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Abstract—In this work, we explore uncertainty in automated
question answering over real-valued data from knowledge bases
on the Internet. We argue that the coefficient of variation
(cov) is an intuitive and general form in which to express this
uncertainty, with the added advantage that it can be calculated
exactly and efficiently. The large amounts of data on the Internet
presents a good opportunity to answer queries that go beyond
simply looking up facts and returning them. However, such
data is often vague and noisy. For discrete results, e.g., stating
that a particular city is the capital of a particular country,
probabilities are a natural way to assign uncertainty to answers.
For continuous variables or quantities that are typically treated
as continuous (such as populations of countries), probabilities are
uninformative, being infinitesimal For instance, the probability
that the population of India is exactly equal to last census
count is effectively zero. Our aim is to capture uncertainty
in these estimates in an intuitive, uniform, and computation-
ally efficient way. We present initial efforts at automating the
inference process over real-valued web data while accounting
for some of the typical sources of uncertainty: noisy data and
errors from inference operations. Having considered several
problem domains and query types, we find that approximating
all continuous random variables with Gaussian distributions, and
communicating uncertainties to users as coefficients of variation.
Our experiments show that the estimates of uncertainty derived
by our method are well-calibrated and correlate with the actual
deviations from the true answer. An immediate benefit of our
approach is that our inference framework can attach credible
intervals1 to real-valued answers that it infers. This conveys to
a user the plausible magnitudes of the error in the answer, a
meaningful measure of uncertainty compared to ranking scores
provided in other question answering systems.

Index Terms—Query Answering; Credible Intervals; Uncer-
tainty; Bayesian Inference; Coefficient of Variation

I. INTRODUCTION

As the world wide web and web-based data sources grow,
so does the promise that they will allow us to ask virtually
any question and receive a reliable and appropriate answer.
However, as web-based knowledge bases (KBs) grow, they
become increasingly difficult for humans to assess, curate,
and correct. They vary in quality, and most contain at least
some imprecise or erroneous records. It is thus essential that
automated question answering (QA) systems accommodate
uncertainty in the accuracy of ‘facts’ recovered from KBs,

1We will use symmetric 68.27 percent credible intervals for the remainder
of this paper, corresponding to 1 standard deviation from the mean in a
standarized Gaussian, but note that this contains sufficient information to
estimate arbitrary posterior probabilities under our assumption of normality.

to produce more accurate answers, and to communicate un-
certainty to end users, allowing them to distinguish between
high-quality, high-precision answers and what are essentially
guesses.

Most QA systems that rely on web KBs fail to address the
uncertainty that comes with such noisy sources or missing
values that have to be inferred. Many more (as discussed
in section VII) fail to acknowledge the uncertainty in the
inference methods used. Such systems avoid the uncertainty
problem and resort instead to ranking candidate answers
without providing information about the quality of that ranking
or relative confidences. This creates difficulty in interpreting
the ranking, and sidesteps the challenge of informing the user
about any errors in the answer returned.

Our hypothesis is that credible intervals are an appropriate
way to express uncertainty when inferring real-valued answers
from a QA system and can be accurately estimated when the
inference process incorporates relevant probabilistic measures
as a core component of its internal representation. Visually,
credible intervals can be represented as error bars, making it
easily interpretable.

To achieve this, we build on the Rich Inference Frame-
work (RIF) [1] which provides a flexible representation to
dynamically curate data from different sources with different
representations into the same inference tree to find answers to
queries. RIF is built on the idea of solving complex problems
by composing solutions to sub-problems from several smaller
operations (programs or algorithms) recursively.

In this work, we estimate the credible intervals on real-
valued answers inferred in RIF, tracking and propagating vari-
ance estimates throughout the inference process. We evaluate
our method using data from web KBs and show that it provides
useful information about the accuracies of answers, as shown
by a positive correlation between the size of the credible
intervals that RIF assigns to its answer and the actual errors
between inferred answers and the true values.

II. OVERVIEW

Question answering over continuous, real-valued facts from
web KBs usually involves information that is inherently vague.
For instance, consider the sentence:

Q : population(UK, 2011) = 63M

that states that the population of the UK in 2011 is 63
million. Not only is there a vagueness about who counts in
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the population (given, say, the constant movement of people,
or those in the process of being born), but with our current
technology it’s impossible to be accurate to a single person.
Therefore, the probability of the assertion is,

p(Q) ≈ 0

So, a probabilistic logic [2] approach, where we assign a
probability to that assertion is not a good technology in this
domain. What makes more sense is the probability that the
answer lies in some range:

population(UK, 2011) ∈
{n|63M − 0.32M < n < 64M + 0.32M}

But for our purposes of providing a meaningful answer to the
user, it makes even more sense to invert this and say, for a
fixed probability, what range the answer lies in. This is usually
understood as the credible interval on an answer.

Rather than calculating the probability of assertions in the
KB or the inferences made (e.g., in probabilistic logic), we
deal with uncertainty by considering the variances in the data
observed when inferring answers. To formalise these notions,
we need to commit to a statistical model. We assume that
the data retrieved from the KB are normally distributed. We
assume that the answer is the mean of this distribution and the
variance accounts for the uncertainty.

The assumption of normality makes it straightforward to
update uncertainty estimates incrementally, assigning a prior
variance to a KB’s data values and then updating the variance
as data is retrieved. This is particularly useful in cases where
a dataset is not fully observed and estimations are done online
rather than in batch. Given that a knowledge base contains data
of different kinds, it is inappropriate to use an unnormalized
value as a prior variance attributed to the KB’s data since the
variance is scaled by the magnitude of the mean. Instead, we
use a measure of relative variability known as the coefficient of
variation (cov) calculated as the ratio of the standard deviation
to the mean. The cov is often expressed as a percentage.

For instance, attaching a prior cov of 0.5% to real-valued
data records in a KB means that if 63M is retrieved from the
KB for the query population(UK, 2011), then the size of the
credible interval associated with this value is ±0.32M . This
means that we can store our estimates of errors in the KB’s
data as a cov, and, for a property for which we do not yet have
a prior variance, use the cov to calculate one once the specific
quantity being measured is known. From there on, we can
calculate our posterior variances using sequential estimation
of the means and variances. We explain this further in section
IV.

We propagate variance estimates through the derivation
in our inference tree, from the child nodes to the parents
in closed-form. Some inference operations, such as regres-
sion, also introduce uncertainties which are inherited during
propagation of variances. We prefer to store the variances
as cov during the inference process because (1) they are
dimensionless and therefore uniformly represented throughout

the inference tree; and (2) they provide a more intuitive basis
to compare uncertainties across different scales. But, since we
have the means in the nodes of the tree, we are able to convert
the covs back to variances for statistical calculations during
propagation. The variance at the root of the inference tree
is then used to inform the user about the uncertainty in the
answer derived.

We explore and implement our ideas in the Rich Inference
Framework (RIF) for query answering over real-valued data,
so we first provide a brief overview of RIF in the next section.

III. RICH INFERENCE FRAMEWORK

A. Overview

The objective of RIF is to infer answers to queries when
the required data that answers the query is not stored in the
available knowledge bases. RIF uses a graph-based algorithm
that recursively decomposes queries, eventually grounding
out in either stored facts or previously cached answers.
RIF focuses on the compositional application of aggregate
functions (aggregates), including prediction, as well as the
decomposition rules that determine the relevance of aggregates
at different stages in inference process. These decomposition
rules extend the RIF tree when lookups in knowledge bases
fail to instantiate the unknowns (variables) in nodes.

Humans are reasonably good at inferring answers to ques-
tions even when the answer is not stored in our memory or in
a knowledge base. In contrast, QA systems, although designed
to use inference of varying kinds, tend to focus on the task of
efficiently retrieving facts that are pre-stored in a knowledge
base. Most perform minimal or no inference operations on
real-valued data even when these existing facts answer the
question.

Consider the question “What will be the UK population in
2021?”. A QA system will typically attempt (unsuccessfully)
to find the pre-stored fact 〈UK,population,p,2021〉 where the
quad represents 〈subject, predicate, object, time〉. Unless the
KB stores forecasts in addition to the facts, it will not find
this, and so will give up and return no answer. Humans,
however, are able to answer this kind of question by using
other readily available information. In the example above, we
could look up the population values for past census years, and
then extrapolate to determine the population in 2021 using
regression. A similar technique can be employed to interpolate
missing facts. For example when the year is in the past, but
no data was observed in the KBs. RIF is motivated by these
kinds of inference.

B. Representation

A frame is a set of attribute-value pairs that specified
an entity and its properties as well as the operations to be
performed on it during inference. Attribute names include, but
are not limited to, subject, property, object, time and cov (for
uncertainty) and can be dynamically added to during inference.
Although some object-level information (e.g. time) about facts
may exist as triples in the database, the representation of facts
as triples limits the inclusion of information that is useful for
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Lookup Query: What was the urban population of Africa in 2010? 

{op:“value”,ov:“?x”,s:“Ghana”,p:“urban population”,o:“?x”,t:2010} 

Aggregate Query: What was the average gdp of countries in Europe in 

2005? 

{op:“avg”,ov:“?x”,s:“$y”,p:“gdp”,o:“?x”,t:2005, 

 “$y”:[{p:“is_a”,o:“country”},{p:“located_at”,o:“Europe”}] 

} 

Nested Query: Who is the leader of the country with the highest male 

population in Africa in 1992? 

{op:“value”,ov:“?x”,s:“$y”,p:“leader”,o:“?x”, 

  {op:“max”,ov:“?y”,s:“$z”,p:“male_population”,o:“?y”,t:1992, 

    “$z”:[{p:“is_a”,o:“country”},{p:“located_at”,o:“Africa”}]} 

} 

Prediction Query: What will be the urban population of Africa in 2023? 

{op:“value”,ov:“?x”,s:“Ghana”,p:“urban population”,o:“?x”,t:2023} 

 

 

      
Key   op=operation, ov=operation variable,  

      s=subject, p=property, o=object, t=time 

Fig. 1. Examples of RIF queries.

reasoning, unless we resort to techniques such as reification2

as used in RDF [3]. RIF’s frame, therefore, augments the triple
representation found in relational and graph databases.

Interoperability with web KBs having different representa-
tions, and RIF’s dynamic curation of facts inform our choice
of JSON (JavaScript Object Notation) [4] as an appropriate
representation to serialize RIF frames. For instance, graph
databases (including Linked-data [5] KBs) represent data as
triples. Reified forms of these graph subsets for a given entity
can be represented as key-value pairs. Traditional relational
databases management systems (RDBMS) use tables (rela-
tions) whereas NoSQL databases use a document-based (key-
value) representation.

RIF queries (examples in fig 1) are also expressed as frames.
Variables are denoted by a $ or ? prefix. These represent
the unknowns in a frame that have to be instantiated to
successfully answer a query. Since RIF returns a specific
answer, the ? prefix indicates the variable in a query that is
returned as the answer. A variable can also be used in the
operation variable (ov) attribute of a frame. This indicates the
variable to which the frame’s inference operation is applied.

C. Composable Inference Operations

RIF finds answers to queries by applying operations to data
in a compositional and recursive manner. An inference opera-
tion (1) determines how a RIF frame should be decomposed,
and (2) specifies how the child frames of the decomposed
frame should be combined in order to instantiate variables
in parent frames. The aggregate functions used for (2) are
shown in table I. That is, operations transform values of
frames attributes and propagate them to their children or parent
frames, depending on the type of operation being performed.
Figure 2 shows an illustration of the RIF tree that results from
these operations.

2https://www.w3.org/TR/rdf11-mt/

   Which country will have the largest population in Africa in 2021? 

{op:“max”,ov:“$y”,s:“?x”,p:“population”,o:“$y”,t:“2021”, 

 “$y”:[{p:“is_a”,o:“country”},{p:“located_at”,o:“Africa”}]}    

 

 

MAX    𝐶𝑜𝑢𝑛𝑡𝑟𝑦(? 𝑥) & 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(? 𝑥, 𝐴𝑓𝑟𝑖𝑐𝑎)    ρ     $y  2021 0.7 

 MAX  {Algeria, …,Zimbabwe}  ρ    $y 2021 0.6 

VALUE Algeria  ρ     $y 2021 0.6 VALUE Zimbabwe   ρ    $y  2021 0.8 

REGRESS Algeria   ρ      $y  2021  0.6 

VALUE Algeria   ρ     $y  1901  0.4 VALUE Algeria  ρ      $y  2011  0.5  … 

 … 

 …
 

 …
 

 …
 

Decomposition Inference/aggregation ρ  = population 

  

  

  

Failed Search 

LOOKUP  𝐶𝑜𝑢𝑛𝑡𝑟𝑦(? 𝑥) & 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(? 𝑥, 𝐴𝑓𝑟𝑖𝑐𝑎)      ρ     $y  2021 0.9 

  

 LOOKUP {Algeria, … ,Zimbabwe} ρ    $y 2021 0.9 

LOOKUP Algeria  ρ     $y  2021 0.9 

LOOKUP  Algeria   ρ   $y 2021  0.9 

LOOKUP Algeria ρ    $y 1901  0.4 

Key 

 operation  subject   property   object    time   cov frame= 

Fig. 2. An example showing a RIF tree.

Frame decomposition is the process of creating new child
frames from a frame, f, by transforming attributes values and
variables in f. The Frame Normalisation rule first converts all
frames to RIF Normal Form prior to variable instantiation.
That is, compound frames containing sub-queries (nested
frames) are unpacked into simpler child frames without sub-
queries. For normalized frames, a decomposition is triggered
whenever a KB lookup fails to return any results. The ob-
jective of decomposing a frame is to increase the chances
of grounding its variables when the KBs are searched. Three
decomposition rules determine how we extend and explore the
RIF tree. These are: (1) lookup decomposition, (2) temporal
decomposition and (3) geospatial decomposition.

1) Lookup Decomposition: Lookup decomposition is the
base case rule for finding matching facts from knowledge
bases. One of the problems that arises in open-domain query
answering using web data is the expression of the same
concept in multiple ways. This decomposition finds synonyms
of terms in the frame to increase the chances of finding a
match in the KB. We use the Jaro-Winkler edit distance [6]
as the criteria for selecting the best matches between terms
in queries to those in the KB as it performs slightly better
than other similar edit distance measure. We then formulate
the appropriate queries to retrieve data from the KB.

2) Temporal Decomposition: Temporal decomposition is
based on the intuition that if the query requests data for a
specified date and that data point is not available in the KBs,
then we can take advantage of the data observed for different
dates and draw inferences from it for the date originally
required in the query using regression. In this project, we limit
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TABLE I
RIF AGGREGATES

Operation Description
VALUE Default aggregate. Identity function on frame’s value
SUM Add values of frames of numeric type
AVG Mean value of child frames
MEDIAN Median value of child frames
MAX Maximum value of child frames
MIN Minimum value of child frames
COMP Obtain a set by list comprehension
GT ‘Greater Than’ function to compare two frames
LT ‘Less Than’ function to compare two frames
EQ Check if the value of two frames are equal
REGRESS Regression function from child frames

temporal decomposition to the ‘year’ level of granularity for
data/time values.

3) Geospatial Decomposition: Our use of geospatial de-
composition in RIF is based on the ideas of merology and
merotopology [7] that create a spatial logic for regions and
connections. This type of decomposition is applied to attributes
in frames that represent geo-spatial concepts. We use a part-
hood rule based on the idea that an entity can be partitioned
into its sub-parts such that a problem can decomposed into
smaller problems for the sub-parts which could be easier to
solve and then aggregated to solve for the whole entity. For
example, if an entity such as a continent can be partitioned
into the countries that it is composed of, then we can solve
a problem for its countries first, and then aggregate to get an
answer for the continent.

RIF can be extended to other domains by adding the appro-
priate inference operations. For instance, RIF was extended to
the energy domain in (Markov, 2017) [8] by creating inference
operations that determined how to answer queries such as
“What proportion of the UK will need to be covered by solar
panels in order to supply enough energy to meet the entirety
of the UK’s energy demand in 1999?”.

In the sections that follow, we explore in more detail the
estimation of uncertainty in answers inferred by RIF.

IV. UNCERTAINTY IN RIF

A. Overview

Uncertainty is unavoidable when answering queries over
heterogeneous data sources. So providing an uncertain answer
is acceptable in such cases as long as the user is informed
about the degree of uncertainty and the uncertainty measure
is a tight and accurate estimate. We define uncertainty as the
possible deviation of a fact or an inferred answer from its true
value. As a result, we consider credible intervals an appropriate
representation for uncertainties attached to an answer. We also
limit our discussion to the uncertainty of real-valued data
records and answers. Subsequently, we mean real-valued data
when we refer to data in KBs, and real-valued answers when
we refer to answers from RIF. We focus on two main forms
of uncertainty in RIF:
• KB uncertainty: Imprecision of KB data values due to

errors.

• Inference operation uncertainty: Due to approximations
resulting from the execution of inference operations. This
is currently limited to regression.

Our aim in calculating uncertainty is to estimate the error in
an answer value computed by RIF by assessing the accuracy
of the data records in a KB. We assume that each KB has
noise that is reflected as a deviation from the true value of the
facts they contain by assigning a prior variance (expressed as
cov) on the data in the KB. As we retrieve more data from a
KB, we update the initial variance by computing the posterior
variance given the new data seen. Thus, the posterior variance
attached to data values of a KB is conditional on data observed
from all other KBs that RIF finds data from.

The KB’s data variances, when incorporated into RIF,
together with the errors that are introduced from RIF’s ag-
gregate functions, reflect the error in the computed answer.
This approach means focusing not only on the precision of
individual data records in a KB, but also to have a notion of
the precision of data values in the KB as a whole such that we
can infer the error in a retrieved value even if we have never
previously seen data for that property of an entity.

This general application of KB error to its constituent data
leads us to use the Coefficient of Variation (cov) (section IV-B)
as a normalized form of the error since a KB contains facts
of different types, with magnitudes on different scales. We
track parameters of the distribution that allows us to make
useful statements about uncertainty, such as credible intervals,
about the answers inferred. The sequential update of the KB’s
prior error is similar to the techniques of sequential estimation
using Bayesian methods. We therefore adapt these established
techniques to our method in subsequent sections.

B. Coefficient of Variation and credible intervals

We compute uncertainty in the answer from the posterior
variance and we normalize it with the mean so that the
variation between the inferred and actual for different data
items in the RIF tree is not affected by the magnitudes of the
data values. The normalized standard deviation is called the
cov and it is calculated as:

cov =
σ

µ
(1)

This is a measure of relative variability and is often ex-
pressed as a percentage of the mean. For our use in RIF, this
provides four advantages compared with the use of the raw
variance or probability values between 0 and 1 used in other
inference systems.

(1) Since the cov is calculated from the parameters of the
Gaussian distribution, it allows us to express the uncertainty in
an answer as a credible interval based on the standard deviation
of the distribution. Whereas most QAs systems that deal with
uncertainty are concerned with discrete assertions, we are
interested in statements about continuous or effectively contin-
uous variables. For example, in the domains socio-economic
development, many questions deal with populations, GDPs,
and other quantities where the probability of any particular
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real value will be approximately zero, and all but useless in
describing the uncertainty of the value. Credible intervals,
however, give a sense of how far an inferred value could
be from the truth and provide a meaningful representation of
uncertainty for the datasets we work with. By storing covs and
posterior means and assuming normality, we retain sufficient
statistics for propagating uncertainty up inference trees.

(2) A probability value {p|0 ≤ p ≤ 1} shows how
probable the answer is, but does not indicate by how much the
answer could be wrong. Many QA systems including IBM’s
Watson [9], [10] and Microsoft’s AskMSR [11], [12] return a
probability value or a ranking score attached to their answers.
We believe that the semantics of uncertainty in RIF and its
representation offers a better interpretation of the accuracy of
an answer than a generic score used to rank the candidate
answers. That is, we can attribute meaning to RIF’s cov,
whereas a ranking score cannot be easily interpreted relative
to the answer that a user sees. Also, since the cov is expressed
as a percentage of the answer (i.e., the mean value), it easily
explains how much error is, potentially, in an answer. So an
answer with a higher cov is more uncertain than an answer
with a lower cov and by turning this into a variance, the user
can see and upper and lower bound of the answer.

(3) The normalization of the variance as cov allows us
to compare and propagate variance in the inference tree
regardless of the magnitude of the means of the inferred data
values. For instance, if the RIF tree has frames containing data
for birth rate and other frames for population, the cov allows
us to uniformly express the uncertainty of these frames in the
same RIF tree, even with data on different scales. This also
means that we can compare the credible intervals of answers
to queries in a uniform way irrespective of the magnitude
of the answers. Raw variance, scaled by the magnitudes of
the answer, do not lend themselves to easy comparisons of
uncertainties of different answers.

(4) We assign priors to new variance estimates for a given
KB heuristically, combining previous cov estimates from that
KB with new mean estimates. That is, we use the cov assigned
to a KB’s data values as the prior variance of the data values
in a KB when we encounter a property for which we have not
previously retrieved data. Section IV and the worked example
in table II explains this. This approach is preferable to using a
full probabilistic model relying on a posterior distribution over
raw variances, given that in practice uncertainty and error for
individual KB entries tends to scale with the expected value,
and these expected values can vary by orders of magnitude.

The cov attribute in a RIF frame is dedicated to uncertainty
and is propagated with other frame attributes during inference.
Our goal is to make RIF update its belief about the uncertainty
of facts given what it has previously observed from knowledge
bases in a justified way. In the sections that follow, we look
at how we calculate uncertainty for real-valued facts.

For real-valued answers, we communicate uncertainty to the
user by multiplying cov by the answer to obtain the standard
deviation from the answer. For example, for a query that
returns the answer 27, 650, 000 with a cov of 15%, implying

a .68 probability that the estimate is within ±15% of the
correct answer. In raw terms, the interval includes values
within 4, 147, 500 of the posterior mean.

To be clear, the cov is simply a dimensionless, standardized
representation of the standard deviation, and our approach does
not work well when means are close to zero or when then
sign of the true answer is unknown. In practice, this is not
a significant problem in our target domain, but we hope to
explore this further in future work.

V. CALCULATING UNCERTAINTY

A. Background: Bayesian Inference and Sequential Estimation

Probabilistic reasoning deals with uncertainty over possible
worlds for given random variables. The conditional (posterior)
probability of a random variable X given another random
variable Y is expressed as:

P (x|y) = P (x, y)/P (y) (2)

where P (x, y) is the joint probability distribution of X and Y,
and P (y) is prior probability of Y .

Bayes’ Rule is one of the fundamental elements of proba-
bilistic reasoning and is expressed as:

P (x|y) ∝ P (y|x)P (x) (3)

P (y|x) is called the likelihood distribution and P (x) is called
the prior distribution.

When a dataset is not fully observed, the approximate
posterior distribution of the dataset can be estimated by
sequentially updating the posterior distribution in light of
new data. The prior parameters of the distribution and the
likelihood distribution of the new data values observed are
used to estimate the posterior parameters. Conjugate priors
simplify the calculations of posteriors. A key factor in choos-
ing a distribution as a conjugate prior is the similarity of its
functional form to the likelihood function. We define the two
main probability distributions used as likelihood distributions
in our work and their respective conjugate priors.

The Gaussian distribution (also referred to as the normal
distribution) is a common statistical distribution for continuous
random variables. For a random variable X , its Gaussian
probability density function is defined by two parameters; a
mean µ, and a variance σ2 in the form:

N (x|µ, σ2) =
1√

2πσ2
exp−

1
2σ2

(x−µ)2 (4)

The Gamma distribution, parameterized by the shape a and
rate b, is commonly used as the prior for the Gaussian
distribution.

Gam(λ|a, b) = 1
Γ(a)b

aλa−1exp(−bλ) (5)

and Γ(x) =

∫ ∞
o

ux−1e−udu , Γ(1) = 1
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B. KB Uncertainty for rvd

Our method for calculating uncertainties is based on sequen-
tially estimating Gaussian distributions as new observations,
e.g., KB entries (which may be subject to additive noise
or rounding error), become available. It is also motivated
by ideas from the Expectation-Maximization (EM) algorithm
[13]. These techniques use prior distributions based on pre-
viously seen data, and then update the priors to get posterior
distributions as new data is retrieved. For convenience, we
recapitulate formulae for sequentially updating a Gaussian
distribution as new data arrive, following [14].

Suppose that for a particular leaf node in the RIF tree,
we require data value f. Let s(1), s(2), ..., s(n) denote KBs 1
through n, and x

(i)
j represent the jth fact from KB s(i). We

assume that all real-valued observations of a specified property
from the KBs are independent and normally distributed with
mean, µ, and variance, σ2. Given that the KB’s entire data
records is not fully observed by RIF, the normal distribution
is a reasonable assumption to make for the data records for
each of the real-valued properties in the KB. Although this
assumption may not necessarily hold in every case, it allows us
to work with existing probabilistic techniques in a reasonable
way.

We use a random variable Xi = {x(i)
1 , x

(i)
2 , ..., x

(i)
j } to

represent real-valued facts that have been retrieved for a given
property from s(i). Each x(i)

j is normally distributed as,

x
(i)
j ∼ N (µ(i), σ2(i)) (6)

We refer to the inverse of the variance as precision (λ). That
is, λ = 1/σ2.

A Bayesian treatment allows us to introduce priors over
the parameters in equation (6) . Our aim is to determine the
posterior mean (the assumed true value) and cov of a fact
given the facts retrieved from KBs. The sequential Bayesian
estimation for the Gaussian distribution proceeds in two steps.
First, we estimate the mean by assuming a known variance.
Next, we do the reverse by assuming that the mean is known
and then estimate the variance. The posterior means and
variances are then used to calculate the cov. Figure 3 shows
how we use prior distributions of KB’s data.

STEP 1: Assume Variance, Estimate Mean: We begin by
using the cov associated with the KB to calculate our known
variance, σ2, of the underlying Gaussian distribution of the
true value is known. Our goal in this first step is to infer the
mean of this distribution. We obtain the ‘assumed’ variance
from the prior cov as follows:

σ2 =

k∑
i=1

(cov(i) × µML)2 (7)

where cov(i) is the cov associated with KB si and µML is the
maximum likelihood mean of the subset of all data retrieved
from KB s(i), where i ∈ {1, . . . , k}.
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Fig. 3. Prior parameter for data records in KBs and their use in calculating
the posterior mean and variance for RIF frame attribute.

Our aim is to find the parameters of the posterior distribution
p(µ|X) given by:

p(µ|X) ∝ p(X|µ)p(µ)

p(µ|X) = N (µ|µN , σ2
N ) (8)

where the prior is given by:

p(µ) = N (µ|µ0, σ
2
0) (9)

We use an ‘improper’ prior µ0 for each KB by taking the
maximum likelihood (ML) mean of the observations from that
KB. Ordinarily, the prior mean will be obtained from prior
knowledge of the specific data that is retrieved. However, in
our case, the dataset in a KB is so diverse that it is impossible
to find an existing prior mean. Hence, we use the ML mean of
the data that RIF retrieves from a KB as its prior. This prior
is close enough to the actual mean and is a better prior than
a random value since we usually do not have a prior mean of
the data value when we encounter it the first time in a KB.
The parameters µN and σ2

N of the posterior distribution of the
mean are given by:

µN =
σ2

Nσ2
0 + σ2

µ0 +
Nσ2

0

Nσ2
0 + σ2

µML (10)

1

σ2
N

=
1

σ2
0

+
N

σ2
(11)

where N = |xi,1, ..., xi,n| is the number of observations from
the KBs in the current iteration.

STEP 2: Assume Mean, Estimate Variance: In the second
step, we estimate the uncertainty associated with the distri-
bution of the true value. We assume that the mean is known
(we use equation 10 as the ‘assumed’ mean), so we infer the
variance (precision).

Following a similar process as above, our posterior distri-
bution of precision is given by:

p(λ|X) ∝ p(X|λ)p(λ) (12)
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and the likelihood function with the given mean µN is ex-
pressed as:

p(X|λ) =

N∏
n=1

N (xn|λ−1)

=
λN/2

(2π)(1/2)
exp

{
− λ

2

N∑
n=1

(xn − µN )2

}
(13)

The Gamma distribution (equation 5 in section V-A) is used
as the prior for the likelihood function since the likelihood is
a function of the product of a power of λ and the exponent of
a linear function of λ.

λ(i) ∼ Gam(a(i), b(i))

For each source s(i), we calculate λ(i) by using priors on its
parameters, i.e., a(i)

0 and b(i)0 . We obtain the posterior precision
by updating the parameters of the Gamma distribution given
the new observations as follows:

a
(i)
N = a

(i)
0 +N/2 (14)

b
(i)
N = b

(i)
0 +

1

2

n∑
j=1

(xj − µN )2 = b
(i)
0 +

1

2
σ2
ML

where σ2
ML is the variance of retrieved data from all sources.

The estimate of the posterior precision is given by the
expectation of the precision:

λN = E[λN ] =
aN
bN

(15)

Finally, our posterior covN is calculated using equations (10)
and (15) as:

covN =

√
λ−1
N

µN
(16)

The posterior precision is propagated back in the RIF tree and
the posterior cov is saved and will be used as prior variance
in future observations from the KB. Table II shows a worked
example for the query “What is the UK population in 2013”
that follows the above sequence of steps. The posterior mean
(line 7) gives us the data value from each KB given the
prior variance on data from the KBs from which the value
is retrieved. We propagate the posterior covs (line 14) through
the RIF tree.

C. Similarities and Difference between RIF the EM Algorithm

RIF’s sequential estimation of uncertainty and the vanilla
EM algorithm for clustering data are conceptually similar,
but different in their objectives and calculations. In RIF, we
estimate the posterior mean and variance and assign to frame
variables using the prior variances about facts in the web KBs.
EM, in the context of clustering, on the other hand deals with
the iterative estimation of the maximum likelihood of observed
data by estimating the parameters of the distributions and
the cluster assignments. We can also map RIF’s uncertainty
calculation steps to that of the expectation step (E-step) and
maximization step (M-step) of the EM algorithm.

TABLE II
KB UNCERTAINTY WORKED EXAMPLE:“UK population in 2013”

# STEP KB s1 KB s2

1 Prior cov 1.0 1.0

2 Retrieved data 63900000,
64100000

64000000,63800000,
64200000,63500000

Step 1: Estimating the posterior mean value of the observation,
using the cov as the prior variance

3 µ0 = µ
(i)
ML 64000000 63875000

4 µML 63916667
5 σ2

0 = (cov × µML)
2 4.096× 1015 4.080× 1015

6 σ2 1× 1010 6.6875× 1010

7 Posterior Mean,
µN (from eqn 10)

6.3917× 107 6.3917× 107

Step 2: Estimating the posterior cov
8 a0 1.0 1.0
9 b0 (set to µ0) 64000000 63875000
10 σML 1.694× 1010 7.028× 1010

11 aN (eqn 14) 2.0 3.0
12 bN (eqn 14) 8.536× 109 3.520× 1010

13 λN (eqn 15) 2.343× 10−10 8.552× 10−11

14
Posterior cov,

covN =

√
λ−1
N

µN

1.002× 10−3

= 0.0010%
1.695× 10−3

= 0.0017%

In the E-step, the current values of the parameters of the
cluster are used to estimate the posterior probability of each
cluster’s data points given the observations. In RIF, the priors
of the hyperparameters are used to estimate the posterior mean
and variance of the observation. In the M-step, the current
values of the posteriors are used to re-estimate the parameters
of the clusters and re-assign data to clusters such that it
maximizes the expected log-likelihood calculated in the E-
step. In RIF, we update the hyperparameters (priors) using
the posterior mean and variance calculated for the current
observations.

D. Inference Operation Uncertainty

Aggregate functions in RIF may contribute to uncertainty in
the final answer. We categorize aggregate functions into two
types: (1) Exact aggregates and (2) Approximating aggregates

1) Exact Aggregate Functions: These functions perform
non-approximating operations on nodes and do not generalize
from their child nodes. Examples of such aggregates are
MAX, MIN, GT, LT, LOOKUP, VALUES and AVG. Since
these aggregates do not approximate their returned values,
they do not introduce errors during up-propagation and hence,
do not contribute any uncertainty to the final answer. Exact
aggregates, however, propagate the uncertainties of their child
frames up the RIF tree.

2) Approximating Aggregate Functions: These are aggre-
gates, such as the GP (Gaussian Process Regression) [15],
[16] that generate functions from their child nodes in the
inference tree and infer new values from them. They take
as inputs RIF frames that contain either values representing
facts, or functions inferred by other methods. Given that
these aggregates extrapolate from functions they generate, or
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simply reuse previously generated functions, they are likely to
introduce errors in the answers returned to their parent nodes.

A GP generates data located through some domain such
that any finite subset of the range follows a multivariate
Gaussian distribution. The GP gives a distribution over the
underlying function that the retrieved data represents. For each
independent variable, we can sample the GP for the function.
As we generate several samples from this distribution, we
observe variances for different independent variable points
selected on the function, which results in different function
curves. The point variance gives the uncertainty that the GP
aggregate function contributes in RIF.

E. Propagating Uncertainty

RIF propagates the uncertainty from its leaf nodes, through
intermediate aggregate function nodes, to the root node of
the inference tree to obtain the uncertainty of the answer
inferred. In addition to the uncertainty that the aggregate
functions introduce, the child nodes of the aggregate functions
may also contain uncertainties calculated from further down
the inference tree. We therefore have to combine uncertainty
values to obtain the uncertainty that is propagated from a given
node to its parent node.

Given the frame’s cov and mean value, the variance is
known and can be propagated in closed-form up the RIF
tree. For example, suppose the aggregate function I sums up
two nodes A and B. If A and B have variances σ2

a and σ2
b

respectively, then the variance of combined aggregate function:

σ2
A+B = σ2

A + σ2
B

We limit our propagation to inference operations such as
SUM, AVG, VALUE and GP (regression) for which there
are well understood closed-form combination of the variances
of Gaussian distributions. To further simplify our model, we
assume conditional independence of the data values of child
nodes of a specified node in the inference tree given the
inference strategy applied.

VI. EVALUATION

Our goal in this evaluation was to demonstrate, using
queries over actual web KBs, that the credible intervals
that RIF attached to the answers it predicted were properly
calibrated and consistent with the actual deviation of the
inferred answers from the true answers. In addition to our
argument in section IV-B that the cov (and in effect, the
credible intervals) is appropriate for expressing uncertainty
when reasoning over real-valued data, these experiments test
our probabilistic method for estimating the cov.

We evaluated this hypothesis using real-valued data from the
World Bank3 (with data on over 15,000 different country indi-
cators) and Wikidata [17]. Other supporting KBs used include:
DBPedia [18] GeoNames4, ConceptNet [19] and WordNet
[20]. Existing test sets for evaluating query answering systems

3http://databank.worldbank.org, (api endpoint: http://api.worldbank.org)
4http://geonames.org

TABLE III
INFERRED ANSWERS FOR THE TRUE GHANA POPULATION VALUE OF

26, 962, 563 IN 2014 FOR MULTIPLE YEARS’ DATA HELD OUT.

Year(s) Held Out Inferred Answer cov |error|
2014 26,962,104 0.0008% 0.0017%

2013, 2014 26,956,515 0.0002% 0.0022%
2012, 2013, 2014 26,957,935 18.53% 0.017%

2011, 2012, 2013, 2014 27,057,470 47.12% 0.35%

Fig. 4. Prediction cov and estimation error plot
A plot of the cov of the inferred answer against the normalized
ratio of the deviation to the actual answer for prediction of the

query “What is population of Ghana in 2014”. Different years are
held out: m1 = 2014, m2 = 2014, 2013, m3 = 2014, 2013, 2012

and m4 = 2014, 2013, 2012, 2011

focus on aspects of the inference process that differ from
our objectives in RIF. We were interested in queries that, not
only find relevant facts, but also infer non-trivial answers by
combining them. We therefore looked at the kinds of questions
that are usually asked about demographics and other country
development indicators from open data sources such as the
World Bank and created a list of test queries to evaluate RIF.

A. Experiment 1: Prediction

In this experiment, we tested the predictive capabilities of
RIF and its ability to attach the appropriate cov to the returned
answers. Although we can pose queries that predict values
for a future date, it is difficult to evaluate when there is no
ground truth to compare to. It is worth noting that existing
QA benchmark datasets are not well for evaluating RIF’s
predictive capabilities. We therefore simulated answering pre-
diction queries by holding out all facts after a given time
(year). Specifically, this approach simulated a QA environment
that assumed that the current year was 2005 and then asked
questions about 2014. We asked the query:
{operation:‘value’, operation-variable:‘?x’, subject:‘Ghana’,
property:‘population’, object:‘?x’, time:‘2014’} .
We held out all facts after 2005. We used a prior cov of 1.0
for all KBs’ data values. This assumes the KBs to contain
data that is uncertain, with their properties having a standard
deviation that is equal to the mean values of the respective
properties. The results of this experiment are shown in table
III and figure 4.

We observed that, for regression, RIF provides an adequate
measure of uncertainty that is well-calibrated such that it
is consistent with the absolute errors between the predicted

IEEE 8 | P a g e



Intelligent Systems Conference 2018
6-7 September 2018 | London, UK

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.1 0.2 0.3 0.4 0.5 0.6 0.7

|a
ct

u
al

-i
n

fe
rr

ed
| 

/a
ct

u
al

Inferred answer uncertainty (CoV)

Fig. 5. cov and estimation error plot.
A plot of the cov of the inferred answer against the normalized

ratio of the deviation to the actual answer shows the positive
correlation between the two.

answer and the true data value in the KB. Figure 4 shows
a positive correlation between the number of missing years’
data, the cov and the normalized absolute error (|error|)
between the held out value and the inferred answer. This also
confirms that as number of missing data values needed to
calculate an answer increase, the uncertainty in the inferred
answer also increases, resulting in a larger cov.

B. Experiment 2: Correctness of cov

To check the accuracy of the covs estimated, we generated
a set of 60 queries using property terms from the country
indicators in the World Bank dataset. Indicators included
population, birth rate, gdp, unemployment, agricultural land
area, access to electricity, urban and rural population, cereal
export, labour force, energy consumption, arable land, and
fertility rate. We used 40 of these queries as a training set
during the development of RIF and put the remaining 20
away for these experiments. We plotted the covs against the
actual relative errors calculated from the difference between
the estimated answer and the held out value from the KB. We
used a prior cov of 1.0 for all KBs’ data values. Similar to the
experiment 1, we hid the answers stored in the KB from RIF
to force it to infer from other values in the KB.

We observed a positive correlation between the credible
interval sizes (cov) estimated by RIF and the normalized error
between the true value and the answer that was inferred (figure
5). RIF’s cov increased with the errors in RIF’s answers
compared to the correct answer in the KB. This shows that
RIF’s cov is adequately captures the intervals within which
the truth values of query targets inferred fall. We also observe
that the although we started with a uniform prior cov of 1.0,
individual cov values increased as the actual absolute errors
between RIF’s answer and the hidden true value increased.

VII. RELATED WORK

Probabilistic logic [2] and fuzzy logic [21], [22] are com-
monly used for reasoning about uncertainty in logic. In
classical logic, a sentence can be either true or false in all

possible worlds (models or assignments to variables in the
sentence). In the actual world, the sentence can be modelled
to account for uncertainty such that it is world w1 with
some probability p and in another world w2 with probability
p2 = 1 − p1. Probabilistic logic focuses on such uncertain
reasoning by a process of probabilistic entailment that formally
calculates bounds on the probability of a sentence given a base
set of sentences that constitutes its belief about the possible
worlds. Also, given a set of sentences and their associated
probabilities, probabilistic logic can be used to make new
assertions about the world with some posterior probability
attached to these assertions. These logics are, however, built
for expressing uncertainty about logical formulae, not the
specific values within them. They are, therefore, not suited
to the kinds of higher order reasoning with real-valued data
required in query answering where uncertainty of the values
are of interest. More importantly, in RIF, we are unable to
capture the variances required to compute our covs. As a result,
using these logics (and related ones such as Bayesian Logics
Programs [23]), we are unable to express the uncertainty of
the answer value.

Although many of the QA systems in the literature exhibit
strengths in information retrieval tasks, most fail to attribute
an appropriate measure of uncertainty beyond ranking of the
answer candidates. Others attribute probabilities to the facts
retrieved or inferred. In Ko et.al. [24], evidence from sources
(e.g. gazetters and search engines) are used to rank and
merge answers. The authors used multiple answering agents to
extract candidate answers and developed a unified probabilistic
framework to combine multiple evidence to address challenges
in ranking and answer merging for factoid questions and
questions that return lists. Limitations included the inability of
the QA system to scale well to open/multi-domain and multi-
knowledge base QA as we do in RIF. DeepQA [9], developed
for IBM’s Watson, uses a processing pipeline architecture that
applies several algorithms that analyse evidence along different
dimensions. The evidence evaluation results in confidence
values that are used to rank answers.

Out of 20 other QA systems based on SPARQL (including
PowerAqua [25], ANGIE [26], ISOFT [27] and Intui3 [28])
and others based on natural language processing and on neural
networks, we found 9 with no measure of uncertainty, 7 with
a ranking score of the quality of the answers, and 4 with a
probability measure of uncertainty.

In databases, probabilistic techniques are also used to deal
with uncertainty. The Trio database system [29] manages data,
accuracy and lineage of the data, with focus on the inexactness
of the data contained. Its is capable of storing uncertain or
incomplete data and running queries over them to return an-
swers that may also be inexact, using probabilistic methods to
compute these. Trio, however, requires well-defined databases
with uncertainty values assigned to the records stored. Work
in approximate query processing (AQP) surveyed in [30]
surveyed a number of techniques used in AQP over the past
few years. These include dynamic sampling [31] and sampling
with error estimation [32] where only a subset of the relations
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in the database are sampled and used. Such sampling errors
are used as uncertainty measures returned with the answers.
These database systems, have not been used in web KBs and
so most QA systems are unable to leverage the uncertainty
values associated with the data they contain.

VIII. CONCLUSION

When answering queries with data from the Web KBs,
errors from source KBs as well as inference operations lead
to errors in the final answers. In this work, we demonstrate
that it is possible to estimate meaningful credible intervals
for answers inferred in RIF by adapting existing probabilistic
techniques to our calculations. Our use of the cov, the ratio
of the standard deviation to mean value, allows RIF to track
relevant parameters of the data distributions from which to say
useful things about the precision of the answers returned.

Our method allows RIF to calculate uncertainty in real-
valued answers as credible intervals, providing simple, inter-
pretable ‘error bars’ on its answers. This is a useful contri-
bution given the limitations of current QA systems’ use of
ranking techniques or discrete probabilities to inform the user
about the uncertainty in the answers that they infer. Although
useful in expressing how probable an answer is, such methods
do not clearly show by how much the answer could be wrong.

We show that credible intervals, expressed using cov around
a posterior mean, are an appropriate way to represent un-
certainty in a large class of QA problems since they: (1)
offer a simple and intuitive way to express uncertainties about
continuous quantities, (2) support incremental and closed-form
inferences when composing a variety of inference operations;
and (3) are is dimensionless and makes it easy to compare
the uncertainty of different answers about widely varying
quantities. Our experiments showed that inferred covs were
positively correlated with absolute errors, suggesting that the
overall model is well-calibrated.

In the future, we hope to weaken some of the assumptions
of the distribution of the KB’s data records and independence
that underpins our current methods. We also plan to deal with
uncertainty for non-real-valued answers in RIF. Finally, we
will work on generalizing our methods to a widely variety
of inference operations and sources of error such as model
misspecification.
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