

Edinburgh Research Explorer

Encapsulating effects

Citation for published version:
Lindley, S 2018, 'Encapsulating effects' Dagstuhl Reports, Volume 8, Issue 4, 22/04/17 - 27/04/17, pp. 114-
118. DOI: 10.4230/DagRep.8.4.104

Digital Object Identifier (DOI):
10.4230/DagRep.8.4.104

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.4230/DagRep.8.4.104
https://www.research.ed.ac.uk/portal/en/publications/encapsulating-effects(bf4e1cae-87b1-4b93-a77a-9729d77f35a6).html

Report from Dagstuhl Seminar 18172

Algebraic Effect Handlers go Mainstream
Edited by
Sivaramakrishnan Krishnamoorthy Chandrasekaran1, Daan Leijen2,
Matija Pretnar3, and Tom Schrijvers4

1 University of Cambridge, GB, sk826@cl.cam.ac.uk
2 Microsoft Research – Redmond, US, daan@microsoft.com
3 University of Ljubljana, SI, matija.pretnar@fmf.uni-lj.si
4 KU Leuven, BE, tom.schrijvers@cs.kuleuven.be

Abstract
Languages like C#, C++, or JavaScript support complex control flow statements like exception
handling, iterators (yield), and even asynchrony (async/await) through special extensions. For
exceptions, the runtime needs to be extended with exception handling stack frames. For iterators
and asynchrony, the situation is more involved, as the compiler needs to turn regular code into
stack restoring state machines. Furthermore, these features need to interact as expected, e.g.
finally blocks must not be forgotten in the state machines for iterators. And all of this work
needs to be done again for the next control flow abstraction that comes along.

Or we can use algebraic effect handlers! This single mechanism generalizes all the control
flow abstractions listed above and more, composes freely, has simple operational semantics, and
can be efficiently compiled, since there is just one mechanism that needs to be supported well.
Handlers allow programmers to keep the code in direct-style, which is easy to reason about, and
empower library writers to implement various high-level abstractions without special extensions.

The idea of algebraic effects handlers has already been experimented with in the form of
small research languages and libraries in several mainstream languages, including OCaml, Haskell,
Clojure, and Scala. The next step, and the aim of this seminar, is to seriously consider adoption
by mainstream languages including both functional languages such as OCaml or Haskell, as well
as languages like JavaScript and the JVM and .NET ecosystems.

Seminar April 22–27, 2018 – http://www.dagstuhl.de/18172
2012 ACM Subject Classification Software and its engineering → Control structures, Software

and its engineering → Formal methods, Software and its engineering → Semantics
Keywords and phrases algebraic effect handlers, implementation techniques, programming ab-

stractions, programming languages
Digital Object Identifier 10.4230/DagRep.8.4.104
Edited in cooperation with Jonathan Immanuel Brachthäuser

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Algebraic Effect Handlers go Mainstream, Dagstuhl Reports, Vol. 8, Issue 04, pp. 104–125
Editors: Sivaramakrishnan Krishnamoorthy Chandrasekaran, Daan Leijen, Matija Pretnar, and Tom Schrijvers

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/18172
http://dx.doi.org/10.4230/DagRep.8.4.104
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

KC Sivaramakrishnan, Daan Leijen, Matija Pretnar, and Tom Schrijvers 105

1 Executive Summary

Sivaramakrishnan Krishnamoorthy Chandrasekaran (University of Cambridge, GB)
Daan Leijen (Microsoft Research – Redmond, US)
Matija Pretnar (University of Ljubljana, SI)
Tom Schrijvers (KU Leuven, BE)

License Creative Commons BY 3.0 Unported license
© Sivaramakrishnan Krishnamoorthy Chandrasekaran, Daan Leijen, Matija Pretnar, and
Tom Schrijvers

Algebraic effects and their handlers have been steadily gaining attention as a programming
language feature for composably expressing user-defined computational effects. Algebraic
effect handlers generalise many control-flow abstractions such as exception handling, iterators,
async/await, or backtracking, and in turn allow them to be expressed as libraries rather
than implementing them as primitives as many language implementations do. While several
prototype languages that incorporate effect handlers exist, they have not yet been adopted
into mainstream languages. This Dagstuhl Seminar 18172 “Algebraic Effect Handlers Go
Mainstrea” touched upon various topics that hinder adoption into mainstream languages.
To this end, the participants in this seminar included a healthy mix of academics who study
algebraic effects and handlers, and developers of mainstream languages such as Haskell,
OCaml, Scala, WebAssembly, and Hack.

This seminar follows the earlier, wildly successful Dagstuhl Seminar 16112 “From Theory
to Practice of Algebraic Effects and Handlers” which was dedicated to addressing fundamental
issues in the theory and practice of algebraic effect handlers. We adopted a similar structure
for this seminar. We had talks each day in the morning, scheduled a few days ahead. The
folks from the industry were invited to present their perspectives on some of the challenges
that could potentially be address with the help of effect handlers. The afternoons were
left free for working in self-organised groups and show-and-tell sessions with results from
the previous days. We also had impromptu lectures on the origins of algebraic effects and
handlers, which were quite well received and one of the highlights of the seminar.

Between the lectures and working-in-groups, the afternoons were rather full. Hence, a
few participants offered after-dinner “cheesy talks” just after the cheese was served in the
evening. The participants were treated to entertaining talks over delightful cheese and fine
wine. We encourage the organisers to leave part of the day unplanned and go with what the
participants feel like doing on that day. The serendipitous success are what makes Dagstuhl
Seminars special.

We are delighted with the outcome of the seminar. There were interesting discussions
around the problem of encapsulation and leaking of effects in certain higher order use cases,
with several promising solutions discussed. It was identified that the problem of encapsulation
and leaking effect names is analogous to the name binding in lambda calculus. Another
group made significant progress in extending WebAssembly with support for effect handlers.
The proposal builds on top of support for exceptions in WebAssembly. During the seminar
week, the syntax extensions and operational semantics were worked out, with work begun on
the reference implementation. During the seminar, Andrej Bauer pointed out that several
prototype implementations that incorporate effect handlers exist, each with their own syntax
and semantics. This makes it difficult to translate ideas across different research groups.
Hence, Andrej proposed and initiated effects and handlers rosetta stone – a repository of
examples demonstrating programming with effects and handlers in various programming
languages. This repository is hosted on GitHub and has had several contributions during
and after the seminar.

18172

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

106 18172 – Algebraic Effect Handlers go Mainstream

In conclusion, the seminar inspired discussions and brought to light the challenges in
incorporating effect handlers in mainstream languages. During the previous seminar (16112),
the discussions were centered around whether it was even possible to incorporate effect
handlers into mainstream languages. During this seminar, the discussions were mainly on the
ergonomics of effect handlers in mainstream languages. This is a testament to the success of
the Dagstuhl Seminars in fostering cutting edge research.

KC Sivaramakrishnan, Daan Leijen, Matija Pretnar, and Tom Schrijvers 107

2 Contents

Executive Summary
Sivaramakrishnan Krishnamoorthy Chandrasekaran, Daan Leijen, Matija Pretnar,
and Tom Schrijvers . 105

Overview of Talks

Linking Types for Multi-Language Software
Amal Ahmed . 109

Idealised Algol
Robert Atkey . 109

What is algebraic about algebraic effects and handlers?
Andrej Bauer . 110

Event Correlation with Algebraic Effects
Oliver Bracevac . 110

Effect Handlers for the Masses
Jonathan Immanuel Brachthäuser . 111

Combining Algebraic Theories
Jeremy Gibbons . 111

Handlers.Js: A Comparative Study of Implementation Strategies for Effect Handlers
on the Web
Daniel Hillerström . 113

First Class Dynamic Effect Handlers and Deep Finally Handling
Daan Leijen . 113

Encapsulating effects
Sam Lindley . 114

Experiences with structuring effectful code in Haskell
Andres Löh . 119

Make Equations Great Again!
Matija Pretnar . 119

Quirky handlers
Matija Pretnar and Žiga Lukšič . 119

What is coalgebraic about algebraic effects and handlers?
Matija Pretnar . 120

Effect Handlers for WebAssembly (Show and Tell)
Andreas Rossberg . 120

Neither Web Nor Assembly
Andreas Rossberg . 121

Efficient Compilation of Algebraic Effects and Handlers
Tom Schrijvers . 121

Algebraic effects – specification and refinement
Wouter Swierstra . 122

18172

108 18172 – Algebraic Effect Handlers go Mainstream

Adding an effect system to OCaml
Leo White . 122

Multi-Stage Programming with Algebraic Effects
Jeremy Yallop . 122

Working groups

Denotational Semantics for Dynamically Generated Effects
Robert Atkey . 123

Reasoning with Effects
Jeremy Gibbons . 124

Participants . 125

KC Sivaramakrishnan, Daan Leijen, Matija Pretnar, and Tom Schrijvers 109

3 Overview of Talks

3.1 Linking Types for Multi-Language Software
Amal Ahmed (Northeastern University – Boston, US

License Creative Commons BY 3.0 Unported license
© Amal Ahmed

Main reference Daniel Patterson, Amal Ahmed: “Linking Types for Multi-Language Software: Have Your Cake
and Eat It Too”, in Proc. of the 2nd Summit on Advances in Programming Languages, SNAPL
2017, May 7-10, 2017, Asilomar, CA, USA, LIPIcs, Vol. 71, pp. 12:1–12:15, Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik, 2017.

URL https://doi.org/10.4230/LIPIcs.SNAPL.2017.12

In the last few years, my group at Northeastern has focused on verifying compositional
compiler correctness for today’s world of multi-language software. Such compilers should
allow compiled components to be linked with target components potentially compiled from
other, very different, languages. At the same time, compilers should also be fully abstract:
that is, they should ensure that if two components are equivalent in all source contexts then
their compiled versions are equivalent in all target contexts. Fully abstract compilation
allows programmers to reason about their code (e.g., about correctness of refactoring) by
only considering interactions with other code from the same language. While this is obviously
an extremely valuable property for compilers, it rules out linking with target code that has
features or restrictions that can not be represented in the source language that is being
compiled.

While traditionally fully abstract compilation and flexible linking have been thought
to be at odds, I’ll present a novel idea called Linking Types [1] that allows us to bring
them together by enabling a programmer to opt into local violations of full abstraction
only when she needs to link with particular code without giving up the property globally.
This fine-grained mechanism enables flexible interoperation with low-level features while
preserving the high-level reasoning principles that fully abstract compilation offers.

An open question is whether algebraic effects and effect handlers might be an effective
way of designing linking-types extensions for existing languages.

References
1 Daniel Patterson and Amal Ahmed. Linking Types for Multi-Language Software: Have

Your Cake and Eat It Too. In Summit on Advances in Programming Languages (SNAPL),
2017.

3.2 Idealised Algol
Robert Atkey (University of Strathclyde – Glasgow, GB)

License Creative Commons BY 3.0 Unported license
© Robert Atkey

Joint work of Robert Atkey, Michel Steuwer, Sam Lindley, Christophe Dubach
Main reference Robert Atkey, Michel Steuwer, Sam Lindley, Christophe Dubach: “Strategy Preserving

Compilation for Parallel Functional Code”, CoRR, Vol. abs/1710.08332, 2017.
URL https://arxiv.org/abs/1710.08332

Idealised Algol was introduced by John Reynolds in the late 1970s as the orthogonal
combination of λ-calculus and imperative programming. The resulting language is an
elegant combination of imperative programming (variables, while loops, etc.) and procedures
(provided by λ-abstraction). A variant of Idealised Algol, called Syntactic Control of

18172

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.4230/LIPIcs.SNAPL.2017.12
https://doi.org/10.4230/LIPIcs.SNAPL.2017.12
https://doi.org/10.4230/LIPIcs.SNAPL.2017.12
https://doi.org/10.4230/LIPIcs.SNAPL.2017.12
https://doi.org/10.4230/LIPIcs.SNAPL.2017.12
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://arxiv.org/abs/1710.08332
https://arxiv.org/abs/1710.08332
https://arxiv.org/abs/1710.08332

110 18172 – Algebraic Effect Handlers go Mainstream

Interference, provides a way to banish aliasing within the language, and hence to provide a
way to express race free parallelism.

In this talk, I discussed the similarities between Idealised Algol’s expressive handling
of variables and mutable state, in particular Reynolds’ conception of variables as“objects”
consisting of a getter and a setter, and handlers for algebraic effects. Idealised Algol appears to
naturally include a particularly efficient subset of handlers: linear handlers (the continuation
must always be used), that are tail recursive. By sticking to this subset, it is possible to
generate efficient code without expensive stack manipulation.

Some of this work is joint with Sam Lindley, Michel Steuwer and Christophe Dubach,
where we have applied Idealised Algol with interference control to the problem of generating
code from functional specifications for execution on parallel computing hardware, such as
multicore processors and GPUs.

3.3 What is algebraic about algebraic effects and handlers?
Andrej Bauer (University of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
© Andrej Bauer

In this tutorial we reviewed the classic treatment of algebraic theories and their models
in the category of sets. We then drew an uninterrupted line of thought from the classical
theory to algebraic effects and handlers. First we generalized operations with integral
arities to parameterized operations with arbitrary arities, as these are needed for modeling
computational effects. The free models of theories with generalized operations can be used
as denotations of effectful programs. The universal property of a free models can be used to
derive the notion of handlers. At the level of types, the value types correspond to sets of
generators and the computation types to the free models. The naive set-theoretic treatment
presented in the tutorial should be replaced with a domain-theoretic one if we wanted
adequate denotational semantics of a realistic programming language with general recursion.
The contents of the tutorial has been written up an extended in [1].

References
1 Andrej Bauer. What is algebraic about algebraic effects and handlers? ArXiv e-print

1807.05923, 2018. https://arxiv.org/abs/1807.05923.

3.4 Event Correlation with Algebraic Effects
Oliver Bracevac (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Oliver Bracevac

Joint work of Oliver Bracevac, Nada Amin, Guido Salvaneschi, Sebastian Erdweg, Patrick Eugster, Mira Mezini
Main reference Oliver Bracevac, Nada Amin, Guido Salvaneschi, Sebastian Erdweg, Patrick Eugster, Mira Mezini,

“Versatile Event Correlation with Algebraic Effects”, Proc. ACM Program. Lang., Vol. 2,
pp. 67:1–67:31, ACM, 2018.

URL http://dx.doi.org/10.1145/3236762

This talk presents a language design on top of algebraic effects and handlers for defining
n-way joins over asynchronous event sequences. The design enables mix-and-match-style
compositions of join variants from different domains, e.g., stream-relational algebra, event

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://arxiv.org/abs/1807.05923
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3236762
http://dx.doi.org/10.1145/3236762
http://dx.doi.org/10.1145/3236762
http://dx.doi.org/10.1145/3236762

KC Sivaramakrishnan, Daan Leijen, Matija Pretnar, and Tom Schrijvers 111

processing, reactive and concurrent programming, where joins are defined in direct style
pattern notation. Their matching behavior is programmable via dedicated control abstractions
for coordinating and aligning asynchronous streams. Our insight is that semantic variants
of joins are definable as cartesian product computations with side effects influencing how
the computation unravels. Based on this insight, we can afford working with a naive
enumeration procedure of the cartesian product and turn it into efficient variants, by
injection of appropriate effect handlers.

3.5 Effect Handlers for the Masses
Jonathan Immanuel Brachthäuser (Universität Tübingen, DE)

License Creative Commons BY 3.0 Unported license
© Jonathan Immanuel Brachthäuser

Joint work of Jonathan Immanuel Brachthäuser, Philipp Schuster, Klaus Ostermann
Main reference Jonathan Immanuel Brachthäuser, Philipp Schuster, Klaus Ostermann, “Effect Handlers for the

Masses”, under submission at the Conference on Object Oriented Programming Systems Languages
& Applications, Boston, USA, 2018.

Algebraic effect handlers are a program structuring paradigm with rising popularity in
the functional programming language community. Effect handlers are less wide-spread in
the context of imperative, object oriented languages. We present library implementations
of algebraic effects in Scala and Java. Both libraries are centered around the concept of
handler/capability passing and a shallow embedding of effect handlers. While the Scala
library is based on a monad for multi-prompt delimited continuations, the Java library
performs a CPS translation as bytecode instrumentation. We discuss design decisions and
implications on extensibility and performance.

References
1 Jonathan Immanuel Brachthäuser, Philipp Schuster. Effekt: Extensible Algebraic Effects

in Scala. Proceedings of the 8th ACM SIGPLAN International Symposium on Scala, Van-
couver, Canada, 2017

2 Jonathan Immanuel Brachthäuser, Philipp Schuster. Effect Handlers for the Masses. Under
submission at the Conference on Object Oriented Programming Systems Languages &
Applications, Boston, USA, 2018

3.6 Combining Algebraic Theories
Jeremy Gibbons (University of Oxford, GB)

License Creative Commons BY 3.0 Unported license
© Jeremy Gibbons

Joint work of Kwok Cheung, Jeremy Gibbons

I summarized results due to Hyland, Plotkin, and Power [5, 6] on combining algebraic theories,
as explored in the doctoral thesis [2] of my student Kwok Cheung. Specifically, the sum
S + T of algebraic theories S and T has all the operations of S and T , and all the equations,
and no other equations. The commutative tensor S ⊗ T adds equations of the form

f(g(x1, x2), g(y1, y2), g(z1, z2)) = g(f(x1, y1, z1), f(x2, y2, z2))

18172

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
Jonathan Immanuel Brachth�user, Philipp Schuster, Klaus Ostermann, ``Effect Handlers for the Masses'', under submission at the Conference on Object Oriented Programming Systems Languages & Applications, Boston, USA, 2018.
Jonathan Immanuel Brachth�user, Philipp Schuster, Klaus Ostermann, ``Effect Handlers for the Masses'', under submission at the Conference on Object Oriented Programming Systems Languages & Applications, Boston, USA, 2018.
Jonathan Immanuel Brachth�user, Philipp Schuster, Klaus Ostermann, ``Effect Handlers for the Masses'', under submission at the Conference on Object Oriented Programming Systems Languages & Applications, Boston, USA, 2018.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

112 18172 – Algebraic Effect Handlers go Mainstream

for each operation f of one theory and g of the other. The distributive tensor S . T adds to
the sum equations of the form

f(g(x1, x2), y, z) = g(f(x1, y, z), f(x2, y, z))
f(x, g(y1, y2), z) = g(f(x, y1, z), f(x, y2, z))
f(x, y, g(z1, z2)) = g(f(x, y, z1), f(x, y, z2))

for each operation f of S and g of T .
I also showed some examples:
global state S → (1 +−)× S arises as the sum of the theories State and Failure;
local state S → 1 + (−× S) arises as the commutative tensor State ⊗ Failure;
probability and nondeterminism interact via probabilistic choice w⊕ distributing over
nondeterministic choice �, but not vice versa, so arises as the distributive tensor Prob .
Nondet;
two-player games have both angelic choice t and demonic choice u, each of which
distributes over the other, so arises as the two-way distributive tensor Nondet / .Nondet

and some non-examples:
the list monad does not arise as any of these combinations of the theories Nondet (i.e.,
just binary choice, with associativity) and Failure;
the list transformer done right [3] applied to the monad arising from some theory T does
not arise as any of these combinations of the monoidal theory of the list monad with T ;
symmetric bidirectional transformations [4] maintain two complementary data sources A
and B in synchronization; they have the signature of two copies of the theory of State,
but the two implementations are entangled [1]—the ‘get’ operations of A and B commute
with each other, but the ‘set’ operation on one side does not commute with any operation
on the the other.

I conjecture there are more such well-behaved and useful combinators on algebraic theories
to be found, which might explain the above counter-examples and others like them.

References
1 Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna, and Perdita Stevens.

Notions of bidirectional computation and entangled state monads. In Ralf Hinze and Janis
Voigtländer, editors, Mathematics of Program Construction, volume 9129 of Lecture Notes
in Computer Science, pages 187–214. Springer, 2015.

2 Kwok Cheung. Distributive Interaction of Algebraic Effects. Dphil thesis, University of
Oxford, 2018.

3 Yitzhak Gale. ListT done right. https://wiki.haskell.org/ListT_done_right, 2007.
4 Martin Hofmann, Benjamin C. Pierce, and Daniel Wagner. Symmetric lenses. In Thomas

Ball and Mooly Sagiv, editors, Principles of Programming Languages, pages 371–384. ACM,
2011.

5 Martin Hyland, Gordon D. Plotkin, and John Power. Combining effects: Sum and tensor.
Theoretical Computer. Science, 357(1-3):70–99, 2006.

6 Martin Hyland and John Power. Discrete Lawvere theories and computational effects.
Theoretical Computer Science, 366(1-2):144–162, 2006.

https://wiki.haskell.org/ListT_done_right

KC Sivaramakrishnan, Daan Leijen, Matija Pretnar, and Tom Schrijvers 113

3.7 Handlers.Js: A Comparative Study of Implementation Strategies
for Effect Handlers on the Web

Daniel Hillerström (University of Edinburgh, GB)

License Creative Commons BY 3.0 Unported license
© Daniel Hillerström

Joint work of Sam Lindley, Robert Atkey, KC Sivaramakrishnan, Jeremy Yallop

Handlers for algebraic effects have steadily been gaining traction since their inception. This
traction can be partly attributed to their wide application space which includes diverse
programming disciplines such as concurrent programming, probabilistic programming, etc.
They have been implemented in a variety of programming languages as either a native
primitive or embedded via existing abstraction facilities.

The many different implementations have contributed to mapping out the implementation
space for effect handlers. While the picture for how to implement effect handlers in native
code is pretty clear, the picture for implementing effect handlers via embedding in high-level
programming languages is more blurry. Embedding in JavaScript is currently the only viable
option for implementing effect handlers on the Web.

In this talk, I will discuss and compare five viable different compilation strategies for
effect handlers to JavaScript. Two of the five strategies are based on novel encodings via
generators/iterators and generalised stack inspection, respectively. Although, I will discuss
these compilation strategies in the context of JavaScript, they are not confined to JavaScript.
The strategies are also viable in other high-level languages such as, say, Python.

3.8 First Class Dynamic Effect Handlers and Deep Finally Handling
Daan Leijen (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Daan Leijen

Main reference Daan Leijen, “First Class Dynamic Effect Handlers”, in TyDe’18, St. Louis, US, Sep. 2018.
URL https://www.microsoft.com/en-us/research/publication/first-class-dynamic-effect-handlers

We first show how “inject” combined with higher-ranked types can encode first-class poly-
morphic references. However, it is cumbersome to program this way as you need to “inject”
carefully to select the right handler by position. To remedy this, we extend basic algebraic
effect handlers with first class dynamic effects to refer to a handler directly by name. Dynamic
effects add a lot more expressiveness but surprisingly only need minimal changes to the
original semantics. As such, dynamic effects are a powerful abstraction but can still be
understood and reasoned about as regular effect handlers. We illustrate the expressiveness of
dynamic effects with first class event streams in CorrL and also model full polymorphic heap
references without requiring any further primitives. Following this, we add “finally” and
“initially” clauses to handlers to robustly deal with external resources. We show you generally
need a form of “deep” finally handling to reliably invoke all outstanding “finally” clauses.

Note: the original title of the talk was “Algebraic Effects with Resources and Deep
Finalization”; However, it was decided afterwards this naming caused too much confusion:
“Resources” was already used for external resources in Matija’s thesis, and “Finalization”
reminded of finalization in the object oriented world which is invoked by the GC and
non-deterministic.

18172

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://www.microsoft.com/en-us/research/publication/first-class-dynamic-effect-handlers
https://www.microsoft.com/en-us/research/publication/first-class-dynamic-effect-handlers

114 18172 – Algebraic Effect Handlers go Mainstream

3.9 Encapsulating effects
Sam Lindley (University of Edinburgh, GB)

License Creative Commons BY 3.0 Unported license
© Sam Lindley

3.9.1 Leaking effects

Naively composing effect handlers that produce and consume an intermediate effect leads to
that effect leaking such that external instances are accidentally captured. I illustrate the
problem in Frank and then show how Biernacki et al.’s lift operator resolves the issue. I then
briefly discuss other possible solutions.

For the following, I assume basic familiarity with the Frank programming language [6].
Let us begin by defining in Frank a maybe data type, reader and abort interfaces along with
effect handlers for them.

data Maybe X = nothing | just X

interface Reader X = ask : X
interface Abort = abort X : X

reads : {List S -> <Reader S>X -> [Abort]X}
reads [] <ask -> k> = abort!
reads (s :: ss) <ask -> k> = reads ss (k s)
reads _ x = x

maybe : {<Abort>X -> Maybe X}
maybe <abort -> _> = nothing
maybe x = just x

The reads handler interprets the ask command by reading the next value, if there is one,
from the supplied list; if the list is empty then it raises the abort command. The maybe
handler interprets abort using the maybe data type.

It seems natural to want to precompose maybe with reads. A naive attempt yields the
following Frank code.

bad : {List S -> <Reader S, Abort>X -> Maybe X}
bad ss <m> = maybe (reads ss m!)

The bad handler handles ask as expected, yielding just v for some value v if input is
not exhausted

bad [1,2,3] (ask! + ask! + ask!) == just 6

and nothing if input is exhausted:

bad [1,2] (ask! + ask! + ask!) == nothing

Alas, as indicated by its type, bad also exhibits additional behaviour. As well as handling
any abort command raised by the reads handler, it also captures uses of abort from the
ambient context:

bad [1,2,3] (ask! + ask! + abort!) == nothing

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

KC Sivaramakrishnan, Daan Leijen, Matija Pretnar, and Tom Schrijvers 115

One might think that we could simply supply a different type signature to bad in order
to suppress Abort. But the underlying problem is not with the types; it is with the dynamic
semantics. Without some way of hiding the Abort effect there is no way of preventing
the maybe handler from accidentally capturing any abort command raised by the ambient
context.

The current version of Frank (April 2018) provides a solution to the effect encapsulation
problem: Biernacki et al.’s lift operator [3], with which we can precompose maybe with
reads as follows.

good : {List S -> <Reader S>X -> Maybe X}
good ss <m> = maybe (reads ss (lift <Abort> m!))

An effect (ability in Frank parlance), in Frank (much like Koka [5]) denotes a total map from
interface names to finite lists of instantiations. Interfaces that are not present are denoted
by empty lists. The head of a list denotes the active instantiation of an interface. The
lift operator adds a dummy instantiation onto the head of the list associated with a given
interface. Thus, the invocation lift <Abort> m! adds a dummy instantiation of Abort onto
the ability associated with the computation m!. The dummy instantiation ensures that the
maybe handler cannot accidentally capture abort commands raised by the ambient context.
So

good [1,2,3] (ask! + ask! + abort!) : [Abort]Maybe Int

and:

maybe (good [1,2,3] (ask! + ask! + abort!)) == nothing

The lift operator provides a means for hiding effects reminiscent of de Bruijn represen-
tations for bound names. It generates a fresh instantiation of an interface by shifting all of
the existing instances along by one.

3.9.2 Concurrency

In his Master’s dissertation, Lukas Convent identified the effect encapsulation problem in
the context of a previous version of Frank [4] that did not provide support for lift. He
presents a number of examples of trying to compose effect handlers together in order to
implement various forms of concurrency. The resulting types expose many of the internal
implementation details illustrating how important the problem is to solve.

To illustrate how lift helps to solve these problems I include an adaptation of code
from Convent’s thesis to implement Erlang-style concurrency based on an actor abstraction
in Frank by composing together a number of different handlers. The adapted code takes
advantage of lift.

include prelude

--
-- Queue interface and FIFO implementation using a zipper
--

interface Queue S = enqueue : S -> Unit
| dequeue : Maybe S

-- zipper queue
data ZipQ S = zipq (List S) (List S)

18172

116 18172 – Algebraic Effect Handlers go Mainstream

emptyZipQ : {ZipQ S}
emptyZipQ! = zipq [] []

-- FIFO queue implementation using a zipper
-- (returns the remaining queue alongside the final value)
runFifo : {ZipQ S -> <Queue S>X -> Pair X (ZipQ S)}
runFifo (zipq front back) <enqueue x -> k> = runFifo (zipq front (x :: back)) (k unit)
runFifo (zipq [] []) <dequeue -> k> = runFifo emptyZipQ! (k nothing)
runFifo (zipq [] back) <dequeue -> k> = runFifo (zipq (rev back) []) (k dequeue!)
runFifo (zipq (x :: front) back) <dequeue -> k> = runFifo (zipq front back) (k (just x))
runFifo queue x = pair x queue

-- discard the queue
evalFifo : {<Queue S>X -> ZipQ S -> X}
evalFifo <t> q = case (runFifo q t!) { (pair x _) -> x }

-- start with an empty queue
fifo : {<Queue S>X -> X}
fifo <m> = evalFifo m! (emptyZipQ!)

-- discard the value
execFifo: {<Queue S>X -> ZipQ S -> ZipQ S}
execFifo <t> q = case (runFifo q t!) { (pair _ q) -> q }

--
-- Definitions of interfaces, data types
--

interface Co = fork : {[Co]Unit} -> Unit
| yield : Unit

data Mailbox X = mbox (Ref (ZipQ X))

interface Actor X = self : Mailbox X
| spawn Y : {[Actor Y]Unit} -> Mailbox Y
| recv : X
| send Y : Y -> Mailbox Y -> Unit

data WithSender X Y = withSender (Mailbox X) Y

--
-- Example actor
--

spawnMany : {Mailbox Int -> Int -> [Actor Int [Console], Console]Unit}
spawnMany p 0 = send 42 p
spawnMany p n = spawnMany (spawn {let x = recv! in print "."; send x p}) (n-1)

chain : {[Actor Int [Console], Console]Unit}
chain! = spawnMany self! 640; recv!; print "\n"

--
-- Implement an actor computation as a stateful concurrent computation
--

-- Our syntactic sugar assumes that all instances of the implicit
-- effect variable are instantiated to be the same but they needn’t be
-- the same as the ambient effects.
--
-- For liftBody we need exactly that all but the ambient effects be
-- the same.
liftBody : {{[Actor X]Unit} -> [E |]{[Actor X, Co [RefState], RefState]Unit}}
liftBody m = {lift <RefState, Co> m!}

act : {Mailbox X -> <Actor X>Unit -> [Co [RefState], RefState]Unit}

KC Sivaramakrishnan, Daan Leijen, Matija Pretnar, and Tom Schrijvers 117

act mine <self -> k> = act mine (k mine)
act mine <spawn you -> k> = let yours = mbox (new (emptyZipQ!)) in

fork {act yours (liftBody you)!};
act mine (k yours)

act (mbox m) <recv -> k> = case (runFifo (read m) dequeue!)
{ (pair nothing _) -> yield!;

act (mbox m) (k recv!)
| (pair (just x) q) -> write m q;

act (mbox m) (k x) }
act mine <send x (mbox m) -> k> = let q = execFifo (enqueue x) (read m) in

write m q;
act mine (k unit)

act mine unit = unit

runActor : {<Actor X>Unit -> [RefState]Unit}
runActor <m> = bfFifo (act (mbox (new emptyZipQ!)) (lift <Co> m!))

bfFifo : {<Co>Unit -> Unit}
bfFifo <m> = fifo (scheduleBF (lift <Queue> m!))

--
-- Scheduling
--

data Proc = proc {[Queue Proc]Unit}

enqProc : {[Queue Proc]Unit} -> [Queue Proc]Unit
enqProc p = enqueue (proc p)

runNext : {[Queue Proc]Unit}
runNext! = case dequeue! { (just (proc x)) -> x!

| nothing -> unit }

-- defer forked processes (without effect pollution)
scheduleBF : {<Co>Unit -> [Queue Proc]Unit}
scheduleBF <yield -> k> = enqProc {scheduleBF (k unit)};

runNext!
scheduleBF <fork p -> k> = enqProc {scheduleBF (lift <Queue> p!)};

scheduleBF (k unit)
scheduleBF unit = runNext!

-- eagerly run forked processes
scheduleDF : {<Co>Unit -> [Queue Proc]Unit}
scheduleDF <yield -> k> = enqProc {scheduleDF (k unit)};

runNext!
scheduleDF <fork p -> k> = enqProc {scheduleDF (k unit)};

scheduleDF (lift <Queue> p!)
scheduleDF unit = runNext!

main : {[Console, RefState]Unit}
main! = runActor (lift <RefState> chain!)

This code implements actors using a coroutining concurrency interface, which in turn
is implemented using an interface for queues of processes, which are implemented using a
simple zipper data structure. The example chain spawns a collection of processes and passes
a message through the entire collection.

The crucial point is that the type of runActor mentions only the Actor interface that
is being handled and the RefState interface that is being used to implement it. Convent’s
original code leaks out the Queue interface and the Co interface. Moreover, the type becomes
particularly hard to read because some of the interfaces are parameterised by several effects.

18172

118 18172 – Algebraic Effect Handlers go Mainstream

3.9.3 Discussion

The designers of the Eff programming language [2] have explored several different designs
for effect handlers and effect type systems for effect handlers. Some versions of Eff provide
features that address the effect encapsulation problem to some degree. The earliest version
of Eff [1] resolved the encapsulation problem by supporting the generation of fresh instances
of an effect. This was relatively straightforward as at the time Eff did not provide an effect
type system. A later version of Eff included a somewhat complicated effect type system with
support for instances that used a region-like effect type system [7]. The latest version of
Eff at the time of writing [8] does not appear to offer a solution to the effect encapsulation
problem. It provides an effect type system with subtyping, without duplicate effect interfaces
and no support for effect instances.

For effect systems that allow only one copy of each effect interface we might solve the
effect encapsulation problem by adding a primitive for introducing a fresh copy of an interface.
For instance, to hide the intermediate Abort interface we could generate a fresh copy of
Abort – call it Abort’ – which we could then use to rename any abort commands in the
ambient context to abort’ before renaming them back after running the reads and maybe
handlers.

An as yet unimplemented Frank feature that is related to effect encapsulation is negative
adjustments [6]. Currently an adjustment in Frank always adds interfaces to the ambient
ability, and specifies which interfaces must be handled. Negative adjustments would allow
interfaces to be removed, enabling the programmer to specify that a computation being
handled does not support some of the interfaces in the ambient. Roughly, the lift operation
is the inverse of a negative adjustment. It remains to be seen what the relative pros and
cons of negative adjustments and lift are in practice.

More generally, there is a broad design space for effect type systems that support effect
encapsulation and it is worth considering the full range of options.

References
1 Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers. J.

Log. Algebr. Meth. Program., 84(1):108–123, 2015.
2 Andrej Bauer and Matija Pretnar. Eff, 2018.
3 Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Handle with care:

relational interpretation of algebraic effects and handlers. PACMPL, 2(POPL):8:1–8:30,
2018.

4 Lukas Convent. Enhancing a modular effectful programming language. Master’s thesis,
The University of Edinburgh, Scotland, 2017.

5 Daan Leijen. Type directed compilation of row-typed algebraic effects. In POPL, pages
486–499. ACM, 2017.

6 Sam Lindley, Conor McBride, and Craig McLaughlin. Do be do be do. In POPL, pages
500–514. ACM, 2017.

7 Matija Pretnar. Inferring algebraic effects. Logical Methods in Computer Science, 10(3),
2014.

8 Amr Hany Saleh, Georgios Karachalias, Matija Pretnar, and Tom Schrijvers. Explicit effect
subtyping. In ESOP, volume 10801 of Lecture Notes in Computer Science, pages 327–354.
Springer, 2018.

KC Sivaramakrishnan, Daan Leijen, Matija Pretnar, and Tom Schrijvers 119

3.10 Experiences with structuring effectful code in Haskell
Andres Löh (Well-Typed LLP, DE)

License Creative Commons BY 3.0 Unported license
© Andres Löh

Effectful Haskell code that is written using monad transformers can easily become difficult
to maintain. However, it is unclear whether algebraic effects doenot suffer from the same
problem. Both approaches seem to encourage specifying a minimal amount of effects for
each code fragment, leading to effect constraints being propagated in a bottom-up fashion
throughout the program, often without much thought for control. In this talk, I argue that
sometimes, it is better to be less general, by identifying just a few meaningful interfaces in
a program, corresponding to different sets of available effects, and keeping testing in mind.
These interfaces are then pushed down, and code is merely checked to not use effects that
are outside of the allowed subset.

3.11 Make Equations Great Again!
Matija Pretnar (University of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
© Matija Pretnar

Joint work of Žiga Lukšič, Matija Pretnar

Algebraic effects have originally been presented with equational theories, i.e. a set of
operations and a set of equations they satisfy. Since a significant portion of computationally
interesting handlers overrides the effectful behaviour in a way that invalidates the equations,
most approaches nowadays assume an empty set of equations.

At the Dagstuhl Seminar 16112, I presented an idea in which the equations are represented
locally in computation types [1]. In this way, handlers that do not respect all equations
are not rejected but receive a weaker type. In the talk, I presented the progress made and
questions that remain open.

References
1 Matija Pretnar. Capturing algebraic equations in an effect system. In Dagstuhl Seminar

16112, pages 55–57. 2016. DOI: 10.4230/DagRep.6.3.44

3.12 Quirky handlers
Matija Pretnar (University of Ljubljana, SI) and Žiga Lukšič (University of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
© Matija Pretnar and Žiga Lukšič

Programming language terms are usually represented with an inductive type that lists all
their possible constructors. It turns out that most functions on such a type are routine. For
example, the set of free variables in a given arithmetic expression is almost always the union
of free variables in subterms (except if the expression itself is a variable). Still, we must treat
every single case in the function definition, and this quickly becomes annoying.

18172

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

120 18172 – Algebraic Effect Handlers go Mainstream

There are many ways in which this problem can be avoided, for example using open
recursion or type classes. In the talk, we will see how to use handlers to define such functions
with as little boilerplate as possible, yet ensure that the compiler forces us to revisit each
part of the code when the type definition changes.

3.13 What is coalgebraic about algebraic effects and handlers?
Matija Pretnar (University of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
© Matija Pretnar

In this tutorial we reviewed the work of Gordon Plotkin and John Power [1] in which
they proposed comodels of algebraic theories and tensoring of comodels and models as a
mathematical model for the interaction of an effectful program with its external environment.
A comodel of a theory T in a category C is a model of T in the opposite category Cop, and
the category of comodels in C is the opposite of the category of models in Cop. We may
define the tensor M ⊗W of a comodel W and a model M , which is a certain quotient of
the product M ×W . A pair (p, w) ∈M ×W may be viewed as a program p running in the
external environment w. The comodel W provides resources needed for execution of algebraic
operations in M . In the tutorial we emphasized the fact that comodels and tensoring are a
more appropriate model of top-level behavior of effectful program than various notions of
“top-level” or “default” handlers. A handler has access to the continuation, but at the top
level this is not the case, or else programs would be able to control the external world. It
has to be the other way around.

References
1 Gordon D. Plotkin and John Power. Tensors of comodels and models for operational

semantics. Electronic Notes in Theoretical Computer Science, 218:295–311, 2008.

3.14 Effect Handlers for WebAssembly (Show and Tell)
Andreas Rossberg (Dfinity Foundation, CH)

License Creative Commons BY 3.0 Unported license
© Andreas Rossberg

Integrating effects into Wasm involves a number of complications that do not exist in
more high-level (and purer) languages. For example, the presence of branches interacts
in interesting ways with try blocks, handlers, and continuations. It necessitates a stricter
distinction between exceptions and effects. That in turn complicates the semantics and its
formalisation.

We worked out a the semantics for handlers in Wasm as an extension to the existing
proposal for exception handling. The next, far more challenging step will be to implement
them in a production engine in order to validate their practical feasibility and evaluate their
real-world performance.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

KC Sivaramakrishnan, Daan Leijen, Matija Pretnar, and Tom Schrijvers 121

3.15 Neither Web Nor Assembly
Andreas Rossberg (Dfinity Foundation, CH)

License Creative Commons BY 3.0 Unported license
© Andreas Rossberg

WebAssembly (or “Wasm”) [1] is a portable high-performance code format that has been
designed not just for the Web but for a broad range of embedding environments. It
is standardised and fully formalised using well-established techniques from programming
language theory. Version 1 of WebAssembly, which is currently available, was deliberately
limited in scope to encompass low-level programming languages such as C++. For the next
stage, more support for high-level languages will be added.

One central requirement is the ability to express the large variety of control abstractions
that appear in high-level languages, such as coroutines, light-weight threads, generators, and
asynchronous computations. At the lowest level, their commonality is the need to “switch
stacks”. However, ad-hoc mechanisms for doing so are inadequate for WebAssembly, due to
its nature of a code format that must be sufficiently high-level to guarantee safety, and due
to the desire to maintain a high-assurance formal specification. That asks for a primitive
with strong semantic foundations.

Effect handlers would fit the bill perfectly. But it is an open question how exactly they can
be designed in the context of a low-level stack machine and whether they can be implemented
efficiently under the constraints imposed on existing WebAssembly implementations.

References
1 A. Haas, A. Rossberg, D. Schuff, B. Titzer, D. Gohman, L. Wagner, A. Zakai, J.F. Bastien,

M. Holman. Bringing the Web up to Speed with WebAssembly. PLDI 2017.

3.16 Efficient Compilation of Algebraic Effects and Handlers
Tom Schrijvers (KU Leuven, BE)

License Creative Commons BY 3.0 Unported license
© Tom Schrijvers

Joint work of Amr Hany Saleh, Axel Faes, Georgios Karachalias, Matija Pretnar, Tom Schrijvers

The popularity of algebraic effect handlers as a programming language feature for user-defined
computational effects is steadily growing. Yet, even though efficient runtime representations
have already been studied, most handler-based programs are still much slower than hand-
written code.

In this paper we show that the performance gap can be drastically narrowed (in some
cases even closed) by means of type-and-effect directed optimising compilation. Our approach
consists of two stages. Firstly, we combine elementary source-to-source transformations
with judicious function specialisation in order to aggressively reduce handler applications.
Secondly, we show how to elaborate the source language into a handler-less target language
in a way that incurs no overhead for pure computations.

This work comes with a practical implementation: an optimizing compiler from Eff, an
ML style language with algebraic effect handlers, to OCaml. Experimental evaluation with
this implementation demonstrates that in a number of benchmarks, our approach eliminates
much of the overhead of handlers and yields competitive performance with hand-written
OCaml code.

18172

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

122 18172 – Algebraic Effect Handlers go Mainstream

3.17 Algebraic effects – specification and refinement
Wouter Swierstra (Utrecht University, NL)

License Creative Commons BY 3.0 Unported license
© Wouter Swierstra

How should we reason about programs written with algebraic effects? As the meaning of a
program is determined by its handlers, we need a way to specify the intended behaviour of
handlers. In this talk, I sketched an approach based on predicate transformers that enables
the calculation of effectful programs from their specification.

3.18 Adding an effect system to OCaml
Leo White (Jane Street – London, GB)

License Creative Commons BY 3.0 Unported license
© Leo White

Joint work of Stephen Dolan, Matija Pretnar, Sivaramakrishnan Krishnamoorthy Chandrasekaran, Daniel
Hillerström

Type systems designed to track the side-effects of expressions have been around for many
years but they have yet to breakthrough into more mainstream programming languages.
This talk focused on on-going work to add an effect system to OCaml.

This effect system is primarily motivated by the desire to keep track of algebraic effects in
the OCaml type system. Through the Multicore OCaml project, support for algebraic effects
is likely to be included in OCaml in the near future. However, the effect system also allows
for tracking side-effects more generally. It distinguishes impure functions, which perform
side-effects, from pure functions, which do not. It also includes a tracked form of exception
to support safe and efficient error handling.

This talk gave an overview of the effect system and demonstrated a prototype implemen-
tation on some practical examples.

3.19 Multi-Stage Programming with Algebraic Effects
Jeremy Yallop (University of Cambridge, GB)

License Creative Commons BY 3.0 Unported license
© Jeremy Yallop

I showed how algebraic effects and handlers are useful in multi-stage programming (a kind
of programmer-directed, annotation-driven form of partial evaluation). There is a long
tradition of using continuations and continuation-passing style to improve the results of
partial evaluation and multi-stage programming [4, 3]. However, algebraic effects and handlers
lead to a particularly elegant formulation of various transformations of the code generated
by multi-stage programs.

The running example in the talk was the staging of a standard functional program – typed
printf/scanf [1] — using BER MetaOCaml’s staging facilities [3] and Multicore OCaml’s
implementation of effects [2]. While naively staging the program produces some performance
improvements, the generated code is still sub-optimal. Several transformations, conveniently
expressed using algebraic effects, significantly improve the output:

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

KC Sivaramakrishnan, Daan Leijen, Matija Pretnar, and Tom Schrijvers 123

let insertion untangles nested computations
normalization of destructuring let bindings avoids repeated tupling and detupling
insertion of branches into the generated code exposes information about future-stage
values in each branch (such as whether a boolean variable will have the value true or
false in a particular region of the program), enabling further optimizations. This last
transformation makes essential use of multi-shot continuations.

Some of these techniques are described in more detail in recent work [5].

References
1 O. Danvy. Functional unparsing. J. Funct. Program., 8(6):621–625, Nov. 1998.
2 S. Dolan, L. White, K. Sivaramakrishnan, J. Yallop, and A. Madhavapeddy. Effective con-

currency through algebraic effects. OCaml Users and Developers Workshop 2015, Septem-
ber 2015.

3 O. Kiselyov. The design and implementation of BER metaocaml – system description.
In Functional and Logic Programming – 12th International Symposium, FLOPS 2014,
Kanazawa, Japan, June 4-6, 2014. Proceedings, pages 86–102, 2014.

4 J. L. Lawall and O. Danvy. Continuation-based partial evaluation. SIGPLAN Lisp Pointers,
VII(3):227–238, July 1994.

5 J. Yallop. Staged generic programming. Proc. ACM Program. Lang., 1(ICFP):29:1–29:29,
Aug. 2017.

4 Working groups

4.1 Denotational Semantics for Dynamically Generated Effects
Robert Atkey (University of Strathclyde – Glasgow, GB)

License Creative Commons BY 3.0 Unported license
© Robert Atkey

We discussed a possible worlds / functor category semantics for a simple language with
dynamically generated effect names and handlers. In this semantics, types are indexed by
effect signatures, describing the set of possible effect names in scope, and computations
are given a semantics in terms of a monad that supports ’free’ operations from the current
effect signature world, and the possible generation of new effect names in the style of Stark’s
monads for name generation. Some interesting program equivalences were also discussed,
and it was noted that they depend on whether or not effect names can “leak” out of their
scope, usually via higher-order state. The encoding of ML-style references using handlers
was also discussed. This requires that the “arities” of effects can also include effect names.

18172

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

124 18172 – Algebraic Effect Handlers go Mainstream

4.2 Reasoning with Effects
Jeremy Gibbons (University of Oxford, GB)

License Creative Commons BY 3.0 Unported license
© Jeremy Gibbons

We discussed a number of topics around the equations of algebraic effects and handlers:
general concerns about the equations of an algebraic theory often being ignored
should the equations be thought of as being attached to the operations of a theory or to
the handler(s) for that theory?
where do the equations come from? the programmer’s intentions? QuickCheck exploration
of the properties of a handler?

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

KC Sivaramakrishnan, Daan Leijen, Matija Pretnar, and Tom Schrijvers 125

Participants

Amal Ahmed
Northeastern University –
Boston, US

Robert Atkey
University of Strathclyde –
Glasgow, GB

Lennart Augustsson
X Inc – Mountain View, US

Andrej Bauer
University of Ljubljana, SI

Oliver Bracevac
TU Darmstadt, DE

Jonathan Immanuel
Brachthäuser
Universität Tübingen, DE

Edwin Brady
University of St Andrews, GB

Stephen Dolan
University of Cambridge, GB

Jeremy Gibbons
University of Oxford, GB

Daniel Hillerström
University of Edinburgh, GB

Mauro Jaskelioff
National University of
Rosario, AR

Ohad Kammar
University of Oxford, GB

Andrew Kennedy
Facebook – London, GB

Oleg Kiselyov
Tohoku University – Sendai, JP

Sivaramakrishnan
Krishnamoorthy Chandrasekaran
University of Cambridge, GB

Daan Leijen
Microsoft Research –
Redmond, US

Sam Lindley
University of Edinburgh, GB

Andres Löh
Well-Typed LLP, DE

Žiga Lukšič
University of Ljubljana, SI

Anil Madhavapeddy
Docker Inc. – Cambridge, GB

Conor McBride
University of Strathclyde –
Glasgow, GB

Adriaan Moors
Lightbend Inc. –
Lausanne, CH

Matija Pretnar
University of Ljubljana, SI

Andreas Rossberg
Dfinity Foundation, CH

Tom Schrijvers
KU Leuven, BE

Perdita Stevens
University of Edinburgh, GB

Wouter Swierstra
Utrecht University, NL

Leo White
Jane Street – London, GB

Nicolas Wu
University of Bristol, GB

Jeremy Yallop
University of Cambridge, GB

18172

	Executive Summary Sivaramakrishnan Krishnamoorthy Chandrasekaran, Daan Leijen, Matija Pretnar, and Tom Schrijvers
	Contents
	Overview of Talks
	Linking Types for Multi-Language Software Amal Ahmed
	Idealised Algol Robert Atkey
	What is algebraic about algebraic effects and handlers? Andrej Bauer
	Event Correlation with Algebraic Effects Oliver Bracevac
	Effect Handlers for the Masses Jonathan Immanuel Brachthäuser
	Combining Algebraic Theories Jeremy Gibbons
	Handlers.Js: A Comparative Study of Implementation Strategies for Effect Handlers on the Web Daniel Hillerström
	First Class Dynamic Effect Handlers and Deep Finally Handling Daan Leijen
	Encapsulating effects Sam Lindley
	Experiences with structuring effectful code in Haskell Andres Löh
	Make Equations Great Again! Matija Pretnar
	Quirky handlers Matija Pretnar and Žiga Lukšic
	What is coalgebraic about algebraic effects and handlers? Matija Pretnar
	Effect Handlers for WebAssembly (Show and Tell) Andreas Rossberg
	Neither Web Nor Assembly Andreas Rossberg
	Efficient Compilation of Algebraic Effects and Handlers Tom Schrijvers
	Algebraic effects – specification and refinement Wouter Swierstra
	Adding an effect system to OCaml Leo White
	Multi-Stage Programming with Algebraic Effects Jeremy Yallop

	Working groups
	Denotational Semantics for Dynamically Generated Effects Robert Atkey
	Reasoning with Effects Jeremy Gibbons

	Participants

