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Abstract: In consensus-based multiple attribute group decision making (MAGDM) problems,  

it is frequent that some experts exhibit non-cooperative behaviors owing to the different areas to 

which they may belong and the different (sometimes conflicting) interests they might present. This 

may adversely affect the overall efficiency of the consensus reaching process, especially when 

some uncooperative behaviors by experts arise. To this end, this paper develops a novel consensus 

framework based on Social Network Analysis (SNA) to deal with non-cooperative behaviors. In 

the proposed SNA-based consensus framework, a trust propagation and aggregation mechanism to 

yield experts’ weights from the social trust network is presented, and the obtained weights of 

experts are then integrated into the consensus-based MAGDM framework. Meanwhile, a 

non-cooperative behavior analysis module is designed to analyze the behaviors of experts. Based 

on the results of such analysis during the consensus process, each expert can express and modify 

the trust values pertaining other experts in the social trust network. As a result, both the social trust 

network and the weights of experts derived from it are dynamically updated in parallel. A 

simulation and comparison study is presented to demonstrate the efficiency of the SNA-based 

consensus framework for coping with non-cooperative behaviors. 

 

Keywords: Multiple attribute group decision making, consensus reaching process, 

non-cooperative behaviors, social network analysis 

1. Introduction 

Group decision making (GDM) is a powerful decision tool to deal with complex decision 

problems in which a single expert may feel difficult to consider all the aspects of the particular 

decision problem at hand [30, 36, 59]. Numerous GDM models and approaches have been 

reported to integrate the knowledge and levels of experience associated with a group of experts 
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(e.g., [12, 35, 37]). Conventional GDM models focus on the problem of obtaining a ranking of a 

group of feasible alternatives to the decision problem without addressing whether or not a 

reasonable consensus level among experts can be guaranteed. The consensus reaching process 

(CRP) is an effective way to assist experts improving the consensus level, which has been widely 

utilized in the GDM literature [3, 13, 20, 21, 28, 33, 40, 44].  

Traditionally, the CRP is guided by a “hard” consensus measure that only distinguishes 

between two possible values or degrees: 0 (no consensus or partial consensus) and 1 (full 

consensus). However, it is very time-consuming, difficult and unnecessary to achieve a full 

consensus in many practical GDM problems [31]. As a result, the concept of “soft” consensus [2, 

5, 6, 9, 11, 27, 69, 73] has been proposed and used widely in a variety of proposed models for 

CRPs:  

(1) CRPs with preference representation formats. For instance, Xu et al. [58] proposed a CRP 

for GDM with hesitant fuzzy preference relations and discussed its application in water allocation 

management. Moreover, Xu et al. [61] presented a distance-based CRP for GDM with 

multiplicative preference relations. Further, Herrera-Viedma et al. [29], and Choudhury et al. [10] 

presented several CRPs to deal with GDM with heterogeneous preference representation formats. 

Chen et al. [8] provided a survey for CRPs with heterogeneous preference representation formats.    

(2) Minimum-cost (or adjustments) based CRPs. Several CRPs based on preserving minimum 

adjustments or cost have been investigated. Ben-Arieh et al. [4] proposed a CRP model with 

quadratic cost functions. Moreover, Wu et al. [54] reported a model with a minimum adjustment 

cost based feedback mechanism for GDM in social networks with distributed linguistic trust 

information. In addition, a consensus model with minimum cost policy has been investigated by 

Gong et al. [21-24] and Zhang et al. [70]. 

(3) CRPs driven by consistency and consensus measures. To maintain individual consistency 

in the consensus building, several approaches for CRPs based on individual consistency and 

consensus measures have been proposed. For example, Escobar et al. [19] developed a precise 

consistency consensus matrix-based approach to managing individual consistency and consensus 

in AHP-GDM. Wu et al. [57] presented an iteration-based approach to address individual 

consistency and consensus in GDM with multiplicative preference relations. Dong et al. [14] 

presented an optimization-based CRP model to deal with individual consistency and consensus in 

GDM under multi-granular unbalanced 2-tuple linguistic preference relations. 

(4) CRPs in a dynamic/Web context. Societal and technological trends demand the 

management of CRPs under dynamic and Web contexts. To address these complex contexts, Pérez 

et al. [45] proposed a dynamic CRP to manage decision situations in which the set of alternatives 
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changes dynamically. Alonso et al. [1], Zadrozny and Kacprzyk [68] and Kacprzyk and Zadrozny 

[32] investigated web-based consensus support systems, while Dong et al. [17] reported a CRP 

model for complex and dynamic GDM frameworks. 

(5) CRPs in multiple attribute group decision making (MAGDM) problems. In some GDM 

problems, experts evaluate alternatives based on multiple attributes [49], leading to what it has 

been known as a MAGDM problem. Several CRPs for MAGDM have been reported. For example, 

Kim et al. [34] suggested a CRP model for the MAGDM problem under contexts of 

incompleteness. By considering the degrees of confidence of experts’ opinions, Guha and 

Chakraborty [26] developed a consensus model for MAGDM. Wu and Xu [56] presented a CRP 

model for MAGDM under the hesitant fuzzy linguistic context. Recently, Zhang et al. [70] 

reported a 2-rank base CRP model in multi-granular linguistic MAGDM problems. Additional 

CRP approaches for MAGDM settings can be found in [38, 48, 56, 62]. 

Importantly, real-world GDM situations involve not only mathematical aspects but also 

psychological behaviors of experts [15]. Several CRPs approaches considering the 

behaviors/attitudes/trust of experts have been devised [27, 41, 42, 46, 47]. In particular, the 

existence and management of non-cooperative behaviors in CRPs has been tackled by several 

researchers (e.g., [43, 60]), demonstrating that it supposes a critical aspect deserving further 

investigation. Pelta and Yager [43] and Yager [63, 64] studied the non-cooperative behaviors in 

GDM problems. In their works, the non-cooperative behaviors are referred to strategic preference 

manipulation behaviors and they are only investigated in the selection process of GDM problems 

(i.e. problems that do not involve a consensus building phase). However, these non-cooperative 

behaviors are often accrued during the consensus phase of a GDM problem. Palomares et al. [42] 

designed a moderator-based approach for coping with non-cooperative behaviors in the CRP of 

GDM problems involving large groups, in which a moderator compulsively penalizes the weights 

of the experts who adopt non-cooperative behaviors. Recently, Dong et al. [18] proposed a 

self-management mechanism for dealing with non-cooperative behaviors in a CRP for GDM with 

fuzzy preference relations. Moreover, Social Network Analysis (SNA) has emerged as a key 

technique in GDM problems with the development of information and network technology. On the 

one hand, a social network provides valuable decision information about the social relationships 

among the experts and allows information exchange and communication. On the other hand, 

experts are easy to be influenced by their most trusted experts in the social network, thereby 

affecting the GDM result. Wu et al. [53, 55] developed two SNA-based approaches for 

undertaking CRPs in which the trust relationship among experts is considered. 

According to the above literature review, we find that consensus reaching has become a hot 
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topic in the area of GDM, and a considerable number of models for supporting CRPs have been 

reported. It is worth emphasizing that several SNA-based approaches have been proposed. In the 

SNA-based CRPs, a lot of non-cooperative behaviors exist, for example, some experts will 

express their preferences dishonestly to pursue their own interests. This situation may adversely 

affect the decision efficiency. To guarantee the decision efficiency and improve the SNA-based 

CRPs results, it becomes paramount to develop some SNA-based consensus approaches to cope 

with non-cooperative behaviors. Although several models under a social network context have 

been proposed, they do not take non-cooperative behaviors of participants into account. Moreover, 

the social network in a SNA-based CRP is assumed unchanged during the consensus reaching. In 

addition, the existing moderator-based models cannot be directly extended to deal with 

non-cooperative behaviors in SNA-based CRPs, due to the moderator’s task of dealing with these 

behaviors being sometimes excessively demanding and complicated in practical decision 

situations. Motivated with the challenge to cope with non-cooperative behaviors in CRPs based on 

inter-expert trust information, this paper develops an SNA-based consensus framework for dealing 

with non-cooperative behaviors in CRPs in a dynamic social network and MAGDM context. 

In the proposed SNA-based consensus framework, the experts express not only decision 

matrices regarding a group of alternatives and attributes but also trust values for other experts in 

their social trust network. Through a trust propagation and aggregation process on the provided 

trust values, a complete pairwise trust model is determined. Then, an approach is used to generate 

the weights of experts predicated on this social trust network information. The experts’ weights 

generated from the social trust network are thus embedded into the CRP. During the CRP, the 

experts not only adjust their decision matrices to achieve the predefined consensus level, but they 

can also update their initially provided degrees of trust towards other experts in the social network. 

In particular, we introduce a novel module for non-cooperative behaviors analysis, which has been 

designed to analyze the behaviors of experts. The analysis results produced by the module are 

provided for experts, who in turn modify their trust relationships in the social trust network 

accordingly. In this way, the weights of the experts with non-cooperative behaviors will be 

decreased as a result of undertaking the overall proposed SNA-based approach. We present a 

detailed simulation and a comparative experimental study to demonstrate the decision efficiency 

of the SNA-based consensus framework for coping with non-cooperative behaviors. To the best of 

our knowledge, this is the first consensus approach for MAGDM capable of meaningfully 

synergizing inter-user trust information, multiple patterns of non-cooperative behavior and expert 

weighting over the course of the CRP. 

The rest of this paper is organized as follows: Section 2 introduces preliminaries regarding 
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the SNA. Then, Section 3 describes the consensus-based MAGDM problem with non-cooperative 

behaviors and proposes a SNA-based consensus framework. Several types of non-cooperative 

behaviors are analyzed in Section 4. An illustrative example is provided in Section 5. Following 

this, simulation and comparison experiments are presented in Section 6. Finally, concluding 

remarks are drawn in Section 7. 

 

2. Social network analysis 

SNA (Social network analysis) has emerged as a key technique in modern sociology, and it 

focuses on the relationships between social entities such as families, corporations or nations [51]. 

The existing SNA foundations and methodologies to model social trust relationships among a 

group of individuals (or experts), have proved their usefulness upon their adoption in several 

GDM approaches [35, 52, 53, 55]. 

2.1. The structure of the social network 

Three elements are included in a social network: the set of actors, the relations themselves, 

and the actor attributes, which are described in Table 1. The following three representation 

schemes are often adopted to describe the main elements in a social network: 

(1) Graph theoretic: the social network is characterized as a graph in which nodes are 

connected by directed lines. In the graph, i je e→  signifies that expert ie  directly trusts expert 

je . 

(2) Sociometric: the trust relationships among experts are represented by a matrix 

( )ij m mS s =  ( {0,1}ijs  ), which is called sociometric. In particular, 1ijs =  denotes that there 

exists a direct trust relationship from expert ie  to expert je . 

(3) Algebraic: this notation allows to distinguish several distinct relations and represent 

combinations of relations. 

Table 1: Different representation schemes in SNA 

Graph Sociometric Algebraic 

3e
4e

5e

1e

2e

 

0 1 1 0 1

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 1 0 1 0

S

 
 
 
 =
 
 
 
 

 

1 2  e R e , 
1 3  e R e , 

1 5  e R e  

2 3  e R e , 
3 4  e R e , 

4 1  e R e  

5 2  e R e , 5 4  e R e  

However, the above sociometric represents a binary relation among social entities (i.e. either 

there is total trust or no trust at all), which is not be suitable to model uncertainty in trust 

relationship representation in a social network [55]. To overcome this problem, this paper adopts 

one type of social networks, namely social trust network in which the users explicitly express their 

opinion about other users as trust degrees that vary between 0 and 1. In this situation, the 
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sociometric in a social trust network is called fuzzy sociometric, which is formally defined below. 

Definition 1: A fuzzy sociometric ( )ij m mS s =  on E  is a relation in E E  with 

membership function Su : [0,  1]E E → , and ( ,  )S i j iju e e s= , where [0,  1]ijs   denotes the trust 

degree that expert 
ie  assigns to expert je . 

For notation simplicity, fuzzy sociometric will be herein referred to as sociometric in the 

paper. 

Example 1: The trust relationships across a group of six experts are represented in direct 

graph form as in Table 1 with the following sociometric ( )ij m mS s = : 

0.7 0.8 0 0.85

0 0.78 0 0

0 0 0.88 0

0.9 0 0 0

0 0.95 0 1

S

− 
 

− 
 = −
 

− 
 − 

. 

2.2. Trust propagation in the social trust network 

In a social trust network, some experts may not be able to provide a trust value on a specific 

expert directly. In this case, the sociometric associated with the social trust network is incomplete. 

This is illustrated in Fig. 1 (a). In this figure, three experts are included, and there is no direct trust 

value between expert 1e  and 3e . However, some information on whether or not expert 1e  can 

trust expert 3e  can still be inferred, based on transitivity. Therefore, it is necessary to design a 

mechanism to analyze whether an unknown expert can be trusted or not. Victor et al. [50] 

proposed a trust propagation approach based on t-norms to estimate unknown trust values in the 

sociometric, which will be adopted in this paper. 

Before formally presenting the trust propagation method, some concepts regarding triangular 

norms are introduced. 

A function T : 2[0,  1] [0,  1]→  is called a triangular norm (t-norm for short) if and only if it 

is commutative, associative, monotonic and satisfies the following boundary conditions 

( ,  1)T x x= , x . In the following, we use the Einstein product as the t-norm: 

1 2
1 2

1 2

( ,  )
1 (1 ) (1 )

a a
T a a

a a


=

+ −  −
,                           (1) 

where 1 [0,  1]a   and 2 [0,  1]a   are two real numbers. It is worth mentioning that 

1 2 1 2( ,  ) min{ ,  }T a a a a , for any T-norm function T. 

In Eq. (1), there are only two arguments. By taking n arguments into account, the following 

t-norm is considered: 

1

1 2

1 1

2
( ,  ,  ...,  )

(2 )

n

ii

n n n

i ii i

a
T a a a

a a

=

= =

=
− +



 
                   (2) 
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where [0,  1]ia   ( 1,  2,  ...,  i n= ). We have that 1 2 1 2( ,  ,  ...,  ) min( ,  ,  ...,  )n nT a a a a a a . 

3e1e

2e

12s 23s

            
3e1e

2e

12s 23s

13 12 23( ,  )s T s s=
 

(a) No direct trust between 
1e  and 

3e     (b) Trust propagation between 
1e  and 

3e  via 
2e  

Fig. 1. Trust propagation via indirect trust path 

Let 
1 2 3 4 1

(1) (2) (3) ( )... q q

i q je e e e e e   

+⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→  be a path from expert ie  

to expert je , where its length is 1q + . The trust value ijs  can be estimated using t-norm: 

, (1) (1), (2) ( ), 

1

, (1) ( ), ( ), ( 1)1

1 1

, (1) ( ), ( ), ( 1) , (1) ( ), ( ), ( 1)1 1

( ,  ,  ...,  )

2

(2 )(2 ) (2 )

ij i q j

q

i q j k kk

q q

i q j k k i q j k kk k

s T s s s

s s s

s s s s s s

   

   

       

−

+=

− −

+ += =

=

 
=

− − − + 



 

      (3) 

Example 2: In Fig. 1 (b), we consider that 23 0.95s =  and 12 0.9s = . Then, the trust degree 

from expert 1e  to 3e  can be calculated as 
13 12 23( ,  ) (0.9,  0.95) 0.851s T s s T= = = . 

2.3. Trust aggregation in the social trust network 

In some situations, there may be multiple trust paths between two experts. This is 

demonstrated in Fig. 2, in which there exist two trust paths from expert 1e  to 3e : (1) 

1 2 3e e e→ → ; and (2) 1 5 4 3e e e e→ → → . 

3e
4e

5e

1e

2e
6e

 
Fig. 2. A social trust network 

Suppose that there are N  trust paths from expert ie  to expert je , and their trust values 

are 
1 2{ ,  ,  ...,  }N

ij ij ijs s s , a representative trust value sij is obtained by aggregating the N existing trust 

degrees between si and sj. The Ordered Weighted Averaging (OWA) operator [65] has been widely 

adopted in the aggregation processes underlying GDM problems, which allows to flexibly reflect 

different (Optimistic/Pessimistic) aggregation attitudes. Without loss of generality, the OWA 

operator is utilized to calculate the aggregated trust value from expert ie  to je : 

1 2 ( )

1
( ,  ,  ...,  )  

NN k

ij ij ij ij k ijk
s OWA s s s s

=
= =                   (4) 

where 
( )k

ijs  is the k th largest value in 1 2{ ,  ,  ...,  }N

ij ij ijs s s , and 
1 2( , ,..., )T

N   =  denotes the 

weight vector such that 0k   and 
1

1
N

kk


=
= . 

In [66], a widely known approach was presented to determine the OWA weights 

1 2( , ,..., )T

N   = . A quantifier-guided method based on the use of linguistic quantifiers Q and 

proposed by Yager in [67], is adopted in this work. The weights i are computed by the following 
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formula:  

1( ) ( )i i
i N N

Q Q −= − , 1,2,...,i N= ,                     (5) 

where ( )Q c  can be represented as 

                     

0 ,  ,

( )  ,  ,

1 ,  ,

c a

c a
Q c a c b

b a

c b




−
=  

−


                         (6) 

with ,  ,  [0,1]a b c . 

The linguistic quantifiers all, most, at least half and as many as possible, are often utilized in 

the literature. Their parameters a  are 0, 0.3, 0, and 0.5, respectively; and their parameters b  

are 1, 0.8, 0.5, and 1, respectively. 

Example 3: Suppose that six experts 
1 2 6{ ,  ,  ...,  }e e e  established a number of social trust 

relationships with each other, as illustrated in Fig. 2, with the following sociometric S : 

0.7 0.8

0.9

0.8

0.6 0.7

1

0.9

S

− − − − 
 
− − − − − 

 − − − − −
=  

− − − − 
 − − − − −
  − − − − − 

 

In Fig. 2, there is at least one trust path between every pair of experts. However, some pairs 

of experts are not directly connected. In other words, the sociometric associated with Fig. 2 is not 

complete. For example, there is no direct trust link from 1e  to 3e . However, we observe that 

there are two different paths forming an indirect linkage from 
1e  to 

3e : 
1e →

2e →
3e  and 

1e →
5e →

4e →
3e . According to formula (3), we can propagate trust and infer the following 

trust value from 
1e  to 

3e . 

(1) 1

13 12 23( ,  ) (0.7,  0.9) 0.612s T s s T= = = ; 

(2) 2

13 15 54 43( ,  ,  ) (0.8,  1, 0.6) 0.444s T s s s T= = = ; 

In this example, the OWA operator with the linguistic quantifier “most” is used to fuse the 

trust values in different trust paths. The aggregated trust value from 
1e  to 

3e  can be computed 

using Eq. (4): 

1 2

13 13 13( ,  ) (0.612,  0.444) 0.4 0.612 0.6 0.444 0.511s OWA s s OWA= = =  +  = . 

Similarly, the other unknown trust values can be estimated, which results in a completely 

defined sociometric denoted by ES: 

0.7 0.8

0.9

0.8

0.6 0.7

1

0.9

ES

− 
 

− 
 −

=  
− 

 −
  − 

0.511 0.8 0.42

0.617 0.459 0.459 0.706

0.706 0.454 0.533 0.533

0.472 0.288 0.344

0.472 0.288 0.31 0.546

0.612 0.439 0.706 0.706

. 



9 
 

Based on S and ES , a complete sociometric (denoted as ( )ij m mCS cs = ) can be provided by 

experts. When providing ( )ij m mCS cs = , we suggest that ijcs  should be close to ijs  if ijs  is 

unknown in S; otherwise ij ijcs s= . 

2.4. Obtaining the expert's weights from the SNA 

Let ( )ij m mS s =  be the complete sociometric associated with a specific social trust network, 

then the relative node in-degree centrality index, associated with an expert 
ke E, can be 

computed as below: 

1, 

1
( )

1

m

k ik

i i k

C e s
m = 

=
−

                              (7) 

Obviously, the larger ( )kC e  value indicates the higher importance degree of expert ke , as a 

result of a higher overall degree of trust in ke  by the rest of experts in the group. Following this 

idea, the weight of expert ke  can be defined as below. 

Let 
1 2{ ( ),  ( ),  ...,  ( )}mC e C e C e  be the set of in-degree centrality indexes associated with a 

group of experts 1 2{ ,  ,  ...,  }mE e e e= . The weight of expert 
ke , k , can be determined by: 

1

( )

( )

k

k m

ki

C e

C e


=

=


                                (8) 

3. The consensus reaching framework based on social network analysis 

This section presents a model for supporting CRPs in MAGDM problems under the presence 

of non-cooperative behaviors, along with its integration into a resolution framework based on 

SNA. 

3.1. Consensus reaching problem with non-cooperative behaviors 

As noted in Section 1, there may exist a great deal of non-cooperative behaviors in CRPs. 

Here, we introduce a consensus reaching problem with non-cooperative behaviors in MAGDM 

context. 

In MAGDM, a set of experts 1 2{ ,  ,  ...,  }mE e e e=  ( 2)m   provide their preferences or 

opinions regarding a set of possible alternatives or solutions 1 2{ ,  ,  ...,  }nX x x x=  ( 2)n   with 

respect to a group of attributes 1 2{ ,  ,  ...,  }lA a a a=  ( 2)l  . Let 1 2( ,  ,  ...,  )T

m   =  be the 

weight vector over experts E , where 0
k
   ( 1,2,..., )k m=  represents the weight of the expert 

k
e , and 

1
1

m

kk


=
= . Let 

1 2
( ,  ,  ...,  )T

l
w w w w=  be the associated weight vector over attributes, 

where 0
i

w   ( 1,2,..., )i l=  denotes the weight of the attribute 
i

a , and 
1

1
l

ii
w

=
= . Let 

( ) ( )( )k k

ij n l
V v


=  ( 1,2,..., )k m=  be the multiple attribute decision matrix provided by the expert 

k
e , where 

( ) [0,  1]k

ij
v   signifies her/his preference value for the alternative i

x  with respect to 

attribute 
j

a . 

In a CRP, the non-cooperative behaviors may be utilized by some experts to pursue their 

interests, which will influence the consensus efficiency. Our interest in the MAGDM decision 

framework considered is, consequently, to assist experts to obtain a consensual collective solution 
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under the presence (and adverse effects) of such non-cooperative behaviors. 

3.2. Proposed consensus reaching framework 

Two processes (or models) are frequently utilized for solving GDM problems [10, 29]: 

consensus process and selection process. The consensus process is often employed to assist 

experts to achieve the predefined consensus level, and the selection process is dedicated to 

produce a collective ranking of the alternatives according to the preferences provided by the 

experts. Inspired by these two processes, the self-management mechanism for coping with 

non-cooperative behaviors reported by Dong et al. [18], and the consensus framework based on 

the trust relationship among experts presented by Wu et al. [55], we propose a novel consensus 

reaching framework: SNA-based consensus reaching framework, that comprehensively integrates 

behavior management and social trust information in the decision process. The implementation of 

the SNA-based consensus reaching framework deals with a four-stage procedure, whose main 

stages are graphically presented in Fig. 3. 

(1) Generating the experts’ weights from a social trust network 

In this process, the weights of experts are generated from the social trust network. In the 

initial round (i.e., 0z = ) of the CRP, the sociometric (i.e., S) associated with the social trust 

network is often incomplete, and to generate a complete sociometric (i.e., CS) associated with S is 

critical. In the proposed consensus reaching framework, the trust propagation and aggregation 

method presented in section 2 is utilized to infer the unknown trust values in the sociometric, and 

an estimated sociometric (i.e., ES) is then yielded. The estimated sociometric ES can be directly 

treated as the CS, which will not change the essence of the proposed consensus reaching 

framework. In order to increase the flexibility of the proposed consensus reaching framework, this 

study assumes that CS is provided by experts using ES as the reference social information. Then, 

the approach proposed in section 2 is adopted to generate the experts’ weights from CS. In 

subsequent rounds of the CRP (i.e., 1z  ), the experts update their trust values with respect to 

other experts (based on the non-cooperative behaviors detected). Thus, both the complete 

sociometric and weights of experts derived from it change dynamically during the CRP.  
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Fig. 3. The SNA-based consensus reaching framework 

(2) Consensus process 

Two main steps are normally involved in the consensus process: consensus measure and 

feedback adjustment [39, 40]. 

(i) Consensus measure 

In this step, a consensus measure method is devised to compute the consensus level among 

the experts by taking their importance weights into account. 

Let  , ( ) ( )( )k k

ij n lV v =  and ( ) ( )( )c c

ij n lV v =  be as above. Several consensus measurement 

methods have been reported (e.g., [9, 25]) to calculate the level of consensus in the CRP. Here, we 

utilize the consensus measure proposed in [42]. The basic idea of this consensus measure method 

is that we first compute the similarity levels between each pair of experts regarding their 

preference values or assessments. Then, a consensus matrix is calculated by aggregating these 

obtained similarity levels. Based on the consensus matrix, the consensus levels on the preference 

values, the consensus levels on alternatives, and the group consensus level can be generated. 

Let ( ) ( )( )kh kh

ij n lSM sm =  ( 1,2,..., 1k m= − , 1, +2,...,h k k m= + ) be the preference similarity 

matrix, where ( ) [0,1]kh

ijsm   represents the similarity level between experts ke  and he  in their 

preference values ( )k

ijv  and ( )h

ijv , and ( )kh

ijsm  is determined by: 
( ) ( ) ( )1 | |kh k h

ij ij ijsm v v= − − .                           (9) 

Let ( )ij n lCM cm =  be the consensus matrix, where ijcm  is the collective consensus level 

regarding the preference value ijv , and it is computed by: 

1 ( )

1 +1

1

1 +1

m m kh

kh ijk h k
ij m m

khk h k

sm
cm





−

= =

−

= =


=
 

 
,                        (10) 



12 
 

where [0,  1]kh   can be determined by min( , )kh k h  =  (see [42]). 

Based on ( )ij n nCM cm = , the consensus levels are defined at three levels: 

(a) Consensus level on the preference value ijv , ij ijcp cm= .  

(b) Consensus level on alternative ix , 
1

l

ijj

i

cm
ca

l

=
=


. 

(c) Group consensus level, 

1

n

ii
ca

cl
n

==


.                                  (11) 

It is clear that [0,  1]cl . In particular, 1cl =  means that there is a full consensus among 

experts. Otherwise, a larger cl  value indicates a higher consensus level among experts. In the 

CRP, a consensus threshold [0,  1]   is often defined. If cl  , the consensus level among 

experts is acceptable; otherwise, the feedback adjustment process is utilized to assist experts in 

modifying their preferences.  

Example 4: Let (1) (1)

3 3( )ijV v = , (2) (2)

3 3( )ijV v = , and (3) (3)

3 3( )ijV v =  be three decision 

matrices provided by experts 1e , 2e  and 3e , respectively. The weight vector over the three 

experts is (0.2,  0.3,  0.5)T = . 

 

Table 2: 
( )kV  ( 1,2,3)k =  in Example 4 

 (1)V   (2)V   (3)V  

 1a  
2a  

3a   1a  
2a  

3a   1a  
2a  

3a  

1x  0.3 0.4 0.5  0.5 0.6 0.5  0.5 0.6 0.7 

2x  0.6 0.7 0.5  0.6 0.8 0.7  0.8 0.8 0.8 

3x  0.4 0.5 0.6  0.5 0.6 0.6  0.6 0.6 0.8 

The three preference similarity matrices (1,2) (1,2)

3 3( )ijSM sm = , (1,3) (1,3)

3 3( )ijSM sm = , and 

(2,3) (2,3)

3 3( )ijSM sm =  can be generated based on Eq. (9). For example, (1,2) (1) (2)

11 11 111 | |sm v v= − − =  

1 | 0.3 0.5 | 0.8− − = . 

Then, the consensus matrix 3 3( )ijCM cm =  can be generated. For example, 
11cm  can be 

computed by: 
(1,2) (1,3) (2,3)

12 11 13 11 23 11
11

12 13 23

+ + 0.2 0.8+0.2 0.8+0.3 1
0.886

+ + 0.2+0.2+0.3

sm sm sm
cm

  

  

     
= = = . 

Similarly, we can obtain 
12 0.886cm = , 

13 0.857cm = , 
21 0.857cm = , 

22 0.843cm = , 

23 0.814cm = , 
31 0.871cm = , 

32 0.843cm = , and 
33 0.857cm = . 

Next, ijcp  is computed by ij ijcp cm=  ( , 1,2,3)i j = . Based on 
1

l

i ijj
ca cm l

=
=  obtains  

the consensus levels on the three alternatives, and they are 
1 0.876ca = , 

2 0.871ca = , and 

3 0.89ca = , respectively. 

The group consensus level among the three experts is computed by: 

1 0.876 0.871 0.89
0.879

3

n

ii
ca

cl
n

= + +
= = =


. 

(ii) Feedback adjustment 
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If the predefined consensus level among experts is not achieved, the feedback adjustment 

process is employed to assist experts to update their decision matrices for increasing the consensus 

level among experts. The core idea of the feedback adjustment process is to obtain and provide the 

group decision matrix, which is obtained from the individual decision matrices using a weighted 

averaging aggregation operator, to experts to reconsider constructing new decision matrices. 

Let ( ) ( )( )group group

ij n lV v =  be the group decision matrix, where ( )c

ijv  can be yielded as 

follows: 

( ) ( )

1

m
group k

ij k ij

k

v v
=

=                             (12) 

Let ( ) ( )( )k k

ij n lV v =  be the adjusted decision matrix associated with ( ) ( )( )k k

ij n lV v = . When 

providing ( ) ( )( )k k

ij n lV v = , it is generally advised that the experts adjust their assessments so as to 

bring them closer to the collective preference, i.e.: 

( ) ( ) ( ) ( ) ( )[min( , ),  max( , )]k k group k group

ij ij ij ij ijv v v v v                      (13) 

Example 5: Let (1) (1)

3 3( )ijV v = , (2) (2)

3 3( )ijV v = , (3) (3)

3 3( )ijV v =  and (0.2,  0.3,  0.5)T =  be 

as in Example 4. 

Using Eq. (12) obtains the group decision matrix, which is provided in Table 3. 

Table 3: 
( )groupV  in Example 5 

 1a  
2a  

3a  

1x  0.46 0.56 0.6 

2x  0.7 0.78 0.71 

3x  0.53 0.58 0.7 

Then, 
( )groupV  is provided for the three experts to construct new decision matrices, 

( ) ( )

3 3( )k k

ijV v =  ( 1,2,3)k = . For example, when providing (1)

11v  , it is advised that 

(1) (1) ( ) (1) ( )

11 11 11 11 11[min( , ),  max( , )] [0.3,  0.46]group groupv v v v v = . 

Simultaneously, the results from the non-cooperative behaviors analysis module (described in 

detail in Section 4) are provided for experts to modify their trust values regarding other experts. In 

particular, if an expert adopts non-cooperative behavior(s), then other experts will decrease the 

trust values with respect to this expert. 

(3) Non-cooperative behavior analysis 

In this stage, the behaviors of experts upon the preference adjustment via feedback are 

analyzed. The results of the behavior analysis are subsequently provided for experts to modify 

their trust relationships before a new consensus round is initiated. In particular, if an expert is 

deemed as adopting non-cooperative behavior(s), other experts are suggested to decrease the trust 

values of this expert in the social trust network. 

The detailed process to analyze non-cooperative behaviors is provided in section 4. 

(4) Selection process 

Once the predefined consensus level among experts is reached, the selection process is 

conducted to generate the final collective ranking of alternatives. 

Let ( )ij n lV v =  be a decision matrix. Applying the weighted averaging (WA) operator to fuse 

all the preference values in the ith row of ( )ij n lV v = , the evaluation value of the alternative ix , 
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iEV , can be generated, that is 

1

l

i j ij

j

EV w v
=

=                               (14) 

where [0,  1]jw   is the weight over the attribute 
ja . 

Further, based on iEV  ( 1,  2,  ...,  )i n= , the preference ordering 1 2( ,  ,  ...,  )T

nO o o o=  can 

be obtained to rank alternatives from the best to the worst one, where 

io j=                                 (15) 

if iEV  is the jth largest value in 
1 2{ , ,  ...,  }nEV EV EV . 

We can get the collective preference ordering from 
( )groupV  applying Eq. (15), which is denoted 

as 
( ) ( ) ( ) ( )

1 2( ,  ,  ...,  )group group group group T

nO o o o= . In addition, the preference ordering derived from 
( )kV  

is denoted as 
( ) ( ) ( ) ( )

1 2( ,  ,  ...,  )k k k k T

nO o o o= , which will be used for detecting some types of 

non-cooperative behaviors. 

Example 6: Let the attribute weight vector be (0.3,  0.4,  0.3)Tw = . Employing Eq. (14) 

yields 
1 0.542EV = , 

2 0.735EV = , and 
3 0.601EV = . Further, the preference ordering over the 

three alternatives is produced, that is (3,  1,  2)TO = . 

In the following, we present a flowchart and an algorithm to describe the SNA-based CRP. 

Individual multiple 
attribute decision 

matrices

Collective multiple 
attribute decision 

matrix

Social trust network 

among experts

Consensus level (cl)

Aggregation

(Eq. (12))

Consensus measure

(Eq. (11))
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Assign weights

(Eq. (18))

Suggestions to 
modify individual 
multiple attribute 
decision matrices

Preference ordering 

over alternatives

Generate suggestions 
to modify individual 

preferences (Eq. (13))

Non-cooperative 
behaviors analysis

(Eqs. (17),(21),(24))
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Yes

No

Suggestions to 
modify social trust 

network

Use the analysis 
results to yield 

suggestions to modify 
social trust network

Selection process 

(Eq. (15))

 
Fig. 4. Flowchart of the proposed SNA-based consensus framework 

 

Table 4: SNA-based consensus reaching algorithm 

Input: 
( ) ( )( )k k

ij n lV v =  ( 1,  2,  ...,  )k m= , ( )ij m mS s = , 1 2( , ,..., )T

lw w w w= ,  , and max 1z  . 

Output: The adjusted decision matrices 
( ) ( )( )k k

ij n lV v =  ( 1,  2,  ...,  )k m= , the adjusted sociometric 

( )ij m mS s = , the number of iterations Z , and the final collective preference ordering 
( )cO =  

( ) ( ) ( )

1 2( ,  ,  ...,  )c c c T

no o o . 

Step 1: Let 0z = , 
( , ) ( )k z kV V= . Applying the trust propagation and aggregation method, we can 

estimate the unknown trust values, and they are used as references for constructing complete sociometric. 

The complete sociometric is denoted as 
( ) ( )( )z z

ij m mS s =  ( 1,  2,  ...,  )k m= . 

Step 2: Apply Eq. (8) to generate the experts’ weights 1, 2, ,( ,  ,  ...,  )T

z z z m z   = , where 
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( )

1, 

, ( )

1 1, 

m z

iki i k

k z m m z

ikk i i k

s

s
 = 

= = 

=


 
. 

Step 3: Using Eq. (11) provides the consensus level among experts zcl . If 
zcl 

 
or 

maxz z , go 

to Step 6; otherwise, continue with the next step. 

Step 4: Employing Eq. (12) yields the collective decision matrix ( , ) ( , )( )c z c z

ij n lV v = , where 

( , ) ( , )

,1

mc z k z

ij k z ijk
v v

=
= . When constructing ( , 1) ( , 1)( )k z k z

ij n lV v+ +

=  ( 1,  2,  ...,  )k m= , experts are advised to 

adjust their preferences, such that  ( , 1) ( , ) ( , ) ( , ) ( , )[min( , ),max( , )]k z k z c z k z c z

ij ij ij ij ijv v v v v+  . 

Step 5: The non-cooperative behavior analysis module is conducted to analyze the behaviors of the 

experts. Based on this, experts update their trust relationships. As a result, a new sociometric is 

constructed, which is denoted as ( 1) ( 1)( )z z

ij m mS s+ +

=  ( 1,  2,  ...,  )k m= . 

Let 1z z= + , then go to Step 2. 

Step 6: Let 
( ) ( , )k k zV V= , 

( )zS S= , and Z z= . Based on Eq. (12), the final collective decision matrix 

( )cV  can be generated from 
(1) (2) ( ){ ,  ,  ...,  }mV V V . Applying selection process offers the final collective 

preference ordering 
( )cO  from 

( )cV . Output the adjusted decision matrices 
( ) ( )( )k k

ij n lV v = , the 

sociometric ( )ij m mS s = , the number of consensus rounds Z , and the final collective preference ordering 

( )cO . 

 

4. Non-cooperative behavior analysis 

In the CRP, it is common that some experts adopt non-cooperative behaviors to further their 

own interests. In this section, several common non-cooperative behaviors of experts are analyzed 

in detail. 

Let ( , ) ( , )( )k z k z

ij n lV v =  be a decision matrix given by the expert ke  in consensus round z , and 

let 
( , ) ( , )( )c z c z

ij n lV v =  be the collective decision matrix in consensus round z . In the following, we 

define three types of non-cooperative behaviors: dishonest, disobedient, and divergent behaviors. 

(1) Dishonest behavior 

In the CRP, it is not unusual that some experts will give opinions or preferences regarding 

alternatives dishonestly. In particular, the evaluation on the alternatives that are preferred by the 

group may be systematically decreased by an expert in the CRP, which is a common dishonest 

behavior.  

The basic idea to identify a dishonest behavior is below:  

The most preferred alternatives of the group are firstly identified. Then, the similarity level 

between each individual and the group is calculated regarding these identified alternatives. If the 

similarity level of an expert is small enough, then this expert exhibits a dishonest behavior.  

Following this idea, the dishonest behavior is formally defined below. 

Definition 2: The preference ordering 1 2( ,  ,  ...,  )T

nO o o o=  can be equally represented using 

a matrix ( )ij n nT t = , where 
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1,   

0,   

0.5,

i j

ij i j

i j

o o

t o o

o o

 


= 


=

. 

Let 1, 2, ,( ,  ,  ...,  )T

z z z n zY y y y=  be a vector, where , 1i zy =  if ix  is among the most preferred 

alternatives by the group at round z; otherwise , 0i zy = . Without loss of generality, zY  can be 

obtained using the following assignment: 

( , )

,

1,  ( )

0,

group z

i

i z

if o round n
y

otherwise

  
= 


,                       (16) 

where 
( , )group z

io  is the group ranking position of alternative 
ix  in consensus round z , and 

[0,  1]   is a parameter to distinguish the most preferred alternatives by the group (the lower its 

value, the more restrictively the parameter behaves) and round is the usual rounding operator. 

Let 
( , ) ( , ) ( , ) ( , )

1 2( ,  ,  ...,  )k z k z k z k z T

nO o o o=  be the preference ordering associated with respect to ke  

in consensus round z . Let 
( , ) ( , ) ( , ) ( , )

1 2( ,  ,  ...,  )group z group z group z group z T

nO o o o=  be the group preference 

ordering in consensus round z , where ( , )group z

io  is the group ranking position alternative 
ix . Let 

( , ) ( , )( )k z k z

ij n nT t =  and ( , 1) ( , 1)( )group z group z

ij n nT t− −

=  be two matrices generated from ( , )k zO  and 

( , 1)group zO − , respectively, according to Definition 2. 

Let 

( , ) ( , 1)

, 11 1,( , )

1

, 11

| |
1

( 1)

n n k z group z

i z ij iji j j ik z

n

i zi

y t t
NS

n y

−

−= = 

−=

−
= −

−

 


.                   (17) 

Clearly, 
( , )

1 [0,1]k zNS  . A smaller 
( , )

1

k zNS  value is deemed a stronger indicator that a higher 

probability of expert ke  exhibits dishonest behavior. Let 1  1( [0,1])   be a parameter, 

which is utilized to ascertain whether an expert features the dishonest behavior. If 
( , )

1 1

k zNS  , we 

infer that expert ke  exhibits a dishonest behavior in consensus round z . 

Below, an example, i.e., Example 7, is presented for better understanding the identification 

of dishonest behaviors. 

Example 7: Let (1, 1) (1, 1)

6 3( )z z

ijV v− −

=  be the decision matrix provided by expert 1e  in 

consensus round 1z − , and let ( , 1) ( , 1)

6 3( )group z group z

ijV v− −

=  be the collective decision matrix in 

consensus round 1z − . (1, 1)zV −  and ( , 1)group zV −  are provided below: 

Table 5: 
(1, 1)zV −

 and 
( , 1)group zV −

 in Example 7 

 (1, 1)zV −
 

 ( , 1)group zV −
 

 1a  
2a  

3a   1a  
2a  

3a  

1x  0.3 0.4 0.5  0.5 0.6 0.7 

2x  0.6 0.75 0.5  0.8 0.85 0.68 

3x  0.5 0.45 0.35  0.7 0.65 0.55 

4x  0.45 0.55 0.6  0.8 0.75 0.82 

5x  0.55 0.4 0.6  0.9 0.65 0.8 

6x  0.45 0.45 0.6  0.65 0.65 0.8 

Suppose that expert 1e  expresses his/her adjusted decision matrix (1, )zV  as: 
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Table 6: 
(1, )zV  in Example 7 

 1a  
2a  

3a  

1x  0.48 0.58 0.7 

2x  0.75 0.8 0.6 

3x  0.68 0.65 0.53 

4x  0.47 0.56 0.62 

5x  0.6 0.5 0.65 

6x  0.6 0.65 0.75 

Applying Eq. (15) yields the preference ordering 
( , 1) (6,  3,  5,  1,  2,  4)group z TO − =  from 

( , 1)group zV −
. When setting 0.3 = , we have 1 (0,  0,  0,  1,  1,  0)T

zY − = . Meanwhile, according to Eq. 

(15), we have 
(1, ) (4,  1,  3,  6,  5,  2)z TO = . Further, we can obtain 

(1, )

2 0zNS = , according to Eq. 

(17).  

In this example, if we set 1 0.5 = , we will infer that expert 1e  shows a dishonest behavior 

because 
(1, )

1 1

zNS  , because despite having updated preferences towards the collective opinion, 

the least preferred alternatives by the group have been adjusted more strongly. This intuitively 

affects the updated preference ordering O(1,z). 

(2) Disobedient behavior 

To achieve the predefined consensus level among experts, experts are required to change 

their preferences or opinions according to the suggestions generated from the feedback adjustment 

process. However, to pursue their interests, some experts may modify their preferences or 

opinions to a very low extent, or even in the opposite direction as recommended. In this paper, this 

type of behavior is referred as disobedient behavior. 

The basic idea to identify a disobedient behavior is below: 

Firstly, the actual adjustment distance of each expert in the CRP is computed. Then, the total 

adjustment distance of each expert to achieve a full consensus is generated. Next, the adjustment 

proportion to which each expert changes his/her opinions and shifts them closer to consensus, 

based on the suggestion received, is produced. If the adjustment proportion of an expert is smaller 

than an expected minimum value, then this expert exhibits a disobedient behavior.  

In the following, we formally define disobedient behavior. 

Let 

( , ) ( , 1) ( , ) ( , 1) ( , 1) ( , 1) ( , 1)

( , ) ( , 1) ( , 1) ( , 1) ( , ) ( , 1)

( , ) ( , -1)

| |,    if [min( , ),  max( , )]

,       if    

k z k z k z k z group z k z group z

ij ij ij ij ij ij ij

k z k z k z group z k z k z

ij ij ij ij ij ij

k z k z

ij ij

v v v v v v v

v v v v and v v

f v

− − − − −

− − − −

− 

−  

= − ( , ) ( , 1) ( , 1) ( , ) ( , 1)

( , 1) ( , ) ( , 1) ( , 1) ( , ) ( , 1)

( , ) ( , 1) ( , 1) (

,        if    

,   if    

,   if  

k z k z group z k z k z

ij ij ij ij ij

group z k z k z group z k z group z

ij ij ij ij ij ij

k z group z k z gro

ij ij ij ij

v v v and v v

v v v v and v v

v v v v

− − −

− − − −

− −

 

−  

−  , 1) ( , ) ( , 1)  up z k z group z

ij ijand v v− −












,     (18) 

where ( , )k z

ijf  reflects the situation that the expert ke  modifies his/her preference value regarding 

the alternative ix  with respect to attribute ja . In particular, this indicates that the expert 

modifies his/her preference value in the opposite recommended direction if ( , ) 0k z

ijf  . 

Let 
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( , ) ( , )

1 1

n l
k z k z

ij

i j

AD f
= =

=                          (19) 

and 

( , ) ( , 1) ( , 1)

1 1

| |
n l

k z k z group z

ij ij

i j

D v v− −

= =

= −                      (20) 

where ( , )k zAD  signifies the total adjustment distance of expert ke  with respect to all of the 

elements ijv  ( 1,2,..., ;  1,2,..., )i n j l= = , and ( , )k zD  represents the total adjustment distance of 

expert ke  to achieve a full consensus on all of the elements ijv  ( 1,2,..., ;  1,2,..., )i n j l= = . 

Let 
( , )

( , )

2 ( , )

k z
k z

k z

AD
NS

D
= .                               (21) 

The value of 
( , )

2

k zNS  signifies the adjustment proportion to which expert ke  changes 

his/her opinions and brings them closer to consensus, based on the suggestions received. Clearly, a 

smaller 
( , )

2

k zNS  value stands for a stronger indicator that expert ke  exhibits disobedient 

behavior. Let 2  2( [0,1])   be a parameter, which is used to check whether an expert features 

the disobedient behavior. If 
( , )

2 2

k zNS  , we infer that expert ke  meets the feature of the 

disobedient behavior in consensus round z . 

Example 8: Let (1, 1) (1, 1)

3 3( )z z

ijV v− −

=  be the decision matrix provided by expert 1e  in 

consensus round 1z − , and let ( , 1) ( , 1)

3 3( )group z group z

ijV v− −

=  be the group decision matrix in 

consensus round 1z − . (1, 1)zV −  and ( , 1)group zV −  are provided below: 

Table 7: 
(1, 1)zV −

 and 
( , 1)group zV −

 in example 8 
 ( , 1)k zV −

 
 ( , 1)group zV −

 

 1a  
2a  

3a   1a  
2a  

3a  

1x  0.7 0.5 0.55  0.55 0.65 0.65 

2x  0.8 0.65 0.62  0.55 0.75 0.5 

3x  0.85 0.72 0.9  0.65 0.9 0.65 

We assume that expert 1e  provides the adjusted decision matrix 
(1, )zV  as follows: 

Table 8: 
(1, )zV in example 8 

 1a  
2a  

3a  

1x  0.6 0.55 0.5 

2x  0.9 0.68 0.52 

3x  0.68 0.88 0.7 

Applying Eq. (18) yields 
(1, )

11 0.1zf = , 
(1, )

12 0.05zf = , 
(1, )

13 0.05zf = − , 
(1, )

21 0.1zf = − , 

(1, )

22 0.03zf = , 
(1, )

23 0.1zf = , 
(1, )

31 0.17zf = , 
(1, )

32 0.16zf =  and 
(1, )

33 0.2zf = . Applying Eqs. (19) and (20) 

yields (1, ) 0.66zAD =  and (1, ) 1.5zD = , respectively. Further, utilizing Eq. (21) leads to 

(1, )

2 0.44zNS = . 

Here, if we set 2 0.5 = , we will infer that expert 1e  moderately exhibits a disobedient 
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behavior pattern, because 
(1, )

2 2

zNS  . 

(3) Divergent behavior 

In the CRP, experts’ preferences or opinions will achieve a consensus if they change their 

decision matrices according to the suggestion of feedback adjustment. However, an expert’s 

decision matrix may diverge from the remainder of the experts. In this paper, this type of behavior 

is referred as divergent behavior. 

The basic idea to define divergent behavior is below: 

The distances between all pairs of experts are computed. If the distance between two experts 

is small enough, then they are considered as neighbors. Following this, the neighbors of each 

expert can be identified. If an individual has fewer neighbors, that is to say, the proportion of 

his/her neighbors is too small, then this expert exhibits divergent behavior. 

In the following, we formally define divergent behavior. 

Let 

( , ) ( , )

( ) 1, ( , )

0,

i z j z

z

ij

d V V
d

otherwise

 
= 


                        (22) 

where [0,  1]   is a parameter, and 
( , ) ( , )( , )i z j zd V V  is computed by: 

( , ) ( , ) ( , ) ( , )

1 1

1
( , ) | |

n l
i z j z i z j z

pq pq

p q

d V V v v
n l = =

= −

 .                 (23) 

Clearly, 
ie  and je  are neighbors if ( ) 0z

ijd = . 

Let 

( , ) ( )

3

1

1
=1

1

m
k z z

kj

j

NS d
m =

−
−
                            (24) 

Clearly, ( , )

3 [0,  1]k zNS   reflects the proportion of neighbors associated with ke . Let 3  

3( [0,1])   be the predefined parameter to check divergent behavior. If 
( , )

3 3

k zNS  , we infer 

that expert ke  meets the feature of the divergent behavior. 

Example 9: Let 
(1, )zV  be as in Example 8. Let 

(2, )zV , 
(3, )zV  and 

(4, )zV  be three 

decision matrices associated with experts 2e , 3e , and 4e , respectively, in consensus round z , 

which are listed in Table 9. 

Table 9: Decision matrices 
( , )k zV  ( 2,  3,  4)k = in Example 9 

 (2, )zV   (3, )zV   (4, )zV  

 1a  
2a  

3a   1a  
2a  

3a   1a  
2a  

3a  

1x  0.65 0.6 0.55  0.63 0.59 0.52  0.2 0.25 0.9 

2x  0.85 0.72 0.5  0.88 0.7 0.55  0.45 0.4 0.95 

3x  0.65 0.9 0.68  0.7 0.85 0.72  0.92 0.23 0.4 

Based on Eq. (23), we can obtain that 
(1, ) (2, )( , ) 0.037z zd V V = , 

(1, ) (3, )( ,  ) 0.034z zd V V = , 
(1, ) (4, )( ,  ) 0.383z zd V V = , 

(2, ) (3, )( ,  ) 0.033z zd V V = , 
(2, ) (4, )( ,  ) 0.393z zd V V = , and 

(3, ) (4, )( ,  ) 0.382z zd V V = . When setting 0.35 = , we have 
(1, )

3 2 3zNS = , 
(2, )

3 2 3zNS = , 
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(3, )

3 2 3zNS = , and 
(4, )

3 0zNS = , according to Eq. (24). If we set 3 0.6 = , then we will infer that 

expert 4e  exhibits a divergent behavior because 
(4, )

3 30zNS =  . 

Note 1: The parameter   utilized in Eq. (16) is used to distinguish the most preferred 

alternatives by the group when analyzing the dishonest behavior, and parameter   appeared in 

Eq. (22) is used a threshold to judge whether the diverge degree between two experts is large 

enough when analyzing the divergent behavior. The parameters 1 , 2 , and 3  are used as 

thresholds to deduce whether experts’ behaviors satisfy the characteristics of being dishonest, 

disobedient, and divergent behaviors, respectively. Smaller 1 , 2 , and 3  values indicate the 

stricter criteria to deduce dishonest, disobedient, and divergent behaviors, respectively. According 

to the specific decision problem and situation at hand, the experts can set  ,  , 1 , 2 , and 

3  values. When using the appropriate parameter settings in a given situation, the proposed 

consensus framework is effective for managing non-cooperative behaviors, as shown in the 

following simulation experiments and comparison analysis. 

Note 2: The proposed consensus reaching framework is a general consensus reaching 

framework, characterized by its ability for dealing with different types of non-cooperative 

behaviors. The main reason to define the above different types of non-cooperative behaviors is to 

provide quantitative indexes to analyze the experts’ non-cooperative behaviors, which will provide 

a decision support for experts to modify their trust values regarding other experts in the social trust 

network. The three types of non-cooperative behaviors are focused on different aspects: (1) 

dishonest behavior analysis is focused on whether the evaluation of the alternatives that are 

preferred by the group is systematically decreased by an expert in the CRP, (2) disobedient 

behavior analysis is focused on whether an expert modify their preferences or opinions to a very 

low extent, or even in the opposite recommended direction, (3) divergent behavior analysis is 

focused on whether an expert’s preference diverges from remainder of the experts as the CRP 

progresses. It should be noted that in some situations, an expert may have multiple types of 

non-cooperative behaviors, and in this situation our consensus reaching framework is still valid to 

effectively identify and manage such behaviors.  

 

5. Illustrative example 

To show the applicability of the SNA-based consensus reaching framework in a real-life 

MAGDM problem, an illustrative example is provided in this section. In this example, we assume 

that a set of eight experts 1 2 8{ ,  ,  ...,  }E e e e= , a set of four alternatives 1 2 3 4{ ,  ,  ,  }X x x x x= , and a 

set of four attributes 1 2 3 4{ ,  ,  ,  }A a a a a=  are involved. Here, we assume that all criteria are 

equally important, i.e. (0.25,  0.25,  0.25,  0.25)Tw = . The decision matrices 
( ) ( )

4 4( )k k

ijV v =  

( 1,  2,  ...,  8)k =  provided by experts ke  are listed in Tables 10-13.  

Table 10: Decision matrices 
(1)V  and 

(2)V  

 (1)V   (2)V  

 
1a  2a  3a  4a   

1a  2a  3a  4a  

1x  0.587 0.447 0.172 0.493  0.375 0.573 0.299 0.296 

2x  0.616 0.557 0.865 0.374  0.1 0.253 0.12 0.394 
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3x  0.591 0.951 0.439 0.221  0.346 0.585 0.156 0.078 

4x  0.237 0.689 0.377 0.757  0.832 1 0.699 0.598 

Table 11: Decision matrices 
(3)V  and 

(4)V  

 (3)V   (4)V  

 
1a  2a  3a  4a   

1a  2a  3a  4a  

1x  0.202 0.017 0.396 0.534  0.032 0.693 0.73 0.469 

2x  0.858 0.852 0.498 0.095  0.087 0.929 0.449 0.757 

3x  0.615 0.149 0.67 0.824  0.245 0.116 0.442 0.334 

4x  0.239 0.332 0.661 0.061  0.983 0.141 0.828 0.511 

Table 12: Decision matrices 
(5)V  and 

(6)V  

 (5)V   (6)V  

 
1a  2a  3a  4a   

1a  2a  3a  4a  

1x  0.81 0.937 0.084 0.625  0.58 0.365 0.026 0.074 

2x  0.338 0.507 0.014 0.309  0.478 0.94 0.479 0.402 

3x  0.235 0.061 0.749 0.643  0.091 0.913 0.962 0.105 

4x  0.815 0.424 0.957 0.831  0.784 0.659 0.571 0.396 

Table 13: Decision matrices 
(7)V  and 

(8)V  

 (7)V   (8)V  

 
1a  2a  3a  4a   

1a  2a  3a  4a  

1x  0.837 0.837 0.174 0.597  0.277 0.465 0.116 0.002 

2x  0.837 0.259 0.455 0.149  0.526 0.703 0.978 0.915 

3x  0.039 0.188 0.443 0.275  0.716 0.857 0.848 0.657 

4x  0.56 0.026 0.368 0.902  0.493 0.28 0.094 0.215 

Meanwhile, the social trust network among the eight experts is as follows: 

6e

1e

2e

8e

7e

4e
5e

3e

 

The sociometric, S , associated with the social trust network is provided below: 

0.92 0.95 0.86

0.95 0.85 0.9

1 1

0.95 0.9

0.94 0.93 0.95

0.93 0.98

0.96 0.87 0.94

0.87 0.92

S

− − − − − 
 

− − − − − 
 − − − − − −
 
− − − − − − 

=  − − − − −
 

− − − − − − 
 
− − − − − 

 − − − − − − 

. 

In this example, we set 0.9 = . In the following, we use the proposed consensus reaching 
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model to help the eight experts achieve a consensus. 

(1) In the initial stage of the CRP, the trust propagation and aggregation method presented in 

section 2 is adopted to help experts produce a complete sociometric, CS , from S . Meanwhile, 

the weight vector of the eights experts, 1 2 8( , ,..., )T   = , is generated from CS . Further, the 

consent level among the eight experts, cl , is yielded. If the consensus level is acceptable, the 

selection process is used to help experts obtain the preference ordering of the four alternatives, 

otherwise, the first round of the CRP is initiated. 

(i) Generating complete sociometric 

In the trust aggregation process, the OWA operator with the linguistic quantifier “most” is 

used to fuse the trust values in different trust paths, and the trust paths with the length larger than 

or equal to 4 are not taken into account. By using the trust propagation and aggregation method, 

the unknown trust values in S  can be estimated, which are listed in the matrix ES . 

0.92 0.95 0.86

0.95 0.85 0.9

1 1

0.95 0.9

0.94 0.93 0.95

0.93 0.98

0.9

ES

−

−

−

−
=

−

−

0.795 0.763 0.835 0.78

0.75 0.771 0.76 0.84

0.95 0.86 0.81 0.777 0.94

0.831 0.808 0.82 0.845 0.87

0.814 0.869 0.831 0.85

0.851 0.792 0.814 0.821 0.92

0.793 0.811 0.8 6 0.87 0.94

0.87 0.92

 
 
 
 
 
 
 
 
 
 

− 
 − 

0.77

0.821 0.87 0.74 0.79 0.783

. 

The matrix ES  is used as the reference point for experts to construct a complete 

sociometric, CS , which is provided below: 

0.92 0.82 0.95 0.78 0.86 0.84 0.8

0.95 0.75 0.85 0.9 0.8 0.75 0.8

0.95 1 0.85 0.81 0.82 0.92 1

0.83 0.82 0.82 0.95 0.9 0.85 0.9

0.82 0.88 0.94 0.93 0.83 0.85 0.95

0.93 0.84 0.82 0.85 0.82 0.98 0.92

0.81 0.8 0.8 0.96 0.87 0.77 0.94

0.83 0.87

CS

−

−

−

−
=

−

−

−

0.87 0.82 0.75 0.81 0.92

 
 
 
 
 
 
 
 
 
 
 
 − 

. 

(ii) Producing the weights of the eight experts 

Using the method presented in section 2.4, we can obtain the weights of the eight experts 

from CS . Specifically, Eq. (7) is first used to generate the node in-degree centrality indexes (i.e., 

1( )C e  ,…, 
8( )C e ) of the eight experts. Further, based on Eq. (8), the weights of experts can be 

yielded from the obtained in-degree centrality indexes of the eight experts, which are 1 0.127 = , 

2 0.127 = , 3 0.12 = , 4 0.128 = , 5 0.122 = , 6 0.12 = , 7 0.126 = , and 8 0.13 = . 

(iii) Consensus measure 

Applying the consensus measure method proposed in section 3.2, the consensus level among 

the eight experts can be produced. First, the consensus matrix ( )ij n nCM cm =  can be produced 

from 
(1)V -

(8)V  based on Eq. (10). Then, the consensus level on the preference value ijv  is 

obtained using formula ij ijcp cm= . Following this, the consensus level on alternative ix  can be 

yielded based on formula 
1

l

i ijj
ca cm l

=
= . Finally, the consensus level among the eight experts 
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can be generated based on the formula 
1

n

ii
cl ca n

=
= , which is 0.66cl = . 

Due to 0.66cl =  , the first consensus round is initiated to assist experts to achieve a 

consensus. 

(2) First consensus round 

In the first consensus round, the feedback suggestions for decision matrices modifying are 

yielded. Based on them, the new decision matrices 
( , 1)kV  associated with 

( )kV  ( 1,2,...,8)k =  

are provided. Moreover, in this consensus round, the sociometric remains unchanged. Following 

this, the consensus level among the eight experts is measured. If the consensus level is acceptable, 

the selection process is used to help experts obtain the preference ordering of alternatives, 

otherwise, the second round of the CRP is activated. 

(i) Feedback process for decision matrices modifying 

The group decision matrix, 
( )groupV , can be generated using Eq. (12), which is listed in Table 

14. 

Table 14: Decision matrix 
( )groupV  

 
1a  2a  3a  4a  

1x  0.46 0.544 0.252 0.385 

2x  0.478 0.623 0.486 0.43 

3x  0.362 0.480 0.585 0.391 

4x  0.618 0.442 0.566 0.535 

Let 
( ,1) ( ,1)

4 4( )k k

ijV v =  be the updated decision matrix associated with 
( ) ( )

4 4( )k k

ijV v = . 

When providing 
( ,1) ( ,1)

4 4( )k k

ijV v = , we advise that: ( ,1) ( ) ( ) ( ) ( )[min{ , },  max{ , }]k k group k group

ij ij ij ij ijv v v v v . 

With the guidance of adjustment suggestions, the experts expressed their adjusted decision 

matrices 
( ,1) ( ,1)

4 4( )k k

ijV v =  ( 1,2,...,8)k = , which are shown in Tables 13-16: 

Table 15: Decision matrices (1, 1)V  and (2, 1)V  

 (1, 1)V   (2, 1)V  

 
1a  2a  3a  4a   

1a  2a  3a  4a  

1x  0.6 0.4 0.4 0.45  0.4 0.55 0.27 0.3 

2x  0.7 0.57 0.7 0.4  0.25 0.4 0.35 0.4 

3x  0.7 0.45 0.44 0.25  0.35 0.5 0.42 0.25 

4x  0.7 0.6 0.5 0.7  0.7 0.7 0.62 0.54 

Table 16: Decision matrices 
(3, 1)V  and 

(4, 1)V  

 (3, 1)V   (4, 1)V  

 
1a  2a  3a  4a   

1a  2a  3a  4a  

1x  0.3 0.25 0.35 0.4  0.25 0.6 0.5 0.4 

2x  0.65 0.7 0.49 0.3  0.3 0.75 0.46 0.65 

3x  0.42 0.25 0.6 0.54  0.3 0.23 0.5 0.35 

4x  0.35 0.35 0.65 0.5  0.85 0.35 0.7 0.52 

Table 17: Decision matrices 
(5, 1)V  and 

(6, 1)V  
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 (5, 1)V   (5, 1)V  

 
1a  

2a  
3a  

4a   
1a  

2a  
3a  

4a  

1x  0.62 0.65 0.15 0.4  0.48 0.45 0.24 0.25 

2x  0.42 0.55 0.3 0.35  0.478 0.8 0.482 0.41 

3x  0.28 0.38 0.65 0.42  0.25 0.75 0.75 0.12 

4x  0.72 0.43 0.8 0.75  0.7 0.55 0.57 0.45 

Table 18: Decision matrices 
(7, 1)V  and 

(8, 1)V  

 (7, 1)V   (8, 1)V  

 
1a  

2a  
3a  

4a   
1a  

2a  
3a  

4a  

1x  0.5 0.6 0.23 0.45  0.35 0.49 0.18 0.3 

2x  0.55 0.4 0.46 0.35  0.48 0.63 0.5 0.44 

3x  0.3 0.35 0.55 0.35  0.45 0.55 0.7 0.52 

4x  0.5 0.1 0.39 0.55  0.6 0.42 0.55 0.53 

(ii) Feedback process for sociometric modification 

Let 1S  be sociometric in this first consensus round. We have that 1S CS= . 

(iii) Generating the weights of the eight experts 

Eq. (8) is employed to generate the weights of experts from 1S : 

1 (0.127,  0.127,  0.12,  0.128,  0.122,  0.12,  0.126,  0.13)T = . 

(iv) Consensus measure 

Employing Eq. (11) offers the consensus level among experts 1 0.844cl = . 

Due to 
1 0.844cl =  , the second consensus round is activated to assist experts to improve 

the consensus level. 

(3) Second consensus round 

In this consensus round, the approach for analyzing non-cooperative behaviors is used to 

analyze the behaviors of the eight experts. Based on the analysis results, a new sociometric, 2S , is 

provided by the experts. Meanwhile, the feedback process for decision matrices modifying is used 

to help experts providing new decision matrices ( , 2)kV  ( 1,2,...,8)k = . Meanwhile, the consensus 

level is generated from 
( , 2)kV  ( 1,2,...,8)k = . If the consensus level is acceptable, the selection 

process is used to help experts obtain a preference ordering over the alternatives, otherwise, the 

third round of CRP is activated. 

(i) Non-cooperative behaviors analysis 

By setting 0.3 = , 0.18 = , the non-cooperative behaviors in the previous consensus 

rounds are analyzed. The results are listed in Table 19. 

Table 19: Non-cooperative behaviors indexes 

 
1e  2e  3e  4e  5e  6e  7e  8e  

( )

1,1

kNS  1 1 0.8 1 1 1 0 0.8 

( )

2,1

kNS  0.011 0.529 0.551 0.481 0.582 0.494 0.615 0.807 

( )

3,1

kNS  0.714 0.857 0.571 0.857 1 0.857 1 1 
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Here, we set 1 0.5 = , 2 0.45 = , and 
3 0.5 = . Due to 

(7)

1,1 1NS   and 
(1)

2,1 2NS  , we 

infer that expert 7e  has the feature of dishonest behavior, and 1e  has the characteristic of 

disobedient behavior.  

(ii) Feedback process for sociometric modifying 

Due to experts 1e  and 7e  having non-cooperative behaviors, the trust values towards 1e  

and 7e  in the social trust network are suggested to be decreased. After updating their trust values, 

the experts provide the adjusted sociometric provided below: 

2

0.92 0.82 0.95 0.78 0.86 0.8 0.8

0.85 0.75 0.85 0.9 0.8 0.7 0.8

0.8 1 0.85 0.81 0.82 0.85 1

0.75 0.82 0.82 0.95 0.9 0.7 0.9

0.76 0.88 0.94 0.93 0.83 0.85 0.95

0.87 0.84 0.82 0.85 0.82 0.88 0.92

0.75 0.8 0.8 0.96 0.87 0.77 0.94

0.76 0.87 0.87

S

−

−

−

−
=

−

−

−

0.82 0.75 0.81 0.8

 
 
 
 
 
 
 
 
 
 
 
 − 

. 

(ii) Feedback process for decision matrices modifying 

Utilizing Eq. (12) generates the collective decision matrix 
( ,1)cV , which is provided in Table 

20: 

Table 20: Decision matrix 
( , 1)cV  

 
1a  2a  3a  4a  

1x  0.436 0.5 0.291 0.369 

2x  0.477 0.599 0.468 0.414 

3x  0.383 0.432 0.575 0.351 

4x  0.641 0.437 0.596 0.568 

Let ( , 2) ( , 2)

4 4( )k k

ijV v =  be the updated decision matrix associated with 
( ,1) ( ,1)

4 4( )k k

ijV v = . 

When providing 
( , 2)kV , we suggest that: ( ,2) ( ,1) ( ,1) ( ,1) ( ,1)[min{ , },  max{ , }]k k group k group

ij ij ij ij ijv v v v v . 

The adjusted decision matrices 
( , 2) ( , 2)

4 4( )k k

ijV v =  ( 1,2,...,8)k =  given by experts are as 

follows: 

Table 21: Decision matrices 
(1, 2)V  and 

(2, 2)V  

 (1, 2)V   (2, 2)V  

 
1a  2a  3a  4a   

1a  2a  3a  4a  

1x  0.55 0.42 0.37 0.4  0.42 0.53 0.29 0.345 

2x  0.65 0.58 0.68 0.4  0.4 0.53 0.44 0.41 

3x  0.68 0.44 0.48 0.3  0.37 0.45 0.53 0.32 

4x  0.68 0.62 0.52 0.68  0.66 0.55 0.6 0.55 

Table 22: Decision matrices 
(3, 2)V  and 

(4, 2)V  

 (3, 2)V   (4, 2)V  

 
1a  2a  3a  4a   

1a  2a  3a  4a  

1x  0.425 0.4 0.3 0.38  0.4 0.55 0.3 0.38 

2x  0.55 0.65 0.47 0.4  0.45 0.62 0.46 0.5 
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3x  0.4 0.4 0.59 0.45  0.35 0.39 0.55 0.35 

4x  0.63 0.4 0.62 0.53  0.7 0.4 0.61 0.54 

Table 23: Decision matrices 
(5, 2)V  and 

(6, 2)V  

 (5, 2)V   (6, 2)V  

 
1a  2a  3a  4a   

1a  2a  3a  4a  

1x  0.45 0.55 0.2 0.38  0.45 0.48 0.27 0.34 

2x  0.45 0.57 0.44 0.4  0.477 0.65 0.47 0.41 

3x  0.32 0.41 0.51 0.39  0.35 0.5 0.62 0.28 

4x  0.7 0.435 0.61 0.68  0.65 0.49 0.58 0.52 

Table 24: Decision matrices 
(7, 2)V  and 

(8, 2)V  

 (7, 2)V   (8, 2)V  

 
1a  2a  3a  4a   

1a  2a  3a  4a  

1x  0.5 0.52 0.29 0.37  0.4 0.5 0.25 0.34 

2x  0.48 0.45 0.465 0.39  0.48 0.6 0.47 0.42 

3x  0.35 0.4 0.565 0.35  0.39 0.45 0.62 0.42 

4x  0.4 0.25 0.45 0.55  0.62 0.43 0.57 0.55 

 

(iii) Generating the weights of the eight experts 

The weights of experts are derived from 2S  using Eq. (8), 
2 (0.117,  0.13,  0.123,  0.131, =  

0.124,  0.123,  0.118,  0.134)T . 

(iv) Consensus measure 

By applying Eq. (11), the consensus level in this consensus round can be obtained, 

2 0.932cl = . This indicates that the predefined consensus level among the eight experts has been 

reached. 

Finally, the selection process is adopted to find the collective ranking of alternatives, that is 

4 2 3 1x x x xf f f . 

6. Simulation and comparison analysis 

This section presents several simulation and comparison experiments to investigate the 

efficiency of the SNA-based CRP for dealing with the non-cooperative behaviors. 

 

6.1. The design of simulation methods 

In simulation methods, the initial multiple attribute decision matrices and sociometric 

associated with the social trust network are randomly generated. Then, we take them as the input 

of the proposed CRP, based on which we can obtain the consensus success ratio ( P ), the 

consensus rounds ( Z ), and the adjusted distance of experts’ multiple attribute decision matrices 

( AD ). We devise three simulation methods (i.e., simulation methods I-III) in the following. The 

three simulation methods are based on a natural hypothesis: if an expert is inferred as adopting 

non-cooperative behavior(s), the trust values towards her/him in the social trust network shall 
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decreased by other experts. 

(1) Simulation experiment I 

The basic idea of Simulation method I is provided below: 

If the expert 
ke  is deduced as using the dishonest behavior in the CRP, then based on the 

above hypothesis, other experts he  ( h k ) will decrease the trust values to expert ke . 

Simulation method I is described in Table 25. 

Table 25: Simulation method I 

Input: m , n , l ,  , maxz ,  , 1 ,   and g . 

Output: P , Z  and AD . 

Step 1: We randomly generate m  n l  decision matrices 
(1) ( ){ ,  ...,  }mV V

 
and a sociometric 

( )ij m mS s = , where ( )k

ijv  is randomly and uniformly generated from the interval [0,  1] , and ijs  is randomly 

and uniformly generated from the interval [0.9,  1] . 

Step 2: Let 0z = , ( , ) ( )k z kV V= . Using the propagation method presented in section 2.2, we can get a 

complete sociometric among experts ( ) ( )( )z z

ij m mS s =  ( 1,  2,  ...,  )k m= . 

Step 3: Use Eq. (8) to generate the experts’ weights 
1, 2, ,( ,  ,  ...,  )T

z z z m z   = , where 

( )

1, 

, ( )

1 1, 

m z

iki i k

k z m m z

ikk i i k

s

s
 = 

= = 

=


 
. 

Step 4: Applying Eq. (11) offers the consensus level, zcl . If zcl 
 

or maxz z , then go to Step 7; 

otherwise, continue with the next step. 

Step 5: If 0z = , then let 
( 1) ( )z zS S+ = ; otherwise, apply Eq. (17) to yield 

( , )

1

i zNS ( 1,2,.., )i m= . Based on 

the above hypothesis, if 
( , )

1 1

i zNS   ( 1)z  , then experts ke  ( 1,2,.., ,  )k m k i=   will reduce the trust 

values of expert ie . We assume that the updated sociometric 
( 1) ( 1)( )z z

ij m mS s+ +

=  ( 1)z   is given by the 

following way: 

(i) If 
( , )

1 1

i zNS  , then let 
( 1) ( )z z

ki kis s+ =  for 1,  2,  ...,  k m=  and k i . 

(ii) If 
( , )

1 1

i zNS  , then let 
( 1) ( )max( ,  0)z z

ki kis s + = −  for 1,  2,  ...,  k m=  and k i . 

Step 6: Employ Eq. (12) to provide the collective decision matrix ( , ) ( , )( )c z c z

ij n lV v = , where 

( , ) ( , )

,1

mc z k z

ij k z ijk
v v

=
= . Meanwhile, Eq. (16) is adopted to obtain 

zY . When constructing ( , 1) ( , 1)( )k z k z

ij n lV v+ +

=  

( 1,  2,  ...,  )k m= , the following two cases are considered. 

Case A: k g . Expert ke  gives ( , 1)k zV +  as below: 

(i) For 1,  2,  ...,  i n= , 1,  2, ...,  j l= , and , 0i zy = , then let 
( , 1) ( , ) ( , )(1 )k z k z c z

ij ij ijv v v + = − + , where the 

value of u  is selected from [0.15,  1] . 

(ii) For , 1i zy =  and 1,  2, ...,  j l= , then the value of 
( , 1)k z

ijv +
 is generated from [0,  1] ; 

Utilize Eq. (17) to offer 
( , 1)

1

k zNS +
. Repeat (i) and (ii) until 

( , 1)

1 1

k zNS +   ( )k g . 

Case B: g k m  . Here, the expert ke  provides ( , 1)k zV + , as follows: 

For 1,  2,  ...,  i n=  and 1,  2, ...,  j l= , then let 
( , 1) ( , ) ( , )(1 )k z k z c z

ij ij ijv v v + = − + , where the value of u  is 

produced from [0.15,  1] . 

Let 1z z= + , then go to Step 3. 

Step 7: Let 
( , 1) ( , )

1 1 1

1
| |

m n l
k z k z

ij ij

k i j

AD AD v v
m n l

+

= = =

= + −
 

 . 
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Step 8: If zcl  , then 1P = ; otherwise 0P = . Let Z z= . Output P , Z  and AD . 

(2) Simulation method II 

Similar to Simulation method I, Simulation method II is devised. In Simulation method II, if 

the expert 
ke  is deduced as adopting the disobedient behavior in the CRP, then other experts he  

( h k ) will reduce the trust values to expert ke . In Simulation method I, by replacing Input and 

Steps 5 and 6 with Input A and Steps 5-A and 6-A below, respectively, we then obtain simulation 

method II. 

Input A: m , n , l ,  , maxz , 
2 ,   and g . 

Step 5-A: If 0z = , then let 
( 1) ( )z zS S+ = ; otherwise, adopt Eq. (21) to yield 

( , )

2

i zNS ( 1,2,.., )i m= . 

If 
( , )

2 2

i zNS   ( 1)z  , then experts ke  ( 1,2,.., ,  )k m k i=   will reduce the trust values of expert 

ie . We assume the updated sociometric 
( 1) ( 1)( )z z

ij m mS s+ +

=  ( 1)z   is given using the following way: 

(i) If 
( , )

2 2

i zNS  , then let 
( 1) ( )z z

ki kis s+ =  for 1,  2,  ...,  k m=  and k i . 

(ii) If 
( , )

2 2

i zNS  , then let 
( 1) ( )max( ,  0)z z

ki kis s + = −  for 1,  ...,  k m=  and k i . 

Step 6-A: Employ Eq. (12) to yield the collective decision matrix ( , ) ( , )( )c z c z

ij n lV v = , where 

( , ) ( , )

,1

mc z k z

ij k z ijk
v v

=
= . When constructing ( , 1) ( , 1)( )k z k z

ij n lV v+ +

=  ( 1,  ...,  )k m= , two cases are taken into 

account. 

Case A: k g . Here, the expert ke  provides 
( , 1)k zV +

 as follows: 

For 1,  2,  ...,  i n=  and 1,  2, ...,  j l= , let a  and b  be two real numbers and they are randomly 

and uniformly generated from interval [0,  1] , (i) if 0.5a  , let 
( , 1) ( , ) ( , )(1 )k z k z c z

ij ij ijv v v + = − +  with the 

value of u  is uniformly and randomly selected from the interval 2[0,  ] , (ii) if 0.5a   and 

0.5b  , then 
( , 1)k z

ijv +
 is randomly and uniformly generated from interval 

( , ) ( , )[0,  min( ,  )]k z c z

ij ijv v , if 

0.5a   and 0.5b  , then 
( , 1)k z

ijv +
 is randomly and uniformly generated from interval 

( , ) ( , )[max( ,  ),  1]k z c z

ij ijv v . 

Case B: g k m  . Here, the expert ke  provides ( , 1)k zV + , as follows: 

For 1,  2,  ...,  i n=  and 1,  2, ...,  j l= , then let 
( , 1) ( , ) ( , )(1 )k z k z c z

ij ij ijv v v + = − + , where u  is produced 

from 2[ ,  1] . 

Let 1z z= + , then go to Step 3. 

 

(3) Simulation method III 

Simulation method III is designed to investigate whether the SNA-based consensus reaching 

framework can manage divergent behaviors, and the main idea of this simulation method is also 

similar to that of Simulation method I. In Simulation method III, if expert ke  is concluded as 

adopting a divergent behavior in the CRP, the trust values towards expert ke  in the social trust 

network will be reduced by other experts he  ( )h k . Specifically, Simulation method III can be 

yielded by replacing Input and Steps 5 and 6 with Input B and Steps 5-B and 6-B in Simulation 

method I, respectively. 
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Input B: m , n , l ,  , maxz , 
3 ,  ,   and g . 

Step 5-B: If 0z = , then let 
( 1) ( )z zS S+ = ; otherwise, utilize Eq. (24) to produce 

( , )

3

i zNS ( 1,2,.., )i m= . If 
( , )

3 3

i zNS   ( 1)z  , then experts ke  ( )k i  will reduce the trust values 

associated with the expert ie . Here, the updated sociometric 
( 1) ( 1)( )z z

ij m mS s+ +

=  ( 1)z   is built using the 

following approach: 

(i) If 
( , )

3 3

i zNS  , then let 
( 1) ( )z z

ki kis s+ =  for k i . 

(ii) If 
( , )

3 3

i zNS  , then let 
( 1) ( )max( ,  0)z z

ki kis s + = −  for 1,  2,  ...,  k m=  and k i . 

Step 6-B: Applying Eq. (12) produces the collective decision matrix ( , ) ( , )( )c z c z

ij n lV v = , where 

( , ) ( , )

,1

mc z k z

ij k z ijk
v v

=
= . When building ( , 1) ( , 1)( )k z k z

ij n lV v+ +

=  ( 1,  2,  ...,  )k m= , cases A and B are considered. 

Case A: g k m  . Expert ke  provides ( , 1)k zV + , as follows: 

For 1,  2,  ...,  i n=  and 1,  2, ...,  j l= , then 
( , 1)k z

ijv +
 is randomly and uniformly generated from interval 

( , ) ( , ) ( , ) ( , )[min( ,  ),  max( ,  )]k z c z k z c z

ij ij ij ijv v v v . 

Case B: k g . Here, expert ke  provides ( , 1) ( , 1)( )k z k z

ij n lV v+ +

=  as below: 

(i) For 1,  2,  ...,  i n=  and 1,  2, ...,  j l= , then 
( , 1)k z

ijv +
 is generated from [0,  1] . 

Use Eq. (24) to produce 
( , 1)

3

k zNS +
. Repeat (i) until 

( , 1)

3 3

k zNS +   ( )k g . 

Let 1z z= + , then go to Step 3. 

Note 3: In Simulation methods I-III, (1) the parameter   ( [0,  1])  represents the 

penalty coefficient, and the larger   value represents the larger the penalty strength; (2) the 

parameter g  represents the number of experts who take non-cooperative behaviors in the CRP, 

and the purpose of Steps 6, 6-A, and 6-B is to ensure that experts 1{ ,  ...,  }ge e  have dishonest, 

disobedient, and divergent behaviors, respectively. 

6.2. The design of comparison methods 

In the proposed SNA-based consensus reaching framework, the experts’ weights generated 

from the social trust network are dynamically updated and embedded into the CRP. However, in 

traditional CRPs with the social trust network (e.g., [53, 55]), the experts’ weights keep unchanged 

throughout the CRP. In particular, we omit Steps 6, 6-A, and 6-B from Simulation methods I-III , 

which yields three new methods denominated as Simulation methods I*- III* based on the 

traditional CRPs with social trust networks, respectively. Based on this, the consensus efficiency 

of the proposed SNA-based consensus reaching framework and the traditional CRPs under a 

social trust network will be compared. 

6.3. Simulation and comparison results 

Here, the simulation and comparison results are presented. 

Simulation method I, we fix max 5z = , 6n = , 5l = , 0.3 = , and 0.9 = . Then, we set 

different input parameters m , 1 ,  , and g , and we run simulation method I 1000 times to 

produce the average values of P , Z  and AD , respectively. The average P , z  and AD  

value, respectively, reflect the success ratio, the number of rounds required for achieving the 

established consensus level, and the amount of preference adjustment required in the simulation 

experiment. The average values of P , z  and AD , for Simulation method I under different 
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input parameters, are listed in Table 26. 

Table 26: Average values of P , Z  and AD  in Simulation method I 

  g=1  g=2  g=3 

  0.15 =   0.35 =   0.15 =   0.35 =   0.15 =   0.35 =  

m 1  P Z AD  P Z AD  P Z AD  P Z AD  P Z AD  P Z AD 

6 0.1 1 2.149 0.219  1 2.043 0.213  1 2.973 0.308  1 2.83 0.292  0.987 4.228 0.463  1 3.017 0.357 

 0.3 1 2.146 0.219  1 2.033 0.212  1 2.971 0.306  1 2.813 0.291  0.993 4.218 0.458  1 3.004 0.355 

                         9 0.1 1 2.003 0.209  1 2 0.208  1 2.43 0.252  1 2.229 0.234  1 2.989 0.313  1 2.865 0.3 

 0.3 1 2 0.209  1 2 0.209  1 2.408 0.25  1 2.166 0.236  1 2.972 0.313  1 2.861 0.301 

                         12 0.1 1 2 0.208  1 2 0.207  1 2.054 0.225  1 2.006 0.221  1 2.68 0.276  1 2.27 0.25 

 0.3 1 2 0.207  1 2 0.208  1 2.059 0.225  1 2.003 0.222  1 2.654 0.273  1 2.259 0.249 

In Simulation method II, we set max 5z = , 6n = , 5l = , and 0.9 = . We then run 

simulation method II 1000 times under different input parameters m , 2 ,  , and g  to get the 

average values of P , Z  and AD , which are listed in Table 27. 

Table 27: Average values of P , Z  and AD  in Simulation method II 

  g=1  g=2  g=3 

  0.15 =   0.35 =   0.15 =   0.35 =   0.15 =   0.35 =  

m 2  P Z AD  P Z AD  P Z AD  P Z AD  P Z AD  P Z AD 

6 0.2 1 3.062 0.269  1 2.875 0.256  0.176 5 0.458  1 3.454 0.341  0 5 0.561  1 4 0.451 

 0.4 1 2.377 0.252  1 2.036 0.232  0.72 4.969 0.481  1 3.001 0.329  0 5 0.593  1 4 0.475 

                         9 0.2 1 2.653 0.241  1 2.138 0.218  1 3.948 0.338  1 3 0.285  0.192 5 0.459  1 3.312 0.338 

 0.4 1 2.223 0.23  1 2.027 0.229  1 3.115 0.311  1 2.738 0.286  0.875 4.99 0.483  1 3 0.335 

                         12 0.2 1 2.073 0.215  1 2.055 0.211  1 3.01 0.275  1 2.981 0.271  1 4.252 0.368  1 3 0.296 

 0.4 1 2.065 0.229  1 2 0.228  1 2.341 0.258  1 2.002 0.241  1 3.672 0.355  1 2.994 0.312 

In Simulation method III, the parameters are fixed as max 5z = , 6n = , 5l = , 0.28 = , 

and 0.9 = . When setting different input parameters m , 3 ,  , and g  for Simulation 

method III, we run simulation method III 1000 times to obtain the average values of P , Z  and 

AD , which are listed in Table 28. 

Table 28: Average values of P , Z  and AD  in Simulation method III  

  g=1  g=2  g=3 

  0.15 =   0.35 =   0.15 =   0.35 =   0.15 =   0.35 =  

m 2  P Z AD  P Z AD  P Z AD  P Z AD  P Z AD  P Z AD 

6 0.2 1 4.009 0.429  1 3.221 0.343  0 5 0.772  1 4 0.617  0 5 1.04  1 4 0.815 

 0.4 1 4.008 0.427  1 3.203 0.343  0 5 0.772  1 4 0.618  0 5 1.04  1 4 0.816 

                         9 0.2 1 3.064 0.31  1 3.012 0.302  1 4.946 0.59  1 3.045 0.404  0 5 0.779  1 4 0.629 

 0.4 1 3.051 0.307  1 3.031 0.301  1 4.898 0.581  1 3.029 0.399  0 5 0.769  1 4 0.621 

                         12 0.2 1 3.057 0.285  1 3.021 0.282  1 4.251 0.436  1 3.011 0.355  1 5 0.644  1 3.27 0.456 

 0.4 1 3.012 0.283  1 3 0.281  1 4.123 0.434  1 3 0.353  1 5 0.638  1 3.194 0.444 
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Meanwhile, we set 2g = , 7n = , 6l = , max 5z = , 0.92 = , and regarding the threshold 

values for identifying non-cooperative behaviors, let (1) 0.3 =  and 1 0.1 =  for simulation 

method I; (2) 
2 0.2 =  for simulation method II; (3) 0.25 =  and 

3 0.5 =  for simulation 

method III. When setting different parameters m  and  , we run Simulation methods I-III 1000 

times, respectively, to produce the average values of P , Z  and AD , which are described as 

Figs. 5-7. 

 
Fig.5. Average values of P , Z  and AD  under simulation method I 

 
Fig.6. Average values of P , Z  and AD  under simulation method II 

 
Fig.7. Average values of P , Z  and AD  under simulation method III 

Let 7l = , 8n = , max 5z = , 1 0.5 = , 2 0.35 = , 3 0.4 = , 0.25 = , 0.28 = , 

2g = , and 0.25 = . We run Simulation methods I and I*, II and II*, and III and III* 1000 

times under different input parameters m  and  , respectively, to generate the average values of 

P , Z  and AD , which are visualized in Figs. 8-10. 

 

Fig.8. Average values of P , Z  and AD  under simulation methods I and I* 
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Fig.9. Average values of P , Z  and AD  under simulation methods II and II* 

 

Fig.10. Average values of P , Z  and AD  under simulation methods III and III* 

The results of the above simulation experiments and comparative analysis show that: 

(1) The SNA-based consensus reaching framework can manage dishonest, disobedient, and 

divergent behaviors effectively when setting different parameters. Generally, the consensus 

success ratios are 1 in most cases, and 2-3 consensus rounds are often required to reach the 

predefined consensus level. Moreover, the adjustment distances are 0.2-0.4 in most cases. 

(2) With the increase of the proportion of the experts who take non-cooperative behaviors, 

the consensus success ratios have the tendency to decrease, and the consensus rounds increase 

alongside the preference adjustment distances. This implies that the effectiveness of the proposed 

consensus reaching framework for coping with non-cooperative behaviors varies, depending on 

the proportion of the experts who take non-cooperative behaviors in the group. 

(3) When the values of 
1 , 

2  and 
3  increase or   value increases, the average values 

of P  increase, and the average values of Z  decrease. These observations imply that the success 

ratio of reaching the predefined consensus level will be improved and the speed to reach the 

predefined consensus level will be accelerated when using a relaxed criterion to infer the 

non-cooperative behaviors or applying a strong penalty. 

(4) There are higher consensus success ratios in the SNA-based consensus reaching with 

non-cooperative behaviors management framework than in the traditional CRP with social trust 

network, which indicates that the SNA-based consensus reaching framework can increase the 

success ratio of achieving the predefined consensus level under the presence of non-cooperative 

behaviors, by effectively dealing with them. 

(5) The average consensus rounds in the SNA-based consensus framework with 

non-cooperative behaviors management are lower than those in the traditional CRP approaches 

under social trust networks, which means that the proposed consensus framework can accelerate 

the speed of convergence to achieve the predefined consensus level. 
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(6) The adjustment distances in the proposed SNA-based consensus reaching framework with 

non-cooperative behavior management are lower than those in the traditional CRP with social trust 

network, which implies that the proposed SNA-based consensus reaching framework can decrease 

the preference information loss by dealing with the non-cooperative behaviors. 

7. Conclusion 

In this study, we investigated the non-cooperative behaviors in the CRP in the MAGDM 

context, and proposed a consensus reaching framework based on SNA to manage different 

patterns of non-cooperative behaviors exhibited by participants in the process of building 

consensus. The main motivations and resulting contributions of this study are summarized below. 

(1) In the CRP, the trust relationships among experts play a key role, which will influence the 

decision results. However, the trust relationships are rarely considered by existing CRP models. 

By taking the trust relationships among experts into account, we developed a SNA-based 

consensus reaching framework, which can provide a better approximation to real decision 

situations in which there exist diverse relationships among participants. 

(2) The behavior analysis module is designed in the SNA-based consensus framework, and 

the analysis results are provided for experts to modify their trust values in the social trust network. 

Meanwhile, a mechanism to dynamically generate experts’ weights from the social trust network 

is presented, and subsequently embedded into the consensus model. 

(3) We define several common patterns of non-cooperative behaviors, namely dishonest, 

disobedient, and divergent behaviors. Likewise, we devise several simulation and comparison 

experiments to verify the efficiency and validity of the SNA-based framework for coping with 

diverse non-cooperative behaviors in the CRP, by weighting experts based on social trust 

information. 

Meanwhile, two interesting research directions are pointed out for future work: 

(1) In real word CRPs, the preferences of experts are often formed in a complex interpersonal 

environment where preferences are liable to change due to social influences [7]. We believe that it 

will be very interesting in future research to incorporate the impact of social influence on the 

evaluation of experts’ preferences in the SNA-based consensus reaching framework. 

(2) The large-scale GDM has become a hot research topic along with the development of 

technology and society [37, 71, 72]. In future research, we plan to design a SNA-based approach 

to cope with non-cooperative behaviors in a large-scale GDM, in which a larger and more 

complex sociometric structure would be present. 
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