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Abstract— Adverse weather conditions are extremely chal-
lenging for autonomous driving as most state-of-the-art sensors
do not function reliably under such circumstances. One method
to increase the detection performance is to fuse the raw data
signal with neural networks that learn robust features from
multiple inputs. Nevertheless noise due to adverse weather
is complex, and in addition, automotive sensors fail asym-
metrically. Neural networks that perform feature level sensor
fusion can be particularly vulnerable if one sensor is corrupted
by noise outside the training data distribution compared to
decision level fusion. The reason for this is that no built-in
mathematical mechanism prevents noise in one sensor channel
from corrupting the overall network even though other sensor
channels may provide high-quality data. We propose a simple
data augmentation scheme that shows a neural network may be
able to ignore data from underperforming sensors even though
it has never seen that data during training. One can summarize
this as a learned ”OR” operation at fusion stage. This learned
operation is also generally applicable to other noise-types not
present during training.

I. INTRODUCTION

Humans experience the world through multiple modalities
which enhance their understanding compared to relying
on a single modality (e.g. audio). Algorithms may benefit
from multiple modalities as well. Consider the multi-sensor
systems used in autonomous car prototypes. One sensor may
perform best in broad daylight (e.g. RGB camera) whereas
another sensor shows its strength in heavy fog (gated camera)
as can be seen in Fig. 2.

In the automotive sector and other research areas, such
systems often utilize so-called late fusion, where detections
from different sensors are fused on a late decision level,
usually with a high-level decision logic. Such methods are
found in occupancy grid maps and different types of tracking
algorithms.

Recently, the fusion of raw data signals has been applied
at different processing steps. For low-resolution lidar sensors
and radar sensors, the raw signals have been directly in-
corporated into extended object tracking algorithms [1]. For
high-resolution sensor data, e.g. cameras or high-resolution
lidar scanners, additional algorithms such as neural net-
works are necessary to extract possible objects. Current
best-performing methods are based on neural networks and
ranked according to the KITTI 2d/3d [2] object detection
benchmarks. Several object detection algorithms emerged
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Fig. 1: Proposed learning technique: Training a fusion net-
work with mixed examples out of ’background’ and ’object
class’. This enables the network to learn a ’or’ operation and
to retrieve information from one channel even if the second
channel is disturbed with unknown noise.

fusing camera and lidar data such as the MV3D [3] network
and the AVOD [4] network. In [3] the networks are based
on a mixture of a lidar top view, lidar front view and
camera image data. Especially the lidar top view is important.
Based on the lidar top view regions of interest (ROI) are
extracted and projected into other sensor frames. The fusion
is performed by pooling the ROI and averaging the feature
maps. Several processing layers are stacked on top and the
bounding box is regressed for each frame. The authors called
this process deep fusion. In [4] the ROI extraction relies on a
common learned region proposal network (RPN) in-between
camera and lidar. Such neural networks can be particularly
vulnerable if one sensor is corrupted with noise outside the
training data distribution. This danger arises from a missing
mathematical mechanism that may prevent a corrupted sensor
stream from affecting the overall neural network and its out-
put, as will be shown experimentally. Typically two lines of
defense against noisy real world data can be formulated. The
first is increasing the number of training examples through
additional data collection campaigns and the second is the
use of data augmentation schemes which address specific
disturbances. Typical noise patterns in adverse weather are a
degeneration of contrast due to haze, blurring due to small
water droplets on the windshield or artefacts such as sun-
glare. However, it might not be possible to address the
complexities of adverse weather conditions and hardware
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Fig. 2: Image discretization into Anchor boxes [6]/pooled
ROI translates to a discretization into smaller classification
and bounding box regression tasks. Here demonstrated for a
gated imager (top) and a standard imager (bottom) in a fog
chamber. Taken from [7]. Notice that the pedesrtrians (red
boxes) are clearly visible in the gated imager but not so for
the standard imager.

malfunctions through these two lines of defense as they can
easily overlook disturbances and combinations thereof which
are rare but may profoundly alter the performance of a neural
network based fusion algorithm.
Therefore, a third line of defense for neural networks is
needed which generalizes to noise patterns that were not
introduced during training. In this work, an ”OR” learn-
ing method is proposed which neglects a disturbed sensor
stream and retrieves the correct class information from the
undisturbed sensor stream for the case of two unknown
noise patterns (located outside training data distribution). To
simplify this further: When a neural network is presented
with a background image in one channel and a car (object)
image in the other channel, then it should predict the car
(object) label. Hence, the operation ”Background OR Object
= Object” is important where ”Background” is replaced with
”Unknown Noise(Object)” without changing the outcome.
This is not the default behaviour of feature level sensor
fusion in neural networks, i.e. often the result is ”Unknown
Noise(Object) OR Object = Background”. This shortcoming
is addressed by a data augmentation scheme illustrated in
Fig. 1. Experiments on Kitti and the Gavrila pedestrian
dataset [5] are performed to demonstrate the effectiveness
of the data augmentation scheme.

A. Related Work

To the best of the author’s knowledge, there does not
appear to be any published work on increasing the robustness
of fusion algorithms against unknown noise patterns in one

sensor channel. Usually, publications focus on specific noise
patterns, commonly encountered in their particular line of
research or as data augmentation schemes [6], [8] to prevent
overfitting. In general multimodal sensor fusion is applied in
different fields of research. [9] points out that algorithms that
use multiple modalities have been applied to problems such
as audio-visual speech recognition, affect/emotion recogni-
tion and gesture recognition. In particular, fusing multiple
modalities (e.g. audio, video) is a problem that researchers
have engaged in for at least 25 years. Neural networks are
one of many models that are used with the fusion of modal-
ities being performed at the feature level. A meta-analysis
on multimodal algorithms in the area of affect/ emotion
recognition done by [10] shows a significant improvement of
the algorithms if multiple modalities are used compared to
unimodal algorithms (e.g. audio only). Another recent review
by [11] reveals that multimodal algorithms are at least as
widely used in the affect/emotion recognition community as
unimodal ones. With the modality combination audio, video
and text being by far the most favoured lately. When it comes
to the type of fusion, both, decision-based fusion and feature
based fusion are applied.

Publications dealing with noisy input data seem to focus
on improving the accuracies of the algorithm through signal
enhancement. This can be done by data augmentation (i.e.
train on the noise) or preprocessing of the data such as
Principal Component Analysis that can deal with specific
noise types (e.g. Gaussian noise) or different signal enhance-
ment networks that increase the signal further [12]–[14].
Robustness against unknown samples outside of the training
data distribution affecting the input channel asymmetrically
does not seem to be a major concern. Usually, existing work
concentrates on domain-specific noise patterns.

There is also related work on leveraging multiple modal-
ities in the intelligent vehicles community using neural
networks. For RGB-D data, a color image combined with
depth information captured using a stereo camera, has been
included in recent publications [15]–[19]. RGB combined
with infrared fusion using a convolutional neural network
was first performed by [20]. Additionally, there are at least
three publications by [3], [4], [21] that fuse RGB with Lidar
data. Generally, researchers make use of data augmentation
to enhance the robustness of their detectors. [16] create
artificial noise that resembles real noise in the depth data
from a stereo camera. Again there does not seem to be a
focus on noise outside the training data distribution that may
degrade the overall performance of the fusion algorithm.

This is, of course, different in the adversarial attacks
research community [22]. The goals they try to achieve are
usually two-fold. First, they want to trick a neural network
into producing false detections. Second, they want to be
able to defend against such attacks. Our research does not
consider adversarial attacks for now. We focus purely on
general noise patterns that suppress the detection rate of
objects (i.e. the sensor is blind) by affecting one sensor only.
Additionally, we do not aim to improve the prediction of
noisy inputs but enable the network to ignore those inputs if



it fails to process them properly.

B. Contribution

The following experiments demonstrate that a neural net-
work that performs sensor fusion may be robust against
unknown noise patterns in one sensor channel given the pro-
posed data augmentation scheme (see Fig. 1). The analysis
is based on two simplifications:

First: A convolutional neural network with two channels
(i.e. two sensors) is considered. Instead of detecting objects
a classification task is examined where the neural network
is presented with an image pair (background or object) and
needs to decide which class it belongs to. Though the authors
believe that the method can be generalized to two-stage
detectors [4] where the second stage performs a classification
task on features extracted from the first stage. Basically, the
region proposals corresponding to objects can be replaced
with background proposals for one sensor channel (the
other channel is untouched). As with the data augmentation
scheme presented here the second stage would need to learn
the operation ”Background OR Object = Object” which
should increase the performance against asymmetrical noise.

Second: Additionally, it is assumed that it is not known
during test time if any neural network channel is disturbed.
Therefore, it is not possible to adapt the prediction thresh-
olds, which in turn translates to fixed thresholds at training
and test time. Thus, if noise in one sensor channel lowers
the prediction scores, the overall performance of the neural
network is diminished (low recall).

II. ROBUST LEARNING TECHNIQUE

The robust learning technique (RLT) is formulated as
follows: A two-channel neural network is presented during
training with either two object images, two background
images or a mixed example with one object and one back-
ground image in either channel. If at least one object image
is presented, the target classification task is to obtain an
object classification otherwise the training example should
be classified as background. In total, a two-channel neural
network learns to handle the ”OR” operation and to predict
the object label if the network is presented with at least
one undisturbed object image. The technique generalizes to
different noise types applied to an object sample (e.g. image
of a car). Even though the noise type was not presented
during training. The learning technique was applied to four
classification experiments on CIFAR [23], MNIST [24],
KITTI [2] and to the Gavrila pedestrian dataset (GavData) [5]
using two different neural network architectures SqueezeNet
[25] and LeNet style convolutional neural networks [26]. The
generalization is shown by disturbing one sensor channel
by random Gaussian pixel noise (RGPN) or Gaussian blur
(GBLUR) during test time. Due to space constraints only
experiments on KITTI and GavData are explicitly mentioned
and shown. Similar results can be achieved on MNIST
and CIFAR with LeNet style convolutional neural networks.
The authors provide the corresponding hyperparameters and
network architectures upon request.

III. EVALUATION METRICS

The performance of the network and the shift in the
probability distribution of the prediction scores are evaluated.
The latter is done with the Brier score

Br =

N∑
i

(1− pi)2 /N (1)

which measures the probability offset per class. N denotes
the number of class examples and pi the probability per
example i. Usually, the Brier score goes up for a class if
the uncertainty rises.

Measuring network performance is done with the recall
and precision metrics that are best summarized in the pre-
diction threshold agnostic precision recall curves (PRC).
As different PRC implementations exist, this work follows
the implementation in [27], [28]. Upon deployment of the
network, it is assumed that the prediction threshold is fixed at
some pre-defined combination of recall and precision values
on the PRC, hereafter referred to as the optimal performance
point. To achieve a threshold independent analysis the mean
average precision (mAP) can also be considered, which is the
PRC area under the curve. The mAP will be used to select
the best performing networks as pre-trained models, though
it is not useful for exploring the network performance when
it is disturbed by noise as only fixed prediction thresholds
are considered at deployment. The reason for this is that the
occurrence of noise is assumed to be unknown (i.e. cannot
change threshold dynamically as a counter measure).

Furthermore, it will be shown that the RLT does not
change in certainty if one sensor channel is disturbed by
unknown noise and a threshold adaptation is unnecessary to
achieve good results.

The empirical reasoning of the observed effects is given
through an activation analysis with t-SNE [29]. Throughout
the evaluation, the results are compared to traditional learn-
ing technique (TLT), where no ”OR” operation was learned
and only symmetrical training examples where shown. E.g.
just object or background pairs.

A. Noise

Two different kinds of noise, namely random Gaussian
pixel noise (RGPN) and Gaussian blur (GBLUR), are ap-
plied. RGPN is sampled per colour channel and pixel from
a Gaussian normal distribution with a standard variation of
σ. Afterwards, the noise is added to the clean image. Values
below 0 and above 255 are clipped.

GBLUR convolves the image I with a Gaussian kernel
g(x) with width σ,

g(x) = exp

(
− x2

2σ2

)
/
√
2πσ2, (2)

I(x) =

∫
I(τ)g(x− τ)dτ. (3)

As the networks could be trained asymmetrically each chan-
nel is disturbed independently during evaluation. For KITTI
the results for the worst performing channels are given. For



TABLE I: Training hyperparameter ranges for KITTI and GavData experiments.

Training Regime Dataset GavData KITTI
Single Channel - Base Network base lr/ weight decay 0.04 - 0.001/ 0.0005 0.01/ 0.0004

batch size/ total training epochs 30-500 / 30-100 32/ 18.2
decay policy fixed and step down fixed and step down
decay epochs/ decay rate 10/ 0.1 7.3/ 0.1

Two Channel - Fusion Network base lr/ weight decay 0.04 - 0.001/0.0005 0.0002-0.02/ 4 · 10−8 − 4 · 10−3

batch size/ training epochs 30-500/ 30-100 32/ 6,12, 24
decay policy fixed and step down fixed and step down
decay epochs stpsize/ decay rate 10/ 0.1 2, 4, 8/ 0.1
RLT examples in % of object example 0-20 50

Overall Data augmentation vertical image flip vertical image flip
Optimization method SGD, momentum 0.9 SGD, momentum 0.9
bottom layers lr = 0 during training no yes
Target class pedestrians cars
image size [pixel] 48x96 112x112

GavData the results are averaged over both channels as the
two modalities are inherently distinct.

IV. EXPERIMENTS

Experiments on the KITTI dataset and GavData will show
that the RLT is applicable to a variety of hyperparameters,
learned by the downstream classification layers after feature
extraction and ensures robustness if one sensor channel is
disturbed with an unknown noise.

A. KITTI Experiments

The KITTI experiments are designed to show that the
network can learn the RLT for entangled input information,
where input data in both channels are different but represent
the same class. Since the input images are not the same the
network is not merely learning simple rules such as: ”The im-
ages are not identical. Hence, the image stream is disturbed”.
Therefore the network must learn more complex mechanisms
to achieve robustness if one channel is disturbed. To prove
this argument, the feature extraction layers are fixed (e.g.
learning rate = 0) while only the top layers following the
feature fusion layer (i.e. ”fire8” module) are trained.

1) Dataset creation: Approx. 14.000 images of cars (as
target object) and 340.000 images of the general background
were extracted from the KITTI dataset [2]. The background
patches were selected at random in a range from 40 x 40
to 150 x 150 pixels (sampled uniformly) with a maximum
intersection over union (IoU) of 0.15 with any car bounding
boxes in the image frame. An IoU > 0 ensures that the
network only classifies car patches that fit the patch properly
as cars, which helps to suppress the false positive rate by
reducing overfitting [8].

The car patches were extracted via the corresponding
bounding boxes where either the height or the width was in-
creased to get square patches. Cars that are heavily occluded
or partially outside the image frame are neglected. Finally,
all background and car patches are resized to 112 x 112
pixels by linear interpolation. No additional preprocessing
steps were performed. Training and validation data is split
50/50 with training and validation images originating from
different sequences to reduce correlation between training
and validation data. Image pairs are selected to match the

same label but represent different class realizations. There-
fore, both images always belong to the object or background
class but are usually different images from those classes.

2) Training Procedure: The overall two-channel net-
work is built upon the SqueezeNet v1.1 [25] architecture.
SqueezeNet is chosen as its fast training time below one hour
per experiment (Titan XP and Intel i7-6950x) allows multiple
experiments. The weights for an one-channel SqueezeNet,
pre-trained on ImageNet [30], were fine-tuned on the KITTI
data. The hyperparameters were picked randomly from ta-
ble I to show that the RLT applies for a wide range of
hyperparameter settings. For both the TLT and RLT same
hyperparameter ranges were used.
The number of mixed training examples in RLT was not
finetuned to a specific number of car/background and back-
ground/car pairs in the training data to increase the perfor-
mance.

The two-channel neural network is obtained by concate-
nating the ”fire8” layers of two identical pre-trained single
channel SqueezeNets. To make sure that the ”OR” Operation
is learned by the downstream classification layers only, all
weights up to and including layer ”fire8” will be fixed for
the KITTI experiments (learning rate = 0), whereas the
layers following layer ”fire8” are randomly initialized by
Xavier and Gaussian initialization, similar to the original
implementation [25]. As both inputs in both channels are
from the same training distribution, the weights point to the
same feature space. The fused network is trained with RLT
and TLT. Both training approaches will be analyzed.

B. GavData Experiments

Experiments on the Gavrila pedestrian dataset (GavData)
[5] show the RLT and TLT performance on multiple modali-
ties. The dataset contains cropped background and pedestrian
images from stereo intensity measures, stereo depth and
stereo flow. To simulate a fusion system each input channel
corresponds to one modality, e.g. stereo depth or intensity.

1) Dataset creation: The dataset is already preprocessed
(e.g. background and pedestrian images are extracted) and
split into a training and validation sub-dataset by [5]. The
fusion will be based on stereo depth and intensity images.



2) Training Procedure: The network is trained similar
to the KITTI experiments with an architecture based on
the SqueezeNet v1.1 [25]. For each channel several single-
channel base networks have been trained with parameters
given in table I. Based on the pre-trained weights from
[30] the networks were fine-tuned on either stereo depth or
intensity data. The best performing networks (w.r.t. mAP) on
both modalities were selected as base networks in the fusion
network. Single networks reached a mAP of about 97% for
intensity images and 95% for stereo depth respectively.

The depth was fed as a three-channel 8bit image with the
depth information being split into the three channels metres,
centimetres and millimetres. The values have been scaled to
use the full 0-255 range. As the stereo depth accuracy is in
the centimetre region, the third channel contains mainly noise
which the network learns to ignore. Hence, the input in the
third channel is set to zero without any observable decrease
in mAP. The main advantage of this method is to enable the
network to use the pre-trained weights from [30] to accelerate
the training process. The same results were achieved by
providing depth as a single channel float value input, though
this works only if the first layer is trained from scratch, which
slows down the convergence. A further increase in the mAP
on stereo data may be achieved by applying different input
modalities as in [31]. As the networks already achieved a
high mAP of 95% and the optimization of stereo data was not
a primary objective, no further optimizations were applied.

The best performing depth and intensity models have
been chosen, and the weights were transferred to the fused
neural network where the modalities are concatenated at
the ”fire8” module. Downstream layers where initialised
randomly similar to KITTI experiments.
Fixing the learning rate to 0 for layers below the concatena-
tion is detrimental to the performance as features were not
extracted based on a common feature map. Therefore the
feature distribution is different, which limits the TLT and
RLT to a mAP of 82% on the undisturbed validation set.
Fine-tuning the upstream layers as well recovers the single
network performance with a slightly higher mAP in the range
of 96% to 98%.

V. RESULTS

The results on KITTI and GavData are split into three
parts. The first deals with the activation pattern evaluation
through t-SNE leading to the RLT. The second considers the
best performing neural network for the TLT and the RLT
respectively and shows their uncertainty changes through
the Brier score. The third demonstrates the performance of
a number of neural networks trained with a wide range of
hyperparameters given in table I.

A. Activation evaluation on KITTI

The RLT is based on two key observations. First, if a
network is trained with a ”background” class, containing
high variance samples, the network learns to draw close de-
cision boundaries around the low variance ”car” class, where
images outside the ”car” class are classified as background.
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Fig. 3: t-SNE [29] clustering results for a 2d-output space,
showing undisturbed and noisy car and background image
activations at the fusion layer (”fire8”) on KITTI.

TABLE II: Recall Statistics for 45 models trained on
GavData and 63 models trained on KITTI. Hard numbers
from RLT and TLT corresponding to fig. 5. The reference
(Ref.) shows the recall for undisturbed data.

Noise Ref. Ref. GBLUR GBLUR RGPN RGPN
RLT/TLT TLT RLT TLT RLT TLT RLT
GavData
median 99.55 99.41 91.45 97.08 46.13 92.20
u-quart. 99.64 99.55 92.44 97.88 46.61 93.50
l-quart. 99.48 99.33 90.69 96.36 45.64 90.86
u-whisk. 99.73 99.73 96.61 98.70 47.54 95.10
l-whisk. 99.17 98.78 88.73 95.46 40.54 87.63
KITTI
median 97.1 97.3 83.5 93.0 42.7 86.2
u-quart. 97.3 97.5 84.7 94.4 48.6 89.6
l-quart. 96.9 97.2 81.1 91.1 30.3 78.4
u-whisk. 97.7 97.7 86.8 95.8 54.8 95.4
l-whisk. 95.0 96.6 72.7 89.7 8.5 68.4

Second, if a class is disturbed by noise, the feature activations
are shifted to the background class.

This can be understood by clustering the activations at
fusion level (i.e. ”fire8” module) by applying the t-SNE [29]
algorithm. Results can be seen in Fig. 3 with a total of 3000
processed images from the background and the car classes
(KITTI data). Additionally, both classes have been disturbed
by RGPN (σ = 0.9) and GBLUR (σ = 9).

The activation patterns of disturbed input images are
clearly different from those of undisturbed images (see Fig.
3). Therefore, these patterns can be learned by the layers
following the feature level fusion during training with all
layers up to the ”fire8” module being fixed (learning rate
= 0). This already gives an intuition as to why training on
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Fig. 4: Brier Score at different noise intensities for different
unkown noise (a,c) RGPN/(b,d) GBLUR (not presented dur-
ing trained) and datasets (a,b) KITTI and (c,d) GavData. Both
learning techniques TLT and RLT are compared. Only one
channel is disturbed while the other one is kept undisturbed.
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Fig. 5: Recall values for (a) 63 models trained KITTI data
and (b) 45 trained on GavData. Hyperparameters can be
seen in table I. The optimal perfomance point has been
fixed for each model at precission of 95% the corisponding
recall is shown as reference. As the noise is assumed to be
unkown the threshold can’t be optimized and therefore the
optimal threshold on undisturbed data is applied to retrieve
the corosponding recall on disturbed data. One channel was
disturbed with either GBLUR σ = 9 and RGPN σ = 0.9.

one specific noise type does not seem to transfer to another
noise type. The network may simply redraw the decision
boundary to include disturbed car images (e.g. red circles
and blue triangles for GBLUR) and since each noise type has
a very specific activation pattern, this new decision boundary
does not necessarily include other never before seen noise
types (e.g. blue squares for RGPN still outside). Whereas
for the training regime where the two-channel network is
explicitly fed with mixed classes, it has to learn to recognize
car features from the object channel no matter what kind of
background image is present in the other channel.

Why is the network forced to generalize this way? The
interpretation is that the variance of the background class is
high compared to the variance of e.g. RGPN. It is easier
for the top layers to learn to extract the object features
from the undisturbed sensor channel irrespective of the type
of noise in the disturbed channel compared to learning a
representation of the whole background class (excluding
RGPN). Specific noise patterns such as ”if it is dark, then
camera underperforms, but lidar works well” are easy to
learn, but do not force the neural network to generalize
to other scenarios such as ”Features extracted from camera
are strange (because of unknown noise), what now?”. The
standard training procedure does not necessarily force the



0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

Noiselevel σ

B
ri

er
Sc

or
e

O
bj

ec
t

(a) GBLUR

Object TLT
Object RLT

0 1 2 3 4 5 6 7 8
0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

Noiselevel σ

B
ri

er
Sc

or
e

B
ac

kg
ro

un
d

Backg. TLT
Backg. RLT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

Noiselevel σ

B
ri

er
Sc

or
e

O
bj

ec
t

(b) RGPN

Object TLT
Object RLT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

Noiselevel σ

B
ri

er
Sc

or
e

B
ac

kg
ro

un
d

Backg. TLT
Backg. RLT

Fig. 6: Brier Score at different unkown noise intensities for
different noiselevels (a) GBLUR/(b) RGPN. Trained on Kitti
with TLT and RLT. Both channels are disturbed equally.

neural network to learn a general rule on how to handle this
scenario. Though, the data augmentation scheme presented
here does exactly that as can be seen in the following
evaluation.

B. Uncertainty Changes

Second let us discuss the Brier scores given in Fig. 4 and
6. Here the object and the background class is plotted against
the noise level of RGPN and GBLUR, which has been feed to
the network. The networks themselves have not been trained
on such kind of noisepatterns and therefore GBLUR and
RGPN resemble unknown noise.

In Fig. 4 only one channel is disturbed. Here the RLT
appears to benefit the robustness of the network, because
when the network is disturbed the increase in the Brier score
on the object class is much less pronounced compared to the
network that was trained with the TLT. This is true for KITTI
and GavData.

Though, disturbing the background class increases the
confidence of the networks that it is indeed a background
example (score decreases) which is consistent with our
interpretation that the noise pushes the feature activation’s
into the background class. The effect is less significant for the
RLT. If a background example contains object features even
though it is not an object, then these features are recognized
by the upper layers more easily when the RLT is performed.

This is not a bad thing as our aim is not to decrease the
false positive rate of the individual sub-networks by fusing
them together. The apparent superiority of the TLT on the
noisy background class only stems from the fact that the
network is unable to recognize object features (even false
positives) when it is disturbed (i.e. objects are classified
as background). Ideally, the expected Brier score of the
background class stays at the σ = 0 value, which means
that the certainty should be not affected trough noisy input.
Hence, the RLT also outperforms the TLT on the background
class.

Fig. 6 illustrates the behaviour if both sensor channels are
disturbed. Both TLT and RLT show the same performance
and are almost indistinguishable which is to be expected as
there is no undisturbed sensor channel left. The RLT is not
a training scheme to extract information from noise but to
enable the network to ignore sensor channels that it cannot
properly process. Therefore, this result is to be expected,
i.e. w.r.t. the Brier score the TLT and the RLT give rise to
neural networks that are almost identical on undisturbed test
data and disturbed test data where all sensor channels receive
noisy inputs.

C. Performance Drop

Fig. 5 and table II provide the performance of the TLT and
the RLT w.r.t the recall and precision metrics. As mentioned
before the thresholds of the neural networks are fixed at test
time with a corresponding precision on the undisturbed test
data of 95%. When the test data is disturbed the performance
of the neural network shifts to a higher precision (i.e. more
than 95%) whereas the recall drops (empirical observation).
Disturbing one sensor channel affects the recall for TLT
networks significantly but much less so for the RLT. Again
this is true for the Kitti and the GavData experiments. As
with the Brier scores the two training schemes are almost
indistinguishable on the undisturbed test data, however the
RLT clearly outperforms the TLT if one channel receives
noisy inputs.

VI. CONCLUSION

Sensor fusion networks based on neural networks like in
[3], [4] are particularly vulnerable if one sensor channel
is disturbed, because no mathematical mechanism prevents
noise corrupting downstream classification layers.

Therefore a third line of defense, along with more data
and data augmentation, has been introduced. The introduced
method (RLT) specifically tackles the problem if one sensor
channel is disturbed while another sensor stream is undis-
turbed. Such asymmetries can be observed quite often in
adverse weather as seen in Fig. 2 or in [7] [32].

The problem has been broken down into classification
tasks because usually each object detection discretizes an
image trough anchor boxes or ROI into multiple regions
for which several classification and bounding box regression
tasks are solved (Fig. 2). Usually training an object detector
can take more than an entire day, while a SqueezeNet
classification task is trained within one hour. Therefore



enabling the training of multiple models in a short time, thus
demonstrating the increase in robustness of the RLT across
a whole range of hyperparameters.

Implementing the RLT for a fused object detector like
in [4] should be straight forward. During training pooled
background image pairs, which are also necessary for hard
example mining, can be queued and loaded into an image
pool. The image pool is updated during training. At a given
rate, which is a hyperparameter, background images can be
taken to replace pooled objects pairs and to create mixed
examples out of object and image pairs. This process has to
be applied at two stages: once at the region proposal network
(RPN) and once at the fusion classification stage.

The method has been experimentally validated on four
different datasets and two different networks. Thanks to
the Gavrila pedestrian dataset (GavData) it also has been
tested for multiple modalities and a learned common feature
map. Furthermore an experimental reasoning was provided
in Fig. 3 by clustering the activation with t-SNE [29] at
the corresponding fusion layer. Application of the robust
learning technique (RLT) outperforms traditional learning
with no mixed examples significantly in case of unknown
noise patterns. The learned ”OR” operation helps to neglect
the disturbed sensor stream and retrieves information from
the undisturbed network channel.

The key idea is that a noisy object image ends up in the
background feature space because the object feature space
is small and specific. In other words, the network needs to
learn the ”(object or background) = object” mapping which
transfers to ”(object or noisy object) = object”. The inverse
approach does not seem to work, i.e. training on a specific
noise pattern does not necessarily transfer to other noise
patterns. The reason for this is probably that the network
can learn a decent representation of, e.g. Gaussian Noise and
Gaussian Blur. It does not learn the ”OR” mapping. Instead,
it learns that ”Gaussian Noise(object) = object”.
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