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A multilevel Bayesian method for ultrasound-based damage identification in

composite laminates
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Abstract

Estimating deterministic single-valued damage parameters when evaluating the actual health state of a

material has a limited meaning if one considers not only the existence of measurement errors, but also

that the model chosen to represent the damage behavior is just an idealization of reality. This paper pro-

poses a multilevel Bayesian inverse problem framework to deal with these sources of uncertainty in the

context of ultrasound-based damage identification. Although the methodology has a broad spectrum of

applicability, here it is oriented to model-based damage assessment in layered composite materials using

through-transmission ultrasonic measurements. The overall procedure is first validated on synthetically gen-

erated signals and then evaluated on real signals obtained from a post-impact fatigue damage experiment

in a cross-ply carbon-epoxy laminate. The evidence of the hypothesized model of damage is revealed as a

suitable measure of the overall ability of that candidate hypothesis to represent the actual damage state

observed by the ultrasound, thus avoiding the extremes of over-fitting or under-fitting the ultrasonic signal.

Keywords: Bayesian inverse problem, Ultrasound, Composite Laminates, Diagnostics

1. Introduction

Composites are high-performance layered materials that are increasingly used as primary material for

engineering structures and mechanisms in the aerospace, wind energy and naval industries, among others [1,

2]. However, they are vulnerable to damage during operation, e.g., fatigue-induced damage or impact damage,

that can be noticeable from the beginning of lifespan as an alteration of macro-scale mechanical properties

like stiffness or strength [3, 4]. Unlike metals, damage degradation in composites consists in a complex multi-

scale process driven by internal fracture mechanisms distributed through the thickness, such as micro-cracks,

delaminations, fibers breakage, etc. [3–5]. These damages are hardly ever detectable by visual inspection

and typically require advanced nondestructive evaluation (NDE) techniques.
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Ultrasound is currently one of the most frequently used NDE inspection techniques mainly due to its

efficiency in obtaining indirect measurements of the actual mechanical properties of materials at relatively

low cost. In ultrasound-based NDE, the received ultrasonic signal is evaluated and processed to retrieve

quantitative information about the state of health of the inspected media. However, given the complexity

of the internal structure of composite laminates (e.g., heterogeneity, multiple damage mechanisms, etc.), ad

hoc signal processing techniques are usually required for a more in depth interpretation of the measured

ultrasonic signal [6, 7]. The noise arising from the imperfections of both the acquisition system and the

propagation path, and the difficulties in understanding and analyzing multiple and overlapping ultrasonic

echoes, suggest to directly compare the experimental signal response with theoretical signals obtained from a

model of ultrasound wave propagation (UWP), with the purpose of inferring quantitative information about

the effective mechanical properties of the material. A suitable approach for such comparison is given by the

model-based inverse problem (IP), in either its deterministic version [8, 9] or alternatively in its Bayesian

(probabilistic) version [10–12]. The deterministic approach has been previously applied in the context of

ultrasound-based damage identification in composites [7, 13], although it suffers from a strong practical lim-

itation since it requires the adoption of an a priori hypothesis about the through-the-thickness distribution

of the damaged layers. However, when dealing with composite materials under fatigue or impact degrada-

tion, not only one single hypothesis about damage distribution but numerous candidate hypotheses can be

considered, even under nominally identical material and testing conditions [14, 15]. Moreover, reconstructing

the damage state of a material using a deterministic IP approach neglects not only the uncertainty arising

from measurement errors, but also the uncertainty related to the modeler’s choice of a particular hypothesis

of damage to solve the inverse problem [11, 16]. In this context, it seems reasonable to explore the appli-

cability of a probabilistic IP to ultrasound-based damage identification in composite materials, precisely

where the benefits of the Bayesian approach can be fully exploited to deal with the aforementioned sources

of uncertainty.

There are few articles in the literature dealing with some form of damage identification in composite

laminates using Bayesian IP approaches. Gros [17] used several NDE methods (no ultrasound) to detect and

size delamination in composites. A Bayesian framework was adopted to fuse various sources of experimental

data and assess the probability of a defect to be detected at a particular location. Peng et al. [18] developed a

Bayesian imaging method to detect and size delamination damage in composites using Lamb waves. Recently,

some authors have made use of recursive Bayesian updating techniques for on-line damage identification in

the context of fatigue life prediction in composite materials [19–21]. Other researchers have adopted Bayesian

IP approaches for ultrasound-based feature identification in biomaterials and soft tissue [22, 23]. However,

to the authors’ best knowledge, the use of a full Bayesian inverse problem for damage assessment based on

ultrasound in composite materials is still missing in the open literature.

In this paper, a multilevel Bayesian framework is proposed for identifying the through-the-thickness
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position and the effective mechanical properties of the damaged layers in composite laminates using ultra-

sound. As a key contribution, the proposed methodology does not require any predefined hypothesis on the

damage distribution for solving the IP. Instead, several candidate damage hypotheses or model classes [11] are

formally tested and ranked through relative probabilities within a Bayesian model selection framework. The

chosen UWP model is based on a digital representation of the laminate recently developed by Bochud et

al. [13], which is particularly suitable for the proposed Bayesian methodology due to its high efficiency and

low computational complexity. In this context, Bayes’ Theorem is applied at three hierarchical levels: first,

to deal with the posterior information about the model parameters for a specific damage hypothesis; second,

to assess the relative plausibility of each damage hypothesis within a set of candidate hypotheses defining

a particular damage pattern, and third, to obtain the degree of plausibility of a given pattern of damage

among a set of candidates. In this work, the concept of damage hypothesis is physically associated with the

type of damage and its through-the-thickness distribution within the laminate, whereas damage pattern is

defined as a set of damage hypotheses that share the same amount of damaged layers, regardless of their

position. An algorithm is proposed to efficiently explore the set of possible damage hypotheses, thus avoiding

an exhaustive search across an intractable number of combinations of model parameters and making the

identification problem computationally feasible. In this sense, it constitutes a major contribution of this

research.

To serve as a validation, the proposed Bayesian framework is initially applied to a set of synthetic signals

with increasing levels of noise and complexity, which are intended to serve as ground-truth data. Additionally,

a case study is presented using ultrasonic signals obtained from a post-impact fatigue damage experiment in

a cross-ply carbon fiber-reinforced polymer (CFRP) laminate. Results show that the proposed methodology

is able to detect and locate the damaged layers and estimate their effective mechanical properties through

probabilities that measure and rank the extent of agreement between the measured ultrasonic signal and

the modeled signal. It is also shown that more complex damage hypotheses (i.e., model parameterizations

that involve more updatable model parameters) do not necessarily yield higher probabilities in explaining

the observed ultrasonic signature even for severe damage scenarios. The last is an instance of the Principle

of Model Parsimony or Ockham’s razor [24, 25] which is shown to appear in a natural and principled

way from the computation of the evidence of each damage hypothesis [11, 26]. Thus, it is a key aspect in

favour of the proposed Bayesian approach over commonly used methods for hypotheses assessment like the

Maximum Likelihood Estimation (MLE), or the information criteria like the Akaike’s Information Criterion

(AIC) [27] and the Bayesian Information Criterion (BIC) [28, 29]. The MLE approach is purely based

on the goodness of the data-fit of the hypothesized model, thus favouring unnecessary complex damage

hypotheses [11] (i.e., those that lead to only slightly better agreement with the data). The AIC and BIC

criteria were proposed to attempt to correct for the bias of MLE by the addition of a penalty term to

compensate for the over-fitting of more complex models. However, despite their simplicity, they may give
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biased identifications favouring excessively simple hypotheses [11, 26]. In this context, the evidence of each

damage hypothesis is revealed as a suitable measure of the overall ability of the candidate damage hypothesis

to represent the actual damage state observed by the ultrasound, since it explicitly builds in a trade-

off between the goodness of fit of the hypothesized model and its information-theoretic complexity, thus

avoiding the extremes of over-fitting or under-fitting the ultrasonic signal.

The paper is organized as follows. Section 2 presents the formulation adopted for modeling ultrasound

waves in layered media. Key mathematical definitions for damage hypothesis and damage pattern are also

introduced in this section. In Section 3, the proposed Bayesian framework for damage identification is pre-

sented. This section also provides a pseudocode implementation of the proposed search algorithm. Section 4

illustrates the proposed methodology using both, a set of synthetically generated signals and experimental

ultrasonic signals. Section 5 discusses the results, and finally Section 6 provides concluding remarks.

2. Physical fundamentals

2.1. Ultrasound wave propagation model

For the purpose of ultrasound model-based damage identification, a model for ultrasound wave propa-

gation (UWP) is required. In general terms, an UWP model can be defined as a deterministic relationship

ȳ = g(x,θ) : R
nx × R

nθ → R
ny between a sampled input signal x = (x1, . . . , xi, . . . , xnx

) ∈ R
nx and

a sampled output signal ȳ = (ȳ1, . . . , ȳi, . . . , ȳny
) ∈ R

ny , with θ ∈ Θ ⊂ R
nθ as model parameters. In a

recent work, the authors developed a new modeling approach to efficiently describe the interactions of a

normally-incident plane longitudinal ultrasonic wave with multilayered materials [13]. Basically, this mod-

eling approach relies on a computational procedure that takes the effective mechanical properties of the NL

layers of a laminate (i.e., Young’s modulus Eℓ, Poisson ratio νℓ, density ρℓ, attenuation coefficient αℓ, and

thickness tℓ, where ℓ = 1, . . . , NL) and analytically converts them to the coefficients of a functional digital

filter in the z-domain [30], as depicted in Figure 1. This approach is adopted here, so that a composite

laminate can be represented by a discrete-time transfer function H(z;θ) that relates the sampled input

signal x and the output signal ȳ as follows,

ȳ = H(z;θ) · x (1)

This method has been demonstrated to provide high efficiency and low computational complexity [13],

which is particularly beneficial for the Bayesian approach proposed in this paper since thousands of for-

ward model evaluations are required for damage inference. In addition, it has been shown that under a

through-transmission configuration, the discrete-time transfer function H(z;θ) for a multilayered material
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corresponds to a delayed all-pole filter with sparse coefficients [13], so that:

H(z;θ) =
b0

1 +

2Λ∑

k=1

akz
−k

z−Λ with ||ak||0 ≪ 2Λ.
(2)

where b0 ∈ R
+ is a gain parameter obtained as a function of the transmission Gtℓ ∈ R

+ and attenuation

Gαℓ
∈ R

+ coefficients across the NL layers, and Λ ∈ R
+ corresponds to a sample delay equivalent to the time

needed by the incident wave to cross the total thickness of the laminate. Henceforth, a composite laminate

can be modeled as a linear time-invariant (LTI) sparse digital filter (with a rational transfer function in the

z-domain) whose coefficients are analytically related to the effective mechanical properties of the layers of

the laminate. See Appendix A for further details.

Eℓ, νℓ, ρℓ, αℓ, tℓ

ℓ = 1, . . . , NL

-

cℓ =

√

Eℓ(1 + νℓ)(1 − 2νℓ)

ρℓ(1 − νℓ)

Zℓ = ρℓcℓ

-

Gtℓ
=

Zℓ+1 − Zℓ

Zℓ + Zℓ+1

Gαℓ
= e

αℓtℓ

mℓ =
Fstℓ

cℓ

-

b0 =

NL
∑

ℓ=1

Gtℓ
Gαℓ

Λ =

NL
∑

ℓ=1

mℓ

ak from recursion

in Eqs. (A.1)-(A.3)

Physical properties

Acoustic properties

Filter parameters Filter coefficients

Figure 1: Computational procedure to obtain the coefficients of a functional digital filter from the basic physical properties of

the laminate (cℓ: wave velocity, Zℓ: acoustic impedance, mℓ: sample delay, Fs: sampling frequency. Subscript ℓ refers to the

ℓ-th layer).

2.2. Damage hypotheses/patterns definition through model parameterization

As depicted in Figure 1, the UWP model presented above depends on a vector m ∈ R
nm of parameters

that describe the mechanical and geometrical properties of the layers [13], i.e., m =
(
Eℓ, νℓ, ρℓ, αℓ, tℓ

)
,

ℓ = 1, . . . , NL, where NL is the number of layers of the laminate. Some of these parameters are deterministic

input parameters that can be represented by single-valued variables, however other parameters within m

may be uncertain, i.e., they cannot be represented by single-valued variables but through a probability

density function (PDF). These uncertain parameters are grouped into the parameter vector θ defined over

the parameter space Θ ⊂ R
nθ , that represents the region of plausible values for θ.

In this work, we assume that any damage hypothesis in a composite laminate (i.e., the expected type of

damage and its through-the-thickness distribution) can be described as a uniform reduction of the Young’s

modulus of several layers at the inspected point or area, which is a reasonable assumption in the context

of the sub-wavelength wave propagation technique adopted in this paper [31]. Consequently, the Young’s

moduli of the damaged layers are considered as uncertain model parameters, hereinafter called model pa-

rameters; i.e., θ =
(
Ek, El, . . . , Em

)
∈ Θ, where k, l, . . . ,m ∈ Ξ = {1, 2, . . . , NL} ⊂ N represent the
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through-the-thickness position of the damaged layers. As it is defined, a given parameter vector θ implic-

itly carries out information about the number (nθ = dimension of Θ) and position ({k, l, . . . ,m} ∈ Ξ) of

the damaged layers, thus defining a particular hypothesis of damage denoted by M. By varying the posi-

tion of the nθ damaged layers within the laminate, a set of NM candidate damage hypotheses is obtained
{
M1, . . . ,MNM

}
, which defines a specific damage pattern Mi =

{
M1, . . . ,MNM

}
. Therefore, a different

damage pattern Mi′ can be obtained by adopting a number n′
θ
6= nθ of damaged layers. Observe that the

damage hypotheses in the set Mi =
{
M1, . . . ,MNM

}
share a common amount of damaged layers, namely

nθ, thus the notation Mi=nθ
is adopted for convenience.

3. Bayesian methodology

Damage hypotheses described above are just an idealization of reality, and many of them can be formu-

lated to reproduce the experimental signal just by adopting a particular set of model parameters. To select

among the many possibilities, a Bayesian framework is proposed to rank the candidate damage hypotheses

and damage patterns through probabilities that measure the extent of agreement between the measured

signal and the corresponding modeled signal.

3.1. General assumptions

For the purpose of Bayesian inference, a probability-based description of the UWP model is firstly

required. Let us consider the deterministic relationship ȳ = g(x,θ) between the input signal x ∈ R
nx and

the output signal ȳ ∈ R
ny as a function of the uncertain parameters θ ∈ Θ ⊂ R

nθ , as previously defined

in Section 2.1. A probabilistic version of the UWP model can be defined by adding an error term e ∈ R
ny ,

that represents the difference between the modeled signal ȳ and the experimental one y:

y = ȳ + e (3)

In the last equation, the error term e is assumed to be modeled as a zero-mean Gaussian distribution

with covariance matrix Σe, i.e., e ∼ N (0,Σe). This assumption is supported by the Principle of Maximum

Information Entropy (PMIE) [11, 32], which provides a rational way to establish a probability model for

the error term e such that it produces the largest uncertainty (largest Shannon entropy). It follows that the

probability-based version of the UWP model can be described as a Gaussian distribution:

p(y|x,θ,M) = ((2π)
ny |Σe|)

− 1
2 exp

(

−
1

2
(y − ȳ)

T
Σ−1

e (y − ȳ)

)

(4)

where the covariance operator Σe is assumed to be a diagonal matrix, i.e. Σe = σ2
eIny

, with Iny
being the

ny × ny identity matrix and σe the corresponding standard deviation of the error term e. The last implies

that the component errors ei ∈ e, i = 1, . . . , ny, which measure the difference between the measured signal
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Uncertainty band ȳ ± σe

Figure 2: Illustrative example for obtaining the probability-based version of the UWP model described in Equation (5).

y and the modeled signal ȳ, are mutually independent and identically distributed (see Figure 2 for further

details). Therefore, the probabilistic UWP model in Equation (4) can be simplified as:

p(y|x,θ,M) =
(
2πσ2

e

)−
ny

2 exp

(

−
1

2

ny∑

i=1

(
yi − ȳi
σe

)2
)

(5)

where M in Equations (4) and (5) denotes the candidate model class, which actually represents a particular

parameterization for the UWP model, and consequently, a particular hypothesis of damage. As a part of

the model class M, we can define a prior PDF p(θ|M) over the model parameter space Θ, which represents

the initial relative plausibility of θ before the information from measurements is incorporated, as will be

explained in the next section.

3.2. Bayesian updating

Note that, up to this point, the probabilistic UWP model defined in Equation (5) is restricted to the

adoption of a particular parameter vector θ, which automatically defines a particular damage hypothesis for

the system denoted by Mj . However, different values of model parameters and even different damage hy-

potheses might be consistent with the data D (i.e., experimental signal). To this end, the Cox-Jaynes theory

of probability [33, 34] provides us a rigorous foundation for the Bayesian inversion, which allows obtaining

the probability, in the sense of degree of plausibility, of model parameters, model hypotheses, and damage

patterns, given the observations from the system response [11, 12]. Thus, the goal of the Bayesian inverse

problem proposed herein is threefold: (1) to investigate the posterior PDF of model parameters θ over the set

Θ ⊂ R
nθ of possible values within the model class Mj given the data D, namely p(θ|D,Mj); (2) to obtain

the plausibility of the j-th damage hypothesis Mj within the set Mi =
{
M1, . . . ,Mj , . . . ,MNM

}
of candi-

dates, i.e., P (Mj |D,Mi); and (3) to investigate the plausibility P (Mi|D,M) of the assumed damage pattern
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Mi within a predefined set M of Ns plausible candidates, i.e., M =
{
M1, . . . ,Mi, . . . ,MNS

}
. Throughout

this work, we use P (·) to denote probability whereas a PDF is expressed as p(·). Figure 3 provides a synop-

tical scheme of the proposed multilevel Bayesian assessment framework.

Probabilistic UWP model
p(y|x,θ,Mj)

Model parameters (Mj)
θ =

(
θ1, θ2, . . . , θnθ

)

Likelihood function
p(D|θ,Mj)

Prior PDF
p(θ|Mj)

Posterior PDF
p(θ|D,Mj)

Candidate damage hypotheses
Mi = {M1, . . . ,MNM

}

Evidence of hypothesis Mj

p(D|Mj ,Mi)

Prior probability
P (Mj |Mi)

Posterior probability
P (Mj |D,Mi)

Candidate damage patterns
M = {M1, . . . ,MNS

}

Evidence of pattern Mi

p(D|Mi,M)

Prior probability
P (Mi|M)

Posterior probability
P (Mi|D,M)

I.
P
a
r
a
m

e
te

r
s

I
I.

H
y
p
o
th

e
s
e
s

I
I
I.

P
a
tt

e
r
n
s

(data)

(Bayes’ Th.)

(Bayes’ Th.)

(Bayes’ Th.)

(Total Prob. Th.)

(Total Prob. Th.)

Figure 3: Proposed Bayesian IP framework at the three hierarchical levels considered: (1) Model parameters, (2) damage

hypotheses, and (3) damage patterns. Observe that the evidence of the upper levels (II and III) stems from the evidence and

the prior probability of the lower levels (I and II, respectively).

3.2.1. Level 1: Model parameters

At the level of model parameters, Bayes’ Theorem yields the posterior PDF of the parameter vector θ

for a particular model class Mj , as follows:

p(θ|D,Mj) = c−1p(D|θ,Mj)p(θ|Mj) (6)

where c is a normalizing constant defined so that:

∫

Θ

p(θ|D,Mj)dθ = c−1

∫

Θ

p(D|θ,Mj)p(θ|Mj)dθ = 1 (7)

Note that the initial quantification of the plausibility of each model parameterization specified by θ in Mj ,

which is expressed by the prior PDF p(θ|Mj), is updated to obtain the posterior PDF p(θ|D,Mj) by

using the information about the system output expressed through the likelihood function p(D|θ,Mj). The
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Measured signal y

Experimental dataset (D)

Hypothesized damaged layers (Mj)
=⇒ θ =

(

Ek, El, Em

)

Actual damaged layers

·

Likelihood function p(D|θ,Mj)

Modeled signal ȳ

Measured signal y

p(θ|D,Mj)

p(θ|D,Mj)

p (θ|Mj)

Posterior PDF

θ

Figure 4: Illustrative example of the Bayesian updating of model parameters for a particular damage hypothesis Mj . Left:

Schematic section view of a composite laminate with indication of the actual and hypothesized damaged layers, and the model

parameterization based on the hypothesized damaged layers. Center: Conceptual illustration of the formulation of the likelihood

function (refer also to Figure 2). Right: Final outcome of the model parameter updating through Bayes’ Theorem.

likelihood function provides a measure about how likely the ultrasonic data D are reproduced if the model

specified by θ within model class Mj is adopted. It can be obtained by evaluating the data D as the outcome

of the stochastic UWP model defined in Equation (5). If, instead of a single signal, the data D consist of

a sequence of N ultrasonic signals D = {y1, . . . ,yN} covering a certain damaged area, then the likelihood

function can be expressed as:

p(D|θ,Mj) =

N∏

n=1

p(yn|x,θ,Mj)
︸ ︷︷ ︸

Eq. (5)

(8)

Figure 4 conceptually illustrates the main steps for Bayesian updating of model parameters for the ultrasound-

based damage identification problem investigated here. It should be noted that one of the main difficulties

when applying Bayes’ Theorem is that the normalizing constant c cannot be evaluated analytically nor is

readily calculated by numerical integration methods, except when the dimension nθ is small [35]. To tackle

this problem, Markov Chain Monte Carlo (MCMC) methods [36, 37] are widely used since they allow ob-

taining samples from the posterior PDF while circumventing the evaluation of the normalizing constant

c in Equation (6) [38–40]. Among them, the Metropolis-Hastings (M-H) algorithm [41, 42] is used here

for its versatility and implementation simplicity. The reader is referred to Appendix B for a pseudocode

implementation of M-H algorithm in the context of this study.

3.2.2. Level 2: Damage hypotheses

As stated before, several damage hypotheses may be consistent with the measured signals D. Thus,

the goal is to calculate the plausibility of a particular damage hypothesis Mj among the set Mi =
{
M1, . . . ,Mj , . . . ,MNM

}
of candidates for representing the measured system response. This can be achieved
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by extending Bayes’ Theorem at the model class level as follows:

P (Mj |D,Mi) =
p(D|Mj ,Mi)P (Mj |Mi)

∑NM

k=1
p(D|Mk,Mi)P (Mk|Mi)

(9)

where P (Mj |Mi) is the prior probability of the j-th damage hypothesis in Mi, so that
∑NM

j=1 P (Mj |Mi) =

1. This prior probability expresses the initial modeler’s judgement on the relative degree of belief on Mj

within the set Mi. The factor p(D|Mj ,Mi) is the evidence (also referred to as marginal likelihood) for model

class Mj ∈ Mi, and expresses how likely the data D are reproduced if the damage hypothesis represented

by Mj is adopted. The evidence can be calculated using Total Probability Theorem as1:

p(D|Mj) =

∫

Θ

p(D|θ,Mj)p(θ|Mj)dθ (10)

where p(D|θ,Mj) and p(θ|Mj) are the likelihood function and the prior PDF of model parameters, re-

spectively. Once the evidences for the different model classes are obtained, their values allow us ranking the

damage hypotheses according to the posterior probabilities given by Equation (9). However, the evaluation

of the multi-dimensional integral in Equation (10) is nontrivial except for some particular cases [43], further

extended by Yuen and Mu [44]. In this work, a recent technique based on samples from the posterior PDF

p(θ|D,Mj) is adopted to numerically solve this integral [45]. More details about this method can be found

in [46] in the context of the M-H algorithm used herein.

Note that, in addition to calculate the evidence of a particular damage hypothesis, it is also of much

interest to quantify the balance between the data fit in relation to the complexity of such damage hypothe-

sis, i.e., the amount of information extracted from the data. This allows avoiding the over-fitting of the data

when the model is unnecessarily adjusted to capture minor details of the ultrasonic signal by means of more

complex parameterizations. This can be achieved by examining the evidence of the model class Mj from an

information theoretic point of view [11, 26], as follows:

ln p(D|Mj) =

∫

Θ

[ln p(D|θ,Mj)] p(θ|D,Mj)dθ −

∫

Θ

[

ln
p(θ|D,Mj)

p(θ|Mj)

]

p(θ|D,Mj)dθ (11)

= E[ln p(D|θ,Mj)]− E

[

ln
p(θ|D,Mj)

p(θ|Mj)

]

where E is the expectation with respect to the posterior p(θ|D,Mj). This expression is obtained by strate-

gically multiplying the logarithm of the evidence by a factor of one:

ln p(D|Mj) = ln p(D|Mj)

∫

Θ

p(θ|D,Mj)dθ

︸ ︷︷ ︸
= 1

(12)

and then making substitutions according to Bayes’ Theorem in Equation (6) to expand the evidence. The

first term in Equation (11) accounts for the averaged goodness of fit (AGF) of the model specified by

1For the sake of clarity, the conditioning on Mi is hereinafter dropped except when necessary.
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Mj , weighted by the posterior probabilities of model parameters θ. The second term is the relative entropy

between the posterior and the prior PDF of model parameters, which determines the Expected Information

Gained (EIG) from the data if damage hypothesis represented by Mj is adopted. This term, which is by

definition always non-negative, will be larger for more complex damage hypotheses. Therefore, the log-

evidence of a damage pattern is compounded of a data-fit term and a term that penalizes more complex

damage hypotheses, which are those that extract more information from the data to update their prior

information. Consequently, Equation (11) allows understanding the correct trade-off between fitting accuracy

and model complexity.

3.2.3. Level 3: Damage patterns

As explained in Section 2.2, damage hypotheses can be grouped into damage patterns according to the

hypothesized number of damaged layers. The posterior plausibility of the candidate damage pattern Mi can

be obtained using Bayes’ Theorem as follows:

P (Mi|D,M) =
p(D|Mi)P (Mi|M)

∑NS

j=1 p(D|Mj)P (Mj |M)
(13)

where P (Mi|M) is the prior plausibility of pattern Mi within the set M =
{
M1, . . . ,Mi, . . . ,MNs

}
, and

p(D|Mi) is the evidence of Mi ∈ M for the data D, which expresses how likely the data D are reproduced if

damage pattern Mi is assumed. The evidence p(D|Mi) can be obtained as a generalization of the evidence

calculation at the model class level (recall Eq. (10)) using Total Probability Theorem:

p(D|Mi) =

NM∑

j=1

p(D|Mj ,Mi)
︸ ︷︷ ︸

Eq. (10)

P (Mj |Mi) (14)

where P (Mj |Mi) is the prior probability of damage hypothesis Mj ∈ Mi, as defined in Section 3.2.2. Ob-

serve that, by definition, the number of damage patterns Ns 6 NL since subscript i = 1, . . . , NS is identified

with the dimension of the model parameter space nθ (recall Section 2.2), which is always less than or equal

to the number of layers within the laminate NL.

3.3. Algorithmic implementation

In a strict sense, a given UWP model parameterized by θ ∈ R
nθ would lead to a set of NM = NL!

(NL−nθ)!nθ !

potential damage hypotheses to be tested using the multilevel Bayesian IP approach presented before. For

instance, a laminate with NL = 31 layers (such as the one considered in the case study below) would lead to

NM = 169, 911 potential damage hypotheses to be studied under a specific damage pattern based on nθ = 5

damaged layers, which is hardly affordable using standard computational resources. To overcome this draw-

back, a redefinition of the damage patterns is proposed based on a pre-selection of damage hypotheses as

11



follows:2 First, an initial damage pattern is defined by considering nθ = 1 damaged layers, leading to a

set of NM = NL damage hypotheses parameterized by θ
(1)
j = (Ek), where k ∈ Ξ = {1, 2, . . . , NL}; hence-

forth M1 = {M
(1)
1 , . . . ,M

(1)
NL

}. By Bayesian model class selection (recall Section 3.2.2), the most probable

hypothesis M
(1)
j∗ within the set M1 is selected, which is described through a model parameterization speci-

fied by θ
(1)
j∗ = (Ek∗), where k∗ ∈ Ξ is the most probable position of the damaged layer considering damage

pattern M1. Next, a second damage pattern based on two damaged layers (nθ = 2) is defined such that it ac-

cepts NL−1 damage hypotheses described through the following model parameterization: θ
(2)
j =

(
θ
(1)
j∗ , Ek

)
,

which results from augmenting vector θ
(1)
j∗ with parameter Ek, i.e., θ

(2)
j =

(
Ek∗ , Ek

)
, k 6= k∗ ∈ Ξ, thus

leading to the set M2 = {M
(2)
1 , . . . ,M

(2)
NL−1}. Again, the most-probable hypothesis M

(2)
j∗ ∈ M2 can be

selected through Bayesian model class selection, so that M
(2)
j∗ is parameterized by θ

(2)
j∗ =

(
Ek∗ , El∗

)
, where

{k∗, l∗} ∈ Ξ are the most probable positions of the damaged layers under damage pattern M2. The same

process is repeated until NS = NL damage patterns have been defined, so that the i-th damage pattern

within the set M = {M1, . . . ,Mi, . . . ,MNL
} is composed of NM = NL − i+ 1 damage hypotheses parame-

terized by θ
(i)
j =

(
θ
(i−1)
j∗ , Ek

)
=
(
Ek∗ , El∗ , . . . , Em∗ , Ek

)
, where k ∈ Ξ 6= {k∗, l∗, . . . ,m∗}. A pseudocode of

the proposed method is given below as Algorithm 1.

2For the sake of clarity, subscript j and superscript (i) are employed here to denote the j-th damage hypothesis and the

i-th damage pattern; i.e., θ
(i)
j is the model parameter vector for damage hypothesis Mj under damage pattern Mi.
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Algorithm 1 Bayesian-search algorithm

Inputs:

NL [# layers within laminate]

Input parameters: u =
(

νℓ, ρℓ, αℓ, tℓ
)

, ℓ = 1 . . . NL

Set NS = NL [# candidate damage patterns]

Set the prior probability of damage patterns:
{

P (Mi|M)
}NS

i=1
(e.g. P (Mi|M) = 1/NS)

Algorithm:

Set θ
(0)
j∗ = ∅

Set Ξ = {1, 2, . . . , NL}; Ξ
∗ = ∅

for i = 1 to NS do

Set NM = NL − i+ 1

Define Mi =
{

M
(i)
1 , . . . ,M

(i)
NM

}

for j = 1 to NM do

Define M
(i)
j by θ

(i)
j = (θ

(i−1)
j∗ , Ek), ∀k ∈ Ξ\Ξ∗

Define the priors p(θ|Mj) and P (Mj |Mi) (e.g. P (Mj |Mi) = 1/NM)

Compute P (Mj |D,Mi) (Eq. 9)

end for

Find j∗ ∈ {1, 2, . . . , NM} : P (Mj∗ |D,Mi) = max
{

P (Mj |D,Mi)
}NL

j=1

Take θ
(i)
j∗ =

(

Ek∗ , El∗ , . . . , Em∗

)

and set Ξ∗ = {k∗, l∗, . . . ,m∗}

Compute P (Mi|D,M) (Eq. 13)

end for

Find Mi∗ ∈ M : P (Mi∗ |D,M) = max
{

P (Mi|D,M)
}NS

i=1

Compute p
(

θ
(i∗)
j∗ |D

)

, p
(

θ|D,Mj∗ ,Mi∗
)

(Eq. 6)

Output:
{

Mi∗ ,Mj∗ , p
(

θ|D,Mj∗ ,Mi∗
)

}

4. Case studies

The Bayesian framework for damage identification presented above is exemplified herein using ultrasonic

signals from a damaged composite laminate. Section 4.1 describes the experimental setup whereby ultrasonic

measurements are acquired. The algorithm settings for Bayesian model updating are presented in Section

4.2. Finally, Section 4.3 introduces the results obtained for Bayesian damage identification.

4.1. Experimental setup

The tested material is a cross-ply carbon-epoxy laminate with stacking sequence [0/90]4s exposed to

post-impact fatigue damage. Basic mechanical and geometrical properties of this laminate are listed in

Table 1. A 3.8 Joule impact damage was introduced in the specimen using a drop weight tower and then
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the laminate was subjected to 100,000 tension-tension fatigue cycles, with a maximum applied load of 20

KN, a frequency f = 6 Hz, and a stress ratio R = 0.1 (relation between the minimum and maximum stress

for each cycle). The damaged specimen was removed from the servo-hydraulic fatigue testing machine and

further scanned within an immersion tank (C-scan mode).

Layer properties
Young’s modulus Poisson ratio Density Attenuation Thickness

Ē [GPa] ν [−] ρ [kg/m3] α [Np/m] t [mm]

Plies (0◦/90◦) 11.16 0.30 1589.5 293.02 0.12

Interfaces 5.27 0.35 1310 361.16 0.01

Table 1: Nominal values of mechanical and geometrical properties of the intact plies and interfaces of the CFRP [0/90]4s

laminate used for the case studies.

For the ultrasonic testing, a through-transmission sub-wavelength technique was adopted whereby lon-

gitudinal waves were transmitted normally through the layers, whose thickness is less than or comparable

to the wavelength of the emitted wave. Specifically, the damaged specimen was excited by an ultrasonic

sine-burst at a central frequency of 5 MHz consisting of one cycle of 0.2 µs and 5 Vpp amplitude. The speci-

men was located at the focal distance of the transducers, and scanned over a two-dimensional plane parallel

to the transducer areas. Response signals were registered during 10 µs and sampled with a high resolution

A/D converter after 40 dB pre-amplification stage, applying a sampling frequency Fs = 200 MHz providing

ny = 2000 samples, which were uniformly quantized with 12 bits. Figure 5 depicts the experimental setup

whereby ultrasonic signals were obtained.
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Figure 5: Experimental configuration of the excitation-propagation-measurement system.

Initially, for calibration purposes, the response signal was obtained at an undamaged location (far from

the impacted area) and then, the measurement procedure was repeated over an area of 40×20 mm2 centered

on the impact location. Three response signals with increasing level of complexity were finally selected. Each
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of these measurements corresponds to the resulting average of 500 captures of the signal, increasing the

signal-to-noise ratio around 27 dB.

4.2. Settings for Bayesian assessment

Since a major damage mode in composites is delamination, an interface layer of much smaller thickness

than both plies and wavelength of the emitted wave is assumed between every two consecutive plies in the

digital modeling of the specimen. Thus, the laminate considered in this study is composed by 16 plies plus

15 interfaces, leading to NL = 31 layers. As explained in Section 2.2, the actual values for Young’s moduli of

the damaged plies and interfaces were chosen as uncertain model parameters θ = (Ek, El, . . . , Em), which,

together with the mechanical properties listed in Table 1, define the input of the UWP model (see Figure

1). Given that the model parameters θ are always non-negative, their associated prior information was

modeled as a lognormal distribution centered at the nominal value of such parameters, i.e., p(Eℓ|M) =

LN (ln Ēℓ, σEℓ
), being Ēℓ the nominal value of Young’s modulus of the ℓ-th layer (see Table 1), and σEℓ

the

shape parameter of the lognormal distribution. For the case studies investigated in this paper, the selected

value for the shape parameter was σEℓ
= 0.4 ln Ēℓ for all layers. It should be noted that model parameters

were assumed to be stochastically independent, thus the prior PDF of parameters p(θ|M) was defined as

the unconditional product of the individual priors, i.e., p(θ|M) =
∏nθ

i=1 p(Ei|M). Note that this assumption

is not an assertion that no correlations actually exist between model parameters, but a description of the

available prior information about such correlations. If they exist, they would become apparent after Bayesian

updating [47]. At the model class level, a uniform distribution was adopted for the prior probabilities of

damage hypotheses, i.e., P (Mj |Mi) = 1/NM , j = 1, . . . , NM . The same probability model was assumed for

the prior information of damage patterns, i.e., P (Mi|M) = 1/NS. Observe from Equations (9) and (13) that

computing the evidences of both damage hypotheses and damage patterns is sufficient to assess and rank

such hypotheses and patterns because of the aforementioned adoption of equal prior probabilities.

For model parameter updating, the Metropolis-Hastings (M-H) algorithm was applied with a multivariate

Gaussian for the proposal PDF, i.e. q(θ
′

|θζ) = N (θζ ,Σq), where Σq ∈ R
nθ×nθ is the covariance matrix of the

random walk. Further details about M-H implementation are given in Appendix B. Since model parameters

θ were assumed as stochastically independent, Σq is a diagonal matrix, i.e., Σq = diag(σ2
q,1, . . . , σ

2
q,nθ

),

and each component parameter in θ performs an independent random walk. The diagonal elements of

Σq were appropriately selected through initial test runs such that the monitored acceptance rate (ratio

between accepted M-H samples over total amount of samples) is within the suggested range [0.2, 0.4] for

M-H algorithm [48]. For the definition of the likelihood function (refer to Eq. (5)), the standard deviation of

the error parameter is set to σe = 0.075. This parameter has been shown to have a relatively low influence

on the performance of the Bayesian search algorithm, although it could be ideally updated as an additional

model parameter within the Bayesian inverse problem.
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4.3. Results

4.3.1. Validation using synthetic signals

In order to validate the accuracy and robustness of the damage identification performed by the proposed

methodology, ground truth data were used consisting of a set of simulated response signals that were directly

generated using the UWP model presented in Section 2.1. Damage was artificially introduced in a virtual

CFRP [0/90]4s laminate nominally identical to the experimental one by assigning reduced values for the

Young’s modulus to some layers and interfaces. Three damage scenarios were reproduced such that they

were in reasonable agreement with the damage mechanisms that may be expected after a post-impact fatigue

damage event [49, 50]. The assigned values for model parameters in each of the three damage scenarios are

listed in Table 2.

Damage scenario I
Model parameters θ Eℓ=1 Eℓ=2 Eℓ=30

Assigned value [GPa] 8 4 4

Damage scenario II
Model parameters θ Eℓ=19 Eℓ=29 Eℓ=2 Eℓ=30 Eℓ=18

Assigned value [GPa] 6 9 3 3.7 3.5

Damage scenario III
Model parameters θ Eℓ=1 Eℓ=17 Eℓ=15 Eℓ=30

Assigned value [GPa] 6 8 8 3

Table 2: Assigned values for model parameters used for generating synthetical ultrasound signals considering three damage

scenarios for a virtual CFRP [0/90]4s laminate. Subscript ℓ denotes the position of the damaged layers defining each damage

scenario.

From the assigned values for model parameters, a discrete-time transfer function H(z;θ) was obtained

through Equation (2) for each damage scenario. Consequently, given an excitation signal x, the model for

wave propagation enabled us to obtain a simulated response signal ȳ directly by digital filtering. Note that

the excitation signal x used here was a shifted-ahead version of the response signal measured in water

(easily obtained by removing the specimen from the immersion tank), since such strategy allows us taking

into account the effect of the transducers in the wave propagation simulation. The simulated response signals

obtained with the reduced values of Young’s modulus were now chosen as the experimental ones to validate

the proposed methodology for damage assessment. The goal is twofold: (1) to assess the accuracy of the

method in identifying the most probable damage pattern, damage hypothesis, and the most probable values

for model parameters among the candidates, and (2) to evaluate the robustness of the identification to signal

noise by adding two different levels of white Gaussian noise to the response signals ȳ, which respectively

correspond to a signal-to-noise ratio (SNR) of 25 and 20 dB.

Table 3 lists the mean and standard deviation of the estimated posterior of model parameters corre-

sponding to the most probable damage hypothesis Mj∗ within the most evident damage pattern Mi∗ , i.e.,

p(θ|D,Mj∗ ,Mi∗). As can be observed, the mean and standard deviation of the estimated Young’s moduli

are in good agreement with the assigned values for Young’s modulus in plies and interfaces. In addition, the
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estimated values for model parameters seem to be rather insensitive to the signal noise level, at least for the

SNR considered in this study.

Damage scenario I

Model parameters θ Eℓ=1 Eℓ=2 Eℓ=30

Assigned value 8 4 4

Estimated (Noisefree) 7.56 ± 0.35 4.29 ± 0.64 3.63 ± 0.72

Estimated (SNR= 25 dB) 7.55 ± 0.35 4.27 ± 0.65 3.61 ± 0.71

Estimated (SNR= 20 dB) 8.03 ± 0.35 4.28 ± 0.65 3.76 ± 0.71

Damage scenario II

Model parameters θ Eℓ=19 Eℓ=29 Eℓ=2 Eℓ=30 Eℓ=18

Assigned value 6 9 3 3.7 3.5

Estimated (Noisefree) 5.99 ± 0.36 9.10 ± 0.62 4.27 ± 0.62 3.74 ± 0.72 3.29 ± 0.79

Estimated (SNR= 25 dB) 5.99 ± 0.36 9.10 ± 0.63 4.29 ± 0.62 3.73 ± 0.71 3.31 ± 0.80

Estimated (SNR= 20 dB) 6.00 ± 0.54 9.10 ± 0.64 4.31 ± 0.61 3.71 ± 0.71 3.25 ± 0.78

Damage scenario III

Model parameters θ Eℓ=1 Eℓ=17 Eℓ=15 Eℓ=30

Assigned value 6 8 8 3

Estimated (Noisefree) 6.10 ± 0.34 7.58 ± 0.34 8.20 ± 0.94 3.87 ± 0.70

Estimated (SNR= 25 dB) 6.09 ± 0.34 7.65 ± 0.88 8.14 ± 0.95 3.88 ± 0.70

Estimated (SNR= 20 dB) 6.14 ± 0.34 7.54 ± 0.87 8.21 ± 0.95 4.10 ± 0.70

Table 3: Posterior results (mean ± std) for model parameters considering three different damage scenarios. Results are shown

for the damaged layers within the laminate. Odd ℓ subscripts are to denote the plies, whilst even ℓ subscripts correspond to

the interfaces. Units are expressed in GPa.

In Table 4, the through-the-thickness position {k∗, l∗, . . . ,m∗} of the damaged layers as identified by the

algorithm is shown for a representative set of seven damage patterns within the set M = {M1,M2, . . . ,M31}.

The identified damaged layers correspond to the most-probable damage hypothesis Mj∗ for each of the

patterns analyzed. The log-evidences of the damage patterns ln p(D|Mi) are also listed and the most evident

one Mi∗ ∈ M is marked with bold font. In view of the results, the identification of the damaged layers for

the most evident pattern Mi∗ is consistent with the actual damaged plies selected for signal representation

(listed in Table 2), although it seems to fail in the consideration of some interfaces, apparently those placed

in the vicinity of previously identified damage plies (e.g., E18 in scenario II, and E2 in scenario III). This

apparent limitation is further analyzed and discussed in Section 5.

As a proof of fitting accuracy, both synthetically generated (experimental) signals y and modeled signals

ȳ are depicted in Figure 6. The modeled signals ȳ were obtained by averaging the signals obtained by

simulating the UWP model using parameter samples from the posterior PDF p(θ|D,Mj∗ ,Mi∗). Observe

that the agreement is particularly remarkable, even in situation where echoes overlap or when echoes are

strongly attenuated and drown by noise.

4.3.2. Evaluation using experimental signals

In this section, results are provided for Bayesian damage identification using experimental signals ob-

tained from the damaged CFRP [0/90]4s plate described in Section 4.1. The goal is to illustrate the perfor-
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M1 M2 M3 M4 M5 M6 M7

Damage scenario I

Noisefree
M

(i)

j∗
(E1) & E2 & E30 & E28 & E26 & E24 & E6

ln p(D|Mi) −5.248 −1.656 −1.365 −1.521 −2.019 −2.412 −2.808

SNR = 25 dB
M

(i)

j∗
(E1) & E2 & E30 & E8 & E6 & E18 & E20

ln p(D|Mi) −6.507 −2.938 −2.628 −2.756 −3.265 −3.551 −4.025

SNR = 20 dB
M

(i)

j∗
(E1) & E2 & E30 & E6 & E24 & E26 & E20

ln p(D|Mi) −9.479 −6.248 −6.076 −6.206 −6.655 −7.008 −7.432

Damage scenario II

Noisefree
M

(i)

j∗
(E19) & E29 & E2 & E30 & E18 & E14 & E12

ln p(D|Mi) −8.900 −2.983 −4.687 −2.133 −2.179 −2.364 −2.853

SNR = 25 dB
M

(i)

j∗
(E19) & E29 & E2 & E30 & E18 & E14 & E24

ln p(D|Mi) −10.582 −4.692 −6.402 −3.837 −3.875 −4.112 −4.585

SNR = 20 dB
M

(i)

j∗
(E19) & E29 & E2 & E30 & E18 & E26 & E24

ln p(D|Mi) −14.300 −8.437 −10.154 −7.557 −7.590 −7.887 −8.449

Damage scenario III

Noisefree
M

(i)

j∗
(E1) & E17 & E15 & E30 & E2 & E18 & E6

ln p(D|Mi) −14.594 −6.215 −3.113 −3.589 −2.199 −2.276 −2.621

SNR = 25 dB
M

(i)

j∗
(E1) & E17 & E15 & E30 & E2 & E31 & E18

ln p(D|Mi) −15.650 −7.274 −4.231 −4.719 −3.277 −3.361 −4.482

SNR = 20 dB
M

(i)

j∗
(E1) & E17 & E15 & E30 & E2 & E20 & E28

ln p(D|Mi) −17.842 −9.487 −6.364 −6.926 −5.481 −5.576 −5.886

Table 4: Most evident damage hypothesis M
(i)
j∗

identified by the algorithm for damage pattern Mi, i = 1, . . . , 7, along with their

log-evidences ln p(D|Mi). The most-evident damage patterns for each of the damage scenarios are marked in bold font. Simplified

notation & Em under pattern Mi denotes that M
(i)
j∗

is given by θ
(i)
j∗

= (θ
(i−1)
j∗

, Em), where θ
(i−1)
j∗

= (Ek, . . . , El) represents

the most evident hypothesis within pattern Mi−1. For example, & E28 under M4 (see the second row) denotes M
(4)
j∗

=

{E1, E2, E30, E28}.

mance of the proposed Bayesian methodology in the context of a real-life damaged laminate with a complex

post-impact fatigue damage state.

Table 5 shows the posterior mean value and standard deviation of the Young’s modulus for the identified

damaged layers, which correspond to the most probable damage hypothesis Mj∗ within the most evident

damage pattern Mi∗ . Results are given for three different damage levels (namely, low, moderate, and severe)

with increasing complexity in terms of signal attenuation, echoes overlap, and noise. In Table 6, the log-

evidences of the various damage patterns investigated by the algorithm are shown for the three damage

levels considered. It should be noted that, although there is no ground truth data available to validate this

experimental case study, results seem consistent with the damage distribution that may be expected in

post-impacted fatigue damaged laminates. In particular, as can be observed in Table 5 for the low damage

case, the algorithm identifies the first ply (impacted face) and the penultimate 90◦-oriented ply as most

probable damaged layers, along with the first interface. This result is in accordance with the observations

in the open literature about the effects of a low-energy impact on the fatigue damage behavior of CFRP

laminates [50–53]. A similar consideration can be drawn for the case of moderate damage, in which, in

addition to the external layers, several internal layers within the half part opposite to the impacted face are

18



Arbitrary time, t [µs]
0 2 4 6 8 10

A
m
p
li
tu
d
e

-0.4

-0.2

0

0.2

0.4

Reconst. ȳ
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Figure 6: Comparison between the experimental signals (dashed red lines) and the reconstructed signals (solid dark lines)

estimated with the proposed Bayesian framework. According to columns, the figures represent damage scenarios I to III from

left to right, whereas in rows, the figures represent the noise-free (NF) cases and those with the largest noise level (SNR = 20

dB).

also identified as most-probable damaged layers.

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9

Low
E1 E2 E29

10.08± 0.64 6.27± 0.31 3.29± 0.68

Moderate
E20 E1 E29 E6 E23 E17 E24

4.22± 0.69 8.29± 0.82 9.73± 1.08 0.64± 0.11 1.68± 0.12 6.34± 0.47 0.67± 0.15

Severe
E26 E5 E29 E27 E14 E7 E13 E9 E10

4.22± 0.67 8.35± 1.33 7.56± 1.36 6.56± 1.16 3.14± 0.84 5.46± 0.71 5.56± 0.84 4.70± 1.12 0.06± 0.01

Table 5: Posterior mean and standard deviation of model parameters corresponding to the most probable hypothesis within

the most evident pattern, as depicted in Table 6. Results are shown for the three damage levels considered (low, moderate,

severe). Units are expressed in GPa.

Finally, the fit between the experimental signals y and the signals ȳ obtained by averaging the UWP

model using samples from the posterior PDF p(θ|D,Mj∗ ,Mi∗) is shown in Figure 7. As can be observed, the

agreement between the measured and modeled signals is reasonably good for the cases of low and moderate

damage, and sensibly inferior for the case of severe damage. Therefore, the fit to reality may be only partial

for this last case, where the noise level is particularly high.
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ln p(D|M1) ln p(D|M2) ln p(D|M3) ln p(D|M4) ln p(D|M5) ln p(D|M6) ln p(D|M7) ln p(D|M8) ln p(D|M9)

Low −11.033 −6.389 −6.254 −8.511 −6.951 −7.610 −8.294 −10.76039 −9.785

Moderate −59.708 −24.866 −19.611 −23.388 −36.284 −21.965 −15.246 −19.334 −20.553

Severe −67.355 −14.407 −13.330 −11.657 −11.605 −16.805 −12.347 −11.149 −9.360

Table 6: Log-evidences of several damage patterns investigated using experimental signals. Three cases are analyzed (low,

moderate, severe) corresponding to increasing damage levels. Observe through the highest log-evidence values (in bold font)

that the algorithm identifies 3 damaged layers in the low damage case, 7 in the moderate case, and 9 in the severe case. The

through-the-thickness distribution of these layers is given in Table 5.
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Exp. y

Figure 7: Comparison between the experimental signals (dashed red lines) and the reconstructed signals (solid dark lines). The

panels are arranged by columns to represent the three damage levels investigated: Low damage (left), moderate damage (center),

and severe damage (right).

5. Discussion

The proposed Bayesian methodology for damage assessment has been exemplified using the case studies

presented in the previous section. A wave propagation model was used to account for the multiple internal

transmissions and reflections following a linear plane wave propagation equation for layered materials. Both

synthetically generated and experimentally measured ultrasonic signals were used as experimental data to

illustrate the method. As apparent from the results using synthetic signals, the estimated mean values of

the Young’s modulus converge to the right (assigned) values of model parameters independently of the

signal noise, at least for a SNR up to 20 dB (refer to Table 4). The agreement tends to be better for model

parameters corresponding to plies (odd ℓ-th subscripts in Eℓ), than that corresponding to interfaces (even

ℓ-th subscripts in Ei). An apparent reason is that, at the considered excitation frequency, the model output

is more sensitive to a variation of the Young’s modulus in the plies, more than to a variation of the Young’s

modulus in the interfaces, just because plies are about ten times thicker than interfaces.

The last observation is consistent with the results shown in Table 7, where the log-evidences of the

most-evident damage hypotheses M
(i)
j∗ are further analyzed using the information-theoretic approach given

by Equation (11). In view of the results, one can observe the improvement that can be achieved in the

averaged goodness of fit (AGF term) when the Young’s modulus parameter of any ply is incorporated
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into the parameterization. However, from a Bayesian perspective, the last also implies a larger information

extracted from the ultrasonic data by the UWP model (second term in Eq. (11)), because the high-probability

content of the likelihood function is concentrated over the region of these ”sensitive” parameters [47], thereby

penalizing the evidence of the candidate hypothesis. As observed in Table 7, this balance between the average

goodness of fit and the information gained from the data renders the value of the evidence of the overall

hypothesis, therefore resulting in a key element for the Bayesian hypothesis assessment.

It should be noted that other methods like the referred AIC and BIC criteria [28, 29] could be considered

for the proposed problem of hypothesis selection, as mentioned in Section 1. For discussion purposes, these

methods are briefly described below under a uniform notation:

AIC(Mj |D) = ln p(D|θ∗,Mj)− nθ

BIC(Mj |D) = ln p(D|θ∗,Mj)−
1

2
nθ lnny

(15)

(16)

where θ
∗ represents the maximum likelihood value of θ given model hypothesis denoted by Mj . Observe

that these methods provide expressions to explicitly perform a trade-off between data-fit and model com-

plexity. However, in view of Equations (15) and (16), the penalty term is based on the number of uncertain

parameters nθ, whilst, as shown in Equation (11), the penalty term can greatly differ for two hypotheses

even when they share the same nθ, thus biasing the identification [11, 26]. The last makes the AIC and

BIC criteria unsuitable for our problem of hypotheses selection. Moreover, such criteria do not take into

account the whole uncertainty of the model parameters, but only a point estimate based on the maximum

likelihood value θ
∗, which may lead to unreliable results for general non-identifiable cases [54]. In contrast,

using the Bayesian approach proposed, the whole modeling uncertainty (in both, model parameters and

model hypotheses) is considered, and penalties against unnecessary complex models arise in a natural and

principled way, as evident from Equation (11). Henceforth, there is no need to introduce any ad-hoc penalty

term as with the aforementioned alternative methods.

Besides, observe also that when an interfacial parameter is incorporated into the parameterization, the

amount of information extracted from the data is relatively low, since, as stated before, interfacial Young’s

moduli are low sensitivity parameters. Nevertheless, depending on the particular case, the addition of a

new interfacial parameter has been shown to provide slight improvements in the averaged data-fit of the

candidate damage hypothesis, usually when such parameter corresponds to an interface in the vicinity of

a previously identified damaged ply. The last may lead to a biased damage hypothesis selection when the

difference between the prior and posterior PDFs of these added interfacial parameters is relatively small

(e.g., 10% stiffness decrease), since this small change for a low sensitivity parameter implies a very low

penalty term in Equation (11), and thus, a trend to use these parameters to overfit the signal. However,

it should be noted that damage at interfaces is usually due to delamination damage, which actually leads

to a severe stiffness reduction. Therefore, the aforementioned bias may vanish by forcing larger values of
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degradation for these parameters through a suitable redefinition of their prior PDFs.

Damage hypothesis ln p
(

D|Mj∗ ,Mi

)

AGF EIG

Damage scenario I (20 dB)

M
(1)

j∗
: {E1} −6.4423 −5.3676 1.0747

M
(2)

j∗
: {E1, E2} −5.8326 −5.0981 0.7344

M
(3)

j∗
: {E1, E2, E30} −5.8309 −5.0534 0.7774

M
(4)

j∗
: {E1, E2, E30, E6} −6.0454 −5.1536 0.8918

Damage scenario II (20 dB)

M
(1)

j∗
: {E19} −10.8667 −7.8509 3.0158

M
(2)

j∗
: {E19, E29} −7.66010 −6.7773 0.8828

M
(3)

j∗
: {E19, E29, E2} −9.3616 −6.4508 2.1081

M
(4)

j∗
: {E19, E29, E2, E30} −7.2077 −6.1171 1.0906

M
(5)

j∗
: {E19, E29, E2, E30, E18} −7.3337 −6.1270 1.2067

Damage scenario III (20 dB)

M
(1)

j∗
: {E1} −14.4105 −10.5483 3.8622

M
(2)

j∗
: {E1, E17} −7.3765 −5.6256 1.7508

M
(3)

j∗
: {E1, E17, E15} −5.7937 −4.3861 1.4076

M
(4)

j∗
: {E1, E17, E15, E30} −6.5557 −4.1705 2.3852

M
(5)

j∗
: {E1, E17, E15, E30, E2} −5.2451 −3.9588 1.2863

Table 7: Information-theoretic approach to the evidence of most probable damage hypothesis M
(i)
j∗

within the i-th damage

pattern considered (AGF = Average Goodness of Fit, EIG = Expected Information Gain). Results are shown for three different

damage scenarios. The values shown for the log-evidence ln p
(

D|Mj∗ ,Mi

)

(third column) correspond to the difference from

those shown in forth and fifth columns, respectively. Observe that damaged plies (odd values for subscript ℓ in Eℓ) are generally

identified first.

Another limitation of this research is the simplification adopted in the parameterization of the UWP

model based on the Young’s modulus of plies and interfaces, which does not account for other physical vari-

ables (e.g., attenuation coefficient) as uncertain parameters. However, allowing all model inputs as updatable

parameters would yield a highly dimensional inverse problem where the uncertainties on the parameters

would cross-propagate creating a bias in the identification [47]. In this context, a desirable further work

would be the analysis of the ”optimal” model parameterization from an uncertainty quantification point of

view, for example by using Global Sensitivity Analysis [55]. Analyzing the effect of this optimal parame-

terization on the topology of the likelihood function, and thus, on the evidence of the model class, would

be also beneficial. An additional further work would be the cross-validation of the proposed Bayesian dam-

age assessment methodology for real damaged laminates using complementary structural health monitoring

techniques (e.g., by in-situ dynamic scanning electron microscopy (SEM)).

In summary, the results have highlighted the relevance of the hierarchical Bayesian approach for damage

identification proposed in this paper. The complexity of the damage distribution across the layers makes it

necessary to reduce the number of uncertain parameters that describe the model, in order to avoid overfitting

and gain certainty on the actual values of damage parameters. The amount of information extracted from

the data emerges as a key variable for the overall assessment of the candidate hypothesis represented by a

particular model parameterization, and, as a consequence, for the assessment of the damage pattern that
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contains such hypothesis. Then, the evidence of the damage hypothesis accounts for such information gain as

a penalty term and implicitly enforces a quantitative Ockham’s razor, such that simpler damage hypotheses

that are consistent with the data are favoured through a healthy balance between the information gained

from the data and the average goodness of fit.

6. Conclusion

A novel Bayesian approach for damage identification in layered materials is presented based on through-

transmission ultrasonic measurements using a wave propagation model and a multilevel probabilistic re-

construction algorithm. Both synthetically generated and experimentally obtained ultrasonic signals with

different levels of noise and complexity were used as experimental signals to illustrate the proposed method-

ology. The number and location of damaged layers along with the actual value of their Young’s modulus

were estimated through Bayes’ Theorem based on relative probabilities that measure the extent of agreement

between the measured signal and the signal obtained by the wave propagation model. A key contribution in

the context of ultrasound-based damage assessment is the avoidance of the necessity to adopt a predefined

hypothesis on the damage distribution to solve the inverse problem. More research effort is needed to asses

an optimal model parameterization for the ultrasound wave propagation model, and in general, to extend

and cross-validate this approach using other structural health monitoring techniques.
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Appendix A. Recursive approach for the digital model

It can be proven that for the product of NL-layers, a z-transformed transfer matrix T (z) that relates

the input and output displacement fields has the following general form [13]:

T (z) =

(
NL∏

ℓ=1

Gαℓ
z−mℓ

1 +Grℓ

)










PNL
(Gα, z)

(
NL∏

ℓ=1

G−2
αℓ

z2mℓ

)

QNL
(G−1

α , z−1)

QNL
(Gα, z)

(
NL∏

ℓ=1

G−2
αℓ

z2mℓ

)

PNL
(G−1

α , z−1)










(A.1)
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The functions PNL
(Gα, z) and QNL

(Gα, z) stand for polynomials of (NL − 1)-order which are built up

following a recursive scheme,

PNL
(Gα, z) = PNL−1(Gα, z) +GrNL

G−2
αNL

z2mNLQNL−1(Gα, z)

QNL
(Gα, z) = GrNL

PNL−1(Gα, z) +G−2
αNL

z2mNLQNL−1(Gα, z)

(A.2)

with P1(Gα, z) = 1 and Q1(Gα, z) = Gr1 . These polynomials incorporate all the multiple transmissions/reflections

and attenuation effects of the multilayered structure. Inserting the boundary conditions for a through-

transmission configuration yields the following discrete-time transfer function H(z),

H(z) =

NL∏

ℓ=1

GtℓGαℓ
z−mℓ

PNL
(G−1

α , z−1)−

(
NL∏

ℓ=1

G2
αℓ
z−2mℓ

)

QNL
(Gα, z)

(A.3)

A bare inspection of Equation (A.3) reveals that the lowest polynomial coefficient of the denominator is

provided by P1(G
−1
α , z−1) = 1, ensuring that the filter is causal and realizable. On the other hand, the

highest coefficient is 2Λ, with Λ =
∑NL

ℓ=1 mℓ, due to the term
∏NL

ℓ=1 z
−2mℓ in the denominator. Consequently,

the denominator can be replaced by 1 +
∑2Λ

k=1 akz
−k, as shown in Equation (2). Additionally, the numer-

ator
∏NL

ℓ=1 GtℓGαℓ
z−mℓ can be replaced by b0z

−Λ, i.e., a gain corresponding to the multiplication of the

transmission Gtℓ and attenuation coefficients Gαℓ
across all layers plus a total thickness sample delay.

Appendix B. Metropolis-Hastings simulation for Bayesian updating

M-H algorithm generates samples from a specially constructed Markov chain whose stationary distribu-

tion is the required posterior PDF p(θ|D,M). By sampling a candidate model parameter θ
′

from a proposal

distribution q(θ
′

|θζ), the M-H obtains the state of the chain at ζ+1, given the state at ζ, specified by θ
ζ . The

candidate parameter θ
′

is accepted (i.e., θζ+1 = θ
′

) with probability min{1, r}, and rejected (i.e., θζ+1 = θ
ζ)

with the remaining probability 1− min{1, r}, where:

r =
p(D|θ

′

,M)p(θ
′

|M)q(θζ−1|θ
′

)

p(D|θζ−1,M)p(θζ−1|M)q(θ′ |θζ−1)
(B.1)

The process is repeated until Ts samples have been generated so that the monitored acceptance rate (ratio

between accepted M-H samples over total amount of samples) reaches an asymptotic behaviour. A pseu-

docode description of this method is provided below as Algorithm 2.
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Algorithm 2 M-H algorithm

1. Initialize θ
ζ=0 by sampling from the prior PDF: θ0 ∼ p(θ|M)

for ζ = 1 to Ts do

2. Sample from the proposal: θ
′

∼ q(θ
′

|θζ−1)

3. Compute r from Eq. B.1

4. Generate a uniform random number: α ∼ U [0, 1]

if r > α then

5. Set θ
ζ = θ

′

else

6. Set θ
ζ = θ

ζ−1

end if

end for
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