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Surface Cleaning and Disinfection: Efficacy Assessment of Four
Chlorine Types Using Escherichia coli and the Ebola Surrogate Phi6
Karin Gallandat,*,† Marlene K. Wolfe,† and Daniele Lantagne†

†Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States

ABSTRACT: In the 2014 West African Ebola outbreak, international
organizations provided conflicting recommendations for disinfecting surfaces
contaminated by uncontrolled patient spills. We compared the efficacy of four
chlorine solutions (sodium hypochlorite, sodium dichloroisocyanurate, high-
test hypochlorite, and generated hypochlorite) for disinfection of three surface
types (stainless steel, heavy-duty tarp, and nitrile) with and without pre-
cleaning practices (prewiping, covering, or both) and soil load. The test
organisms were Escherichia coli and the Ebola surrogate Phi6. All tests achieved
a minimum of 5.9 and 3.1 log removal in E. coli and Phi6, respectively. A 15
min exposure to 0.5% chlorine was sufficient to ensure <8 Phi6 plaque-forming
unit (PFU)/cm2 in all tests. While chlorine types were equally efficacious with
and without soil load, variation was seen by surface type. Wiping did not increase disinfection efficacy and is not recommended
because it generates infectious waste. Covering spills decreased disinfection efficacy against E. coli on heavy-duty tarp but does
prevent splashing, which is critical in Ebola contexts. Our results support the recommendation of a 15 min exposure to 0.5%
chlorine, independently of chlorine type, surface, pre-cleaning practices, and organic matter, as an efficacious measure to interrupt
disease transmission from uncontrolled spills in Ebola outbreaks.

■ INTRODUCTION
The Ebola virus is a filamentous, enveloped, single-stranded
RNA virus belonging to the Filoviridae family that was isolated
in 1977 following an outbreak in Zaire (now the Democratic
Republic of Congo).1 The 2014 West African Ebola Virus
Disease (EVD) outbreak was the first widespread outbreak and
the largest to date, with over 28 000 cases and 11 000 deaths.2

EVD is characterized by fever, headache, muscle pain, weakness
and fatigue, diarrhea, vomiting, abdominal pain, and, in some
cases, hemorrhage.3,4

The Ebola virus enters the host via mucosa or breaks in the
skin.5 Ebola is primarily transmitted through direct contact with
an infected person or dead body, particularly when caring for a
patient in the late stages of the disease and during unsafe
burials. Contact with fomites (objects) or surfaces contami-
nated with bodily fluids also carries some transmission risk.6−8

Recent research has found that the Ebola Makona-C05 variant,
isolated during the 2014 EVD outbreak, is more resistant to
drying in blood than the Yambuku-Mayinga variant from 1976,
thus potentially increasing the risk of transmission via fomites.9

This was confirmed when Ebola viral RNA was detected in
multiple samples from surfaces that were not visibly bloody or
soiled in an Ebola treatment unit (ETU) in Sierra Leone in
2014 and in 16 samples from bedsides in another ETU, also in
Sierra Leone.10,11 In general, the risk of disease transmission via
fomites depends on12 (1) the amount of infective viruses shed
by infected individuals, (2) the infectious dose, (3) the
persistence of viruses on surfaces, and (4) the resistance of
viruses to surface disinfection.
In EVD patients, infective virus has been found in saliva,

breast milk, and semen, and viral RNA was detected in skin and

vaginal swabs, stool, tears, and nasal blood.13−15 EVD patients
may generate up to 9 L of liquid waste per day,16 with viral
RNA concentrations as high as 108 copies per mL in blood, 107

copies per mL in stool, and 105 copies per mL in urine.17 In
ETUs, patients will typically shed contaminated bodily fluids in
dedicated buckets or latrines (“controlled spills”), as well as on
other surfaces (“uncontrolled spills”).18−20 The infectious dose
of viral hemorrhagic fevers such as Ebola is thought to be as low
as 1−10 viral particles.21 Infective Ebola virus was detected for
3 days on Tyvek in tropical conditions,22 and a mean half-life of
25 h was reported for the Ebola virus Makona-C05 variant left
in a blood matrix on nonporous surfaces in conditions
representative of the West African context (28 °C, 90%
RH).9 Factors affecting the persistence of the Ebola virus on
surfaces include the type of surface, with shorter survival on
porous surfaces compared to nonporous surfaces;23 the matrix,
with longer persistence in blood compared to vomit and no
survival in feces;9 and temperature and relative humidity.9,24

The only studies we identified that evaluate the resistance of
the Ebola virus to surface disinfection were published by Cook
et al.23,25 Following the ASTM International Standard
protocol,26 they found that a 5 min exposure to 0.5% sodium
hypochlorite was sufficient to bring the Ebola virus from a
concentration of 4.0 × 106 median tissue culture infectious dose
(TCID50) units/mL to undetectable levels. They recommended
using 0.5% or 1.0% sodium hypochlorite, or 67% ethanol, for
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surface disinfection. However, the use of 1 cm discs, as
recommended in the ASTM International Standard,26 is not
representative of environmental conditions. Additionally,
commonly recommended disinfection practices, such as wiping
or covering spills before disinfection, cannot be tested with this
protocol.
In the 2014 West African Ebola outbreak, recommendations

on disinfecting surfaces and cleaning uncontrolled spills were
provided by the World Health Organization (WHO), the
Centers for Disease Control and Prevention (CDC), and
Doctors Without Borders (MSF) (Table 1). While these

guidelines are generally consistent in that they recommend
disinfection of surfaces (and other “non-living things”) with
0.5% chlorine solutions in ETUs, they differ between agencies
in terms of exposure time and recommended practices (e.g.,
whether or not to pre-clean surfaces and whether or not to
cover uncontrolled spills to prevent splashes).
Additionally, the chlorine types used for surface disinfection

vary. A total of four types of chlorine were available during the
2014 Ebola outbreak: high-test calcium hypochlorite (HTH),
sodium dichloroisocyanurate (NaDCC), and sodium hypo-
chlorite (NaOCl), which can be produced either industrially
and pH-stabilized or on-site, using an electrolytic generator.
These chlorine sources have varying chemical properties and
different advantages and drawbacks (Table 2). For example,
low-pH chlorine solutions are expected to be more efficacious
for disinfection than high-pH solutions,27 and NaDCC is
expected to be more efficacious than other chlorine types in the
presence of organic matter.28,29 MSF has switched from using
both HTH and NaDCC to using only the latter for safety
reasons. The current surface disinfection guidelines do not
recommend a specific chlorine type (Table 1).
Because of the sporadic occurrence and limited scale of Ebola

outbreaks before 2014, there have been few opportunities to
study the Ebola virus. In addition, testing using the Ebola virus
is expensive and labor-intensive and can only be performed in
Biosafety Level 4 facilities. While the persistence on surfaces
and resistance to sodium hypochlorite of the Ebola virus was
evaluated by Cook et al. in two studies,23,25 we know of no
evidence (1) determining the efficacy of the four chlorine
solutions for surface disinfection; (2) documenting the
influence of wiping or covering spills on disinfection efficacy;
and (3) confirming that a 10 to 15 min exposure to 0.5%
chlorine is sufficient to ensure safe disinfection in the Ebola
context, in which the virus would typically be shed within a
matrix of human waste.
The goal of this research was to provide data for the

development of evidence-based recommendations for surfaces
disinfection in Ebola outbreaks and other emergency situations

by (1) comparing the efficacy of HTH, NaDCC, and stabilized
and nonstabilized NaOCl solutions for the disinfection of three
Ebola relevant surface types; (2) evaluating how recommended
practices such as pre-cleaning or covering spills affect surface
disinfection efficacy; and (3) determining how presence of a
soil load affects surface disinfection efficacy.

■ MATERIALS AND METHODS
To complete this work, we first selected test organisms and
surfaces and then reviewed existing recommendations to design
the testing matrix. We then prepared materials, including test
organisms, chlorine solutions, surface carriers, and soil load;
completed testing in the Environmental Sustainability Labo-
ratory (ESL) at Tufts University (Medford, MA); and analyzed
the results.

Development of Testing Matrix. We communicated with
MSF water, sanitation, and hygiene staff responsible for setting
up and maintaining safety in ETUs about common surfaces in
ETUs. Based on this information, we selected three surfaces
that were relevant for Ebola contexts: stainless steel
(representing medical instruments, including needles) , nitrile
(for plastic sheeting and personal protective equipment), and
heavy-duty tarp (most likely to be found on floors or walls).
Guidelines from MSF, WHO, and CDC were consistent in

recommending the use of 0.5% chlorine for surface disinfection
but differed in terms of exposure time and practices (Table 1).
We therefore started by testing 0.5% chlorine at the shortest
exposure time (10 min) with four recommendations that
represented all possible combinations of practices as described
in the guidelines: (a) do nothing before applying the chlorine,
(b) wipe the disc with a surgical towel, (c) cover the spill with a
surgical towel, and (d) wipe the disc and then cover the spill.
Testing all the conditions we had interest in evaluating with

the actual Ebola virus was not realistic considering the risks
associated with relatively large-scale testing, costs, and the fact
that our laboratory is certified at Biosafety Level 2 only. We
therefore selected two test organisms: Escherichia coli (ATCC

Table 1. Recommendations on Surfaces Disinfection in
Ebola Outbreaks

target action disinfectant
exposure
time source

hospital and
ETU

pre-clean
surface

0.5% chlorine 10 min WHO19

household cover
spills

0.5% chlorine 15 min CDC40

hospital pre-clean
surface

“chemical disinfectant for
non-enveloped viruses”

not
specified

CDC20

ETU do
nothing

0.5% chlorine 15 min MSF18

Table 2. Chlorine Types Commonly Used in Emergency
Contexts

chlorine type
expected

pH form advantages drawbacks

sodium
dichloroisocyanurate
(NaDCC)

6 granules easy to ship smell

long shelf
life

does not
clog pipes

high-test hypochlorite
(HTH)

11 granules easy to ship explosive

long shelf
life

does not
clog pipes

clogs pipes

stabilized sodium
hypochlorite

11 liquid can be local shorter
shelf life

does not
clog pipes

difficult to
ship

nonstabilized sodium
hypochlorite

9−11 liquid can be on-
site

shorter
shelf life

does not
clog pipes

difficult to
ship

quality
control?
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25922) and bacteriophage Phi6 (HER #102). E. coli is a well-
established fecal indicator. We used it to test our protocol with
a known, robust test organism but do not consider that it would
be an appropriate surrogate for the Ebola virus. Phi6 was
selected as a surrogate for the Ebola virus after replicating Cook
et al.’s23 experiment testing inactivation of the Ebola virus by
0.5% sodium hypochlorite on 1 cm stainless steel discs with the
four bacteriophages MS2 (ATCC 15597-B1), M13 (ATCC
15669-B1), Phi6, and PR772 (HER no. 221). MS2 and M13
were clearly more resistant to chlorine than the Ebola virus and
would provide overly conservative results if used as surrogates.
PR772, in contrast, was inactivated too quickly to be an
appropriate surrogate. Phi6 was slightly more resistant than the
Ebola virus, and we therefore considered that it would be an
appropriate surrogate for the Ebola virus for the evaluation of
surface disinfection efficacy.30

The initial testing matrix thus included two test organisms,
with and without soil load, on three surfaces with HTH,
NaDCC, and stabilized and generated NaOCl following four
different procedures for disinfection (Figure 1). This plan called
for a total of 192 tests in triplicate for a total of 576 samples.

We then carried out additional testing to (1) evaluate the
effect of increasing the exposure time to 15 min for the
conditions in which the test organisms were detected after
disinfection and (2) determine whether covering the spill with a
surgical towel presoaked in 0.5% chlorine solution would
increase disinfection efficacy against E. coli on heavy-duty tarp
compared to using a dry towel and pouring the 0.5% chlorine
solution on top of it.
Preparation of Test Organisms. E. coli was streaked onto

Luria−Bertani (LB) agar plates that were incubated at 35 °C
overnight and then stored at 4 °C. On the night prior to each
test day, a single colony was used to inoculate 20 mL of LB
broth and incubated at 35 °C with shaking overnight. The
culture was then diluted (1:20) and incubated at 35 °C with
shaking for approximately 2.5 h or until reaching a density of
∼1010 cells/mL. Lastly, the culture was mixed with either a
0.9% sodium chloride (NaCl) solution or soil load, as described
below, for use in the surface disinfection efficacy test.
Phi6 was propagated in Pseudomonas syringae (HER no.

1102) by the double agar overlay method:31 100 μL of
overnight host culture and 100 μL of phage suspension were
added to 6 mL of melted NBY soft agar (0.3% agar) kept at 48
°C. The soft agar was then poured onto prepared NBY agar
plates (1.5% agar), and the plates were incubated at 26 °C. On
the following day, 5 mL of dilution buffer was applied on top of
the soft agar, and the plates were left at room temperature for 4
h to let the phages diffuse into the liquid phase, as described in
Rossi.32 The Phi6-containing buffer was then recovered, filtered

at 0.45 μm, and stored at 4 °C. On each testing day, the Phi6
suspension was mixed with either dilution buffer or soil load, as
described below, for use in the surface disinfection efficacy test.

Chlorine Solutions. NaDCC solution was prepared using
Klorsept granules (previously Aquatabs) with 50% active
chlorine (Medentech, Wexford, Ireland). HTH solution was
produced from commercially available granular calcium
hypochlorite with 65% available chlorine (Acros Organics,
NJ). Two NaOCl solutions were produced by (1) using
laboratory-grade NaCl and an Aquachlor on-site sodium
hypochlorite generator (International Equipment & Systems,
Inc.; Miami, FL) and (2) diluting a 5.25% laboratory-grade pH-
stabilized bleach stock solution (Valtech, Zellenople, PA). Milli-
Q water was used for mixing all solutions. On each test day, the
concentration of each of the four chlorine solutions was
confirmed to be within 10% of a target 0.5% solution (5000 mg
Cl/L) by iodometric titration (method no. 8209, Hach
Company, Loveland, CO). Disinfection was carried out within
3 h following titration.

Surface Carriers. The surface carriers were 8 cm diameter
discs of type 430 brushed stainless steel (McMaster Carr, IL),
heavy-duty tarp (Amazon.com), and nitrile (Amazon.com).
Before each test, stainless steel discs were sterilized by
autoclaving, and heavy-duty tarp and nitrile discs were soaked
in 70% ethanol, rinsed with sterile water, and dried using a
sterile surgical towel.

Soil Load. A soil load containing 7.80 mg/mL bovine serum
albumin (Sigma-Aldrich, St. Louis, MO), 2.52 mg/mL bovine
mucin (Alfa Aesar, Ward Hill, MA), and 10.92 mg/mL tryptone
(FisherScientific, Fairlawn, NJ) were prepared according to the
ASTM International Quantitative Carrier Testing standard.33

Testing. To evaluate disinfection efficacy, the 8 cm surface
carriers were placed in Petri dishes, and 2 mL of a mixture of
1.36 mL of test organism suspension and 0.64 mL of either soil
load or dilution buffer was applied to each surface carrier to
mimic an uncontrolled “spill”. This spill was left to dry for 1 h
in a biosafety cabinet. After drying, one of four recommenda-
tions was carried out: (1) no pre-cleaning or covering; (2) “pre-
cleaning,” consisting of wiping the disc twice in opposite
directions with a dry surgical towel before applying chlorine;
(3) “covering”, in which a dry surgical towel was placed on top
of the spill before applying the disinfectant; and (4) both pre-
cleaning and covering, in which the same towel was used for
pre-cleaning and for covering the spill before applying chlorine.
After the recommendation was carried out, 18 mL of one of
four 0.5% chlorine solutions was applied and left for 10 min. At
the end of the exposure time, chlorine was neutralized by
sodium thiosulfate. For E. coli testing, sterile tweezers were used
to place the disc in a WhirlPak bag (Nasco, WI) containing 300
mL of 0.17% sodium thiosulfate solution and stored on ice;
then, 100 mL of sample were used for membrane filtration. For
the discs inoculated with Phi6, chlorine was neutralized with 20
mL of 2.55% sodium thiosulfate solution poured on top of the
chlorine solution contained in the Petri dish. A 1 mL sample
was collected by pipetting and stored in microcentrifuge tubes
at 4 °C; next, 100 μL were used for titration. The procedure
was different for E. coli and Phi6 due to different titration
methods. While 100 mL can be processed through membrane
filtration, only 100 μL of the sample is used for the Phi6 plaque
assay. Using a more concentrated sodium thiosulfate solution
for Phi6 resulted in a smaller sample volume and thus lowered
the detection limit.

Figure 1. Testing matrix.
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For each series of tests (24 discs with one test organism, on
one surface type, using four chlorine types and following two
different disinfection procedures, in triplicate), there was one
negative control (in which the spill consisted of 2 mL of either
dilution buffer or soil load only) and triplicate positive controls
(in which no disinfection was carried out) to evaluate the
recovery rate and starting concentration. Samples were tested
within 5 h of collection by membrane filtration for E. coli using
mColiBlue medium (Hach Company, Loveland, CO) and by
plaque assays on double layer agar plates for Phi6, following the
same procedure as described previously for the propagation.
Data Analysis. Data were initially entered and analyzed in

Microsoft Excel 2016 (Redmond, WA), including the
calculation of average concentrations, log removals, remaining
infective units per surface area, standard errors, and generation
of graphs. Statistical tests were then performed using STATA
14.1 (StataCorp LP, College Station, TX).
For all calculations, as the detection limit was 3 colony-

forming units (CFU)/100 mL for E. coli, samples with zero
counts were assigned a value of 1.5 CFU/100 mL. Likewise, for
Phi6, the detection limit was 10 plaque-forming units (PFU)/
mL, and zero counts were replaced by 5 PFU/mL. A value of
250 CFU or PFU was set for plates that were too numerous to
count (TNTC). While this might underestimate the number of
recovered organisms, the impact in our case was limited due to
the low number of TNTC samples. Because units per unit
liquid volume are meaningless for the evaluation of surface
disinfection, the results were expressed as the number of
infective organism per surface area in figures. The correspond-
ing theoretical detection limits were <1 CFU/cm2 for E. coli
and 8 PFU/cm2 for Phi6.
We evaluated disinfection efficacy in terms of reduction in

transmission risk and therefore expressed residual concen-
tration as the number of infective particles per unit area in
addition to providing log removals. Studies suggest that 1 to
10% of viruses of viruses can be transmitted from stainless steel
to hands after 1 h of drying.34,35 Considering that 10% of the
Ebola virus could be transmitted from a contaminated surface
to an individual’s hands, the residual virus concentration after
disinfection should be less than ten times the infectious dose
per “contact spot” (defined as 5 cm2).12 Using an intermediate
estimate of 5 PFU for the infectious dose, which is thought to
be 1−10 PFU,36 we thus determined that 50 PFU per contact
spot or 10 PFU/cm2 would be an acceptable residual
concentration after disinfection. Please note that we used 8
cm in diameter discs, which have a total area of 50 cm2. We
used both log removal and residual PFU/cm2 in our analysis.
Statistical tests were performed using STATA 14.1

(StataCorp LP, College Station, TX). First, Kruskal−Wallis
tests (the nonparametric equivalent to ANOVA) were used to
determine if there were differences between the four chlorine
types in all the testing, i.e., with or without soil load, for each
surface type, and with each pre-cleaning recommendation. In
this analysis, triplicate samples obtained for the four chlorine
types were compared. For all conditions with no significant
difference between chlorine types, data were aggregated, thus
creating one group of 12 samples (four chlorine types
multiplied by three triplicates) for each recommendation.
Then, Kruskal−Wallis tests were performed again to compare
the efficacy of recommendations. For the conditions in which
significant differences were detected between chlorine
solutions, a posthoc analysis was conducted using Dunn’s test.

Wilcoxon-Mann−Whitney (WMW) tests were used to
determine whether increasing the exposure time or soaking
the surgical towel made a significant difference compared to the
conditions tested previously (10 min exposure to chlorine and
using a dry towel, respectively).

■ RESULTS
E. coli Results. The surface carriers were inoculated with 3

× 1010 CFU on average (range 1.0 × 1010 to 1.1 × 1011 CFU).
The recovery rates, as estimated based on the positive controls
after 1 h of drying, were on the order of 10% for nitrile and
stainless steel and 20% for heavy-duty tarp.
All tests achieved at least 6 log E. coli removal except for one

test using wiping only with soil load on heavy-duty tarp, which
achieved an average of 5.9 log removal (Table 3). On nitrile

and on stainless steel, all recommendations and all chlorine
types appear equally efficacious at removing E. coli, whereas
relative drops in efficacy occurred mainly when covering the
spill on heavy-duty tarp (Figure 2).
E. coli was detected in 51 out of 288 samples, including 5

times on stainless steel, 40 times on heavy duty tarp, and 6
times on nitrile. The residual contamination in the positive
samples ranged from 1 CFU (or 0.06 CFU/cm2) to TNTC
(more than 15 CFU/cm2).
Based on the Kruskal−Wallis test results (Figure 3), there

was no significant difference between chlorine types (p > 0.05)
except on heavy-duty tarp in the presence of soil load with no

Table 3. Observed Log Removals and Standard Deviations

surface
type soil load action

E. coli log
removal

STD
(E.
coli)

Phi6 log
removal

STD
(Phi6)

stainless
steel

without nothing >6.6 0.0 4.1 0.0

wipe >6.6 0.0 4.1 0.0
cover 6.0 0.4 3.4 0.0
wipe and
cover

6.0 0.3 3.4 0.0

with nothing >6.8 0.0 5.7 0.0
wipe >6.8 0.0 5.7 0.0
cover >7.3 0.0 5.5 0.0
wipe and
cover

7.2 0.2 5.5 0.0

nitrile without nothing 6.4 0.0 4.8 0.0
wipe >6.4 0.0 4.8 0.0
cover 6.4 0.2 3.1 0.0
wipe and
cover

>6.5 0.0 3.1 0.0

with nothing >6.9 0.0 3.6 0.0
wipe 6.8 0.2 3.3 0.4
cover >6.8 0.0 5.5 0.0
wipe and
cover

6.7 0.4 5.5 0.0

heavy-duty
tarp

without nothing 6.7 0.8 3.9 0.1

wipe 6.7 0.9 3.8 0.0
cover 6.3 0.9 3.4 0.0
wipe and
cover

6.1 1.0 3.4 0.0

with nothing 6.0 1.1 5.4 0.0
wipe 5.9 1.0 3.2 0.0
cover 6.4 0.9 5.5 0.0
wipe and
cover

6.3 0.9 5.5 0.0
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pretreatment and with pre-cleaning (p = 0.02 in both cases).
For the conditions in which all chlorine types appeared equally
efficacious, there was no significant difference between
recommendations (p > 0.05) except on heavy-duty tarp with
soil load (p = 0.03).
A posthoc analysis was conducted using Dunn’s test to

compare chlorine types and recommendations, respectively, for
the two cases in which statistically significant differences were
detected but no chlorine type or recommendation appeared to
systematically perform better than the others (results not
shown). Only NaDCC was used to evaluate the effect of a 15
min exposure time and of a towel soaked in chlorine solution
because significant differences between chlorine type were not
routinely identified. On heavy-duty tarp, increasing the
exposure time from 10 to 15 min did not significantly increase
efficacy in any of the four recommendations with and without
soil load, the only exception being in the presence of soil load
when nothing was done before applying chlorine (WMW test, p
= 0.03). Applying a towel soaked in 0.5% NaDCC solution on

the spill was not significantly more efficacious than using a dry
towel to cover the spill on heavy-duty tarp (WMW test; p >
0.05, both with and without soil load).

Phi6 Results. The surface carriers were inoculated with 8 ×
107 CFU on average (range 1.3 × 106 to 2.3 × 108 CFU). The
recovery rates, as estimated based on the positive controls after
1 h of drying, were on the order of 20% on all three surfaces.
All recommendations achieved at least 3 log Phi6 removal

(Table 3). Out of a total of 288 samples, Phi6 was detected
after disinfection in six samples on nitrile and in no samples on
stainless steel or heavy-duty tarp. The residual contamination in
the positive samples ranged from 16 to 80 PFU/cm2 after
disinfection. Due to the limited number of positive samples,
statistical tests were not conducted on Phi6 results. The
geometric mean of triplicates exceeded the target of 10 residual
PFU/cm2 in two instances (Figure 4): Phi6 was detected in the
presence of soil load when nitrile discs were pre-cleaned with
both generated and stabilized NaOCl. For the two conditions
in which Phi6 was detected on nitrile after a 10 min exposure to
0.5% chlorine, increasing the exposure time to 15 min led to all
nondetectable levels.

■ DISCUSSION
We conducted a systematic evaluation of the efficacy of surface
disinfection recommendations for Ebola contexts, including
testing two organisms, two soil load conditions, four surface
cleaning recommendations, and four chlorine types on three
surfaces commonly used in ETUs. Results indicated that test
organism, surface type, and covering spills influenced surface
disinfection efficacy, while chlorine type, soil load, and pre-
cleaning did not. Overall, the recommendations provided
during the 2014 EVD outbreak for surface disinfection
appeared to be efficacious at removing E. coli and Phi6 from
representative surfaces. Based on our results, we recommend a
15 min exposure time to 0.5% chlorine to ensure safe surface
disinfection in EVD contexts. These results (1) are consistent
with previous results while also providing further context-
specific evidence, (2) answer questions about chlorine type
while raising questions about the role of soil load and how to

Figure 2. Number of CFU E. coli per unit area detected after disinfection. Points correspond to the geometric mean of triplicate samples. Error bars
represent standard errors of the mean. “ND” stands for “not detected”, and the theoretical detection limit was <1 CFU/cm2. The points indicated as
too numerous to count (TNTC) correspond to cases in which all triplicates were TNTC after disinfection.

Figure 3. Statistical results of E. coli testing. NSD stands for “no
significant difference” based on the Kruskal−Wallis test (p < 0.05).
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appropriately model soil load in these contexts, (3) highlight
the important role of test organism and surface type in
disinfection, and (4) inform how to conduct research on
surface disinfection efficacy in further outbreak situations.
The Cook et al.23,25 studies documented a 5 min contact

time with 0.5% sodium hypochlorite to completely disinfect
stainless steel surfaces inoculated with the Ebola virus. Our data
expand on their work as we found that 10 min were sufficient to
disinfect stainless steel using Phi6 as an Ebola surrogate, but
additional contact time was needed specifically on nitrile to
ensure full disinfection under all tested conditions. This is also
consistent with a previous study in which environmental
sampling was conducted in an isolation ward in Uganda in
2000. Bausch et al.13 found that CDC and WHO
recommendations were efficacious, as Ebola was not isolated
from surfaces after routine disinfection. However, the
recommendations were more conservative during that time,
as they recommended a 1% chlorine solution with a 15 min
contact time and that a 10% chlorine solution should be used
for heavy or dense spills.37 A more recent study conducted in
Sierra Leone in 2015 suggests that environmental decontami-
nation using 0.5% sodium hypochlorite was mostly effective at
removing Ebola RNA from surfaces around the bedside, where
contamination was detected most often.11 Our results also
indicate 0.5% chlorine solutions should be efficacious.
In contrast to beliefs that some chlorine types may be more

efficacious than others, we found all chlorine types appeared
equally efficacious for the disinfection of surfaces against E. coli
and Phi6. We attribute this to the high chlorine dose (0.5%)
applied. As such, we recommend using whichever chlorine
source is available, safe to handle, and maintains an appropriate
concentration.38

The presence of soil load did not affect disinfection efficacy
at a chlorine concentration of 0.5%. We used the soil-load
mixture recommended in the ASTM International Standard,26

and the chlorine demand of the spill with soil load represented
less than 0.01% of the amount of applied chlorine. Again, we
hypothesize that soil load did not impact efficacy because of the
high chlorine concentration applied. While this is likely

representative of field practices, in which chlorine will be
generously applied to ensure disinfection, further research is
needed to develop new matrices more representative of liquid
Ebola bodily wastes and their impact on disinfection efficacy.
Our results suggested that test organism and surface type do

play an important role in determining disinfection efficacy. We
found that E. coli was more challenging to disinfect on heavy-
duty tarp, and Phi6 was more challenging to disinfect on nitrile,
suggesting that different mechanisms are responsible for
disinfection of the two organisms. A literature search provided
little information on which fundamental mechanisms might
explain the observed difference. We hypothesize that physical
properties of the surface (such as roughness) as well as surface
charge (of both the surface and the test organism) impacted
disinfection efficacy. The fact that increasing the exposure time
from 10 to 15 min did not improve disinfection efficacy against
E. coli on heavy-duty tarp suggests that bacteria did not enter
into contact with the disinfectant, possibly due to some physical
protection provided by the roughness of heavy-duty tarp. It is
unclear why such an effect would not be observed with Phi6,
and additional research is indicated to investigate our
hypotheses. The widespread use of both heavy-duty tarp and
nitrile in emergency settings makes these results of particular
concern. It is recommended to conduct future research with
other surfaces commonly found in ETU settings, including
paper, cardboard, cotton, rubber, latex, and concrete.
The international recommendations for surface disinfection

in Ebola contexts are particularly different in terms of practices.
It has been suggested to wipe and to cover spills, and recently,
to pre-clean surfaces with water and detergent.39 While pre-
cleaning reduces the volume of spill to be disinfected, such a
practice generates contaminated waste and can result in
exposure of healthcare personnel to infectious materials.
Although we were not able to test for the multiplicity of pre-
cleaning practices that are likely to be encountered in the field
(with or without soap, with dry and wet towels, and accounting
for individual variability), our results suggest that wiping the
surface before applying chlorine is unlikely to increase
disinfection efficacy. This is consistent with a study of surface

Figure 4. Number of Phi6 PFU per unit area detected after disinfection. Points correspond to the geometric mean of triplicate samples. Error bars
represent standard errors of the mean. “ND” stands for “not detected”, and the theoretical detection limit was 8 PFU/cm2.
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disinfection involving several viruses, in which Tuladhar et al.12

found that inactivation by a 0.1% chlorine solution was
proportionally more important than the action of wiping.
Covering spills is recommended to avoid disease transmission
by splashes,18 and our results with Phi6 suggest that it does not
affect disinfection efficacy. We recommend covering spills with
a cloth soaked in 0.5% chlorine and leaving it for 15 min if
disease transmission via splashes is a concern, as is the case with
EVD due to the very low infectious dose.
Our study had limitations, including that (1) the comparison

of E. coli and Phi6 is limited by different starting concentrations
and detection limits; (2) although the recovery rates were
similar for both organisms, we cannot rule out that some of the
observed differences could be due to variability in recovery; (3)
we used a surrogate organism instead of the actual virus, albeit
one selected based on a comparison between the surrogate
(tested in our laboratory) and Ebola virus (tested by Cook et
al.23 in a Biosafety Level 4 laboratory); (4) we believe that our
protocol, using 8 cm in diameter discs instead of the 1 cm
diameter surface carriers recommended in the ASTM Stand-
ard,33 simulates field conditions more accurately despite the fact
that 2 mL spills are still unlikely to reflect the extent of
environmental contamination experienced in ETUs; (5) our
standardization of pre-cleaning recommendations does not
account for further variability in pre-cleaning practices applied
in ETU settings; (6) the ASTM soil load might not be
representative of the matrices in which the Ebola virus would
be shed by patients; and (7) temperature and relative humidity
in the laboratory were both lower and more controlled than
those commonly found in ETU settings.
Despite these limitations, we feel our data contribute to the

understanding of, and assist in providing an evidence base for,
surface disinfection practices in outbreaks. In particular, our
results support the recommendation of a 15 min exposure to
0.5% chlorine (independent of chlorine type, surface type,
practices, and presence of organic matter) as an efficacious
measure to interrupt EVD transmission via fomites. Using Phi6
as a surrogate allowed us to carry out extensive testing and to
identify critical conditions; we recommend evaluating the
resistance of the Ebola virus (at Biosafety Level 4) to a 15 min
exposure to 0.5% chlorine, without pre-cleaning or covering,
with or without soil load, on nitrile and, if possible, on other
surfaces, to confirm the results presented here.
Further research is required to investigate how surface

properties and complex matrices affect disinfection efficacy as
well as to understand the role of wiping or covering spills. A
more-fundamental understanding of the mechanisms affecting
disinfection efficacy and of the physicochemical interactions
between microorganisms and surfaces will allow extension of
these results to different pathogens with more flexibility.
Our study was carried out in response to the 2014 Ebola

outbreak and focused on evaluating the efficacy of existing
recommendations in place during that outbreak. It is
recommended that future research be completed to develop
appropriate recommendations, not just to test the efficacy of
existing recommendations. For instance, using NaDCC
granules instead of a liquid chlorine solution to cover
uncontrolled spills has been identified as an efficacious
procedure against bacteria in developed country hospitals.29

Additional research is needed to evaluate the adequacy of this,
and other novel, protocols as a possible intervention in ETU
contexts.

For diseases with infectious doses as low as EVD,
multibarrier approaches (including personal protective equip-
ment, handwashing, disinfection of surfaces, and safe waste
management) should be used to minimize transmission risk.
However, multibarrier approaches (particularly those with
waiting times) are burdensome in the ETU context due to
the maximum time responders can spend in PPE. A broader
discussion around the best way to minimize transmission risk
and the appropriate number and level of barriers to use in
healthcare facilities and communities facing situations such as
EVD is necessary. For example, it has been suggested to depend
on PPE primarily and not be concerned with disinfecting spills
in the ETU context. Ideally, further discussion will involve
responders, members of the scientific community, and
international organizations to address the appropriateness of
existing recommendations and how they can be adjusted to
increase preparedness for future outbreaks.
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