.000000856) (0.00000103) (0.000000561) (0.000000726) 

% Pupils  

Female 

0.229 -0.718** 0.0908 -0.249 

(0.172) (0.208) (0.108) (0.149) 

% Pupils Free  

School Meals 

0.205 0.00881 0.255** 0.184 

(0.120) (0.146) (0.0758) (0.105) 

% Pupils Eth Min 
0.345 0.212 0.255* 0.318* 

(0.141) (0.172) (0.0890) (0.123) 

Best 8 KS4 

  

-0.000243 -0.000408 0.0000623 -0.0000151 

(0.000145) (0.000176) (0.0000913) (0.000126) 

Prior (KS2) 

Attainment 

0.0314 0.0651 0.0153 0.0490 

(0.0278) (0.0337) (0.0175) (0.0242) 

Ofsted Good -0.0148 0.0234 -0.00653 0.00462 

(0.0141) (0.0171) (0.00886) (0.0122) 

Ofsted Req. Imp. 

 
-0.00527 0.0285 0.00610 0.00719 

(0.0162) (0.0197) (0.0102) (0.0141) 

Ofsted Inadequate 0.0188 -0.0258 0.0331 0.0115 

(0.0212) (0.0258) (0.0134) (0.0185) 

N 4,579 4,579 4,579 4,579 

R-Squared 0.694 0.741 0.589 0.639 
Notes: Each column is a separate OLS regression. Also included in all regressions are region dummies, urban/rural indicators and 

calendar year dummies, as well as all of the time-varying covariates from the models in Table 1. Standard errors are in parentheses. ** = 

p< 0.01, * = p< 0.05.N = number of groups. Calendar year dummies are also included in the model. 
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