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ABSTRACT 

Stiffness at very small strains G0 is commonly assessed via laboratory and field methods and 

used to design a wide range of infrastructure. When stiffness is inferred from field 

measurements, its value depends on the soil suction and state of saturation at the time of the 

measurement, and models are needed to infer G0 at varying suction and degree of saturation. 

When stiffness is measured on saturated specimens in the laboratory, models are needed to 

extrapolate the laboratory 'saturated' stiffness to the field 'unsaturated' stiffness. This paper 

presents an experimental investigation of G0 of unsaturated sand using the hanging water column 

method and the bender element technique. Experimental results revealed that wave propagation 

velocity and, hence, stiffness is not controlled by the product ‘suction times the degree of 

saturation’. A microscale-based model was formulated to interpret the experimental results, and 

to elucidate the mechanisms underlying different patterns of G0 in unsaturated materials 

observed in the literature. According to the proposed model, the evolution of G0 is controlled by 

the evolution of the suction/degree of saturation-induced intergranular stress during drying-

wetting cycles. The breadth of the water retention curve and the magnitude of the intergranular 

stress due to the presence of the menisci were found to be responsible for the different patterns of 

G0. 

Main Text, abstract, aknowledgements and references Click here to access/download;Main
Text;Paganoetal_text_REVISED.docx
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1. INTRODUCTION 

The shear modulus of soil at very small strain levels (less than 0.001%), typically denoted as 

G0, is a stiffness parameter commonly assessed via laboratory and field methods. It is a 

fundamental parameter for a wide range of geotechnical problems and it is used for the 

prediction of soil response under both static and dynamic loading conditions. For shallow 

geotechnical infrastructure interacting with the atmosphere, the unsaturated condition of the soil 

should be taken into account in both the interpretation of field measurements and the selection of 

design parameters. When stiffness is inferred from field measurements involving shallow 

unsaturated layers, its value depends on the state of saturation at the time of the measurement. 

Since the state of saturation may change over time, the variation of stiffness with the degree of 

saturation should be predicted in order to analyse the geotechnical structure over a realistic range 

of scenarios. On the other hand, when stiffness is inferred from laboratory measurements on 

saturated specimens, models are needed to extrapolate the ‘saturated’ laboratory stiffness to the 

‘unsaturated’ stiffness in the field. 

For the case of small-strain stiffness of soil in saturated state, a large number of models have 

been proposed over the past decades. The effect of variables such as confining stress, void ratio, 

overconsolidation ratio, and strain rate have been widely investigated (Hardin & Richart, 1963; 

Hardin & Black, 1968; Hardin & Drnevich, 1972; Hardin, 1978; Iwasaki, et al., 1978; Viggiani 

& Atkinson, 1995a; Stokoe, et al., 1995; Rampello, et al., 1997; Sorensen, et al., 2010). Under 

saturated conditions, G0 is usually fitted by empirical power functions of the aforementioned 

variables. 

For the case of small-strain stiffness of soils in unsaturated state, a number of models have 

recently been proposed to quantify G0 over a wide range of degrees of saturation (Mancuso, et 

al., 2002; Mendoza, et al., 2005; Ng, et al., 2009; Sawangsuriya, et al., 2009; Khosravi & 
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McCartney, 2012; Oh & Vanapalli, 2014; Wong, et al., 2014; Dong & Lu, 2016). G0 is 

recognised to be affected by both suction and degree of saturation, which may vary 

independently because of the hydraulic hysteresis and the dependency of the void-ratio on the 

water retention behaviour. A key question is how these two variables control the small-strain 

stiffness and whether they can be combined into a single variable. 

A common approach adopted by several authors (Sawangsuriya, et al., 2009; Khosravi & 

McCartney, 2012; Oh & Vanapalli, 2014) is to derive empirical or semi-empirical relationships 

for G0 using the product between suction and degree of saturation as a stress variable (Jommi, 

2000), often referred to as Bishop’s effective stress for unsaturated soils: 

𝜎 ′′ = 𝜎 − 𝑢𝑎 + 𝑆𝑟 ∙ 𝑠 1 

where 𝜎 is the total stress, 𝑠 is the suction, and 𝑆𝑟 is the degree of saturation. An implicit 

assumption in this approach is that, at the same suction, the product Sr ∙ s increases with an 

increase in degree of saturation. Since the degree of saturation along a drying path is higher than 

the degree of saturation along a wetting path, one would expect G0 to be higher along a drying 

path. Although an evidence of this has been observed experimentally (Khosravi, et al., 2016), a 

number of experimental investigations show an opposite trend, i.e. the soil is observed to be 

significantly stiffer along a wetting path (Khosravi & McCartney, 2011; Ng, et al., 2009; Ng & 

Xu, 2012). 

Inspection of experimental data also reveals that the change of G0 with suction or degree of 

saturation occurs in either a monotonic or non-monotonic fashion. Qian et al. (1993) showed the 

effect of degree of saturation on G0 of unsaturated sand specimens tested from a dry condition to 

complete saturation (wetting path only) in a resonant column apparatus, obtaining a non-

monotonic variation of G0 with degree of saturation. Similar results have been confirmed by 
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other researchers (Marinho, et al., 1995; Senthilmurugan & Ilamparuthi, 2005; Weidinger, et al., 

2009). Data presented by Khosravi et al. (2016) seem to suggest that this type of response is 

linked to the stiffness behaviour along a water retention hysteresis loop. When G0 increases 

monotonically with suction, stiffness appears to be higher along a wetting path. When G0 varies 

non-monotonically with suction, stiffness appears to be lower along a wetting path. Ideally, a 

stiffness model should be capable of capturing the interplay between these two aspects. 

However, no models presented so far are capable of addressing this coupling. 

This paper first presents an experimental investigation of the independent effect of suction 

and degree of saturation on G0 along a full hydraulic hysteresis loop. An unsaturated sand 

specimen was tested in a modified triaxial cell apparatus equipped with bender elements using 

the hanging water column method. Then, a simple macroscopic model informed by existing 

micro-mechanical models is proposed in order to interpret and predict the evolution of G0 during 

hydraulic hysteresis. The proposed model is then challenged to elucidate a range of different 

responses observed in the literature. 

2. MATERIALS AND METHODS 

2.1. Testing materials 

A well-graded sand obtained by mixing different fine, medium and coarse grained sands was 

used in this study. The mixture was prepared according to a modified Fuller equation: 

𝑃 =

√
𝐷

𝐷100
− √

𝐷0

𝐷100

1 − √
𝐷0

𝐷100

× 100 2 

where 𝑃 is the passing percentage, 𝐷 is the anticipated sieve size, and 𝐷100 and 𝐷0 are the 

sieve sizes corresponding to a passing percentage of 100 % and 0% respectively. Figure 1 shows 
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the grain-size distribution (GSD) of the tested specimen. The well-graded GSD allowed the 

desaturation process to be gradual, resulting in a smooth water retention curve. Hence, 

differences in the degree of saturation between the top and the bottom of the specimen could be 

minimised. The physical properties of the soil specimen are shown in Table 1. 

The high air-entry filter at the bottom of the specimen was prepared using a silty, crushed 

quartz stone known by the commercial name of Silica (mean particle size of 25.2 μm). The 

physical properties of the filter are summarized in Table 2. 

2.2. Laboratory equipment 

A triaxial test apparatus was modified for testing soil specimens under saturated and unsaturated 

conditions, and for measuring the velocity of propagation of mechanical shear waves (bender 

element technique). A schematic layout of the equipment is shown in Figure 2.  

The specimen was tested along a full hydraulic hysteresis loop under constant isotropic 

confining stress. Cell pressure was controlled via a device that allows the water pressure in the 

cell to be maintained while also measuring the water volume changes occurring in the cell (P/V 

controller 1 in Figure 2a). Pore-water pressure inside the specimen was controlled and measured 

in two different ways depending on whether the specimen was tested under saturated or quasi-

saturated/unsaturated conditions.  

In the former case, the base pedestal was connected to a second pressure/volume controller 

device (P/V controller 2 in Figure 2a) used to impose the pore-water pressure. In the latter case, 

the base pedestal was connected to a height-adjustable water reservoir, with the water mass 

exchanged with the specimen continuously monitored using a balance (Figure 2a). 

Positive/negative pore-water pressure was imposed by adjusting the height of the reservoir. 

Water evaporation from the reservoir was determined by monitoring an identical reservoir placed 

on a second balance. 
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The top cap and base pedestal were modified to accommodate a pair of specially 

manufactured double-layered piezoelectric transducers for transmission and measurement of 

shear waves (bender element technique, Shirley & Hampton, 1978). A detailed scheme of the top 

cap and pedestal is shown in Figure 2b. A computer-controlled function generator and 

oscilloscope allowed the input signal to be sent and both input and output signals to be recorded 

respectively. Two types of piezoceramic elements were used for the construction of the sensors: 

a BIMS-N-PZT5A4-HT x-poled element (used as a receiver) and a BIMP-N-PZT5A4-HT y-

poled element (used as a source) by Morgan Technical Ceramics. The series-type bender element 

was shielded with conductive paint and grounded in order to prevent crosstalk effects (Lee & 

Santamarina, 2005). 

2.3. Testing procedure 

Stage 1 – High air-entry filter preparation 

The high air-entry filter was formed on the pedestal by consolidating a silt layer. The silt layer 

allows the transmission of suction to the specimen while preventing the ingress of air into the 

hydraulic system. Furthermore, it prevents the development of large pores at the specimen/filter 

interface which is likely to occur in coarse-grained materials. 

A filter paper disc was first placed on the base pedestal and a latex membrane was placed 

around the pedestal and fixed with O-rings. A split mould was assembled around the pedestal, 

the membrane stretched to the top of the mould and held open by applying a small vacuum. A 

silt slurry (water content w = 500%) was then gently poured into the mould and allowed to settle 

for 48 hours. Excess clear water was then drained out by connecting the hydraulic drainage to the 

reservoir (valve B closed, valve A open in Figure 2a) and adjusting the reservoir height until its 

water level was 1-2 millimetres above the top of the silt surface. 
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The filter was consolidated by applying suction via the hanging water column method. The 

water reservoir was lowered in steps, inducing a water flow from the silt filter to the reservoir. 

The filter remained saturated during this stage. The pore-water pressure in the filter was then 

raised back to zero suction by raising the water level up to the top of the filter. 

Stage 2 – Specimen preparation 

Once the silt filter had been consolidated, the sand specimen was prepared. The material was 

oven-dried, mixed and placed into a purposely manufactured pluviator (Figure 3) to obtain a 

specimen with level top surface. During pluviation, the drainage channels were kept open (valve 

B closed, valve A open in Figure 2a) to prevent desaturation of the silt filter (i.e. water uptake by 

the specimen due to capillarity). Water uptake occurring during pluviation was continuously 

monitored by recording any water exchanges between the specimen and the water reservoir using 

the balance. This allowed the degree of saturation of the specimen to always be known. After 

pluviation, the top cap was placed on top of the specimen after interposing a filter paper. 

Stage 3 – First wetting and first drying 

A first wetting path was performed by raising the reservoir slightly above the top of the 

specimen. The corresponding mass of exchanged water at equilibrium was used to calculate the 

degree of saturation of the specimen, which reached a value of 0.85. With the split mould still in 

place, the reservoir was lowered in steps (first drying) to make the specimen able to self-stand 

and to allow grain rearrangements to take place when the height of the specimen could still be 

measured directly. The water exchange was continuously monitored and the degree of saturation 

was calculated at equilibrium for each step. The split mould was then removed and the triaxial 

cell was assembled and filled with de-aired water. A cell pressure of 10 kPa was then applied 

through the P/V controller (valve C open in Figure 2a). 

Stage 4 – Re-wetting and back pressure application 
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The specimen was re-saturated by raising the water reservoir up above the top of the specimen. 

As for the first wetting path, the degree of saturation at the end of this stage didn’t reach unity. 

Hence, a full saturation procedure was performed in order to reach a higher degree of saturation 

(Sr > 0.95). The base pedestal was connected to the second P/V controller (valve B open, valve A 

closed in Figure 2a) to apply step-by-step increments of pore-water pressure (back pressure) to 

the specimen. During this stage, cell pressure was increased accordingly in order to keep the 

effective stress of the specimen constantly equal to 10 kPa. Full saturation was considered to be 

achieved when the change in pore-water pressure under undrained conditions associated with 

change in cell pressure was greater than 0.98 of the change in cell pressure (B=0.98). 

Stage 5 – Drying and wetting cycle with wave velocity measurements 

The base pedestal was then reconnected to the water reservoir (valve B closed, valve A open in 

Figure 2a), and the hanging water column method was adopted to apply suction to the specimen 

and perform drying-wetting cycles. With valve D open, the reservoir was lowered/raised in steps 

inducing a specimen-to-reservoir/reservoir-to-specimen water flow. The degree of saturation was 

calculated at each step. Enough time was allowed for the pore-water within the specimen to 

reach hydraulic equilibrium with the water in the reservoir, ranging from 30 to 2500 minutes. 

Once equilibrium was reached for each suction step, a shear wave was triggered and recorded 

using the function generator and the oscilloscope. 

Stage 6 – Specimen last de-saturation and cell dismantling 

At the end of the test, the specimen was de-saturated in a single step to make it self-standing. 

The cell was emptied and dismantled, and the specimen’s final height, diameter and water 

content were measured. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



AG Pagano, A Tarantino, V Magnanimo  

‘A microscale-based model for small-strain stiffness in unsaturated granular geomaterials’ 

Submitted to Géotechnique 

 

9 

 

3. EXPERIMENTAL RESULTS 

3.1. Water retention characteristics of the soil specimen  

 Figure 4 shows the relationship between the average degree of saturation and the height of the 

reservoir (intended as the distance between the top of the specimen and the level of water in the 

reservoir) during first wetting and first drying (cell pressure equal to zero), re-wetting (cell 

pressure equal to 10 kPa), full saturation (varying cell pressure), and final drying-wetting cycle 

(cell pressure equal to 10 kPa). The degree of saturation at the end of the saturation procedure 

(i.e. at the beginning of the drying-wetting cycle, point D) was back calculated from the water 

content taken at the end of the test and was found to be equal to 0.96. The data points associated 

with the first drying (AB) and main drying (DE) appear to lead to a similar air-entry value. This 

implicitly suggests that negligible deformation occurred upon the first drying path. 

The experimental data are shown in Figure 4 in terms of the average degree of saturation, 

calculated from the measured overall mass of water within the specimen. However, suction and 

degree of saturation vary along the height of the specimen (12.5 cm). A difference in suction of 

1.22 kPa exists between the top and the bottom of the specimen and this may correspond to a 

significant difference in degree of saturation. 

In order to derive the water retention behaviour more accurately, an approach similar to the 

one adopted by Stanier & Tarantino (2013) was followed. The water behaviour was modelled by 

fitting the water exchanges over the height of the specimen rather than considering the average 

values of suction and degree of saturation. This approach is described in detail below. 

Let us consider the schematic view of the specimen in Figure 5a. When lowering the 

reservoir from position 1 to 2 (drying path), points A, B, C and D at different heights within the 

specimen are all de-saturating from a saturated state. Therefore, they all move along a main 

drying curve, and reach different degrees of saturation at equilibrium (Points A2 to D2 in Figure 
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5c). When raising the reservoir from position 2 to 3 (Figure 5b), points A, B, C and D will re-

saturate from the different states of saturation that they reached after main drying. Therefore, 

they will move along different scanning wetting curves (points A3 to D3 in Figure 5c). 

To model the water retention behaviour, van Genuchten-type functions (van Genuchten, 

1980) were considered for the drying path and the scanning wetting paths. In turn, the function 

used to model a scanning path was assumed to be derived from the main wetting path by 

‘scaling’ the main wetting curve via a fictitious residual volumetric water content. The following 

functions were considered:  

Main drying:   𝜃𝑑 = 𝜃𝑅
𝑑 +

𝜃0
𝑑−𝜃𝑅

𝑑

[1+(𝛼𝑑∙𝑠)
𝑛𝑑

]

𝑚𝑑  
3 

Main wetting:   𝜃𝑤 = 𝜃𝑅
𝑤 +

𝜃0
𝑤−𝜃𝑅

𝑤

{1+[𝛼𝑤∙(𝑠−𝑠∗)]𝑛𝑤
}

𝑚𝑤  4 

Scanning wetting:   𝜃𝑠𝑐 = 𝜃𝑅
𝑠𝑐 +

𝜃0
𝑤−𝜃𝑅

𝑠𝑐

{1+[𝛼𝑤∙(𝑠−𝑠∗)]𝑛𝑤
}

𝑚𝑤  5 

where 𝜃 is the (volumetric) water content, 𝜃𝑅 is the residual water content, 𝜃0 is the water 

content at suction lower than or equal to zero (pore-water pressure greater than or equal to zero), 

𝑠 is the suction, 𝛼 and 𝑛 are fitting parameters (with 𝑚 = 1 − 1/𝑛), and the superscripts 𝑑, 𝑤 

and 𝑠𝑐 refer to main drying, main wetting and scanning wetting path respectively. 

For the main drying curve, the water content 𝜃0
𝑑 was derived from the water content measured 

experimentally at the positive pore-water pressure (back-pressure) of 500 kPa. The parameters 

𝛼𝑑, 𝑛𝑑 and 𝜃𝑅
𝑑 were derived by matching the overall volume of water measured at each suction 

step upon the drying path with the integral of the main drying retention function (Equation 3) 

over the height of the specimen (a hydrostatic distribution of suction was assumed at 

equilibrium). 
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For the main wetting curve, the water contents 𝜃𝑅
𝑤 and 𝜃0

𝑤 were assumed to be equal to the 

ones associated with the main drying path (𝜃𝑅
𝑑 ≡ 𝜃𝑅

𝑤 and 𝜃0
𝑑 ≡ 𝜃0

𝑤). Since the experimental data 

in Figure 4 showed an average degree of saturation slightly lower than unity when the reservoir 

was level with the top surface of the specimen even after applying a back pressure, an additional 

parameter 𝑠∗ was introduced in the van Genuchten equation representing the value of negative 

suction leading to the water content 𝜃0
𝑤. 

For the scanning wetting curves, the fictitious residual water content 𝜃𝑅
𝑠𝑐 used to scale the 

scanning wetting curve was derived by imposing that the scanning curve intersects the main 

drying curve at the value of suction at the end of the drying path (level 2 in Figure 5a-b):  

𝜃𝑅
𝑠𝑐 =

𝜃𝑅
𝑑 +

𝜃0
𝑑−𝜃𝑅

𝑑

[1+(𝛼𝑑∙𝑠)
𝑛𝑑

]

𝑚𝑑 −
𝜃0

𝑤

{1+[𝛼𝑤∙(𝑠−𝑠∗)]𝑛𝑤
}

𝑚𝑤

1 − {1 + [𝛼𝑤 ∙ (𝑠 − 𝑠∗)]𝑛𝑤}𝑚𝑤  

 

6 

The specimen was divided into four slices (Figure 5a-b), each slice following a different 

scanning path. The parameters s∗, 𝛼𝑤, and 𝑛𝑤 were derived by  matching the overall volume of 

water measured at each suction step along the wetting path with the integral of the four scanning 

retention functions over the height of the slice (Equation 5). The main drying, main wetting and 

scanning wetting curves derived from this best-fitting using the least-square method are shown in 

Figure 6, and the corresponding fitting parameters are reported in Table 3. For comparison, the 

experimental data in terms of the suction at the mid-height of the specimen and the average 

degree of saturation are also shown in the figure. 

3.2. Wave propagation results and interpretation 

An input sinusoidal signal with a frequency of 5 kHz was triggered via the transmitter bender 

element at each suction step. The selected input frequency allowed the output signal to be 

detected easily during the whole test. The sinusoidal waveform was selected as it was observed 
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to cause smaller ambiguity in arrival time than other types of waveform (Blewett, et al., 2000; 

Leong, et al., 2005; Viana da Fonseca, et al., 2009). 

Figure 7 shows the input signal and some of the output signals recorded during the test. Each 

raw output signal was subject to filtering (Butterworth, low pass filter of order 1) and base-line 

correction prior to travel time interpretation, in order to remove the undesired effect of 

background noise without affecting the signal characteristics. The velocity of propagation of the 

shear wave 𝑉𝑠 through the specimen was then calculated as: 

𝑉𝑠 =
𝐿𝑡𝑡

𝑡
 7 

where 𝐿𝑡𝑡 is the travel length, and 𝑡 is the travel time of the wave. The value of 𝑉𝑠 for each 

suction step was calculated as the average of three measurements. The difference between the 

minimum and maximum shear-wave velocities in the triplicate measurement was found to be 

less than 1.5 % of the average value. 

The travel length 𝐿𝑡𝑡 was taken as the tip-to-tip distance between source and receiver bender 

elements (Dyvik & Madshus, 1985; Viggiani & Atkinson, 1995a, Fernandez, 2000). Since the 

cell pressure was kept constant during the drying-wetting cycles, volume changes occurring in 

the cell and measured by the P/V controller 1 (Figure 2a) could be attributed to changes in the 

volume of the specimen. Under the assumption of isotropic behaviour, the axial deformation and, 

hence, the tip-to-tip distance could be inferred from the volume change. The total axial 

deformation was found to be less than 0.37 % of the specimen height, resulting in a maximum 

error on the shear-wave velocity Vs = ± 0.35 m/s, which was assumed to be negligible. 

The determination of the travel time is more controversial. Although many researchers have 

proposed different approaches for travel time interpretation (Dyvik & Madshus, 1985; Viggiani 

& Atkinson, 1995a; Viggiani & Atkinson, 1995b; Jovicic & Coop, 1997; Santamarina & Fam, 

1997), there is still no agreement about the most reliable method. In this study, the travel time 
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was chosen as the time interval between the first main peaks of the input and output signals, 

which is a simple alternative to more complex methods such as cross-correlation or cross-power 

of the transmitter and receiver signals (Viggiani & Atkinson, 1995a). Although the resulting 

absolute values of Vs might be slightly less accurate, changes in stiffness during the test can be 

determined accurately as long as the choice of the arrival time is consistent throughout the 

analysis of the data (Viggiani & Atkinson, 1995b). 

3.3. Small-strain stiffness calculation 

Interpretation of bender element tests is based on the assumption that the soil behaves as a linear 

elastic material at very small strain. The shear modulus can then be determined as: 

𝐺0 = 𝜌 𝑉𝑠
2 8 

where 𝜌 is the soil density. Figure 8 shows the evolution of G0 with the height of the reservoir. It 

appears that G0 increases significantly with suction, and the soil appears to be stiffer upon a 

wetting path rather than a drying path. 

4. MICROSCALE-BASED MODEL FOR G0 IN UNSATURATED SOILS 

The approach followed in this paper to model the independent effect of suction and degree of 

saturation on the small-strain shear modulus G0 consists of linking G0 to an unsaturated 

intergranular stress 𝜎𝑖, which depends in turn on both suction and degree of saturation. The 

intergranular stress is derived from equilibrium considerations at the particle-scale by assuming 

that water at the inter-particle contacts is present in the form of either bulk or meniscus water. 

The functional form that links the small-strain shear modulus to the intergranular stress is then 

derived on the basis of simplified micro-mechanical models. The different steps to derive G0 as a 

function of 𝜎𝑖 are schematically illustrated in Figure 9. 
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Macroscopic intergranular stress of unsaturated packings 

The degree of saturation/suction-induced intergranular stress, 𝜎𝑖, may be formulated by 

considering an idealised packing of equal spheres in an ordered structure. Let us consider the 

idealised unsaturated packing as shown in Figure 10, and let us assume that the contact area of 

each pair of spherical particles is a point. The two-phase fluid can be described as the 

coexistence of a region fully occupied by bulk water (saturated region) and a region occupied by 

the menisci alone. Boso et al. (2005) derived an expression of the intergranular stress 𝜎𝑖 of the 

unsaturated packing as: 

𝜎𝑖 = 𝜎 + [𝜎𝑖
𝑏  

𝑆𝑟 − 𝑆𝑟𝑚

1 − 𝑆𝑟𝑚
+ 𝜎𝑖

𝑚 (1 −
𝑆𝑟 − 𝑆𝑟𝑚

1 − 𝑆𝑟𝑚
)] 9 

where 𝑆𝑟 is the total degree of saturation, 𝑆𝑟𝑚 is the residual degree of saturation (degree of 

saturation of the region occupied by the menisci alone), 𝜎 is the total stress, 𝜎𝑖
𝑏 is the 

intergranular stress in the bulk water region, and 𝜎𝑖
𝑚 is the intergranular stress in the meniscus 

water region.  

The first term in square brackets takes into account the contribution of suction to the 

intergranular stress in the saturated region, which is directly proportional to the suction (as 𝜎𝑖
𝑏 ≡

𝑠). The second term in square brackets indicates the contribution of suction to the intergranular 

stress in the meniscus water region. The two contributions of suction in Equation 9 are weighed 

by functions of the degree of saturation based on the assumptions that i) the areal degree of 

saturation equals the volumetric degree of saturation and ii) the variation of the volume occupied 

by the meniscus with suction can be neglected. 

To explore the nature of the intergranular stress at the meniscus contact, it is convenient to 

examine the case of two rigid spherical particles with point contact. According to Fisher (1926), 

𝜎𝑖
𝑚 is given by: 
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𝜎𝑖
𝑚 =

2𝜋𝑟𝑇

1+tan (𝜃 2⁄ )

𝜋𝑟2
 10 

where 𝜃 is the angle defining the position of the meniscus junction, 𝑟 is the particle radius, and 𝑇 

is the surface tension. The angle 𝜃 is related to suction according to the following equation: 

𝑠 = 𝑇 [
1

𝑟 (
1

𝑐𝑜𝑠𝜃
− 1)

−
1

𝑟 (1 + 𝑡𝑎𝑛𝜃 −
1

𝑐𝑜𝑠𝜃
)

] 11 

By combining Equation 10 and Equation 11, the relationship between the suction 𝑠 and the 

intergranular stress 𝜎𝑖
𝑚 in the meniscus water region can be derived. Figure 10b shows the 

variation of 𝜎𝑖
𝑚 with suction for the case of 𝑇 = 0.072 N/m and 𝑟 = 0.1 mm, with 𝜃 ranging from 

53° (roughly corresponding to zero suction) to 22°. For the purpose of comparison, the bulk 

water intergranular stress 𝜎𝑖
𝑏 is also plotted. It can be seen that 𝜎𝑖

𝑚 can be assumed practically 

independent of suction. 

Accordingly, the assumption made in the proposed model is that 𝜎𝑖
𝑚 is independent of suction 

even for the case of real, non-spherical particles. In this case, however, the value of 𝜎𝑖
𝑚 cannot 

be derived using Equation 10 but has to be calibrated experimentally as described later on in the 

paper. 

Micro-mechanical model: from macroscopic intergranular stress to microscopic 

intergranular force and stiffness 

In order to derive the functional form linking the macroscopic intergranular stress 𝜎𝑖 in Equation 

9 to the shear modulus G0 a micro-mechanical model was used, based on the implicit assumption 

that the pore- fluid is homogenous and at zero pressure (e.g. air). Existing micro-mechanical 

models allow to derive general expressions of the macroscopic intergranular stress tensor, 

(𝜎𝑖
∗)𝛼𝛽, of an idealised packing of discrete particles as a function of the microscopic 
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intergranular force f developing at each particle contact, using different averaging techniques 

(e.g. Liao & Chang, 1997; Kruyt & Rothenburg, 1998; Kruyt & Rothenburg, 2001). Using the 

particle-in-volume averaging method, the following expression can be derived (Luding, 2004; 

Luding, 2005): 

(𝜎𝑖
∗)𝛼𝛽 =  

1

𝑉
∑ ∑ 𝑙𝛼

𝑐 𝑓𝛽
𝑐

𝑁

𝑐=1𝑝∈𝑉

 12 

where V is an averaging representative volume within the packing, 𝑁 is the number of contacts 

contained in the averaging volume, 𝑙 is the component of the branch vector connecting the 

centres of particles in contact, the apex 𝑐 indicates the single contacts within 𝑉, 𝑝 is the generic 

particle occurring within 𝑉, and 𝛼, 𝛽 are subscripts that indicate the combinations of the vertical 

and horizontal directions. In this study, only the normal component of the intergranular stress 

tensor was considered, i.e. (𝜎𝑖
∗)𝛼𝛼 = 𝜎𝑖

∗: 

𝜎𝑖
∗ =  

1

𝑉
∑ ∑ 𝑙𝑐𝑓𝑐

𝑁

𝑐=1𝑝∈𝑉

 13 

where f is intended as the normal component of the force between two particles in contact. In 

turn, the force f can be derived as a function of the normal stiffness at the contact, 𝑘𝑛, and the 

relative displacement in the normal direction, 𝛿: 

𝑓 = 𝑓(𝑘𝑛, 𝛿) 14 

Following the Hertzian contact model (Figure 11), the force 𝑓 can be derived as a non-linear 

function of 𝛿 (Love, 1927): 

𝑓 = 𝑘𝑛0𝛿3/2 15 
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where 𝑘𝑛0 is a material constant depending on the characteristics of individual particles. In 

this study, 𝑘𝑛0 is a model parameter determined experimentally as discussed later on in the 

paper. 

Using Equation 15 the incremental stiffness 𝑘𝑛 can be written in terms of the force 𝑓 and the 

model parameter 𝑘𝑛0 as: 

𝑘𝑛 =
𝜕𝑓

𝜕𝛿
=

3

2
𝑘𝑛0𝛿1/2 =

3

2
𝑘𝑛0

2 3⁄
𝑓1 3⁄  16 

In order to calculate the shear modulus of the packing (as described in the following 

paragraph), a tangential stiffness at the contact 𝑘𝑡 was also introduced. For the sake of simplicity, 

the tangential stiffness 𝑘𝑡 was assumed to be equal to a fraction of the normal stiffness 𝑘𝑛: 

𝑘𝑡 =
2

7
𝑘𝑛 17 

Micro-mechanical model: from microscopic stiffness to macroscopic stiffness 

The simplest approach to derive the macroscopic stiffness of idealised aggregates of identical, 

randomly distributed spherical particles is based on the mean-field theory (e.g. Digby, 1981; 

Walton, 1987). The theory assumes that individual particles move according to an external 

uniform strain field. Starting from this assumption, the macroscopic stiffness tensor can be 

derived (e.g. Liao & Chang, 1997; Kruyt & Rothenburg, 1998; Chang and Hicher, 2005; Luding, 

2004; Luding, 2005): 

𝐶𝛼𝛽𝛾𝜙 =  
1

𝑉
∑ (𝑘𝑛  ∑(𝑙2 2⁄ ) 𝑛𝛼

𝑐 𝑛𝛽
𝑐 𝑛𝛾

𝑐 𝑛𝜙
𝑐

𝑁

𝑐=1

+  𝑘𝑡 ∑(𝑙2 2⁄ ) 𝑛𝛼
𝑐 𝑡𝛽

𝑐𝑛𝛾
𝑐 𝑡𝜙

𝑐

𝑁

𝑐=1

)

𝑝∈𝑉

 18 

where 𝛼, 𝛽, 𝛾, 𝜙 are subscripts that indicate the combinations of the vertical and horizontal 

directions, and 𝑛 and 𝑡 are the components of the normal and tangential unit vector at contact 

respectively, and kn and kt are non-linear stiffness given by Equations 16 and 17. The shear 
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modulus is associated with the term 𝐶1212 of the stiffness tensor, where 1 and 2 are the vertical 

and horizontal direction respectively. Different expressions of 𝐶1212 can be derived depending 

on the particle configuration. 

Micro-mechanical model: regular packings 

A simplified approach for deriving 𝐶1212 and 𝜎𝑖
∗ was followed in this study, i.e. the soil 

aggregate was idealised as a packing of identical spherical particles in a regular structure. The 

lattice-type geometry of the system allows to derive explicit expressions of the macroscopic 

tensors. As an exercise, two different configurations (simple cubic, SC, and body centred cubic, 

BCC) were selected in order to ascertain the validity of the model irrespective of the choice of 

the particle configuration. 

For the case of SC configuration (Figure 12a), the elementary averaging volume 𝑉 is a cube 

whose inscribed sphere is a single particle (or equally, a cube containing eight 1/8 of a particle, 

whose corners are the centres of the particles): 

𝑺𝑪:   𝑉 = (2𝑟)3 = 8𝑟3 19 

 Thus, both 𝜎𝑖
∗  and 𝐶1212 can be calculated from Equation 12 and 18 respectively as an 

average over 6 contacts, and are representative of the overall volume:  

𝑺𝑪:    𝜎𝑖
∗ =

1

𝑉
∑ 𝑙𝑐𝑓𝑐

6

𝑐=1

=
2𝑙

𝑉
𝑓 20 

𝑺𝑪:   𝐶1212 =  
1

𝑉

𝑙2

2
(𝑘𝑛 ∑ 𝑛1

𝑐𝑛2
𝑐𝑛1

𝑐𝑛2
𝑐

6

𝑐=1

+ 𝑘𝑡 ∑ 𝑛1
𝑐𝑡2

𝑐𝑛1
𝑐𝑡2

𝑐

6

𝑐=1

) =
𝑙2

𝑉
𝑘𝑡 =

2

7

𝑙2

𝑉
𝑘𝑛  21 

For the case of BCC configuration (Figure 12b), the elementary averaging volume is a cube 

containing a total of 2 particles (one whole particle placed in the centre of the cube, plus eight 
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1/8 of a particle placed in each corner of the cube), whose corners are the centres of the eight 

particles surrounding the particle in the cube’s centre: 

𝑩𝑪𝑪:   𝑉 = (
4

√3
𝑟)

3

=
64

3√3
𝑟3 22 

Thus, both 𝜎𝑖
∗ and 𝐶1212 can be calculated from Equation 12 and 18 respectively as an 

average over 8 contacts for each of the 2 particles within the averaging volume, and are 

representative of the overall volume: 

𝑩𝑪𝑪: 𝜎𝑖
∗ =

1

𝑉
2 ∑ 𝑙𝑐𝑓𝑐

8

𝑐=1

=
16𝑙

𝑉
𝑓 23 

𝑩𝑪𝑪: 𝐶1212 =  
1

𝑉

𝑙2

2
[2 (𝑘𝑛 ∑ 𝑛1

𝑐𝑛2
𝑐𝑛1

𝑐𝑛2
𝑐

8

𝑐=1

+ 𝑘𝑡 ∑ 𝑛1
𝑐𝑡2

𝑐𝑛1
𝑐𝑡2

𝑐

8

𝑐=1

)] =
𝑙2

𝑉
(

8

9
𝑘𝑛 +

16

9
𝑘𝑡 ) =

88

63

𝑙2

𝑉
𝑘𝑛  24 

From Equation 20 and 23, we have: 

𝑺𝑪:    𝑓 =
𝜎𝑖

∗

2𝑙
𝑉 25 

𝑩𝑪𝑪:    𝑓 =
𝜎𝑖

∗ 

16𝑙
𝑉 26 

By combining Equations 21 and 24 with Equation 16 and Equations 25 and 26, two possible 

functional forms (one for each configuration) that link the shear modulus 𝐶1212 with 

intergranular stress 𝜎𝑖
∗ can be derived. These functional forms were assumed to also characterise 

the relationship between the small-strain shear modulus G0 of the unsaturated soil specimen and 

the suction/degree of saturation-induced intergranular stress, 𝜎𝑖. In other words, 𝐶1212 was 

replaced by 𝐺𝑜 and 𝜎𝑖
∗ was replaced by 𝜎𝑖 (the latter given by Equation 9), leading to the 

following expressions: 

𝑺𝑪:   𝐺𝑜 ≡ 𝐶1212 =
2

7

𝑙2

𝑉

3

2
𝑘𝑛0

2 3⁄
(

𝜎𝑖
∗

2𝑙
𝑉)

1 3⁄

≡
2

7

𝑙2

𝑉

3

2
𝑘𝑛0

2 3⁄
(

𝜎𝑖

2𝑙
𝑉)

1 3⁄

 27 
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𝑩𝑪𝑪:   𝐺𝑜 ≡ 𝐶1212 =
88

63

𝑙2

𝑉

3

2
𝑘𝑛0

2 3⁄
(

𝜎𝑖
∗

16𝑙
𝑉)

1 3⁄

≡
88

63

𝑙2

𝑉

3

2
𝑘𝑛0

2 3⁄
(

𝜎𝑖

16𝑙
𝑉)

1 3⁄

 28 

5. CALIBRATION AND VALIDATION OF THE MODEL 

5.1. Calibration against experimental data 

The proposed model was calibrated and validated against the experimental results obtained in 

this study. Two model parameters need to be identified, namely 𝑘𝑛0 and 𝜎𝑖
𝑚. In the macroscopic 

model, these parameters should be intended as macroscopic parameters with an intuitive physical 

micro-scale meaning. In particular, 𝑘𝑛0 does not represent anymore a material property as in the 

micro-mechanical model, but a model parameter that accounts for a number of characteristics of 

the real soil packing including the particle stiffness, particle shape, particle size distribution, 

particle arrangements etc. 

A calibration procedure was devised to determine 𝑘𝑛0 and 𝜎𝑖
𝑚 against the small-strain shear 

modulus at saturation, 𝐺0
𝑠𝑎𝑡, and at residual saturation, 𝐺0

𝑟𝑒𝑠, respectively. An equivalent particle 

radius 𝑟 = 𝑙/2 = 𝐷50 2⁄  was also selected (although it can be shown that the choice of the 

equivalent particle radius does not affect the performance of the model, as it would just lead to 

different values of 𝑘𝑛0 and 𝜎𝑖
𝑚). 

Calibration of 𝐤𝐧𝟎 at saturation 

The measurement of 𝐺0
𝑠𝑎𝑡 was taken at the beginning of the drying path, after the saturation 

procedure. In this case, the intergranular stress in Equation 9 equals the confining pressure (cell 

pressure, 𝜎𝐶𝑃) only: 

𝜎𝑖 = (𝜎𝑖)
𝑠𝑎𝑡 = 𝜎 − 𝑢𝑤 = 𝜎𝐶𝑃 29 
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The model parameter 𝑘𝑛0 can therefore be derived by inverting Equations 27 and 28 with 

𝐺0 = 𝐺0
𝑠𝑎𝑡 , 𝜎𝑖 = 𝜎𝐶𝑃, and 𝑙 = 2𝑟: 

𝑺𝑪:   𝑘𝑛0 = [
14

3
 

𝑟 𝐺0
𝑠𝑎𝑡

(2𝑟2 𝜎𝐶𝑃)1 3⁄
]

3 2⁄

 30 

𝑩𝑪𝑪:   𝑘𝑛0 = [
28

11 √3
 

𝑟 𝐺0
𝑠𝑎𝑡

(
2

3√3
𝑟2 𝜎𝐶𝑃)

1/3
]

3/2

 31 

Table 4 shows the calibrated parameter 𝑘𝑛0 for SC and BCC configurations.  

Calibration of 𝛔𝐢
𝐦 at residual saturation 

The measurement of the second parameter needed for calibration, 𝐺0
𝑟𝑒𝑠, was taken at the end of 

the main drying path, where 𝑆𝑟 = 𝑆𝑟𝑚. In this situation, the intergranular stress 𝜎𝑖 in Equation 9 

depends on the confining pressure 𝜎𝐶𝑃 and on the (unknown) intergranular stress at meniscus 

contacts 𝜎𝑖
𝑚, regardless of suction: 

𝜎𝑖 = (𝜎𝑖)
𝑟𝑒𝑠 = 𝜎𝑖

𝑚 + 𝜎𝐶𝑃 32 

The model parameter 𝜎𝑖
𝑚 can therefore be derived by inverting Equations 27 and 28 with 

𝐺0 = 𝐺0
𝑟𝑒𝑠, 𝜎𝑖 = 𝜎𝑖

𝑚 + 𝜎𝐶𝑃, and 𝑙 = 2𝑟: 

𝑺𝑪:   𝜎𝑖
𝑚 =

1

2𝑟2
(

14

3
 
𝑟 𝐺0

𝑟𝑒𝑠

𝑘𝑛0
2/3

)

3

− 𝜎𝐶𝑃 33 

𝑩𝑪𝑪:   𝜎𝑖
𝑚 =

3√3

2𝑟2
(

28

11√3
 
𝑟 𝐺0

𝑟𝑒𝑠

𝑘𝑛0
2/3

)

3

− 𝜎𝐶𝑃 34 

Table 4 shows the parameter 𝜎𝑖
𝑚 for both SC and BCC configurations. As a result of the 

calibration procedure against the experimental data, the values of 𝜎𝑖
𝑚 are identical. 
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5.2. Validation against experimental data 

The proposed model for the small-strain shear modulus G0 of unsaturated soils was validated 

against the results of the experimental investigation carried out in this study. It is worth noticing 

that the macro-scale model was built upon a simple micro-mechanical model consisting of 

ordered packings of mono-sized spheres. It was implicitly assumed that the macro-scale model 

derived therefrom could be extended to non-ordered packing of non-round and rough spheres. In 

particular, it was assumed that the stress tensor generated by the meniscus water and bulk water 

is isotropic. 

Once the parameter 𝜎𝑖
𝑚 was derived at residual saturation, the intergranular stress 𝜎𝑖 and 

corresponding intergranular force were calculated along the drying and wetting paths (Equation 

9 and 25 for SC and Equation 9 and 26 for BCC, with 𝜎𝑖 = 𝜎𝑖
∗). From the value of 𝑘𝑛0 

previously calibrated, the stiffness values 𝑘𝑛 and 𝑘𝑡 were calculated for each combination of 

suction and degree of saturation (Equation 16 and 17), and were used to derive 𝐶1212 (Equation 

21 and 24). As a consequence of the calibration procedure against experimental data, the values 

of 𝐶1212 for the two configurations were found to be identical. 

Figure 13a shows the comparison between the values of G0 obtained experimentally and the 

simulated stiffness 𝐶1212. In order to take into account the variability of the degree of saturation 

within the specimen, bounding values of 𝐶1212 were estimated. To this end, the specimen was 

considered homogenous and characterised by values of suction and degree of saturation 

corresponding either to the top or the bottom of the specimen, as schematically shown in Figure 

13b-c. The model gives an accurate prediction of the small-strain shear modulus during 

hydraulic hysteresis. The variation of G0 with suction is well captured at a qualitative and 

quantitative level. 
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6. DISCUSSION  

The proposed model was used to elucidate the mechanisms behind different patterns of small-

strain response in unsaturated granular materials. Two key responses were explored: soils have 

been observed to exhibit a stiffer behaviour along either a drying or a wetting path, and the 

mechanisms leading to either behaviour are still unclear; furthermore, G0 has been observed to 

vary in either a monotonic or non-monotonic fashion. Again, the mechanisms behind either 

response have never been expounded. 

6.1. Influence of the breadth of the water retention curves on the variation of G0 

Let us consider two ideal soils, soil A and soil B. Let us assume that the soils show the same 

small-strain shear modulus at saturation (𝐺0
𝑠𝑎𝑡) and residual state (𝐺0

𝑟𝑒𝑠). Therefore, the 

parameters of the proposed model, 𝑘𝑛0 and 𝜎𝑖
𝑚, will be the same for the two soils. 

Let us now assume that the breadths of the main water retention curves are different for the 

two soils. The water retention behaviour of soil A develops over a narrower range of suction than 

soil B, as shown in Figure 14a. Let us also assume that the two soils reach the same residual 

degree of saturation, 𝑆𝑟
𝑚. 

The small-strain stiffness returned by the model is shown in Figure 14b. Soil A appears to be 

stiffer upon a wetting path and shows a monotonic variation of G0 with suction. On the other 

hand, soil B is stiffer upon a drying path and exhibits a non-monotonic variation of G0 with 

suction.  

The reason for this behaviour lies on the evolution of the suction/degree of saturation-induced 

intergranular stress of the two soils. Figure 14c shows the intergranular stress in the bulk water 

region (𝜎𝑖
𝑏, saturated contact) and in the meniscus water region (𝜎𝑖

𝑚, meniscus contact) versus 

suction. For soil A, the stress 𝜎𝑖
𝑏 never exceeds 𝜎𝑖

𝑚, i.e. the whole water retention behaviour is 
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contained in a range of suction where the contribution of the menisci to the intergranular stress 

of the packing 𝜎𝑖 is always higher than the contribution of suction at the saturated contact. Since 

the effect of the menisci is more significant along the wetting path (i.e. where the degree of 

saturation is smaller), the soil exhibits a stiffer behaviour upon wetting. 

For soil B, the stress 𝜎𝑖
𝑏 becomes higher than 𝜎𝑖

𝑚 as suction increases. As a result, the soil 

becomes stiffer upon a drying path because the degree of saturation is higher and the region 

occupied by the bulk water is larger than the region occupied by the menisci. In this case, the 

variation of G0 with suction becomes non-monotonic. This is associated with the intergranular 

stress initially being dominated by the intergranular stress in the bulk water and then controlled 

only by intergranular stress associated with the menisci at high suction. 

6.2. Influence of meniscus intergranular stress on the variation of G0 

Let us now consider the case of soils C and D, having the same water retention characteristics 

(Figure 15a), the same small-strain shear modulus at saturation (𝐺0
𝑠𝑎𝑡) but different values of 

small-strain shear modulus at residual saturation (𝐺0
𝑟𝑒𝑠). In this case, the parameter 𝑘𝑛0 will be 

the same for the two soils, whereas 𝜎𝑖
𝑚 will assume two different values. 

Figure 15b shows the evolution of the simulated shear modulus. Soil C (𝜎𝑖
𝑚 = 30 𝑘𝑃𝑎) 

exhibits a stiffer behaviour upon wetting, with a monotonic variation of G0 with suction. Soil D 

(𝜎𝑖
𝑚 = 5 𝑘𝑃𝑎) is instead stiffer upon drying, with a non-monotonic variation of G0.  

For soil C, the intergranular stress 𝜎𝑖
𝑏 remains smaller than 𝜎𝑖

𝑚 for the whole range of suction 

(Figure 15c), causing the soil to be stiffer upon a wetting path and G0 to vary in a monotonic 

fashion. For soil D, the intergranular stress 𝜎𝑖
𝑏 becomes higher than 𝜎𝑖

𝑚 within the explored 

suction range, causing the soil to become stiffer upon a drying path and G0 to vary in a non-

monotonic fashion. 
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7. CONCLUSIONS 

The paper has presented a simple macroscopic model for the small-strain shear modulus of 

unsaturated granular soils based on a micro-mechanical approach. The model accounts for the 

independent effect of suction and degree of saturation on soil stiffness. It is based upon the 

knowledge of the soil water retention curves, and on two parameters that can be easily calibrated 

against the small-strain stiffness measured at saturation and at residual state. The performance of 

the model was assessed against experimental data on an unsaturated sand specimen. The soil 

behaviour observed experimentally was successfully reproduced both at a qualitative and 

quantitative level. The model captures the higher stiffness observed along a wetting path that the 

stress variable obtained as the product ‘suction times degree of saturation’ fails to predict. 

According to the proposed model, the evolution of G0 is controlled by the evolution of the 

suction/degree of saturation-induced intergranular stress during hydraulic hysteresis. It has been 

shown that the breadth of the water retention curve and the intensity of the intergranular stress due 

to the presence of the menisci have an effect on the evolution of G0. When the intergranular stress at 

meniscus contacts is higher than the intergranular stress at saturated contacts and/or the water 

retention curves develop over a relatively narrow suction range, soil is stiffer during wetting, and 

the variation of G0 is monotonic. When the intergranular stress at meniscus contacts becomes 

smaller than the one at saturated contacts and/or the water retention curves develop over a relatively 

large suction range, the soil becomes stiffer during drying, and the variation of G0 is non-

monotonic. 
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s calc
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top bottom G [MPa]

0 26.05823 25.26519 24.97818

10 26.78537 25.88427 25.99309
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δ k G s Sr sM sTOT δ

2.78E-13 10772.17 15.38882 0 1 8 10 2.78E-13

2.92E-13 11021.01 15.7443 1.5 0.999 8 11.50813 3.06E-13

3.05E-13 11263.93 16.09133 3 0.996 8 13.025 3.32E-13

3.17E-13 11492.83 16.41833 4.5 0.994 8 14.52625 3.57E-13

3.35E-13 11813.67 16.87668 6 0.94 8 16.15 3.83E-13

3.59E-13 12227.43 17.46776 7.5 0.8 8 17.625 4.06E-13

3.83E-13 12625.4 18.03629 9 0.6 8 18.5 4.2E-13

4E-13 12912.88 18.44697 10.5 0.4 8 18.625 4.22E-13

4.08E-13 13030.5 18.615 12 0.3 8 18.5 4.2E-13

4.11E-13 13088.22 18.69746 13.5 0.23 8 18.20625 4.15E-13

4.12E-13 13100.67 18.71525 15 0.21 8 18.0875 4.13E-13

4.12E-13 13103.71 18.71958 16.5 0.2 8 18 4.12E-13

4.12E-13 13103.71 18.71958 15 0.2 8 18 4.12E-13

4.12E-13 13103.71 18.71958 13.5 0.2 8 18 4.12E-13

4.11E-13 13089.13 18.69876 12 0.22 8 18.1 4.14E-13

4.09E-13 13056.52 18.65217 10.5 0.25 8 18.15625 4.14E-13

4.05E-13 12987.41 18.55345 9 0.3 8 18.125 4.14E-13

3.95E-13 12824.82 18.32117 7.5 0.4 8 17.875 4.1E-13

3.71E-13 12439.71 17.77101 6 0.6 8 17 3.97E-13

3.41E-13 11927.51 17.03931 4.5 0.8 8 15.375 3.71E-13

3.18E-13 11518.24 16.45464 3 0.9 8 13.625 3.42E-13

3E-13 11172.3 15.96043 1.5 0.95 8 11.90625 3.13E-13
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δ k G s Sr sM sTOT δ

4.33E-13 6933.613 9.905161 0 1 5 10 4.33E-13

5.16E-13 7573.839 10.81977 3 0.999 5 13.0025 5.15E-13

5.95E-13 8129.826 11.61404 6 0.996 5 15.995 5.92E-13

6.67E-13 8611.375 12.30196 9 0.994 5 18.97 6.63E-13

7.62E-13 9198.603 13.14086 12 0.94 5 21.475 7.2E-13

8.75E-13 9859.136 14.08448 15 0.8 5 22.5 7.43E-13

9.78E-13 10426.04 14.89434 18 0.6 5 21.5 7.21E-13

1.05E-12 10796.06 15.42294 21 0.4 5 19 6.64E-13

1.08E-12 10937.2 15.62457 24 0.3 5 17.375 6.25E-13

1.09E-12 10996.1 15.70871 27 0.23 5 15.825 5.88E-13

1.09E-12 11006.42 15.72346 30 0.21 5 15.3125 5.75E-13

1.09E-12 11006.42 15.72346 33 0.2 5 15 5.67E-13

1.09E-12 11006.42 15.72346 30 0.2 5 15 5.67E-13

1.09E-12 11006.42 15.72346 27 0.2 5 15 5.67E-13

1.09E-12 10992.65 15.70378 24 0.22 5 15.475 5.79E-13

1.08E-12 10954.59 15.64941 21 0.25 5 16 5.92E-13

1.06E-12 10867.09 15.52441 18 0.3 5 16.625 6.07E-13

1.02E-12 10651.13 15.2159 15 0.4 5 17.5 6.28E-13

9.2E-13 10109.9 14.44271 12 0.6 5 18.5 6.52E-13

7.81E-13 9315.3 13.30757 9 0.8 5 18 6.4E-13

6.64E-13 8587.712 12.26816 6 0.9 5 15.875 5.89E-13

5.59E-13 7881.5 11.25929 3 0.95 5 13.125 5.19E-13

4.33E-13 6933.613 9.905161 0 1 5 10 4.33E-13



k G s Sr sM sTOT δ k

10772.17 15.38882 0 1 8 10 2.78E-13 10772.17

11288.55 16.1265 3 0.999 8 13.00625 3.32E-13 11758.56

11764.2 16.80601 6 0.996 8 16.01 3.81E-13 12601.83

12199.85 17.42836 9 0.994 8 18.9925 4.27E-13 13340.25

12638.46 18.05494 12 0.94 8 21.7 4.67E-13 13946.22

13012.07 18.58867 15 0.8 8 23.25 4.89E-13 14270.67

13223.93 18.89133 18 0.6 8 23 4.85E-13 14219.33

13253.65 18.93378 21 0.4 8 21.25 4.6E-13 13849.15

13223.93 18.89133 24 0.3 8 20 4.42E-13 13572.09

13153.57 18.79081 27 0.23 8 18.7125 4.23E-13 13274.37

13124.91 18.74987 30 0.21 8 18.275 4.16E-13 13170.1

13103.71 18.71958 33 0.2 8 18 4.12E-13 13103.71

13103.71 18.71958 30 0.2 8 18 4.12E-13 13103.71

13103.71 18.71958 27 0.2 8 18 4.12E-13 13103.71

13127.93 18.75418 24 0.22 8 18.4 4.18E-13 13200.06

13141.51 18.77359 21 0.25 8 18.8125 4.24E-13 13297.97

13133.97 18.76281 18 0.3 8 19.25 4.31E-13 13400.27

13073.3 18.67615 15 0.4 8 19.75 4.38E-13 13515.3

12856.41 18.3663 12 0.6 8 20 4.42E-13 13572.09

12432.97 17.76139 9 0.8 8 18.75 4.23E-13 13283.23

11942.14 17.0602 6 0.9 8 16.25 3.85E-13 12664.49

11417.25 16.31036 3 0.95 8 13.3125 3.37E-13 11850.13

10772.17 15.38882 0 1 8 10 2.78E-13 10772.17



k G

6933.57 9.9051

7567.734 10.81105

8108.708 11.58387

8583.136 12.26162

8945.432 12.77919

9085.547 12.97935

8948.901 12.78414

8587.659 12.26808

8335.504 11.90786

8079.878 11.54268

7991.696 11.41671

7936.956 11.33851

7936.956 11.33851

7936.956 11.33851

8019.866 11.45695

8109.553 11.58508

8213.8 11.734

8355.445 11.93635

8511.658 12.15951

8434.275 12.04896

8088.379 11.55483

7591.426 10.84489

6933.57 9.9051



G s Sr sM sTOT

15.38882 0 1 8 10

16.79794 0.7 0.999 8 10.70913

18.00262 1.4 0.996 8 11.433

19.0575 2.1 0.994 8 12.14425

19.92317 2.8 0.94 8 13.19

20.38667 3.5 0.8 8 14.625

20.31334 4.2 0.6 8 16.1

19.78449 4.9 0.4 8 17.225

19.3887 5.6 0.3 8 17.7

18.96339 6.3 0.23 8 17.93625

18.81443 7 0.21 8 17.9875

18.71958 7.7 0.2 8 18

18.71958 8.4 0.2 8 18

18.71958 6.3 0.2 8 18

18.85723 5.6 0.22 8 17.94

18.99711 4.9 0.25 8 17.80625

19.14324 4.2 0.3 8 17.525

19.30757 3.5 0.4 8 16.875

19.3887 2.8 0.6 8 15.4

18.97605 2.1 0.8 8 13.575

18.09213 1.4 0.9 8 12.225

16.92876 0.7 0.95 8 11.15625

15.38882 0 1 8 10



s Sr sM sTOT

0 1 30 10

3 0.999 30 13.03375

6 0.996 30 16.12

9 0.994 30 19.1575

12 0.94 30 23.35

15 0.8 30 28.75

18 0.6 30 34

21 0.4 30 37.75

24 0.3 30 39.25

27 0.23 30 39.8875

30 0.21 30 40

33 0.2 30 40

30 0.2 30 40

27 0.2 30 40

24 0.22 30 39.85

21 0.25 30 39.4375

18 0.3 30 38.5

15 0.4 30 36.25

12 0.6 30 31

9 0.8 30 24.25

6 0.9 30 19



k G s Sr sM sTOT δ k

10772.17 15.38882 0 1 8 10 2.78E-13 10772.17

11021.01 15.7443 1.5 0.999 8 11.50813 3.06E-13 11288.55

11263.93 16.09133 3 0.996 8 13.025 3.32E-13 11764.2

11492.83 16.41833 4.5 0.994 8 14.52625 3.57E-13 12199.85

11813.67 16.87668 6 0.94 8 16.15 3.83E-13 12638.46

12227.43 17.46776 7.5 0.8 8 17.625 4.06E-13 13012.07

12625.4 18.03629 9 0.6 8 18.5 4.2E-13 13223.93

12912.88 18.44697 10.5 0.4 8 18.625 4.22E-13 13253.65

13030.5 18.615 12 0.3 8 18.5 4.2E-13 13223.93

13088.22 18.69746 13.5 0.23 8 18.20625 4.15E-13 13153.57

13100.67 18.71525 15 0.21 8 18.0875 4.13E-13 13124.91

13103.71 18.71958 16.5 0.2 8 18 4.12E-13 13103.71

13103.71 18.71958 15 0.2 8 18 4.12E-13 13103.71

13103.71 18.71958 13.5 0.2 8 18 4.12E-13 13103.71

13089.13 18.69876 12 0.22 8 18.1 4.14E-13 13127.93

13056.52 18.65217 10.5 0.25 8 18.15625 4.14E-13 13141.51

12987.41 18.55345 9 0.3 8 18.125 4.14E-13 13133.97

12824.82 18.32117 7.5 0.4 8 17.875 4.1E-13 13073.3

12439.71 17.77101 6 0.6 8 17 3.97E-13 12856.41

11927.51 17.03931 4.5 0.8 8 15.375 3.71E-13 12432.97

11518.24 16.45464 3 0.9 8 13.625 3.42E-13 11942.14

11172.3 15.96043 1.5 0.95 8 11.90625 3.13E-13 11417.25

10772.17 15.38882 0 1 8 10 2.78E-13 10772.17
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k G s Sr sM sTOT δ k

6933.613 9.905161 0 1 5 10 4.33E-13 6933.57

7573.839 10.81977 3 0.999 5 13.0025 5.15E-13 7567.734

8129.826 11.61404 6 0.996 5 15.995 5.92E-13 8108.708

8611.375 12.30196 9 0.994 5 18.97 6.63E-13 8583.136

9198.603 13.14086 12 0.94 5 21.475 7.2E-13 8945.432

9859.136 14.08448 15 0.8 5 22.5 7.43E-13 9085.547

10426.04 14.89434 18 0.6 5 21.5 7.21E-13 8948.901

10796.06 15.42294 21 0.4 5 19 6.64E-13 8587.659

10937.2 15.62457 24 0.3 5 17.375 6.25E-13 8335.504

10996.1 15.70871 27 0.23 5 15.825 5.88E-13 8079.878

11006.42 15.72346 30 0.21 5 15.3125 5.75E-13 7991.696

11006.42 15.72346 33 0.2 5 15 5.67E-13 7936.956

11006.42 15.72346 30 0.2 5 15 5.67E-13 7936.956

11006.42 15.72346 27 0.2 5 15 5.67E-13 7936.956

10992.65 15.70378 24 0.22 5 15.475 5.79E-13 8019.866

10954.59 15.64941 21 0.25 5 16 5.92E-13 8109.553

10867.09 15.52441 18 0.3 5 16.625 6.07E-13 8213.8

10651.13 15.2159 15 0.4 5 17.5 6.28E-13 8355.445

10109.9 14.44271 12 0.6 5 18.5 6.52E-13 8511.658

9315.3 13.30757 9 0.8 5 18 6.4E-13 8434.275

8587.712 12.26816 6 0.9 5 15.875 5.89E-13 8088.379

7881.5 11.25929 3 0.95 5 13.125 5.19E-13 7591.426

6933.613 9.905161 0 1 5 10 4.33E-13 6933.57



G s Sr sM sTOT δ k G

15.38882 0 1 8 10 2.78E-13 10772.17 15.38882

16.1265 3 0.999 8 13.00625 3.32E-13 11758.56 16.79794

16.80601 6 0.996 8 16.01 3.81E-13 12601.83 18.00262

17.42836 9 0.994 8 18.9925 4.27E-13 13340.25 19.0575

18.05494 12 0.94 8 21.7 4.67E-13 13946.22 19.92317

18.58867 15 0.8 8 23.25 4.89E-13 14270.67 20.38667

18.89133 18 0.6 8 23 4.85E-13 14219.33 20.31334

18.93378 21 0.4 8 21.25 4.6E-13 13849.15 19.78449

18.89133 24 0.3 8 20 4.42E-13 13572.09 19.3887

18.79081 27 0.23 8 18.7125 4.23E-13 13274.37 18.96339

18.74987 30 0.21 8 18.275 4.16E-13 13170.1 18.81443

18.71958 33 0.2 8 18 4.12E-13 13103.71 18.71958

18.71958 30 0.2 8 18 4.12E-13 13103.71 18.71958

18.71958 27 0.2 8 18 4.12E-13 13103.71 18.71958

18.75418 24 0.22 8 18.4 4.18E-13 13200.06 18.85723

18.77359 21 0.25 8 18.8125 4.24E-13 13297.97 18.99711

18.76281 18 0.3 8 19.25 4.31E-13 13400.27 19.14324

18.67615 15 0.4 8 19.75 4.38E-13 13515.3 19.30757

18.3663 12 0.6 8 20 4.42E-13 13572.09 19.3887

17.76139 9 0.8 8 18.75 4.23E-13 13283.23 18.97605

17.0602 6 0.9 8 16.25 3.85E-13 12664.49 18.09213

16.31036 3 0.95 8 13.3125 3.37E-13 11850.13 16.92876

15.38882 0 1 8 10 2.78E-13 10772.17 15.38882



G

9.9051

10.81105

11.58387

12.26162

12.77919

12.97935

12.78414

12.26808

11.90786

11.54268

11.41671

11.33851

11.33851

11.33851

11.45695

11.58508

11.734

11.93635

12.15951

12.04896

11.55483

10.84489

9.9051



s Sr sM sTOT δ

0 1 8 10 2.78E-13

0.7 0.999 8 10.70913 2.92E-13

1.4 0.996 8 11.433 3.05E-13

2.1 0.994 8 12.14425 3.17E-13

2.8 0.94 8 13.19 3.35E-13

3.5 0.8 8 14.625 3.59E-13

4.2 0.6 8 16.1 3.83E-13

4.9 0.4 8 17.225 4E-13

5.6 0.3 8 17.7 4.08E-13

6.3 0.23 8 17.93625 4.11E-13

7 0.21 8 17.9875 4.12E-13

7.7 0.2 8 18 4.12E-13

8.4 0.2 8 18 4.12E-13

6.3 0.2 8 18 4.12E-13

5.6 0.22 8 17.94 4.11E-13

4.9 0.25 8 17.80625 4.09E-13

4.2 0.3 8 17.525 4.05E-13

3.5 0.4 8 16.875 3.95E-13

2.8 0.6 8 15.4 3.71E-13

2.1 0.8 8 13.575 3.41E-13

1.4 0.9 8 12.225 3.18E-13

0.7 0.95 8 11.15625 3E-13

0 1 8 10 2.78E-13



s Sr sM sTOT δ

0 1 30 10 4.33E-13

3 0.999 30 13.03375 5.16E-13

6 0.996 30 16.12 5.95E-13

9 0.994 30 19.1575 6.67E-13

12 0.94 30 23.35 7.62E-13

15 0.8 30 28.75 8.75E-13

18 0.6 30 34 9.78E-13

21 0.4 30 37.75 1.05E-12

24 0.3 30 39.25 1.08E-12

27 0.23 30 39.8875 1.09E-12

30 0.21 30 40 1.09E-12

33 0.2 30 40 1.09E-12

30 0.2 30 40 1.09E-12

27 0.2 30 40 1.09E-12

24 0.22 30 39.85 1.09E-12

21 0.25 30 39.4375 1.08E-12

18 0.3 30 38.5 1.06E-12

15 0.4 30 36.25 1.02E-12

12 0.6 30 31 9.2E-13

9 0.8 30 24.25 7.81E-13

6 0.9 30 19 6.64E-13

3 0.95 30 14.6875 5.59E-13

0 1 30 10 4.33E-13



 

 

Specimen 

Height, h 12.5 cm 

Diameter, D 10.0 cm 

Total volume, Vtot 977.8 cm3 

Specific gravity, Gs 2.63 - 

Dry density, ρ 1.59 g/cm3 

Void ratio, e 0.49 - 

Porosity, n 0.33 - 

Dry mass, Md 1554.3 g 

 

Table 1 Click here to access/download;Table;Table1.docx

http://www.editorialmanager.com/geo/download.aspx?id=193294&guid=f462877e-0658-4ed9-a6c2-8142aced21ba&scheme=1
http://www.editorialmanager.com/geo/download.aspx?id=193294&guid=f462877e-0658-4ed9-a6c2-8142aced21ba&scheme=1


 

Silt filter 

Height, h 1.0 cm 

Diameter, D 10.0 cm 

Total volume, Vtot 78.5 cm3 

Specific gravity, Gs 2.70 - 

Dry density, ρ 1.25 g/cm3 

Void ratio, e 1.16 - 

Porosity, n 0.54 - 

Dry mass, Md 98.0 g 

 

Table 2 Click here to access/download;Table;Table2.docx

http://www.editorialmanager.com/geo/download.aspx?id=193295&guid=f10736cb-4f89-4d1c-8674-7429c63a9132&scheme=1
http://www.editorialmanager.com/geo/download.aspx?id=193295&guid=f10736cb-4f89-4d1c-8674-7429c63a9132&scheme=1


 

 

αd 0.25 

nd 4 

αw 0.12 

nw 5.98 

s* -6.85 

 

Table 3 Click here to access/download;Table;Table3.docx

http://www.editorialmanager.com/geo/download.aspx?id=193296&guid=6cce27cb-194a-45a0-a604-121bc9264682&scheme=1
http://www.editorialmanager.com/geo/download.aspx?id=193296&guid=6cce27cb-194a-45a0-a604-121bc9264682&scheme=1


 

 
kn0 σi

m 

 
[kN/m3/2] [kPa] 

SC

 

99503.6 22.7 

BCC

 

40084.5 22.7 

 

Table 4 Click here to access/download;Table;Table4.docx

http://www.editorialmanager.com/geo/download.aspx?id=193297&guid=38caf8a7-3ce9-46b2-be29-31216b1d9637&scheme=1
http://www.editorialmanager.com/geo/download.aspx?id=193297&guid=38caf8a7-3ce9-46b2-be29-31216b1d9637&scheme=1
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