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Abstract 

Avian eggshell colouration fulfills multiple adaptive functions, including egg camouflage. 

The potential role of the two main eggshell pigments in oxidative stress, biliverdin and 

protoporphyrin, may be behind a relationship between female immunocompetence and 

eggshell pigment investment strategies. In this study, environmental conditions were 

manipulated during different life cycle stages, via a variety of methods, including food-

restriction and stress hormone exposure in female Japanese quails (Coturnix coturnix 

japonica), in order to experimentally test the condition-dependence of eggshell pigmentation, 

and to give first insights into the possible implications for egg crypsis. I demonstrated that 

eggshell pigmentation strategy is not only affected by female current body condition, but is 

also shaped by its early life experience such as exposure to stress, and that eggshell 

colouration is a key factor involved in egg crypsis in Japanese quail. Eggshell colour and 

maculation were both independently affected by breeding conditions; which stresses the 

complexity of the relationship between eggshell pigment concentrations and its appearance. 

My findings imply that eggshell appearance is a female extended phenotypic trait, and that 

trade-offs between eggshell pigmentation and immune-functions may lead to inter-females 

differences in their ability to maximise egg crypsis. 
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1.1. Life history theory and the cost of reproduction 

Life-history theory postulates that organisms have to face a trade-off between current and 

future reproduction and consequently, life history traits often vary in an opposite way 

(Clutton-Brock et al. 1982, Reznick 1985, Roff 1992, Stearns 1992, Rose et al. 1998). A 

classical illustration of this is in lines of Drosophila (Drosophila melanogaster) selected for a 

greater longevity, which showed a declined early fecundity (Rose 1984). 

In birds, the cost of reproduction has been experimentally investigated as a constraint on both 

survival (Linden and Møller 1989, Graves 1991, Roff 1992), and reproductive success at the 

next breeding attempt (Gustafsson and Sutherland 1988). Indeed, resources may be 

preferentially allocated to reproduction by reducing investment in resources allocated towards 

somatic protection and maintenance (Stearns 1992). Thus, it is possible that physiological 

trade-offs arise between traits expressed during different stages of life (Stevens et al. 1999, 

Zera et al. 2001), and the optimal situation balances the costs and benefits of such trade-offs 

against any factor which could alter an individual’s quality (Reznick 1985). 

 

1.1.1. Role of the environment in reproduction  

1.1.1.1. Concept of “maternal effects”  

The environment can have profound long-term effects, both direct (via influencing offspring 

phenotype) or indirect (through maternal condition) on a developing organism. Indirect 

effects, also referred to as “maternal effects” (Mousseau & Fox 1998), have been the focus of 

a large body of literature (Badyaev & Uller 2009, Meylan et al. 2012, Hoyle & Ezard 2012, 

Sheriff & Love 2013). In many species, maternal condition can have a strong influence on 

offspring physiology, morphology and behaviour (reviewed in Mousseau & Fox 1998). Birds 

are frequently used as models to study the effects of environmental changes during different 
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developmental stages (Price 1998). Contrary to mammalian species, the avian embryo does 

not develop inside the mother’s body. Thus, once the egg is laid, the mother cannot directly 

influence offspring development, except by modifications of her incubation behaviour 

(Groothuis et al. 2005). This allows studies to disentangle environmental effects from 

maternal effects on embryo physiology, unlike in mammals because of the strong link 

between the mother and her young during lactation. 

Several parameters of reproductive success such as hatchability and chick survival are related 

to maternal investment. To maximise their reproductive success, female birds are able to 

modulate their investment not only through adjustments in their clutch size but also through 

their egg quality (Bernardo 1996), according to parameters such as their own body condition 

(Hanssen et al. 2003) or male attractiveness (Loyau et al. 2007a). It has been demonstrated 

that larger eggs contain more nutrients and are more likely to produce structurally larger 

chicks at hatching (Ricklefs et al. 1978, Williams 1994, Finkler et al. 1998). However, 

variation in the total nutrient content is only one way a female can manipulate the developing 

environment of her young. The quantity of specific egg yolk/albumen components can also 

be modulated, including hormones (e.g., testosterone) (Petrie et al. 2001, Mazuc et al. 2003, 

Loyau et al. 2007a), antibacterial agents (e.g., lysozyme) (Saino et al. 2002) or antioxidant 

molecules (carotenoids, vitamins) (McGraw & Ardia 2003, Blount et al. 2004, Biard et al. 

2005, Costantini 2010). In particular, these egg components determine chick quality by 

influencing embryonic development, hatching success, sex ratio, chick growth, survival and 

immunity (Birkhead & Nettleship 1982, Amundsen & Stokland 1990, Arnold et al. 1991, Hill 

1993, Williams 1994, Amat et al. 2001).   
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1.1.1.2. Eggshell characteristics as maternally-derived traits 

Maternal investment in the eggshell has received less attention. It protects the embryo from 

mechanical damage; controls water loss (Board & Halls 1973, Carey et al. 1983, Handrich 

1989) and regulates gas exchange (Tullet 1984) between the embryo and the external 

environment. It also prevents contamination by bacteria (Board 1980) and other pathogens; 

and provides a source of nutrients, primarily calcium, to the developing embryo (Burley 

1989, Reynolds & Perrins 2010). Environmental factors can strongly affect eggshell structure 

as gas exchange through the shell allows sufficient water loss and while preventing the 

embryo from been dehydrated (Board & Scott 1980, Tullett 1984). Ambient humidity seems 

to have been the strongest selection pressure on eggshell structure (Kern & Cowie 2000, 

Deeming 2002): low relative humidity can lead to embryo desiccation, while high humidity 

increases the risk of mechanical restriction of the embryo. Most of the avian eggshell dry 

mass consists of a crystalline form of calcium carbonate, and laying females have a high 

demand for calcium, especially for eggshell formation (Reynolds et al. 2004). Calcium can be 

mobilised from the skeleton but mostly comes from the mother’s diet (Pahl et al. 1997, 

Larison et al. 2001, Reynolds 2001). Thus, calcium availability in the environment is an 

important limiting factor that can influence the quality and structure of the eggshell (Gosler et 

al. 2005).  

In addition, among the compounds deposited by females into the eggshell are pigments. 

Eggshell pigmentation is due to the presence of two main pigments: biliverdin and 

protoporphyrin that are not found in the environment. Instead, both biliverdin and 

protoporphyrin are part of haem biosynthesis pathway (Thiel 1968) and possess opposite 

physiological properties (see section 1.2.2). Thus, their deposition in the eggshell only 

depends on their synthesis by the female. Eggshell biliverdin and protoporphyrin 

concentrations could be maternally-derived traits of which the deposition is modulated by 
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female according to her body condition during reproduction, as is the case for yolk and 

albumen components. 

 

1.1.1.3. Maternally-derived stress 

Environmental variation during reproduction, such as increased predation risk, decreased 

food availability, increased social stressors or a decline in habitat integrity (reviewed in 

Sheriff & Love 2013) can act as pressures and increase maternal glucocorticoids (GCs). GCs 

are referred to as ‘stress’ hormones, namely corticosterone (CORT) in birds, and play a role 

in physiological and behavioural responses to stress (Sapolsky et al. 2000, Wingfield 2005). 

Indeed, any stressful stimulus can lead to the activation of the Hypothalamic-Pituitary-

Adrenal (HPA) axis, eventually resulting in the release of CORT (Wingfield 1994, Romero 

2004). CORT induces an increase in glucose released to maximise the energy available for 

the optimization of life-saving behavioural strategies (Munck et al. 1984, Wingfield 1998). 

Elevated CORT levels can be sustained for a long period of time when individuals are faced 

with chronic stress and unable to bring their concentration back to a basal level (Angelier & 

Chastel 2009). Chronic stress exposure can have negative effects on the nervous system and 

cause deficiencies of some immune and physiological functions such as the capacity of 

eliminating free radicals that increase oxidative stress (McEwen & Stellar 1993, Sapolsky 

2000, de Kloet et al. 2005, Costantini et al. 2011). A recent hypothesis proposed that early 

life conditions may shape physiology and behaviour in order to enhance fitness if early 

environmental conditions match those experienced across life stages. According to this 

‘environmental matching hypothesis’, the mismatch between environmental conditions at 

different stages of life may be responsible for the negative effects of developmental stress 

(Bateson et al. 2004, Gluckman et al. 2005, Monaghan 2008).  
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Mothers can expose their offspring to the stress they face (Maternally-Derived Stress, MDS) 

during reproduction directly via modification of their maternal care, or indirectly via GCs 

transferred into the egg (Almasi et al. 2012). Some studies in birds have shown that an 

experimental increase in maternal GCs during the laying period can induce an increase in GC 

concentration in both egg yolk and albumen (Hayward & Wingfield 2004, Love et al. 2005, 

Saino et al. 2005, Almasi et al. 2012). Offspring respond to MDS via physiological and 

behavioural changes that can affect neural development such as the HPA axis and amygdala 

function (Hayward & Wingfield 2004, Love & Williams 2008a, Sheriff et al. 2013). 

Moreover, MDS induces morphological changes such as a low hatching weight and small 

structural size (Saino et al. 2005, Love & Williams 2008b, Sheriff et al. 2009). Thus, egg 

characteristics strongly depend on maternal stress, however less is known about maternally 

deposited eggshell components, and this is especially true in the case of eggshell pigments. 

 

1.2. Eggshell pigmentation  

Eggshell pigmentation is responsible for the high diversity of egg colours and patterns 

observed across the class Aves (Kennedy & Vevers 1976, Kilner 2006, Walters 2006, Cassey 

et al. 2010a, Fig. 1.1), and has received poor attention in the context of maternal effects in 

birds.  
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Figure 1.1. Photograph of eggshells showing the diversity of colours and patterns in the class Aves 

(Photo credit: Golo Maurer). 

 

1.2.1. Eggshell pigments: composition, synthesis and deposition 

The two main pigments found in avian eggshells are Porphyrins: protoporphyrin and 

biliverdin (Kennedy & Vevers 1976, Gorchein et al. 2009), and they are both derivatives of 

haem from erythrocytes (Thiel 1968).  Protoporphyrin consists of four pyrrole rings 

(tetrapyrroles) and its formation starts with the synthesis of porphobilinogen from glycine and 

active succinate (Solomon 1987) (Fig. 1.2). Porphobilinogen is converted to urporphyrin 

which gets decarboxylated to protoporphyrinogen. The molecule becomes colourful when the 

protoporphyrinogen auto-oxidises to protoporphyrin (Sparks 2011).  



Chapter One  General Introduction 

8 
 

 

Figure 1.2. Chemical schematic of the biosynthesis of protoporphyrin IX 

(http://commons.wikimedia.org/wiki/File:Protoporphyrin_IX_Biosynthetic_pathway.png) 

 

Similarly, Biliverdin is an open chain, tetrapyrrolic pigment. Biliverdin comes from the 

cleavage of haem by haem oxygenase-1 (Ryter et al. 2006) (Fig. 1.3) and is a major pigment 

found in the bile of vertebrates.  

http://commons.wikimedia.org/wiki/File:Protoporphyrin_IX_Biosynthetic_pathway.png
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Figure 1.3. Chemical schematic of the enzymes and intermediates involved in the biosynthesis of 

biliverdin (adapted from http://www.urmc.rochester.edu/labs/Maines-Lab/history/index.cfm). 

 

Both pigments show absorption bands in the visible region of the light spectrum, resulting in 

intense colouration. Protoporphyrin is responsible for red-brown colours while biliverdin 

provides shades of blue to green (Kennedy & Vevers 1976, Fig. 1.4). 

http://www.urmc.rochester.edu/labs/Maines-Lab/history/index.cfm
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Figure 1.4. The absorbance spectra of protoporphyrin IX (brown line), and biliverdin (green line), 

and the light spectrum. 

 

Eggshell pigments are deposited into, or onto, the eggshell in either the uterus or shell gland 

during the last stage of egg formation, just few hours before oviposition. The origin of 

eggshell pigments is still under debate as while the uterus has been shown to be the site of 

pigment secretion (Breen & Bruyn 1969); its role in pigment synthesis is still unclear. As 

protoporphyrin and biliverdin are products of haem degradation, both pigments could either 

be directly derived from blood cells or be synthesised in the uterus. In chickens (G. gallus 

domesticus) that lay either blue or brown eggs, the concentrations of biliverdin in blood, bile 

and excreta was similar in both groups, whereas in the uterus and eggshell of blue eggs layers 

it was higher (Zhao et al. 2006). More recently, Wang et al. (2010) showed that Haem-

Oxigenase-1 (HO-1) expression in the uterus of hens laying blue-green eggs was much higher 

than in brown-eggs layers. Nevertheless, much less is known about the synthesis of 
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protoporphyrin. In Japanese quail, protoporphyrin was found to accumulate in the uterus up 

until 20 hours after ovulation and then decrease rapidly (Soh et al. 1993). Similarly, Baird et 

al. (1975) showed an increased concentration of protoporphyrin in the uterus of hens laying 

white and brown eggs during egg formation. It was only as recently as 2007 that researchers 

proposed that biliverdin and protoporphyrin were synthesised in the uterus and then deposited 

into or onto the eggshell (Wang et al. 2007). The question of transport for both pigments also 

remains unclear as it has been proposed that the differences in eggshell pigmentation patterns 

might be not only due to differences in pigment concentrations but also variation in the speed 

of pigment transport and deposition onto the eggshell (Baird et al. 1975, Liu et al. 2010). 

The deposition of eggshell pigments has been studied primarily in the context of Poultry 

Science. In Japanese quail, protoporphyrin is deposited throughout the shell integument, from 

the membrane to the cuticle (Tamura & Fujii 1967), whereas in domestic chicken, higher 

concentrations are found in the cuticle (Baird et al. 1975). In Passeriformes species, pigments 

are detected in the outer third of the shell or outer half of the shell (Harrison 1966). In species 

laying spotted eggs, when the cuticle is thin or absent, spots are created by intermixing 

pigments within the calcium matrix, while the spotting found within the cuticle is known as 

cuticular pigment (Romanoff & Romanoff 1949) (Fig. 1.5). The diversity of observed 

eggshell patterns is clearly due to a complex interaction between biliverdin and 

protoporphyrin during eggshell formation and much remains to be understood about the 

physical process of pigmentation. 
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Figure 1.5. Diagram of the side view of the egg shell. 

 

1.2.2. Physiological properties of eggshell pigments  

Porphyrins have been extensively studied for their role in oxidative stress (Bonkovsky et al. 

2013), particularly protoporphyrin and biliverdin which may possess opposing antioxidant 

properties (Kachadourian et al. 2003). Protoporphyrin, thought to be responsible for the 

brown spots on maculated eggshells, may possess pro-oxidant properties and induce an 

oxidative stress response when accumulated in the liver (Afonso et al. 1999). In vitro, 

protoporphyrin can directly stimulate the synthesis of haem oxygenases (HOs) such as HO-1 

or heat shock proteins (HSPs) (Shan et al. 2000), which are synthesised after cellular stress 

and prevent proteins from misfolding (Åkerfelt et al. 2010). In contrast, bilirubin and 

biliverdin are thought to possess the opposite (i.e. antioxidant) properties (McDonagh 2001). 

In human blood plasma, both bile pigments would be involved in the oxidation of lipids (Frei 

et al. 1988) and proteins (Neuzil et al. 1993). In addition, they possess anti-inflammatory 

(Nakamura et al. 1987), anti-viral (Mori et al. 1991), anti-apoptotic (Dudnik et al. 2001) and 
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anti-mutagenic functions (reviewed in Bulmer et al. 2008). In mammals, the 

biliverdin/bilirubin combination is involved in immune responses (Otterbein et al. 2003, 

Sedlak et al. 2009), and biliverdin for instance may accelerate the development of the embryo 

in amphibians (Falchuk et al. 2002) which do not produce bilirubin. 

 

1.2.3. Adaptive roles of eggshell pigmentation  

The diversity and functionality of avian eggshells patterns have attracted the attentions of 

evolutionary ecologists for many years. Until the 1920s, predation and brood parasitism were 

the main selection pressures proposed to explain eggshell colouration patterns (Kilner 2006). 

Here, I explore the evidence for each of these hypotheses in turn: egg crypsis, egg 

recognition, structural function and post-mating sexual signalling.    

 

1.2.3.1. Egg crypsis  

Crypsis is defined as the resemblance in colouration between an animal or an object to its 

background (Edmunds 1990). In birds, the ancestral eggshell is hypothesised to have been 

white without any apparent pigmentation (Kilner 2006) and colourful eggshells are thought to 

have evolved due to environmental pressures that are specific to each nesting area, helping to 

enhance egg camouflage and avoid predation (Wallace 1889). Blue-green and immaculate 

white eggshells may not be cryptic because of their visual contrast with the nest 

(Westmoreland & Best 1976, Blanco & Bertellotti 2002, Magige et al. 2008); whereas brown 

eggshells may be less predated as their detectability is decreased (Tinbergen et al. 1962, 

Götmark 1992, Solís & De Lope 1995, Yahner & Mahan 1996, Castilla et al. 2007, 

Westmoreland 2008). For example, Lack showed that hole-nesters lay mostly white eggs, 

whereas 80% of birds that nest in open areas lay spotted eggs which may enhance their 

concealment (Lack 1958). Two strategies have evolved in birds in order to hide the eggs from 
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predators: 1) building a nest with a dome and hide the eggs with nest material, and 2) in 

ground-laying species, matching egg colour with the colour of the nest background to 

enhance egg crypsis and make it visually undetectable (Wallace 1889). Brown and spotted 

eggshells are thought to particularly enhance egg crypsis and may be less predated than non-

spotted and brighter eggshells, but both experimental and natural studies have found mixed 

support for this hypothesis (Ricklefs 1969, Collias 1984, Götmark 1992, Weidinger 2001, 

Underwood & Sealy 2002). For instance, in stone curlews (Burhinus oedicnemus), laying 

eggs of which the colouration matched the ground decreased predation rate (Solís & De Lope 

1995). Similarly, Yahner and Mahan (1996) showed that nests with brown chicken eggs were 

less likely to be disturbed by predators than white chicken eggs using artificial nests. The 

cryptic colour of eggs in semi-palmated Plovers (Charadrius semipalmatus) could make eggs 

less conspicuous (Nguyen et al. 2003). In addition, cryptic colouration had a survival 

advantage depending on the predator species in red-legged partridges (Alectoris rufa) 

(Castilla et al. 2007). Lee and colleagues suggested that eggs that matched nest background 

colour were more likely to hatch. Particularly, in sites where nest concealment was low, eggs 

matching the colour of the nest showed a better survival (Lee et al. 2010).  

Yet, most experimental studies using painted eggs actually found no differences in predation 

rates between natural and artificial painted eggs (e.g. Montevecchi 1976, Götmark 1992, 

Weidinger 2001). One major explanation for the range of conflicting results may lie in the 

use of artificially painted eggs or artificial nests that can never match natural levels of 

crypsis. For instance, Ortega et al. (1998) found that artificial nests were predated 

significantly more often than American robin (Turdus migratorius) nests tested in their 

natural environment, even when Japanese quail eggs were placed in the nest. Consequently, 

while the egg crypsis hypothesis is valid for most ground-laying species, biases in the 

experimental design as well as inconsistency in the method for measurement of egg 
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colouration and maculation can lead to contradictory findings (see review Cherry & Gosler, 

2010). 

 

1.2.3.2. Egg recognition  

Variation in eggshell colour and patterning, facilitating eggshell recognition, may be an 

adaptive strategy in colonially nesting species or any species where egg dumping or 

parasitism is common (Gaston et al. 1993) but the majority of studies have found little 

conclusive evidence for individual clutch recognition in these species (Tschanz 1959, Shugart 

1987, Schaffner 1990). Similarly, Hanley and colleagues (2013) tested whether eggshell 

conspicuousness in ratites served an intraspecific signalling function to advertise nest 

location to females in communally nesting species, but did not find any support for this 

hypothesis. 

Alternatively, eggshell colouration may facilitate the recognition of brood-parasite eggs laid 

in the host species nest. Eggshell appearance may be involved in an arms race between brood 

parasites and host species (Øien et al. 1995, Langmore et al. 2009, Stoddard & Stevens 

2010). Mimicking the appearance of the host species eggs may be the best strategy to ensure 

host parents will raise the brood-parasite chicks (Davies 2000). The common cuckoo 

(Cuculus canorus) represents a classical example of an evolutionary arms race and drew the 

early interest of Alfred Russell Wallace (Wallace 1889) because of the degree of achieved 

egg mimicry. Numerous studies have compared the degree of mimicry between hosts and 

parasites eggs (Brooke & Davies 1988, Davies & Brooke 1989, Moksnes & Røskaft 1995), 

however, it is only recently, with advances in predictive models of avian perceptual vision 

that the behaviour of the signal receiver (avian viewer) has been included in the analyses 

(Stoddard & Stevens 2011).  
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One strategy adopted by birds to counteract brood parasitism is to lay a clutch of highly 

similar eggs in terms of colour and patterns, so that they are visually different from other 

nests (Swynnerton 1918, Victoria 1972). Thus, brood parasites cannot mimic the colour of 

the host eggs and its eggs will be likely rejected (Øien et al. 1995, Soler & Møller 1996, 

Moskát et al. 2002, Stokke et al. 2002a, Avilés & Møller 2003, Avilés et al. 2006, Kilner 

2006). In great reed warblers (Acrocephalus arundinaceus), decreasing egg pattern/colour 

uniformity within a clutch by painting additional spots on the eggshells increased birds 

tolerance to parasite eggs (Moskát et al. 2008). The authors concluded that great reed warbler 

hosts may lay a clutch of homogeneously coloured/patterned eggs to facilitate cuckoo egg 

discrimination (Moskát et al. 2008). In chaffinches (Fringilla coelebs), increasing the 

perceived chromatic contrasts between natural parasite and host eggs enhanced the 

discrimination of parasite eggs (Avilés et al. 2010). 

Yet, most studies have focused on eggshell background colour (Cherry & Gosler 2010) rather 

than eggshell patterning such as maculation (brown spots) and recently, it has been shown in 

the house sparrow (Passer domesticus) that egg rejection increased significantly when spot 

patterns, rather than eggshell colour, were experimentally modified (López-de-Hierro & 

Moreno-Rueda 2010).  Thus, both eggshell colour and pattern may play a crucial role in egg 

recognition in the context of brood parasitism. 

 

1.2.3.3. Structural function 

Other hypotheses to explain the evolution of eggshell pigmentation have focused on the 

physical properties of the eggshell and authors have proposed that the deposition of pigments 

could either help to directly strengthen the eggshell (“structural function hypothesis”, Gosler 

et al. 2005) or protect the embryo from environmental insults (reviewed in Maurer et al. 

2011a). 
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 A number of observational studies have proposed that eggshell pigments (particularly 

eggshell pattern or maculation) in the great tit (Parus major) may relate to female calcium 

availability and eggshell thickness (Gosler et al. 2005, Higham & Gosler 2006). According to 

Gosler et al. (2005), the eggshell is thinner where the brown spots are present, and changes in 

eggshell thickness are associated with both the distribution and the intensity of the spots. The 

authors suggested that protoporphyrin, which is responsible for the brown maculation in 

spotted eggs (Kennedy & Vevers 1976), could counterbalance a lack of calcium and therefore 

directly reinforce eggshell strength (Solomon 1987, Gosler et al. 2005). Subsequent studies, 

which have supported the “structural function hypothesis”, proposed that maculation may 

reduce eggshell permeability during incubation (Higham & Gosler 2006), and that thin-

shelled egg would indicate that female suffered from a lack of calcium during breeding (Ar et 

al. 1974, Graveland et al. 1994). Nevertheless, recent studies that have experimentally tested 

the structural function of eggshell pigmentation have found only mixed support. In blue tits 

(Cyanistes caeruleus), females supplemented with calcium laid eggs with spots that were 

more widely distributed over the eggshell  than the control, and laid less defective eggshells, 

suggesting that spots distribution might indicate calcium deficiency in that species (García-

Navas et al. 2011). In contrast, in great tits, there was no correlation between eggshell 

thickness and eggshell pigmentation, and the authors did not find any evidence of an effect of 

calcium supplementation on eggshell pigmentation (Mägi et al. 2012). In a similar 

experiment, great tits supplemented with calcium laid thinner eggshells with darker spots, but 

the effect was only significant for one year of study (Hargitai et al. 2013). Thus, it seems that 

the relationship between eggshell pigmentation, eggshell strength and its calcium content 

remain to be experimentally tested, in particular with a quantification of eggshell 

protoporphyrin concentration. 
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Another physical function of eggshell pigmentation might be to protect the embryo from 

environmental factors such as solar radiation (Lahti 2008, Magige et al. 2008) or microbial 

contamination (Bulmer et al. 2008, Ishikawa et al. 2010). Eggshell pigmentation could serve 

to maintain a viable temperature for embryonic development as protoporphyrin and biliverdin 

provide a near infra-red reflectance (Fig. 1.2), avoiding the risk of overheating (Bakken et al. 

1978, but see Westmorland et al. 2007). Moreover, solar radiation (UV-B, 290-320 nm) 

could also harm the embryo and cause DNA damage (de Gruijl et al. 2001) with detrimental 

effects during development. The spectral properties of protoporphyrin and biliverdin may 

help to absorb UV-B radiation and avoid potentially lethal damage in embryos.  In addition to 

its role in light filtration, eggshell pigmentation may prevent the egg from microbial infection 

through the eggshell surface as UV-radiation induces bacteria and fungi death (Fargues et al. 

1997, Davies-Colley et al. 1999, Chavez et al. 2002). Porphyrins are also known to possess 

photodynamic antimicrobial properties and are used in medical research to kill cancer cells or 

pathogens when combined with visible light (Dolmans et al. 2003), thus conferring potential 

antimicrobial properties to pigmented eggshells in birds (Ishikawa et al. 2010).  

 

1.2.3.4. Post-mating sexual signalling 

Moreno and Osorno (2003) outlined the Sexually Selected Eggshell Colouration (SSEC) 

hypothesis and proposed that investment, particularly in blue-green coloured eggshells, is 

costly for females because of the antioxidant properties of biliverdin (Moreno et al. 2006). 

Accordingly, only high quality females would be able to balance the trade-off between 

fighting against their own oxidative stress and allocating high amounts of biliverdin in their 

eggshells. Consequently, eggshell colouration could signal female quality and be utilised by 

the males to inform their investment strategies with respect to their offspring (reviewed in 

Riehl 2011). Similarly, the “blackmail hypothesis” proposed that conspicuous egg 
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colouration may help female persuading the male to increase their paternal effort in nesting 

areas where the risk of nest predation is high or brood parasitism is frequent (Hanley et al. 

2010).  

Some descriptive and experimental studies have investigated the signalling role of eggshell 

colour towards males and provided mixed support (reviewed in Reynolds et al. 2009, Cherry 

& Gosler 2010, Riehl 2011). Some studies have found a relationship between blue-green egg 

chroma and paternal investment (Moreno et al. 2004, Soler et al. 2008), but others have not 

(López-Rull et al. 2007). Using cross-fostering manipulations in pied flycatchers (Ficedula 

hypoleuca), Moreno et al. (2006) showed that males provide more investment to clutches 

with bluer eggs. In contrast, in the collared flycatcher (Ficedula albicollis), there was no 

effect of eggshell blue-green colouration on paternal effort (i.e. chicks feeding rate and nest 

defence behaviour) (Krist & Grim 2007). Similar results in ring-billed gulls (Larus 

delawarensis) showed no significant relationship between eggshell colouration and paternal 

care (Hanley & Doucet 2009). 

Most studies to date on eggshell colouration have focused on blue-green eggs (Moreno et al. 

2006, Siefferman et al. 2006, Krist & Grim 2007, López-Rull et al. 2007, Polačiková et al. 

2007, Soler et al. 2008, Cassey et al. 2008a, Hanley & Doucet 2009, Polačiková & Grim 

2010, English & Montgomerie 2011). However, spotted eggs of many small passerines (e.g. 

blue tits, great tits, house sparrows) have recently attracted researchers (Morales et al. 2006, 

Sanz et al. 2009, Holveck et al. 2010, López-de-Hierro & Moreno-Rueda 2010) because they 

are mainly coloured by protoporphyrin which possesses pro-oxidant properties, contrary to 

biliverdin (Moreno & Osorno 2003, and see 1.2.2). In that context, the SSEC hypothesis 

proposes that low quality females with inefficient antioxidant capacities may be incapable of 

eliminating protoporphyrin but, instead, may passively deposit high amounts into eggshells. 

However, the use of eggshell patterning in spotted eggs as a signalling function for the male 
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has had very little support to date (Sanz & García-Navas 2009, Walters & Getty 2010, López-

de-Hierro & De Neve 2010, Stoddard et al. 2012). 

 

1.2.4. Eggshell pigmentation as a maternally-derived trait? 

Given the physiological properties of biliverdin and protoporphyrin (see 1.2.2), their 

deposition in the eggshell might be closely related to female body condition and 

physiological state, such as their antioxidant capacity, during egg production which is a 

costly process (Alonso-Alvarez et al. 2004). To date, mostly correlative studies have 

investigated the relationship between eggshell colouration and female condition or egg 

quality parameters (reviewed in Cherry & Gosler 2010). 

 

1.2.4.1. Female physiology and blue-green egg pigmentation 

In species laying blue-green eggs such as the pied flycatcher, eggshell brightness is 

negatively associated to female immuno-competence (Moreno et al. 2005) and blue-green 

colouration is positively associated with female body condition (i.e. mass/tarsus length
3
 or 

residuals of a regression of body mass on tarsus length) (Morales et al. 2006, Siefferman et 

al. 2006). In contrast, Hanley & Doucet (2009) did not find any association between eggshell 

colouration and female body condition (i.e. mass/ (tarsus length + bill length) in ring-billed 

gulls. Eggshell blue-green colouration also indicates female antioxidant capacity in the gray 

catbird (Dumetella carolinensis) (Hanley et al. 2008). One experimental study in the pied 

flycatcher found a small increase in blue-green colouration after supplementation of the 

females with mealworms (Moreno et al. 2006).  In the same species, an increased 

reproductive effort through nest removal led to a negative association between eggshell 

colouration and female plasma antioxidant levels, compared to control birds, suggesting a 

trade-off between allocating biliverdin to oxidative stress responses and laying highly 
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colourful eggshells (Morales et al. 2008). In the spotless starling (Sturnus unicolor), an 

experimental decrease of female body condition via feather removal induced a decrease in 

eggshell blue-green colouration (Soler et al. 2008). Another study in blue-footed boobies 

(Sula nebouxii) revealed an increase in blue-green colouration of the second egg laid after 

supplementation with carotenoids, suggesting that biliverdin colouration is costly to produce 

in term of antioxidant allocation (Morales et al. 2011). In contrast, reproducing under low or 

high antioxidant-diet did not influence eggshell colouration in Araucana chicken (Dearborn et 

al. 2012).  

If eggshell pigmentation is a maternally-derived trait, eggshell colouration may also be 

associated with traits that reflect egg quality such as egg mass or internal compounds (e.g. 

hormones, immune factors), which are also related to maternal condition during egg 

formation. For example, in pied flycatchers, blue-green colouration was positively associated 

with egg Immunoglobulin (IgY) levels (Morales et al. 2006), a major component of offspring 

humoral immunity, transferred by mothers to enhance offspring performance and survival 

(reviewed in Dias da Silva & Tambourgi 2010). Eggshell blue-green colouration was also 

positively correlated to  egg yolk lutein concentration (e.g. collared flycatcher, Hargitai et al. 

2008; but see Cassey et al. 2008b, common blackbird [Turdus merula] and song thrush 

[Turdus philomelos]), or eggshell biliverdin concentration (e.g. spotless starling, López-Rull 

et al. 2008). 

 

1.2.4.2. Female physiology and brown-egg pigmentation 

In species laying brown-spotted eggs, mainly pigmented by protoporphyrin, the relationship 

between eggshell pigmentation and female or egg characteristics is more complex due to the 

mixed predictions of the SSEC hypothesis, the lack of information related to protoporphyrin 

deposition into the eggshell, and the diversity in the methods used to analyse maculation 



Chapter One  General Introduction 

22 
 

patterns. For instance, in blue tits, brown-spot colour intensity was positively associated with 

female tarsus length (Sanz & García-Navas 2009) and with yolk antibodies (Holveck et al. 

2012) and females in lower body condition laid more maculated eggs and showed a higher 

stress level (i.e. heat shock proteins concentration) (Martínez-de la Puente et al. 2007). In 

contrast, in great tits, heavier females laid paler eggs with less brown spots (Stoddard et al. 

2012). In house sparrows, older females laid eggs with darker spots (López-de-Hierro & De 

Neve 2010), and in common kestrels (Falco tinnunculus) better quality females  laid more 

maculated eggs (Martínez-Padilla et al. 2010). In reed warblers (Acrocephalus scirpaceus), 

eggshell colouration was independent of female condition but indicated both egg testosterone 

and lysozyme content (Krištofík et al. 2013).  

In the poultry science literature some authors have suggested that stress can influence the 

deposition of eggshell pigments during egg formation in brown egg layers (Whittow & 

Naughton 1999). For example, stress induces a premature termination of eggshell 

pigmentation, thus leading to whitened eggs in chicken (Mills et al. 1991, Nys et al. 1991). In 

commercial laying hens, viral infections that affect the reproductive tract may also induce 

lighter eggs. In addition, different stressors (environmental, social, etc.) could potentially also 

increase eggshell spottiness (Butcher & Miles 2003) in the same species.  

 

1.2.4.3. Limits of studies on eggshell pigmentation 

The common thread to most of these previous studies is that they were correlative and all 

measured different parameters related to female physiology or egg quality, which might 

explain the inconsistency of the results. Nevertheless, a few experimental studies have 

attempted to investigate the effect of female condition on eggshell colouration. However, 

only few of them provided data on eggshell pigments concentrations. Indeed, most of these 

studies have focused on indices of eggshell appearance to test whether eggshell colouration 
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could be influenced by maternal condition; assuming that eggshell appearance is a reliable 

proxy of its pigment content. In immaculate blue-green eggshells, mainly pigmented with 

biliverdin, very few studies have found a positive correlation between eggshell colouration 

and biliverdin content (Moreno et al. 2006, López-Rull et al. 2008). In brown-spotted 

eggshells, maculation (defined as the presence of colourful spots, Cherry & Gosler 2010) is 

thought to be mainly due to variation in protoporphyrin (brown pigment) concentration as 

this pigment is found in much higher concentrations in such eggshells (Gorchein 2012). This 

highlights the limit of studies that do not quantify eggshell pigment content (Cassey et al. 

2012a) and suggests that eggshell colouration might result from a complex interaction 

between biliverdin and protoporphyrin.  

Consequently, eggshell pigmentation might be influenced by maternal condition; however, it 

is crucial to quantify eggshell pigments concentrations to be able to directly assess maternal 

investment into the eggshell. Moreover, the adaptive significance of eggshell colouration is 

more likely to be a combination of several of the hypotheses mentioned earlier. Indeed, if 

eggshell pigmentation is dependent on female condition during egg formation and in 

particular her stress exposure, any environmental variation during egg laying might have a 

significant impact on some properties of eggshell appearance such as egg camouflage in 

ground-laying species. Thus, being able to camouflage the eggs might be a trait of female 

quality, which may vary with female condition, and the combination of these hypotheses 

remains to be tested in either a correlative or an experimental manner. 

 

1.3. Aims of the thesis 

The main aim of my thesis was to investigate experimentally the relationship between 

eggshell appearance and female condition, and investigate the importance of eggshell 
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appearance on egg crypsis. I used the Japanese quail (Fig. 1.6) that was first described as a 

research model for the study of avian development in 1959 (Padgett & Ivey 1959).  

 

 

Figure 1.6. Photograph of a female Japanese quail (Photo credit: Camille Duval). 

 

The Japanese quail is an excellent study species because it is relatively easy to expose to 

variation in experimental conditions, and its physiology is well known. They have a short 

reproductive cycle: sexual maturity is reached after 6-7 weeks. Females lay clutch sizes of 

approximately 8 eggs and incubate for 16-18 days. Moreover, birds exhibit overt sexual 

behaviour that persists throughout the year and this makes studies of reproduction relatively 

straightforward under experimental and control conditions. Another characteristic that makes 

the Japanese quail an interesting model for scientists is the aspect of their eggs. Quail 

eggshell colour varies from white to blue-green, has variable red-brown spots, and 

protoporphyrin and biliverdin both contribute to eggshell pigmentation (Gorchein 2012, Fig. 

1.7). This makes the species highly suitable for studies of the eggshell pigment deposition 

under different environmental conditions, and its relationship with female physiology.  
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Figure 1.7. Photographs on a black velvet background of Japanese quail eggs laid by 3 different 

females (a), (b), (c) (Photo credit: Camille Duval). 

 

To address the aims of this study, I used various experimental designs to manipulate female 

environmental conditions during reproduction through diverse modifications at adult stage 

such as food quantity restriction and short term stress exposure. I also experimentally induced 

pre and /or post natal stress exposure at early stage in life to investigate the effect on eggshell 

pigmentation in the long-term. I then assessed the effect of such manipulations on eggshell 

reflectance (spectrophotometry), maculation (image analyses) and pigment content (High 

Performance Liquid Chromatography) as well as on female condition parameters such as 

body condition (calculated as the residuals from a regression of body mass on tarsus length), 

basal stress level (Plasma CORT) and antioxidant factors. In addition, following a recent 

study on laying substrate choice in Japanese quail (Lovell et al. 2013), I performed a similar 

behavioural experiment to assess whether the colour but also the texture (patterning) of 

laying substrates had a significant importance in females choice.  
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1.4. Structure of the thesis 

In Chapter Two, I first present a preliminary study that aimed at determining the daily food 

requirement of the population of experimental quails. Then, I examine the effect of food 

restriction on female body condition and egg mass, eggshell reflectance, eggshell pigment 

concentrations and eggshell maculation at both inter and intra-individual levels. In Chapter 

Three, I examine how stress can influence female body condition, plasma CORT 

concentrations and plasma antioxidant factors, as well as eggshell reflectance, eggshell 

pigments concentrations and eggshell maculation, both on short and long-term scales. In 

Chapter Four, I explore how laying substrate choice is driven by the patterning of both egg 

and substrate. Finally, in Chapter Five I summarise my main results and provide directions 

for future research.
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2.1. Abstract  

Biliverdin (antioxidant) and protoporphyrin (pro-oxidant) are two key eggshell pigments and 

their concentration may be related to female body condition. Here, I investigated whether 

female body condition influences eggshell pigmentation in the Japanese quail, using food 

restriction as an environmental manipulation.  I determined a female-specific daily food 

requirement in a pilot study and then conducted a food-restriction experiment. Twenty four 

females were either food-restricted or receiving ad libitum food (i.e. controls), and two eggs 

at the beginning and the end of the food manipulation were collected. Food restriction should 

reduce female body condition and hence their antioxidant status. Given the physiological 

properties of each eggshell pigment, I predicted that food-restricted females would deposit 

more protoporphyrin and less biliverdin, resulting in eggshells of reduced brightness but 

increased brown-red colour intensity, and increased maculation degree, predominantly due to 

protoporphyrin.  I found no significant effect of food restriction on eggshell reflectance. 

However, food-restricted females were in lower body condition, as predicted, and they 

increased the deposition of protoporphyrin and decreased the amount of biliverdin invested in 

their eggshells. Control females decreased the percentage of maculation compared with food-

restricted females which maintained constant maculation across the trial period. Thus, 

manipulating eggshell maculation may be a strategy adopted by better females to keep 

constant eggshell reflectance. This suggests that in a species laying brown-spotted eggshells, 

females are maximising the cryptic nature of their eggs as they limit visible changes that 

could be detected by predators, despite variations in eggshell pigments deposition. Females 

may face a trade-off between maintaining their eggs cryptic towards predators while 

undergoing variation in their body condition.
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2.2. Pilot study - On the use of commercial quails as study 

organisms: lessons about food intake from individual variation in 

body mass 

 

2.2.1. Introduction 

The Japanese quail is a galliform species in the phasianid family, which was domesticated 

many centuries ago and today meets some of our demands for meat and egg production 

(Prabakaran 2003). Several aspects of the biology of Japanese quail make them an interesting 

model species for poultry science research programmes and studies. They are economically 

important for agriculture with eggs consumed in large numbers in Asia (ca. 9 billion Japanese 

quails produced in China, Hong-Kong and Japan per year), while meat is consumed 

extensively in Europe (105 million quails produced in France and Spain per year) (Kayang et 

al. 2004, Minvielle 2004). They also serve as an excellent laboratory animal species as costs 

of maintenance are low, resistance to disease and egg production are high, sexual maturity is 

reached after 6 weeks, and, thus, three to four generations can be produced per year (Wilson 

1972, Vali 2008). Consequently, this species has been extensively studied: 414 research 

articles are listed on the PubMed database since 2010 alone 

(http://www.ncbi.nlm.nih.gov/pubmed), last date accessed 02/10/2013, and 1025 are listed on 

the Web of Knowledge database since 2010 (http://apps.webofknowledge.com), last date 

accessed 02/10/2013), mainly in the poultry sciences within the context of gaining a better 

understanding of the species’ biology to improve economic outputs. 

Nutrition is one aspect of the species’ biology that has attracted much study in the last 50 

years as it is an important factor that determines both egg and meat quality (reviewed by 

Shim & Vohra 1984, Shrivastav & Panda 1999). There are many parameters that have been 
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examined to assess individual nutritional requirements (reviewed by Shim & Vohra 1984). 

The Sub-Committee on Poultry Nutrition of the National Research Council (NRC) published 

the 9th revised edition of the Nutrient Requirements of Poultry (NRC, 1994) in which it 

included details of the nutrient requirements of the species as percentages or units per kg of 

diet. Their guidelines suggest that the metabolisable energy (ME) (i.e. the amount of energy 

available from food once the energy lost in the faeces, urine, and combustible gases have 

been subtracted) accessible to adults should be 2,900 kcal ME kg
-1 

(equivalent to 12,134 kJ 

kg
-1

). This recommendation is sometimes exceeded by commercial producers who 

supplement the birds with more nutrients to produce higher quality eggs and meat (Bou et al. 

2009).  

Food intake measurement in the poultry sciences has long been studied (Van Hemel & Myer 

1969), and a mean value per group of birds is usually used as an index of dietary 

requirements. For instance, Pinto et al. (2002) provided a diet containing 12,760 kJ kg
-1 

of 

food (equivalent to 3,050 kcal kg
-1

)
 
to 45 day-old Japanese quails and found that their mean 

daily food intake was 25.8 g with birds initially weighing a mean of 138 g (N = 600). Mean 

daily ME intake per quail was calculated as 331.5 kJ, which is substantially higher than the 

260 kJ per day proposed by Shivastav et al. (1980) as the daily ME requirement of Japanese 

quails. However, no value of body mass was provided in this study. The variation in 

prescribed food intake reported in the literature for this species reveals that experimental 

conditions and characteristics of different strains of experimental animals may markedly 

influence their daily food requirements. Ignoring the variance in the structural size and body 

mass that exists between individuals by calculating a ‘population’ mean for daily food 

requirements may have severe negative consequences for animal welfare with some birds 

severely under-fed while others risk adverse effects from over-feeding. It is noteworthy that 

recommendations for daily food intake in the literature such as those provided by 
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Wolfensohn and Lloyd (2003) (i.e. 100 g of food per day per adult female weighing between 

120 g and 300 g) are based on a mean requirement, lacking a measure of standard error. Thus, 

they do not acknowledge variance in nutritional requirements of commercial and/or 

experimental animals. Studies risk working with results from animals that have not 

undergone identical manipulations, undermining conclusions that could be biased or simply 

incorrect, adding significant variation to the experiment and potentially resulting in a larger 

sample size of animals being required to attain acceptable statistical power. 

 

2.2.2 Materials and methods 

Experiments were conducted using a captive population of outbred Japanese quail at the 

University of Glasgow (Cochno Research Centre and Farm, Scotland). All experimental 

procedures were carried out under UK Home Office Project Licence 60/4068 (Karen 

Spencer), and Personal Licences 30/8939 (Camille Duval). 

All the birds came from eggs artificially hatched at the farm. At the beginning of the 

experiment, all females were 6-weeks old and of the same reproductive status (i.e. this was 

their first reproductive attempt). I used 26 females individually housed in cages that were 51 

cm high × 46 cm wide × 61 cm long, with deep litter on the floor. Ambient temperature was 

maintained at 18.0–18.9°C and the light regime was 14L:10D (hours). Birds were fed with a 

standard commercial diet (BOCM Ltd, Suffolk, England) (Table 2.1) that had an energy 

content of 12,750 kJ kg
-1

. Birds were weighed to the nearest 1 g on an electronic balance 

(Fisher Scientific, Fisherbrand, SG-2001, Loughborough, UK) just prior to the feeding trial. 
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Table 2.1. The nutrient content of the BOCM Pauls Farmgate Layer Pellet for Poultry diet that was 

fed to Japanese quails in this study of the daily food requirements for laying birds
a
. 

Nutrient Content 

ME (kJ/kg) 12,750 

Oil (%) 4.0 

Protein (%) 16.0 

Fibre (%) 6.5 

Ash (%) 13.50 

Methionine (%) 0.30 

Moisture (%) 13.80 

Vitamin A-retinol (iu / kg) 7,000 

Vitamin D3- cholecalciferol (iu / kg) 3,000 

Vitamin E, alpha-tocopherol acetate (iu / kg) 15 

Sodium selenite-selenium (mg / kg) 0.25 

Copper sulphate-copper (mg / kg) 20 

Inclusions  

Wheat (%) 40–25 

Wheatfeed, sunflower extract? (%) 25–10 

Calcium carbonate, bakery by-product, soya bean extract, distillers (%) dark 

grains, soya bean heat treated, mono-calcium phosphate, vitamins / minerals, 

salt, lysine, methionine, sodium bicarbonate 

10–0 

Natuphos 5,000G
b
 

Additive (Na-K salts)  

Roxazyme  

Luthein, Zeaxanthin, Capsanthin  

Note: 
a
Reproduced by kind permission of BOCM Pauls Farmgate. 

b
G: Granulate. 

 

2.2.2.1. Preliminary calculations 

In order to provide birds with an excess of food per day during the feeding trials I needed to 

calculate a mass of food that would provide sufficient energy for all females in the 

experiment. Females were significantly heavier than NRC guidelines (NRC, 1994) at the start 
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of the feeding trial and they also showed high inter-individual variability in body mass 

(mean: 312.5 g, range: 245–380 g, variance = 1,346.6, SD = 36.7 g, N = 26; Fig. 2.1).  

 

Figure 2.1. (a) Frequency distribution of the initial body masses of 26 experimental Japanese quails. 

Note that although there is a discernible mode between 300 and 320 g, the majority (65%) are either 

lighter (N = 7) or heavier (N = 10) than this range. (b) The relationship between their initial body 

mass and their average daily food intake. 
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The heaviest female in the feeding trial was 380 g, more than twice the body mass upon 

which dietary recommendations are based (NRC 1994). According to theoretical calculations 

based on the total energy content of the food (i.e. 12,750 kJ kg
-1

) and on the theoretical daily 

energy requirement of 331.5 kJ of a group of females with a mean mass of 138 g (Pinto et al. 

2002), the mean daily food requirement for the group was 58.8 g of food per day for a quail 

weighing 312.5 g (equivalent to 750 kJ day
-1

). The feeding trial was repeated for four 

consecutive days in order to determine the repeatability of food intake rates. 

 

2.2.2.2. Food intake measurement  

On day 1 of the feeding trial, all cages were cleaned thoroughly using a wire brush to remove 

every piece of food and cage substrate before each feeder was weighed empty to the nearest 

0.01 g using a portable electronic balance (Fisher Scientific, Fisherbrand, SG-2001, 

Loughborough, UK). To avoid food-restricting the heaviest female in this experiment, I 

provided all quails with 70 g of food. At 9 am (GMT) on days 2–4 of the feeding trial, all 

food was carefully collected from each cage and from each feeder using tweezers, and was 

then weighed to determine the quantity of food eaten by each subject in the previous 24 h 

(Boswell et al. 2002, Hull et al. 2007). 

 

2.2.2.3. Statistical analyses 

I used the method of Lessells and Boag (1987) in STATISTICA version 6.0 (Statsoft) to 

calculate the within-female repeatability of food intake over the trial. I performed a linear 

regression of female body mass on daily food intake to test if the relationship could be used 

in an applied way to predict dietary requirements from body mass dynamics. All residuals 

were normally distributed. 
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2.2.3. Results 

I found that food intake was significantly repeatable within females across the 3 days of 

measurement (r = 0.8, P < 0.001), revealing that the inter-female variance in food intake was 

much higher than that within females, and that the food intake was consistent across the days 

of the feeding trial. There was considerable variability in mean daily food intake (calculated 

for each female over the feeding trial) (mean = 45.4 g, range: 31.1–57.9 g, variance = 49.7, 

SD = 7.1 g, N = 26) and mean daily energy intake (mean = 579.1 kJ, range: 395.8–738.1 kJ, 

variance = 8,083.2, SD = 89.9 kJ, N = 26) across females in this study (Fig. 2.1, Table 2.2). 

Female body mass was also positively correlated with mean daily food intake (R² = 0.5, F1,24 

= 20.5, P < 0.1; Fig. 2.1), revealing that the heaviest females were also the ones that ate the 

most. 

 

2.2.4. Discussion 

Food intake rates depend upon the ME content of the ration but also the bird’s age, body 

mass and reproductive status as well as ambient temperature (Shim & Vohra 1984). Previous 

studies have found that adult Japanese quails require a daily ME intake of 218 kJ (Farrell et 

al. 1982), 228 kJ (Thompson & Boag 1976), 260 kJ (Yamane et al. 1980) and 324 kJ (Boon 

et al. 1999) with the variation being due to different energy contents of diets (ranging from 

12,300 to 17,000 kJ kg
-1 

of diet). This corresponds to a daily food intake ranging from 17 to 

19 g of food. The birds in my feeding trial were larger than those in previous experimental 

studies, explaining why the daily food intake rates I measured were relatively high (mean = 

45.4 g, range: 31.1–57.9 g). There is a large amount of variability in recommended daily food 

intakes found in animal welfare guidelines (from 20 to 100 g) (Cooper 1987, Wolfensohn & 

Lloyd 2003) and I suggest that calculating food intake rates specific to an experimental 
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Table 2.2. The initial body mass and daily food intakes of 26 female Japanese quails on days 2–4 of a 

feeding trial to determine the variability of their food intake requirements. Females are ordered by 

ascending initial body masses. 

Initial body mass 

(g) 
Food intake (g) on day: 

Mean daily food intake 

(g) 

Mean daily energy 

intake (kJ) 

 1 2 3   

245 41.1 43.6 41.4 42.0 535.6 

248 29.7 31.9 31.5 31.0 395.8 

252 28.2 33.4 35.8 32.5 413.8 

262 38.7 40.6 33.0 37.4 477.2 

279 33.3 29.7 34.0 32.3 412.3 

295 46.0 44.3 50.0 46.7 595.9 

299 44.1 44.9 44.6 44.5 567.8 

301 47.4 50.2 46.0 47.9 610.1 

301 51.3 56.4 58.5 55.4 705.9 

302 41.9 47.5 42.1 43.8 558.8 

308 41.7 44.8 48.0 44.9 571.8 

309 39.8 49.5 44.3 44.5 567.6 

309 44.9 45.3 40.7 43.6 555.9 

310 42.5 40.6 38.3 40.4 515.7 

315 55.6 54.9 56.5 55.7 710.1 

316 44.7 54.1 50.6 49.8 635.0 

324 47.6 45.2 45.2 46.0 586.3 

327 38.5 38.9 41.0 39.5 503.0 

327 51.3 53.9 55.7 53.7 684.2 

332 53.0 51.8 47.0 50.6 645.4 

342 49.1 45.6 47.8 47.5 605.5 

352 41.5 38.8 49.8 43.4 552.8 

356 47.7 50.1 50.1 49.3 628.4 

362 51.8 51.4 49.3 50.8 647.9 

379 51.9 59.2 62.6 57.9 738.1 

380 42.9 56.6 49.9 49.8 634.5 
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group of birds would be more appropriate than using theoretical values based on unknown 

populations.  

This short feeding trial has demonstrated that measuring food intake in any study involving 

the manipulation of food availability to subjects requires care in order to account for the 

variation in body mass of individual birds within the focal group. I studied 26 females and 

determined a female-specific mean daily food intake to allow estimation of the daily food 

requirements for each of the laying females (Table 2.2). This suggests that calculating a mean 

food intake for the overall female group would not be advisable, as some females would be 

food-deprived when this was not the intention. This is especially important in studies 

involving daily requirements based upon the energetic contents of diets.  

In experimental work on Japanese quail, it is commonly assumed that an average adult 

female Japanese quail weighs 120 g, consumes on average 20 g of food per day and requires, 

on average, 264 kJ kg
-1 

of bird per day (Shim & Vohra 1984), but frequently the mass of the 

individual birds is not considered in the execution of such studies. Moreover, the nutrition of 

Japanese quail is most commonly studied within the context of applied poultry science where 

the focal group can consist of hundreds of birds (e.g. Soares et al. 2003) and where logistics 

prevent initial body masses of birds from being considered. The result is that the variability 

that I have found in this study is often lost and with it the effectiveness of a study’s approach. 

Furthermore, birds are often communally housed in large numbers in these studies, resulting 

in further problems in unbiased estimation of their daily energy requirements as a result of 

competition for food among birds. Such variances must be monitored and accommodated if 

feeding experiments are to be planned and executed robustly. I strongly recommend that it is 

necessary to consider both the energetic content of diets and the body mass of birds before 

initiating a food intake study. Often, the latter is either absent in reported studies or an 
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insufficient number of birds has been weighed to allow integration of inter-individual 

variation into calculations of their dietary requirements. 
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2.3. Condition-dependent strategies of eggshell pigmentation: an 

experimental study of Japanese quail 

 

2.3.1. Introduction 

Avian eggshells are diverse in their patterns of pigmentation and many adaptive hypotheses 

have been proposed culminating in a revived interest in the subject during the last twenty 

years (reviewed in Underwood & Sealy 2002, Kilner 2006). Across a wide range of species, 

the variation in eggshell colouration and patterning has been explained, among others, in the 

context of crypsis (Wallace 1889, Tinbergen et al. 1962), mimicry and defence against brood 

parasitism (Dawkins & Krebs 1979, Brooke & Davies 1988, Rothstein 1990), and protection 

of the developing embryo against solar radiation (Lahti 2008). More recently, it has been 

proposed that eggshell colouration could be strongly related to female physiological 

condition and, in particular, antioxidant capacity (Moreno & Osorno 2003, Soler et al. 2005, 

Siefferman et al. 2006, Hanley et al. 2008, but see Riehl 2011). This new assertion is founded 

on the investment of two main pigments: biliverdin, a blue–green antioxidant pigment, and 

protoporphyrin, a brown pro-oxidant pigment (Gorchein et al. 2009). Both may reflect the 

antioxidant capacity of the female and both are involved in the vertebrate haem metabolic 

pathway (Bloomer 1988). Their concentrations are highly correlated in the avian eggshell 

(Wang et al. 2009). Thus, it is proposed that only females with an increasingly efficient 

antioxidant system are able to allocate more biliverdin into their eggshells in the face of 

accommodating their oxidative stress (Moreno & Osorno 2003). Moreover, because of its 

pro-oxidant properties, protoporphyrin causes a physiological oxidative stress in the liver 

(Shan et al. 2000) and females in lower body condition and under elevated stress may 

passively deposit more protoporphyrin into their eggshells to facilitate reduced oxidation 

(Moreno & Osorno 2003, Martínez-de la Puente et al. 2007).  
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The ‘sexually selected eggshell colouration’ (SSEC) hypothesis (Moreno & Osorno 2003) 

has provoked many experimental and correlative studies that have demonstrated positive 

correlations between eggshell colouration and female and/or offspring body condition and 

immuno-competence (e.g. maternal antibodies, yolk testosterone, yolk lutein) (Moreno et al. 

2005, Hargitai et al. 2008). However, findings from an increasing number of studies are now 

in conflict with the predictions of this hypothesis. Many studies did not find a significant 

correlation between eggshell colouration and female and/or egg characteristics (Cassey et al. 

2008b, Honza et al. 2011, Riehl 2011). Most of these have focused on species that lay blue–

green eggs but substantially less attention has been paid to brown-spotted eggshells (Riehl 

2011, Dearborn et al. 2012). High eggshell concentrations of protoporphyrin have been 

positively related to thinner eggshells as a result of calcium deficiency (García-Navas et al. 

2011) and pesticide contamination (Jagannath et al. 2008). Thus, the brown colouration of 

maculated eggshells could reflect both egg quality and female body condition. This 

hypothesis has been examined in domestic chickens, where older females laid lighter and 

less-coloured (i.e. redder) eggs because of an increase in egg size, but there was no 

comparable change in eggshell pigment concentrations (Odabaşi et al. 2007). In the house 

sparrow, pigment deposition decreased with age and through the laying sequence (López-de-

Hierro & De Neve 2010). Furthermore, a cross-fostering experiment in house wrens 

(Troglodytes aedon) found that less-pigmented eggshells indicated heavier eggs and higher 

female body condition (residuals from a regression of body mass on tarsus length) (Walters & 

Getty 2010). It is noteworthy that there is currently little agreement in the literature about the 

relationship between eggshell colour and female body condition. It is common for researchers 

to speculate on female investment in terms of eggshell pigments (e.g. Poole 1965, Walters & 

Getty 2010, García-Navas et al. 2011) without measuring pigment concentrations.  

Therefore, the aim of this study was to examine the relationship between female body 
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condition (through residuals from a regression of body mass on tarsus length), eggshell 

physical reflectance (brightness, UV chroma and chroma) or perceived discrimination by an 

avian visual system (chromatic and achromatic contrasts), and maternal investment in egg 

quality. This study is the first to use an experimental approach that mimics a naturally 

challenging environment, by restricting food availability to captive laying birds to investigate 

the relationship between female body condition, and eggshell colouration and pigmentation. 

If eggshell spot and background colouration indicate female body condition, I predicted that, 

compared with control females, food-restricted females in lower body condition would 

exhibit quantifiable changes in eggshell colouration. I predicted that they would deposit more 

protoporphyrin and less biliverdin in their eggshells, resulting in a decreased achromatic 

(brightness) and an increased chromatic (UV chroma and chroma) colouration. I also 

predicted females in lower body condition would invest less in egg quality as measured 

through egg mass, egg volume and yolk/albumen proportion. 

 

2.3.2. Materials and methods 

2.3.2.1. Study species and experimental procedure 

Experiments were conducted on a captive population of outbred Japanese quail at the 

University of Glasgow (Cochno Research Centre and Farm, Scotland). Twenty-four adult 

females and nine adult males were randomly selected from an outbred wild-type population 

and were housed in single sex groups in indoor 15 m
2
 aviaries for 2 weeks to allow 

habituation to housing conditions before the start of the experiment. Birds were fed ad 

libitum with a standard commercial diet (Layers Pellets, BOCM Ltd, Ipswich, UK) during 

habituation. Each female was individually identified with a uniquely numbered white leg ring 

and moved to an individual cage (51 cm high × 46 cm wide × 61 cm long) for 1 week of 

further habituation prior to the start of food manipulation. All birds were in visual and 
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acoustic contact with each other at all times. Each male was individually identified with a 

uniquely numbered coloured leg ring and males were group-housed in a single enclosure in 

the same room as the females under ad libitum feeding conditions. Ambient temperature was 

maintained at 18.0–18.9°C and the light regime was 14L:10D (hours). 

Each female was weighed (to the nearest 1 g) on an electronic balance before the feeding trial 

and, again, after her last egg had been collected. Right tarsus length was measured (to the 

nearest 0.01 mm) with a digital calliper. All birds were returned to single-sex group-housing 

after the last egg collection. 

 

2.3.2.2. Food intake measurement and manipulations 

To determine daily food requirements for the treatment groups, a pilot study was previously 

conducted (Section 2.2; Duval et al. 2012). Dietary manipulation commenced 1 week after 

the last day of the pilot experiment. This delay allowed me to confirm that female behaviour 

(e.g. feather pecking, routine feeding or drinking) was not adversely affected by individual 

housing. Females were randomly allocated to one of three treatment groups: control (C: fed 

ad libitum, i.e. 100% daily requirements, N = 8); medium quantity [MQ: 90% daily 

requirements, N = 8 (one bird had to be removed from the experimental design for health 

reasons)]; and low quantity (LQ: 75% daily requirements, N = 8). To control for possible 

‘cage’ or ‘ceiling’ effects, individuals from each experimental group were housed in such a 

way that across all groups equivalent numbers of birds were in cages on the floor and close to 

the ceiling. The respective quantity of food calculated from the pilot study for each subject 

was then provided every morning at the same time for the entire feeding trial. 
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2.3.2.3. Egg collection 

I only analysed fertile eggs. A male was randomly paired with one female of each treatment 

group (i.e. three females in total). Sexual activity in males is highest within the first 5 minutes 

of presentation to a female, averaging approximately three copulations before satiation 

(Schein et al. 1972). Therefore, a male was placed in a focal female’s cage for 5 minutes per 

day before being removed and allowed a 1 hour resting period before presentation to a 

subsequent female. In this way, each male was exposed to three females each day, one from 

each treatment group. The order of presentation to females of different experimental groups 

was randomly assigned each day. Egg collection began after 10 days of mating, the period 

required to obtain fertile eggs (Adkins-Regan 1995). Each cage was visited every morning 

and eggs were collected and placed in a dark box in a cold room (4°C). 

Four eggs per female were collected. Specifically, they were egg numbers 1 and 2, and 13 

and 14 within a clutch, with the modal clutch size of free-living birds being 14 eggs (Shousha 

et al. 2007). The eggs were analysed to assess the effect of dietary treatment on their mass, 

volume, eggshell colouration and pigment concentrations (Hoyt 1979). The first and last eggs 

(i.e. 1 and 14) were carefully opened along the longitudinal axis using dissecting scissors on 

the day of laying. Yolk and albumen were separated and weighed (to the nearest 0.01 g) on a 

digital balance to determine relative egg components by mass as a proxy for egg 

macronutrient content (Baumgartner et al. 2008). Eggshells were washed with distilled water 

and kept in a dark box to dry at room temperature and to avoid direct exposure to light that 

could cause pigment degradation (Cassey et al. 2011a). 
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2.3.2.4. Measurement of eggshell reflectance by spectrophotometry 

The colouration of Japanese quail eggs varies considerably across a population with a 

background colour varying from white to blue–green to light yellow–brown, upon which 

darker speckles or spots of variable size, shape and colour occur (Sezer & Tekelioglu 2009) 

(Fig. 2.2a). Eggshell reflectance was measured between 300 and 700 nm in the laboratory 

using an Ocean Optics USB4000 Miniature Fibre Optic spectrophotometer with a DH-2000-

FHS deuterium–halogen light source (Ocean Optics, Eerbek, The Netherlands). A 90 deg 

probe with a black plastic extension was used to ensure stability for measurement and to 

maintain a consistent angle and distance between the eggshell and the measuring fibre optics 

(Cassey et al. 2010b). Two spots were randomly chosen from each half of an egg (one from 

the apex and one from the blunt end) and three replicates of reflectance were measured from 

each spot (Fig. 2.2a). For eggshell background, three reflectance spectra were randomly 

measured in each area (apex and blunt end) (Fig. 2.2a). Spectra were expressed relative to a 

white Ocean Optics WS-1 and a black standard as shown in Figure 2.2b for representative 

spectra from spots and background. 

 

2.3.2.4.1. Shape model 

From these spectral measurements, brightness, UV chroma, blue–green chroma and red 

chroma were extracted as spectral shape descriptors using Avicol software (Gomez 2006, 

Doutrelant et al. 2008). Brightness was estimated as the total reflectance (R) between the 

wavelengths 300 and 700 nm.  UV chroma was calculated as R320–400 nm/R300–700 nm, which is 

the proportion of the reflectance in the UV zone (320–400 nm) (Pérez-Rodríguez et al. 2011). 

Then, I calculated blue–green chroma (BGC) (Siefferman et al. 2006) as R400–575 nm/R300–700 

nm, and red chroma as R595–655 nm/R300–700 nm. 
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Figure 2.2. (a) Zones on a typical Japanese quail eggshell where reflectance spectra were measured 

by spectrophotometry. From each half of the egg, three measurements were taken from two spots (1–3 

and 4–6) while six measurements (A–F) were taken from the background. (b) Mean representative 

reflectance spectra from the spots and background of Japanese quail eggs (egg numbers 1 and 2, and 

13 and 14 in the laying sequence). 

 

2.3.2.4.2. Vision model 

To account for the avian visual system, I used the protocol of Loyau et al. (2007b) to 

compute two types of chromatic (S; colour) and achromatic (Q; brightness and forms) 

contrasts (Vorobyev & Osorio 1998) using Avicol software (Gomez 2006) as described by 

Osorio et al. (1999). I used the photoreceptor spectral sensitivities and relative densities data 

available for the domestic chicken as it is the closest species to Japanese quail in terms of 

photoreceptor characteristics (Hart & Hunt 2007). Chickens have tetrachromatic colour 

vision based on single cones containing visual pigments with specific absorption maxima of 

570 nm (λmax,red), 508 nm (λmax,green), 455 nm (λmax,blue) and 419 nm (λmax,violet) (Bowmaker & 

Knowles 1977). They also possess double cones that mediate luminance, pattern and texture 

detection (Bowmaker & Knowles 1977, Vorobyev & Osorio 1998). 
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2.3.2.5. Determination and quantification of eggshell pigments 

Eggshell pigment content was quantified in eggs 1 and 14, the same eggshells as used for the 

spectrophotometric measurements. Pigments were identified and their concentrations 

calculated using high-performance liquid chromatography (HPLC) (Mikšík et al. 1996). 

Briefly, each eggshell was weighed, and washed with distilled water and then solubilised 

(and esterified) in the dark for 2 days at room temperature in 15 ml of methanol containing 

8.5% concentrated sulphuric acid. The resulting solution was filtered (to remove shell 

membranes), 7.5 ml of chloroform and 5 ml of distilled water were added and then the 

solution was shaken. The lower chloroform phase was washed with 5 ml of 10% sodium 

chloride solution, followed by distilled water until the washing water had neutral pH 

(typically after two washes). The extract was evaporated to dryness and reconstituted in 1 ml 

of chloroform. Standards for the quantification of protoporphyrin IX and biliverdin (Sigma, 

St Louis, MO, USA) were treated using the same procedure. Porphyrins were analysed by 

reversed-phase HPLC using Agilent 1100 LC system (Agilent, Palo Alto, CA, USA) 

consisting of a degasser, binary pump, autosampler, thermostatically controlled column 

compartment and multi-wavelength and fluorescence detectors. Chromatographic separation 

was carried out on a Gemini 5u C18 110A column (250 × 2 mm i.d.; Phenomenex, Torrance, 

CA, USA). The sample (20 μl) was injected into the column and eluted with a gradient 

consisting of (a) methanol–water–pyridine 35:65:0.25 v/v and (b) methanol–acetonitrile–

pyridine 90:10:0.25 v/v (flow rate 0.3 ml min
–1

 at a temperature of 55°C). The gradient 

started at a–b 80:20 reaching 10:90 ratios after 15 minutes. For the next 10 minutes, the 

elution was isocratic (the composition of the mobile phase is unchanged during the entire 

Elution process) followed by another 10 minute isocratic elution at 100% b. Protoporphyrin 

was detected by fluorescence at 405 nm excitation/620 nm emission, whereas biliverdin was 

detected by absorbance as it has no fluorescence response. The two detectors were connected 
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in tandem. LC-MS was used (i.e. liquid chromatography was directly coupled to mass 

spectrometry). 

 

2.3.2.6. Data analysis 

2.3.2.6.1. Shape model 

For all four colour variables (i.e. brightness, UV chroma, blue–green chroma and red 

chroma), mean spot and background reflectance values were calculated for each egg per 

eggshell area (apex and blunt areas) (Fig. 2.2a). Univariate generalised linear models (GLMs; 

SPSS Statistics 19.0.0) were conducted to test for the effect of eggshell area (apex or blunt 

end) on spot and background reflectance, with colour variables as dependent variables, and 

egg area (apex or blunt end) as a fixed factor. Female identity was included as a random 

factor. There was no effect of egg area on any dependent variable in the analysis (spot: 0.09 < 

Ps < 0.38; background: 0.27 < Ps < 0.79). Therefore, all subsequent analysis was carried out 

on data averaged (i.e. on eggshell means) across the whole egg. 

Pearson’s correlations were performed on the four colour variables, between eggs 1 and 2, 

and then between eggs 13 and 14, for each female to test whether eggshell reflectance was 

similar between eggs from the same female. As eggshell reflectance was significantly 

correlated between eggs 1 and 2, and between eggs 13 and 14 (0.42 < Rs < 0.97, all Ps < 

0.001), mean reflectance values for each female at the beginning (mean of the two first eggs) 

and at the end (mean of the two last eggs) of the manipulation were calculated for the four 

colour variables. 

 

2.3.2.6.2. Vision model 

All spectra were interpolated to obtain a reflectance value every 1 nm from 300 to 700 nm for 

the first two and the last two eggs per female. I first investigated egg discriminability by 
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calculating the chromatic and achromatic contrasts within and between females. I computed 

for all pairwise comparisons contrasts or just-noticeable differences (JNDs) within a female’s 

eggs (i.e. JND within). Then, I calculated contrasts between females by computing all 

pairwise comparisons between a female’s eggs and all those laid by other females (i.e. JND 

between). 

To assess whether food restriction had a perceptible effect on eggshell spot and background 

chromatic and achromatic variations, I then calculated contrasts between beginning/end eggs 

for each female. I also calculated a mean spot/background contrast for each female (Holveck 

et al. 2010) at the beginning and at the end of the manipulation to assess the effect of the 

treatment on this perceived contrast. 

Within each change (S or Q), contrasts were compared between first and last eggs with 1 as 

the discrimination threshold, below which chromatic or achromatic differences are not 

detectable and above which they become more detectable for larger JND values (Dearborn et 

al. 2012). I assumed that light (neural noise) did not limit visual performance (Holveck et al. 

2010). I also tested whether the average differences in egg colour within and between females 

were detectable by a domestic chicken’s vision model by comparing the within- and between-

female contrast values to the threshold 1 using one-sample t-tests (all JNDs were normally 

distributed). Paired t-tests were performed to test whether the within and between contrasts 

were significantly different for each type of contrast computed. 

 

2.3.2.6.3. Effect of dietary manipulation on eggshell colour 

As I observed a significant difference in background red chroma between the three 

experimental groups before the start of the dietary manipulation (Kruskal-Wallis H-test: H2 = 

5.63, P = 0.04), I examined the effect of dietary treatment on the change in body condition 

and on eggshell reflectance over the trial. Body condition of each female was calculated as 
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the residual from a linear regression of body mass on tarsus length. I then calculated the 

difference in body condition and in eggshell reflectance parameters between the beginning 

and the end of the dietary manipulation. Univariate GLMs were performed to test whether 

dietary treatment influenced the change in egg traits (i.e. mass, volume, yolk proportion), 

eggshell reflectance, pigment quantities, and chromatic and achromatic contrasts, as 

dependent variables, with the pre-dietary manipulation colour variables as covariates. One-

sample t-tests were performed to test whether differences in colour variables differed from 0, 

and whether the contrasts differed from the discrimination threshold 1. All residuals were 

normally distributed. 

Finally, Pearson correlations examined whether female body condition at the start of the 

feeding trial was correlated with egg traits (i.e. mean mass, volume and yolk proportion), 

eggshell colouration and pigment content. 

 

2.3.3. Results 

2.3.3.1. Effect of food restriction on females and their egg characteristics 

Female body condition was not significantly different between groups at the start of food 

manipulation (Kruskal–Wallis test: H2 = 0.48, P = 0.78). Food restriction, however, 

significantly affected female body condition with LQ females being in lower body condition 

than C or MQ females, whose mass and body condition increased throughout the 

manipulation (body condition: F2,22 = 8.05, P < 0.01; Fig. 2.3). 
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Figure 2.3. Effect of dietary manipulation on female body condition (mean ± 1 SE) of Japanese quail 

that were on ad libitum (Control), medium quantity (Medium) or low quantity (Low) food diets. The 

difference in body condition (residuals from regression of body mass on tarsus length) was calculated 

as the difference between that before the dietary manipulation and that after the last egg was laid. 

Different lowercase letters reflect statistically significant differences. 

 

There was no significant effect of food manipulation on any egg characteristics (egg mass: 

F2,22 = 0.69, P = 0.51; egg volume: F2,22 = 0.35, P = 0.71; yolk proportion: F2,22 = 1.10, P = 

0.35). However, I found that heavier females in higher body condition at the start of the food 

manipulation laid heavier and bigger eggs (egg mass: r = 0.44, P = 0.03; egg volume: r = 

0.49, P = 0.02). 
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2.3.3.2. Effect of food restriction on eggshell reflectance  

2.3.3.2.1. Shape model 

I found no significant effect of food manipulation on eggshell colour variables (Table 2.3).   

Table 2.3. Effect of dietary manipulation on eggshell colour variation of Japanese quail. 

Parameter Factor F P 

Spot reflectance    

Brightness Treatment 0.24 0.79 

 Initial value 0.25 0.13 

UV chroma Treatment 1.03 0.37 

 Initial value 5.75 0.03 

Blue–green chroma Treatment 0.60 0.56 

 Initial value 11.00 < 0.01 

Red chroma Treatment 0.96 0.40 

 Initial value 4.32 0.05 

Background reflectance    

Brightness Treatment 0.17 0.85 

 Initial value 0.22 0.64 

UV chroma Treatment 0.21 0.81 

 Initial value 17.16 < 0.01 

Blue–green chroma Treatment 0.53 0.60 

 Initial value 29.28 < 0.01 

Red chroma Treatment 0.223 0.80 

 Initial value 25.37 < 0.01 

The 24 female Japanese quails were exposed to ad libitum, medium quantity or low quantity food manipulations 

(for details of dietary manipulation see section 2.3.2). Eggshell colour variation was judged as the difference in 

eggshell reflectance between eggs collected before the start of food restriction and after 15 days of treatment. 

Mean reflectance of egg numbers 1 and 2, and of egg numbers 13 and 14 was used in the statistical models. 

Univariate generalised linear models (GLMs) were performed to test whether dietary treatment (d.f. = 2) 

influenced eggshell reflectance, with the pre-dietary manipulation colour variables as covariates (initial value, 

d.f. = 1). Bold text indicates statistical significance at the alpha threshold of 0.05. 
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None differed significantly from 0 (one sample t-tests: −1.32 < all ts < 1.64, all Ps > 0.05, N 

= 24), suggesting that there was no natural variation in eggshell colouration during the dietary 

manipulation. Eggshell colour was not correlated with egg mass (spot: −0.28 < all rs < 0.21, 

all Ps > 0.05; background: −0.24 < all rs < 0.16, all Ps > 0.05, N = 24), nor with egg volume 

(spot: −0.28 < all rs < 0.20, all Ps > 0.05; background: −0.30 < all rs < 0.20, all Ps > 0.05, N 

= 24). However, females in higher body condition at the start of the experiment laid eggs that 

displayed bluer backgrounds (r = 0.45, P = 0.03, N = 24).  

 

2.3.3.2.2. Vision model 

The results from the avian vision model suggested that some of the variation measured with 

reflectance spectrophotometry would be detectable by the avian visual system. For each 

female, the mean visual contrast for eggshell background was greater when comparing eggs 

between females than within females (Fig. 2.4; paired t-test: S background: t22 = –2.19, P = 

0.04; Q background: t22 = –2.99, P < 0.01; Fig. 2.4). However, I did not find any significant 

Visual (chromatic and achromatic) contrasts were not correlated with any of the eggshell 

reflectance variables computed with the descriptive shape model (all Ps > 0.05). I did not find 

any significant effect of dietary manipulation on eggshell spot and background contrast, and 

on spot/background difference of reflectance (Table 2.4). 
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Figure 2.4. Mean detectability (± 1 SE) of chromatic (A) and achromatic (B) contrasts in pairwise 

comparisons of self-laid eggs (Within) and in pairwise comparisons between eggs laid by each female 

versus eggs laid by all the other females (Between). Discriminability was calculated for each of the 24 

Japanese quail females, with values > 1 just-noticeable difference (JND; threshold shown by 

horizontal dashed line) representing contrasts that are likely to be detected by the bird’s visual system. 

Visual contrasts between spots and background have not been statistically tested in the model so the 

different lowercase letters, which reflect statistically significant differences, have to be noted 

independently for spots and background. 
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Table 2.4. Effect of dietary manipulation (d.f.=2) on the perceived eggshell colour variations of 

Japanese quail through the use of an avian vision model. 

Parameter F P 

Achromatic variations   

Spot/background contrast 0.03 0.97 

Spot 2.71 0.09 

Background 3.16 0.06 

Chromatic variations   

Spot/background contrast 2.83 0.08 

Spot 0.29 0.75 

Background 0.20 0.83 

The 24 female Japanese quails were exposed to ad libitum, medium quantity or low quantity food manipulations 

(for details see section 2.3.2). The achromatic (brightness) or chromatic (colour) variations were calculated as 

the just noticeable differences (JNDs) between eggs from the beginning (mean spectrum between egg numbers 1 

and 2) and those from the end of the food manipulation (mean spectrum between egg numbers 13 and 14).  

 

 

2.3.3.3. Eggshell pigments 

Pigment analyses revealed that eggshells of Japanese quail contained high concentrations of 

protoporphyrin IX (mean ± SD: 113.75 ± 57.18 μg g
–1

 of eggshell) and biliverdin (91.03 ± 

48.40 μg g
–1

 of eggshell), with the two concentrations positively correlated at the start of the 

food manipulation (r = 0.40, P = 0.05, N = 24). I found that dietary manipulation significantly 

affected both protoporphyrin (F2,22 = 3.48, P = 0.05) and biliverdin (F2,22 = 3.67, P = 0.04) 

deposition in eggshells. Compared with control females, food-restricted females invested 

more protoporphyrin and less biliverdin in their eggshell contents (Fig. 2.5). 
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Figure 2.5. The difference (mean ± 1 SE) in biliverdin content (as a percentage of total pigment 

deposited) of eggshells collected between the start and the end of the laying sequence (see section 

2.3.2 for details) of Japanese quails fed ad libitum (Control), medium quantity (Medium) or low 

quantity (Low) food diets. Different lowercase letters reflect statistically significant differences. 

 

 

No significant correlation was found between eggshell pigment contents and any measure of 

female body condition or egg quality (biliverdin: −0.07 < all rs < 0.36, all Ps > 0.05; 

protoporphyrin: −0.09 < all rs < 0.28, all Ps > 0.05, N = 24). However, eggshells containing 

more biliverdin exhibited bluer spots with higher blue chroma values (r = 0.50, P = 0.01, N = 

24) and those containing more protoporphyrin displayed backgrounds of lower brightness (r 

= –0.50, P = 0.01, N = 24). 
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2.3.4. Discussion 

The results reveal that an experimental manipulation of female body condition through food 

restriction induced a change in eggshell pigment investment but not in the apparent colour of 

the eggshell. Previous studies on the function of eggshell colouration have experimentally 

manipulated female body condition through an increase in food availability or antioxidant 

content. For instance, Moreno and colleagues found that female European pied flycatchers 

supplemented with mealworms (Tenebrio molitor) laid bigger and bluer eggs (Moreno et al. 

2006). They suggested that this experimentally demonstrated that blue–green eggshell colour 

and biliverdin concentration both indicated the nutritional condition of the breeding female in 

birds. More recently, Dearborn and colleagues manipulated the antioxidant content of food 

provided to Araucana chickens and found that the differences in eggshell colouration between 

birds were due to female identity rather than to the food manipulation, and that variation in 

eggshell colour was unlikely to be perceived by the chicken (Dearborn et al. 2012). 

Nevertheless, in both studies, there was neither nutrient restriction nor measurement of 

protein and energy intake, female body condition, oxidative stress or eggshell pigment 

content. The present study represents the first to induce a decline in female body condition 

experimentally in order to investigate the effect on eggshell colouration in a species laying 

heavily maculated eggs (Fig. 2.2a). I found that food restriction decreased female body 

condition but not measures of egg quality. Egg size or mass may be more sensitive measures 

of egg production than clutch size as food limitation is likely to operate initially on egg 

volume as opposed to egg numbers (Martin 1987, Reynolds et al. 2003). Moreover, the 

deposition of hormones, immunological compounds (e.g. carotenoids and antibodies) and 

nutrients by females into their eggs influences offspring growth and development (Groothuis 

& Schwabl 2008, Ho & Burggren 2010). Thus, egg mass is a widely used measure of egg 

quality, with heavier eggs being more fertile and containing more nutrients and antibodies 
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that are essential for chick survival (Galbraith 1988, Farooq et al. 2003, Grindstaff et al. 

2005). High ‘quality’ females may invest more in reproduction and deposit more resources 

into their eggs if they are to increase offspring fitness (Pilz et al. 2003). Accordingly, I 

predicted that food-restricted females would lose body mass and body condition, resulting in 

smaller and lighter eggs. Yet, I found that egg mass, volume and yolk proportion were not 

affected by food restriction of the layer, even if heavier females generally laid heavier and 

bigger eggs. Similarly, Giuliano and colleagues found that female northern bobwhites 

(Colinus virginianus) and scaled quails (Callipepla squamata) that were food restricted (i.e. 

quantity, protein and energy content) lost body mass through the feeding trial but did not 

modify their investment in egg mass or size (Giuliano et al. 1996). One explanation for these 

findings is that females would optimise the quality of their eggs and of their chicks by 

reducing their own body mass and activity when food was restricted, while maintaining the 

size and mass of their eggs similar to those of control birds, to compensate for their decreased 

body condition and loss of nutrients invested in their eggs (Meijer & Langer 1995). 

According to the poultry science literature (e.g. Moula et al. 2009), an egg is composed of 

approximately 60% albumen, 30% yolk and 10% eggshell; this composition can vary with 

environmental factors such as breed, age, female health status, egg mass and female diet. 

Variation in the yolk compared with the albumen fraction is an index of egg quality that is 

used by the poultry industry to commercial ends. Thus, I predicted that food-restricted 

females would lay eggs with a reduced fraction of yolk/albumen compared with control 

females. While I successfully reduced female body condition through food restriction, I 

cannot attribute this to nutrient limitation as I only used an approximation of egg quality (i.e. 

egg and yolk mass). More detailed analyses of yolk constituents (e.g. proteins, carotenoids, 

hormones) and albumen (e.g. lysozyme) content would verify whether the nutritional stress 

induced in the females influenced resource allocation into their eggs.  
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I compared between- and within-clutch variation in spot and background reflectance (i.e. 

brightness, UV chroma, blue–green chroma and red chroma) using repeatability estimates 

(Lessells & Boag 1987), and found that between-female variance was markedly higher than 

within-female variance, suggesting that eggshell reflectance could be highly heritable and 

would constitute a female-specific phenotypic trait (Sezer & Tekelioglu 2009). Any variation 

in eggshell colouration due to female body condition could constitute a signal of female 

quality towards conspecifics (Moreno & Osorno 2003). I chose to analyse the reflectance data 

using a neural noise model (Holveck et al. 2010), assuming that light was not limiting visual 

performance. I did not compare eggshell reflectance to a background (e.g. nest) but, instead, I 

investigated within-individual variations (Cassey et al. 2009) that were subject to 

environmental modification such as food restriction. Under controlled laboratory conditions, 

birds are thought to use chromatic aspects of colour to detect large targets and achromatic 

aspects (that are based solely on differences in the intensity of reflected light) to detect small 

objects and pattern (Osorio et al. 1999, Spaethe et al. 2001). In the experimental group of 

birds, eggshell background contrasts were greater when comparing eggs between females 

than within females, whereas I did not find any significant difference between spot colour 

contrasts within females compared with between females. This suggests that eggshell 

background colour contrasts would be more detectable by an avian model than spot colour 

differences (see also Holveck et al. 2010). Moreover, all the chromatic discriminability 

values were small (< 1 JND) compared with achromatic contrasts (Dearborn et al. 2012), 

suggesting that differences in luminance and texture would be more easily detectable than 

differences in colour (Kelber et al. 2003, Avilés 2008). Thus, these results suggest that even 

in species nesting on the ground in open environments with optimised visual acuity, birds 

would be able to detect eggshell brightness and form variations better than colours. Female 

body condition at the start of the experiment predicted the intensity of eggshell background 
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blue–green colouration, with females in higher body condition laying bluer eggshells (e.g. 

higher blue chroma values). However, female body condition was not correlated with any 

other parameter of eggshell colouration, suggesting that there may be a strong relationship 

between body condition and biliverdin investment, explaining why there is no direct 

relationship between female body condition and spot red chroma. This confirms previous 

findings (Cassey et al. 2012a) showing that eggshell pigment concentrations were not always 

correlated with eggshell colour parameters in two thrushes (Turdus spp.). Moreover, spot and 

background colour and darkness might indicate an aspect of female health such as antioxidant 

capacity (Hanley et al. 2008) or physiological stress (Martínez-de la Puente et al. 2007), 

which are not signalled by female body condition alone. However, contrary to my 

predictions, food restriction had no significant effect on either the physical properties of 

eggshell spectra or the achromatic and chromatic contrasts that could be perceived by birds 

themselves or by conspecifics. 

The analysis of eggshell pigment concentration revealed that the eggshells of Japanese quails 

are pigmented with protoporphyrin IX and smaller amounts of biliverdin. The two pigments 

are part of the same biochemical pathway and the positive correlation that I found between 

their quantities in whole eggshells suggests that the processes of deposition of these pigments 

are not independent, and that the quantities of biliverdin and protoporphyrin should change 

proportionately (Wang et al. 2009). Indeed, Moreno and Osorno (2003) suggested that the 

relationship between deposition into the eggshell of such pigments and female body condition 

was adaptive: the SSEC hypothesis proposed that eggshell colouration signals female quality 

to the male. Pigment deposition into the eggshell would be modulated by female antioxidant 

capacity and males would subsequently adjust their care in response to the intensity of 

eggshell colour. Thus, according to my predictions, food restriction would modulate eggshell 

pigment investment by the female. Indeed, food-restricted females increased their investment 
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in protoporphyrin and decreased the amount of biliverdin deposited into the eggshell. This 

result suggests that the decrease in female body condition could be associated with a decrease 

in antioxidant capacity or an increase in oxidative stress and, thus, that females with low 

antioxidant capacity in the present study passively deposited more protoporphyrin into their 

eggshells to remove this pro-oxidant. The fact that females in lower body condition also 

decreased the deposition of biliverdin into their eggshells supports this hypothesis. It 

confirms that only females in higher body condition can face the trade-off between 

pigmentation of their eggshells with biliverdin and control of oxidative stress (Moreno & 

Osorno 2003). Measurements of oxidative stress and antioxidant capacity in my subjects 

were not the focus of this investigation; therefore, I cannot confirm this hypothesis but the 

conclusions indicate fruitful directions for future research. 

The methodology for quantifying pigments did not allow determination of pigment content in 

different egg regions (Fig. 2.2a), but both pigments may be responsible for spot and 

background colouration in mixed quantities. The spot reflectance spectra of eggshells of 

Japanese quail exhibit a peak at ~ 630 nm (Fig. 2.2b), which is consistent with the presence 

of protoporphyrin IX (Sanz & García-Navas 2009). However, background spectra show the 

same peak at 630 nm, and also two more peaks: one around 500 nm, similar to the reflectance 

spectra of blue–green eggshells (Siefferman et al. 2006), and one in the UV zone at 320 nm. 

This suggests that protoporphyrin would be mainly responsible for spot colour but both 

pigments may be responsible for background colour. Indeed, Poole (1964) described the 

eggshell background of Japanese quail as pale green and suggested that a strong genetic 

control for shell colour would act in that species. Moreover, eggshells would be superficially 

pigmented with red–brown or green–brown dots. Pigment masses would be deposited at first 

as dots and then spread into blotches on the shell surface by contractions of the shell gland 

and rotation of the egg (Tanaka et al. 1977). Yet, I found that eggshells containing higher 
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concentrations of protoporphyrin displayed darker backgrounds. This could suggest that 

protoporphyrin, being a red–brown pigment and darker than biliverdin, might be responsible 

for the lightness of eggshell background rather than influencing the colour itself as suggested 

by the lack of relationship between protoporphyrin content and background red chroma. I 

also found that eggshells containing more biliverdin displayed bluer spots. These results 

confirm the complexity of eggshell pigment distribution in different areas of the eggshell 

(Sparks 2011). Eggshell pigment synthesis and deposition are still hotly debated mechanisms 

in heavily spotted eggs, but the proposition that protoporphyrin IX and biliverdin are 

implicated in haem synthesis is now gaining credence (e.g. Milgrom 1997, De Coster et al. 

2012). Both pigments circulate in the bloodstream, and are metabolised in the shell gland 

(Poole 1965, Wang et al. 2009, Honza et al. 2012). Pigments are deposited a few hours 

before oviposition (Poole 1965) and the two pigments could be differentially allocated on the 

eggshell according to female body condition. Future work should certainly examine ways to 

differentiate between pigments destined for the two eggshell ‘components’ of maculation and 

base colour as initial steps in investigation of their synthesis in relation to their deposition. 

To the best of my knowledge, this is the first study in which female body condition has been 

modified to investigate spotted-eggshell colouration by quantifying not only eggshell 

reflectance of spots and background independently, but also pigments concentrations in the 

eggshell. Many previous studies have examined avian species with post-natal paternal care 

and have focused on the SSEC hypothesis (reviewed by Riehl 2011). However, males of 

species that do not invest care post-hatching could also be subject to selection. Where 

predation pressure is high and egg colouration is linked not only to female body condition but 

also to crypsis, the assumptions of the SSEC hypothesis might also apply. To date, no study 

has investigated the relationship between eggshell pigmentation and female body condition in 

such a species. In addition, few studies have experimentally manipulated female body 
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condition to examine its direct effects on eggshell pigmentation (García-Navas et al. 2011, 

Morales et al. 2011). I suggest that eggshell colouration could be used in making eggs cryptic 

in Japanese quails, and that females would be able to maintain the appearance of their 

eggshell constant despite fluctuating environmental conditions (e.g. food availability). 

Further analysis on spot coverage might help to understand how eggshell maculation can be 

influenced by female body condition and what would be the implications for egg crypsis in 

such a ground-nesting species. 
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2.4. Maternal influence on eggshell maculation: implications for 

cryptic camouflaged eggs 

 

2.4.1. Introduction 

To maximise their reproductive success, female birds are able to modulate their investment 

not only through the size of their clutch but also through the quality of their eggs (Bernardo, 

1996). Many different egg components determine chick quality and these include hormones 

(testosterone, CORT) (Petrie et al. 2001, Mazuc et al. 2003, Loyau et al. 2007a), and 

antibacterial (lysozyme) (Saino et al. 2002) and antioxidant factors (carotenoids, vitamins) 

(McGraw & Ardia 2003, Costantini 2010) that are deposited by mothers into their eggs (e.g. 

into the yolk and albumen). These components are known to influence embryonic 

development, hatching success, chick growth, survival and immunity (Birkhead & Nettleship 

1982, Arnold et al. 1991, Hill 1993, Amat et al. 2001). The mother modulates the quantities 

of these components in response to seasonal and breeding parameters, including male 

attractiveness (Loyau et al. 2007a), but, initially, in response to their own body condition 

(Hanssen et al. 2003). 

Much less is known about the role of maternal investment into eggshell specific components, 

including into pigmentation. The eggshell is vital in: protecting the embryo from mechanical 

damage; controlling water loss (Board & Halls 1973, Handrich 1989); regulating gas 

exchange between the developing embryo and the environment (Tullet 1984); preventing 

contamination by bacteria (Board 1980) and other pathogens; and providing a source of 

nutrients, primarily calcium, to the developing embryo (Reynolds & Perrins 2010). 

Subsequently, females adjust their resource allocation to the eggshell according to their 
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specific physiological condition at breeding (Gosler et al. 2005, Higham & Gosler 2006) and 

hence many eggshell-specific traits are considered condition dependent. 

Females also transfer colourful pigments into their eggshells, and the function of pigment 

deposition is currently highly debated. Avian eggshell pigmentation has been studied 

repeatedly in the context of camouflage, mimicry, egg recognition, female signalling, 

maternal inheritance, and eggshell strength (reviewed in Kilner 2006, Cassey et al. 2011b). It 

may protect the embryo from environmental threats or promote its development by photo-

acceleration (reviewed in Maurer et al. 2011a). In addition, eggshell pigment concentrations 

may be related to female physiological condition due to the potential antioxidant/pro-oxidant 

properties of the two main pigments involved: biliverdin (McDonagh 2001) and 

protoporphyrin (Shan et al. 2000). In brown-spotted eggs, protoporphyrin, which is the main 

pigment responsible for eggshell maculation, may have structural properties and could 

compensate for a lack of calcium in the eggshell as it is structurally similar to phthalocyanine, 

a lubricants commonly used in solid-state engineering (Solomon 1997, Gosler et al. 2005). 

Calcium is a crucial nutrient for birds with it constituting approximately 98% of eggshell dry 

mass (Reynolds et al. 2004). Dietary calcium must be available during egg formation 

(Graveland & van Gijzen 1994, Bureš & Weidinger 2003), but eggshell structural defects 

develop when it is a limited resource (i.e. thin and spongy shells, abnormal pigmentation, 

absent cuticle and shell breakage; Graveland et al. 1994, Eeva & Lehikoinen 1995, Graveland 

1996). Thus, eggshell maculation patterns might depend on female body condition during 

reproduction. For instance, female blue tits exhibiting lower body condition and higher stress 

levels (as signalled for example by high Heat Shock Protein concentrations in the blood) laid 

more maculated eggshells (i.e. with more brown spots). However, in great tits, heavier 

females laid paler and less maculated eggs (Stoddard et al. 2012). In the same species, 

another study did not find any significant relationship between female body condition and 
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age with eggshell pigmentation pattern (Gosler et al. 2000). Thus, the relationship between 

eggshell maculation and female body condition remains poorly studied and invites 

experimental manipulation to further our knowledge.  

Recently, I experimentally decreased female body condition by restricting the diet of 

Japanese quails (Section 2.3; Duval et al. 2013). Both colouration and pigment content were 

measured in whole eggshells. Food-restricted females were in lower body condition and 

deposited more protoporphyrin but less biliverdin into their eggshells compared with control 

females. However, eggshell reflectance was not affected by the ‘switch’ in eggshell pigment 

deposition. I proposed that eggshell colouration would be strongly preserved in Japanese 

quails in order to maximise eggshell crypsis. I also suggested that further investigation of 

eggshell maculation could explain why studies to date have failed to detect a direct 

relationship between eggshell colouration and pigment content.  

In this study, I quantified eggshell maculation of the eggs collected in the previous study 

(Section 2.3) as the percentage of spot coverage from digital photographs from eggs of 

females that had experienced access to different food availabilities. If eggshell brown spots 

(maculation) are mainly due to the presence of protoporphyrin, I predict that food-restricted 

females that deposit more protoporphyrin and less biliverdin into their eggshell should lay 

eggshells with a higher percentage of maculation. To the best of my knowledge, this is the 

first study to investigate experimentally eggshell maculation as a condition-dependent trait. 
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2.4.2. Materials and methods 

2.4.2.1. General methods  

 I used the eggshells obtained from the previous experiment (Section 2.3) to form the basis of 

my maculation analysis (Duval et al. 2013). The experimental design is described in greater 

detail in Duval et al. (2013) (Section 2.3.2). 

 

2.4.2.2. Digital photography  

Using calibrated digital photography, I characterised eggshell spot coverage by quantifying 

pixels corresponding to the spots and background areas for each photograph. Constant 

lighting and long exposures, rather than flash photography, were used to protect the eggshell 

pigments from light degradation. A calibrated CANON EOS 450D camera with a 105 mm 

SIGMA AF lens was used and was activated remotely using a CANON RC1 infrared control. 

Eggs were placed beneath the camera on black velvet usually used as a standard background 

in photography. Before each photographic session a picture of a colour chart and a grey 

standard (Colour Confidence, Spectrum Point, Birmingham, UK) were obtained for 

calibration. Four eggs per female were photographed. For each photograph the camera was 

adjusted on its stand so that the egg filled the entire frame. The picture of the egg was taken 

including a label with the date and female identity and a size standard. Each 90-degree 

rotation of the egg was photographed providing four such views per egg. For the subsequent 

three photographs the focus was maintained but the egg was given a 90-degree turn to the 

right. All digital egg images were saved in standardised RAW format that is beneficial for 

colour analyses (Cassey et al. 2012b). The characterization of the camera’s spectral 

sensitivities and the calibration process were as described in Lovell et al. (2005). The linear 

RAW images were converted to XYZ (CIE XYZ colour-space coordinates (CIE, 1986)), and 

subsequent conversion from XYZ to CIELAB space was implemented using Matlab image 
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processing toolbox (2008, The MathWorks, Natick, MA, USA). Variations in the 

illumination of the photographed scene were controlled for by normalizing the luminance 

values (the L channel) to 0 for the darkest area of the black velvet background and to 60 for 

the white graph-paper. 

The area of the photograph occupied by the egg was identified (Fig. 2.6a), and for pixels in 

this area a histogram of the spread of luminance values was plotted, giving a bi-modal 

distribution of luminance values corresponding to spots and background (Fig. 2.6b). 

 

Figure 2.6. (a) Example of a photograph of a Japanese quail egg on a black velvet surface (top) and 

the corresponding egg mask (bottom). (b) Example of a histogram of luminance values where the red 

line shows the cut-off between dark areas of maculation (to the left) where the luminance is low, and 

light areas of background (to the right) where the luminance is high. 

 

The cut-off between the maculation and background areas for each photograph was then 

visually selected, all eggs being analysed blind to the treatment. Finally, the spot coverage 

percentage was calculated as the number of pixels in the brown spots region divided by the 



Chapter Two  Eggshell pigmentation: a condition-dependent trait?   

 

68 
 

total number of pixels constituting the egg in the photograph, multiplied by 100 (average: 

73.7%; range: 48.7% - 90.6%). 

 

2.4.2.3. Statistical analysis 

I calculated intra-class correlation coefficient (r) repeatability estimates (Lessells & Boag 

1987), and compared between- and within-clutch variation in spot coverage at the beginning 

(r = 0.78, P < 0.001, N = 48) and at the end  of the diet manipulation (r = 0.69, P = 0.004, N = 

48), and then used the mean spot coverage per female in the analyses. I compared spot 

coverage between groups before the treatment using an independent samples Kruskal-Wallis 

test. I used a Pearson’s correlation to investigate the relationship between eggshell spot 

coverage and its protoporphyrin concentration at the beginning of the diet manipulation. I 

tested the effect of food manipulation on the change in spot coverage over the experiment by 

calculating the difference between the pre- and post-food restriction eggs. I used a General 

Linear Model (GLM) with the difference in spot coverage as the dependent variable, the 

treatment-group as fixed factor and the difference in the protoporphyrin proportion as 

covariate to account for variation between groups. Post hoc analyses for main effects were 

performed using a Bonferroni method. Model residuals were found to be normally 

distributed. All statistical analyses were performed in SPSS Statistics 19.0.0. 

 

2.4.3. Results 

Eggshell spot coverage did not differ between groups before the treatment (Kruskal-Wallis: H 

= 0.58, P = 0.74, N = 24). Spot coverage was negatively correlated with eggshell 

protoporphyrin concentration (Pearson correlation: r = - 0.43, P = 0.04, N = 24) before the 

beginning of the diet manipulation (Fig. 2.7). The dietary treatment significantly influenced 

eggshell spot coverage: control females decreased spot coverage (pre-treatment mean ± 1 SD: 
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74.77 ± 7.11; post-treatment mean ± 1 SD: 70.23 ± 7.17), compared to food-restricted 

females which maintained a spot coverage similar to their pre-treatment levels (MQ pre-

treatment mean ± 1 SD: 77.10 ± 10.28; MQ post-treatment mean ± 1 SD: 76.16 ± 8.33; LQ 

pre-treatment mean ± 1 SD: 72.47 ± 14.80; LQ post-treatment mean ± 1 SD: 74.82 ± 11.32 

(Fig. 2.8) (GLM: Group: F2,22 = 6.24, P = 0.01; post hoc: C versus LQ: P = 0.01; C versus 

MQ: P = 0.22; MQ versus LQ: P = 0.17).  

 

Figure 2.7. The bivariate relationship between eggshell maculation (spot coverage) and eggshell 

protoporphyrin concentration in all Japanese quail eggs (N = 24) before dietary treatment. 
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Figure 2.8. Variation in eggshell maculation (spot coverage) calculated as the difference in spot 

coverage between eggs (N = 24) collected prior to and after dietary treatments (Control; Medium 

quantity diet; and Low quantity diet – see section 2.3.2 for further details). Different lowercase letters 

reflect statistically significant differences. 

 

2.4.4. Discussion 

My data demonstrate for the first time that eggshell maculation is influenced by maternal 

body condition in the Japanese quail, but in a direction that at first glance is counter-intuitive. 

In a previous published study (Duval et al. 2013), I proposed that eggshell reflectance in the 

Japanese quail may have evolved to maintain eggshell crypsis in changing environments and 

my results here are in line with this hypothesis. However, in this previous analysis, I did not 

take into account the extent of eggshell maculation. Reflectance spectrophotometry focuses 

on a single small point (no larger than 2 mm) on the eggshell that allows the precise 

quantification of wavelengths at specific locations. Yet, the exposed surface of the egg will 
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be the first thing that conspecifics and predators visually detect. Thus, eggshell maculation is 

an important consideration (Stoddard & Stevens 2010). For instance, in the house sparrow 

egg rejection increased significantly when spot patterns rather than eggshell colour were 

experimentally modified (López-de-Hierro & Moreno-Rueda 2010). 

I used digital photography to investigate eggshell maculation as its spot coverage under 

restricted food availability. Before any manipulation, eggshell spot coverage was negatively 

correlated with eggshell protoporphyrin concentration, which would suggest that 

protoporphyrin is not used to increase the amount of visible brown spots on the eggshell. This 

slightly counter-intuitive result might be due to a complex interaction between 

protoporphyrin and the eggshell matrix. Indeed, protoporphyrin in Japanese quail is deposited 

throughout the shell integument from the shell membrane through the cuticle (Tamura & 

Fujii 1967), and is not only present on the surface of the eggshell. In a previous study 

(Section 2.3; Duval et al. 2013), I showed that eggshells containing more protoporphyrin 

displayed darker backgrounds. However, spot brightness was not correlated to eggshell 

protoporphyrin content.  

Over the clutch, control females decreased their proportion of maculation compared to food-

restricted females, which maintained similar maculation levels. This suggests that there is a 

natural variation in eggshell maculation in control females that may be an optimal strategy to 

maintain eggshell reflectance following variations in eggshell pigments concentrations. 

Indeed, I have previously shown that females in higher body condition (i.e. controls) 

decreased their deposition of protoporphyrin over the clutch (Section 2.3; Duval et al. 2013), 

suggesting that they might have had better antioxidant capacities at the end of the experiment, 

probably due to a decreased activity and a food provided ad libitum. Thus they might have 

been able to sustain higher concentrations of protoporphyrin, explaining why they decreased 

its deposition in the eggshell. Decreasing eggshell maculation when eggshell protoporphyrin 
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is diminished may help females to maintain constant eggshell reflectance (e.g. intensity of 

colour patterns) despite variation in the concentration of eggshell protoporphyrin deposited. 

In addition, females may vary eggshell maculation without compromising the camouflage of 

their eggs as they only decreased eggshell maculation degree by 4.54 % (mean ± 1 SD:  -4.54 

% ± 6.66 %), which is unlikely to be perceived by potential predators. However, further 

analysis using perceptual visual models may be necessary to confirm this hypothesis. In 

contrast, eggshell maculation did not change in the food-restricted group. I predicted that 

food-restricted females may have been able to redistribute protoporphyrin across the different 

regions of the eggshell.  

My results suggest a complex interaction between maintaining invisible (cryptic) eggshell 

maculation and the concentration of the pigment protoporphyrin. Indeed, the negative 

correlation between eggshell maculation and its protoporphyrin concentration is counter-

intuitive and may imply that both parameters vary in opposite directions. This suggests that 

additional study of mechanisms of eggshell pigment deposition would allow us to understand 

how female body condition influences pigment allocation in different parts of the eggshell 

(Butcher & Miles 2011). However, such complex within-shell allocation of pigments cannot 

be measured by simple digital photography of the eggshell surface, or whole eggshell 

analysis of pigment concentrations. It will require sophisticated techniques such as the use of 

a layer-by-layer dissolution method to study the deposition velocity of pigments in different 

layers of the eggshell (Wang et al. 2007). 

This is the first experimental demonstration in a species laying spotted eggs of eggshell 

maculation depending on female body condition. My results have three major implications at 

methodological and evolutionary levels. First, the relationship between pigment 

concentration and eggshell colour is complex and spot colour is likely due to an interaction 

between these two pigments. Combined with previous findings (Section 2.3; Duval et al. 
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2013), I show that eggshell reflectance and maculation cannot be used as proxies of eggshell 

pigment content in Japanese quail. Further comparative studies measuring both colouration 

and pigment concentrations from specific fragments of eggshell of differently patterned 

eggshells from various species would help us to understand better the spatial distribution of 

pigments across eggshells of many species. Further considerations of the physiology 

associated with eggshell pigments, and knowing precisely how it and they contribute to 

variation in eggshell colour, will clarify how (or whether) eggshell colour can act as an 

honest signal of female body condition. 

Secondly, it has recently been proposed that eggshell pigments may have multiple 

implications for embryonic development. Indeed, Maurer et al. (2011a) proposed several 

hypotheses to explain the diversity of eggshell patterns from the “embryo’s view” such as 

thermoregulation, protection against UV-B radiation, photo-acceleration of embryo 

development,  functional asymmetry and lateralization of the chick, establishment of the 

circadian clock, DNA repair by photo-activation, and antimicrobial defences. Thus, as 

eggshell pigments might directly affect chick growth and development, eggshell maculation 

might be one of the egg parameters influenced by maternal effects (Mousseau & Fox 1998).  

Finally, the ‘nest-crypsis’ hypothesis proposes that selection for egg crypsis has not strongly 

evolved in species laying conspicuous nests, predators which search preys visually, detect 

nests first and then the eggs (Skutch 1976). However, optimizing egg camouflage (e.g. via 

egg matching with background; Lee et al. 2010) might be fundamental to the survival and 

breeding success of ground-nesting species that do not make nests to conceal their eggs 

(Götmark 1992, Götmark 1993, Kilner 2006). Accordingly, it has recently been shown that 

female Japanese quails match egg maculation colour with the background they lay on to 

maximise egg camouflage, independently of egg maculation degree (Lovell et al. 2013). This 

might reinforce the idea that egg reflectance plays a major role in egg camouflage in this 
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species and adjusting eggshell maculation to maintain its reflectance constant might be the 

optimal camouflage strategy adopted by better females. 

Overall, I propose that eggshell maculation is dependent on body condition with any change 

in female body condition during laying potentially impairing a female’s capacity for 

camouflaging her eggs effectively. This female capability could be an extended phenotypic 

trait with only females in higher body condition able to maintain eggshell reflectance and 

maculate their eggs in order to maximise egg crypsis. This makes the optimization of the 

proportion of maculation essential.  

 

2.5. Chapter Two - Summary and perspectives 

In this chapter, I experimentally investigated the relationship between female body condition 

and pigmentation in brown-spotted eggshells laid by Japanese quails. The pilot study 

highlighted the importance of measuring the food intake of individual birds (Boswell et al. 

2002) instead of setting the daily individual food intake for a group of subjects based upon a 

population mean. The quails in this experiment were significantly heavier than NRC 

guidelines (NRC 1994) and body mass was highly variable between individuals resulting in 

high variation in daily food intake across the small population of birds. In a study where birds 

are individually housed, this would lead to an underestimation of the food requirements of 

heavier birds, and an overestimation of the food requirements of lighter birds. In addition, 

measuring individual food intake is essential in all experimental designs, as food competition 

occurs between birds that are group-housed and this confound may lead to bias in food 

requirement calculations.  

The results of the food restriction manipulation showed that restricted females with a reduced 

body condition deposited more protoporphyrin and less biliverdin into their eggshells, 
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contrary to control females which were in a higher body condition, showed the opposite 

response and were able to deposit more of the anti-oxidant pigment, biliverdin, in their 

eggshells. Interestingly, eggshell reflectance remained constant in both groups. However 

eggshell maculation decreased in control females over the course of a clutch and remained 

unchanged in food-restricted birds. My findings suggest that there is a complex interaction 

between both pigments that results in the spotted pattern observed on quail eggshells, and that 

maintaining eggshell colour despite a switch in pigment allocation could be an adaptive 

behaviour that has evolved to facilitate egg camouflage and decrease predation risk in species 

that lay spotted eggs and nest on the ground. In addition, diminishing eggshell maculation 

when the concentration of protoporphyrin (mainly responsible for the maculation of spotted 

eggs; Kennedy & Vevers 1976) decreases, may help females in higher body condition to 

maintain eggshell reflectance and maximise egg camouflage.  

I encourage additional experimental studies restricting different maternal resources such as 

food, calcium or antioxidants (e.g. carotenoids, Vitamin E) to help to clarify which of these 

specific nutrients is the most limiting and drives eggshell pigment deposition strategies. In 

addition, sudden environmental change such as food restriction can be perceived as a stressor 

by individuals (Lynn et al. 2010). Thus, further experimental manipulation of female stress 

status may help to understand whether eggshell pigmentation can indicate maternal stress 

exposure during reproduction and how this could potentially influence female capacity to 

maximise egg camouflage in stressful contexts. 

In conclusion, I showed in Chapter Two that eggshell pigments deposition is condition-

dependent in Japanese quail, and that female can modulate eggshell maculation and maintain 

constant eggshell reflectance, to potentially maximise egg crypsis. In Chapter Three, I will 

investigate how female exposure to physiological stress during reproduction, as well as the 

stress that they might have experienced early in life, could influence eggshell pigmentation. 
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Chapter Three 

EFFECTS OF FEMALE STRESS EXPOSURE ON 

EGGSHELL PIGMENTATION 
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3.1. Abstract 

Stress has short and long-term effects on individual physiology such as their antioxidant 

capacity, and might influence eggshell pigmentation process in adulthood. Evidence in favour 

of this hypothesis is scarce. I first investigated whether repeated exposure to stress hormones 

influenced female Japanese quails stress level, antioxidant defences and eggshell 

pigmentation, using corticosterone (CORT) supplementations. CORT-fed females should 

suffer from an increased oxidative stress and decreased body condition; deposit more 

protoporphyrin and less biliverdin in the eggshell, leading to an increased maculation but a 

constant reflectance. Three eggs before and after CORT supplementation were analysed, and 

I found that CORT-fed birds laid brighter eggs; however female physiology or eggshell 

maculation were unaffected. This suggests that spot reflectance may be a key factor affected 

by females CORT exposure. I then investigated the effects of developmental stress on 

eggshell pigmentation in adulthood. Given the above results, eggs laid under adverse current 

conditions should be brighter but eggshell maculation should remain constant. Females 

stressed during development should be programmed and less affected by stress during 

breeding than females experiencing stress for the first time at adulthood. Eggs collected from 

30 females that had been exposed to developmental stress or not were analysed, and I found 

that pre and post-natal stress differentially influenced eggshell pigmentation. Pre-natal stress 

helped females to maintain eggshell maculation and protoporphyrin concentrations during 

stressful breeding, which may suggest enhanced oxidative stress tolerance. Post-natal stress 

facilitated the deposition of biliverdin in eggshells under adverse breeding conditions but 

changed eggshell reflectance, potentially conferring antibacterial protection to the offspring, 

at the risk of impairing egg camouflage. Many factors trade-off to produce eggshell 

patterning and these trade-offs change depending upon prevailing environmental conditions. 
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3.2. Eggshell appearance does not signal maternal corticosterone 

exposure in Japanese quail: an experimental study with brown-

spotted eggs 

 

3.2.1. Introduction 

Throughout their life, birds have to cope with a range of stressful stimuli such as elevated 

predation risk, food shortage, and habitat disturbance that can affect their fitness via costs to 

health, reproduction and survival. Birds have evolved behavioural and physiological 

responses (i.e. allostasis) in order to reduce the negative effects of such stressors on their 

survival (Wingfield et al. 1998, McEwen & Wingfield 2003, Landys et al. 2006). Any 

stressful stimulus induces the activation of the Hypothalamic-Pituitary-Adrenal (HPA) axis, 

ultimately resulting in the release of glucocorticoid hormones (Wingfield 1994, Romero 

2004) such as CORT in birds. CORT induces an increase in glucose release to maximise the 

energy available for the optimisation of life-saving behavioural strategies (Munck et al. 1984, 

Wingfield et al. 1998). Acute exposure to stress results in a transient increase in 

glucocorticoid secretion; however, elevated CORT can be sustained for a long period of time 

when individuals are faced with chronic stress and unable to return its concentration to a 

basal level (Angelier & Chastel 2009). Chronic stress exposure can have negative effects on 

the nervous system and cause deficiencies of the immune system and physiological functions 

such as antioxidant capacities (McEwen & Stellar 1993, Sapolsky 2000, de Kloet et al. 2005, 

Costantini et al. 2011). For example, in adult common kestrels, oral administration of CORT 

to mimic a physiological stressor induced an oxidative stress with birds showing a 32% 

increase in circulating reactive oxygen metabolites (Costantini et al. 2008). Moreover, recent 

evidence in broiler chickens showed that chronic administration of CORT induced an 

increased level of lipid peroxidation suggesting the formation of Reactive Oxygen Species 
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(ROS) and a decreased antioxidant capacity (Lin et al. 2004). Several antioxidant enzymes 

exist and Superoxide dismutase (SOD) and Glutathione peroxidase are commonly measured 

in oxidative stress studies (Weydert & Cullen 2009, Montgomery et al. 2012, Marasco et al. 

2013). Both enzymes act as free radicals scavengers: SOD catalyzes the dismutation of 

superoxide (O2-) into oxygen, and plays a major role in controlling the cellular level of free 

radicals (Bowler et al. 1992). Likely, Glutathione peroxidase is an enzyme that minimises the 

cellular levels of hydrogen peroxide using Glutathione (GSH) as a reductant, leading to the 

formation of its oxidized dimer, GSSG that can be cytotoxic if not reduced by another 

enzyme, the Glutathione reductase (Hayes & McLellan 1999). Thus, measures of blood SOD 

activity and GSH and GSSG concentrations can be good preliminary indicators of 

individuals’ antioxidant response efficiency that could be affected by exposure to CORT. 

During reproduction, birds are particularly sensitive to stress as breeding individuals face a 

trade-off between resources allocated to their current reproductive investment and to their 

own survival (Stearns 1992). The endocrine stress response regulates reproductive effort, and 

for instance both baseline and stress-induced CORT levels are highest during reproduction 

compared with non-reproductive events (Romero 2002). During egg formation, stress can 

affect both the mother and her offspring as female birds can modulate their investment in 

different egg components such as hormones (e.g., testosterone, CORT) (Mazuc et al. 2003, 

Loyau et al. 2007a), and antibacterial (lysozyme) or antioxidant factors (carotenoids, 

vitamins) (Saino et al. 2002, Hargitai et al. 2009, Costantini 2010), according to their own 

physiological condition during laying (“maternal effects”, Mousseau & Fox 1998). Less is 

known about maternal investment in eggshell components and especially in eggshell 

pigments.  

Many avian species lay spotted eggs which have been studied repeatedly in the context of 

mimicry, brood parasitism, signalling towards male, maternal inheritance, and eggshell 
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strength (reviewed in Kilner 2006). Eggshell spotting is predominantly pigmented by the 

tetrapyrrole protoporphyrin (Gorchein et al. 2009), which is a molecule derived from 

haemoglobin anabolism and is thought to be synthesised in the uterus and then deposited into 

the eggshell just prior to oviposition (Sparks 2011). Porphyrins are known to possess pro-

oxidant properties and they can induce an oxidative stress response, eventually resulting in 

liver damage (Afonso et al. 1999). Moreover, it has been shown in vitro that protoporphyrin 

can directly stimulate the synthesis of haem oxygenases (HOs) such as HO-1 or HSPs (Shan 

et al. 2000), which are synthesized after cellular stress and function as molecular chaperones 

to prevent proteins from misfolding (Åkerfelt et al. 2010). A second pigment also found in 

spotted eggs, biliverdin, is thought to possess the opposite (i.e. antioxidant) properties and, 

therefore, may help individuals to cope with oxidative stress (McDonagh 2001). Thus, 

protoporphyrin and biliverdin deposition into eggshells might vary according to the status of 

the female’s immune system and, in particular, to her antioxidant capacity. Indeed, Moreno 

and Osorno (2003) proposed the SSEC hypothesis which postulates that females with high 

antioxidant capacities produce eggs with more biliverdin which gives them a ‘bluer’ 

appearance.  Females with lower antioxidant capacity may suffer from physiological stress 

and passively deposit higher amounts of protoporhyrin into their eggshells (Moreno & 

Osorno 2003). Yet, to date the deposition of both pigments remains poorly considered in 

quantitative studies of eggshell colouration (but see Duval et al. 2013). 

Organisms are continually exposed to stressors in their environment that challenge 

homeostasis. Previous studies of poultry have suggested that in layers of brown eggshells, 

stress can result in eggshell whitening following premature termination of shell pigment 

deposition and delayed oviposition (Mills et al. 1991, Nys et al. 1991). Different forms of 

stress (e.g., higher cage densities, increased handling, and louder noises) can induce a loss of 

pigmentation on the eggshell (Butcher & Miles 2011). Eggshell colouration in blue tits has 
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been correlated with female stress; females laying more spotted eggs were in lower body 

condition, had higher cellular concentrations of the stress protein HSP70 and tended to have 

lower total plasma immunoglobulin levels (Martínez-de la Puente et al. 2007). If eggshell 

pigment deposition is related to the body condition of the breeding female, a chronic stress 

response may suppress immune functions such as their antioxidant capacity, inducing an 

oxidative stress, and this may be reflected in eggshell colouration. However, the majority of 

correlative research has not, to date, quantified eggshell pigment concentration, assuming that 

eggshell colouration is a proxy for its pigment content. This assumption remains a 

contentious issue (Cassey et al. 2012a).  

Manipulating experimentally stress hormones levels during breeding may help us to 

understand the relationship between environmental stress and eggshell pigmentation in birds 

more fully. In this study, I administered CORT by feeding adult female Japanese quails with 

CORT-injected mealworms (Marasco et al. 2012) over a 15-day period to investigate the 

effects of simulated chronic stress on female physiology and eggshell appearance. I measured 

female basal CORT concentration as well as two antioxidant agents, namely blood 

superoxide dismutase (SOD) and glutathione, and also eggshell reflectance, maculation, and 

pigment content. I predicted that CORT supplementation would mimic a chronic stress and 

increase oxidative stress, reduce body condition and lead to an increase in protoporphyrin 

deposition that females would endeavour to eliminate due to its pro-oxidant properties. In 

addition, I predicted a decrease in biliverdin investment into the eggshell as females would 

benefit from its antioxidant properties for their own antioxidant response. Considering the 

stability of eggshell reflectance (Duval et al. 2013), I expected an increase in eggshell 

maculation in stressed females following the increase in protoporphyrin deposition, but I did 

not predict a priori any modification in eggshell reflectance following the CORT 

supplementation (Duval et al. 2013). 
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3.2.2. Materials and methods 

3.2.2.1. Study species and experimental procedure 

The experiment was conducted at the University of St Andrews from November to December 

2011 and all of the procedures were agreed by the Local Ethics Committee at the University 

of St Andrews. The experiment was conducted under the Animals (Scientific Procedures) Act 

1986 (under PIL 30/8939 held by CD and PPL 60/4068 held by KAS). 

Thirty wild-type female and nine male Japanese quails were purchased at 9 weeks of age 

from two different private suppliers (‘Chinesepaintedquails’ in Wigan and ‘Wetheriggs zoo’ 

in Penrith, UK). The birds were kept at 20-22°C under a light regime of 14L:10D. All birds 

were identified with a white numbered leg ring and were housed in single-sex groups in 

indoor aviaries (3 m
2
 floor area) for 2 weeks to allow quarantine and habituation to housing 

conditions before the experiment commenced. During habituation, birds were fed ad libitum 

with a standard commercial diet (Layer pellets, ARGO Feeds).  

Females were weighed (to the nearest gram) on an electronic balance before the start of any 

experimental manipulations, and on the last day of the supplementation, and the length of 

their right tarsus was measured (to the nearest 0.01 mm) with a digital calliper. 

 

3.2.2.2. CORT dosage calculations 

Due to high variability in females body mass (range: 197-360g, SD = 50.3g), I used two 

categories of females: small-bodied (< 300 g) or large-bodied (> 300 g) when I calculated a 

dose of CORT to administer to each experimental group. I based my calculations on the 

CORT physiological doses and plasma concentrations for Japanese quails and zebra finches 

(Taeniopygia guttata) (Marasco, unpublished data; Spencer & Verhulst 2007, Spencer et al. 

2009) that I scaled by the mean body mass in each category of females (category 1 mean = 
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243 g, SD = 44 g, N = 14; category 2 mean = 339 g, SD = 23 g, N = 16), in order to mimic an 

increase in plasma CORT that was within a natural range.  

The daily dose to administer to the stressed birds in category 1 was 0.088 mg of CORT 

(Sigma Aldrich, Poole, UK), dissolved in peanut oil (concentration of 1.76 mg/mL) via two 

25 μl doses (at least 6 hours apart). In category 2, the daily dose to administer was 0.122 mg 

of CORT, dissolved in peanut oil (concentration of 2.44 mg/mL) via two 25 μ l doses (at least 

6 hours apart).  

 

3.2.2.3. Experimental design and CORT administration 

Three weeks before the experimental manipulation commenced, females which were all 

laying were moved to individual cages (61 cm × 44.5 cm × 50.8 cm), fed ad libitum 

(Standard Layer Pellet, BOCM, UK) with a supplement of freshly dead mealworms every 

morning for 1 week (i.e. from day -7 to day -1), and were randomly assigned to one of two 

groups (Control: N = 11 and CORT-supplemented: N = 11). Individuals were in visual and 

acoustic contact with the other females at all times. Males were group housed in the same 

room as the females under ad libitum feeding conditions and were then randomly paired with 

one female of each treatment group (i.e. two females in total for each male) to provide fertile 

eggs. Sexual activity in males is highest within the first 5 minutes after presentation to a 

female, averaging approximately three copulations before reaching satiation (Schein et al. 

1972). Hence, a male was placed in a focal female’s cage for 5 minutes per day before being 

removed and allowed a 1-hour resting period before presentation to a subsequent female. Pair 

encounters finished after the last day of CORT supplementation on day 14. 

CORT treatment began on day 0 and ceased on day 14. Each female was supplemented with 

two mealworms each day, one in the morning between 9am and 12am GMT, and one in the 

afternoon between 1pm and 5pm GMT. Mealworms were injected on the day they were used, 
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between two dorsal segments. A 27-gauge needle (12 mm × 0.45 mm) was used to avoid any 

leakage of oil from the site of puncture.  Mealworms fed to the control group were injected 

with two 25 μl doses of peanut oil only. Note that from the 30 initial females, 8 had to be 

removed from the experiment just before the start of supplementation (N = 8) because they 

were not laying or not laying every day. The final sample size was 22 females. Females were 

observed until they had ingested the mealworm which took only few seconds for each 

individual. 

Blood samples were collected from the 22 females by puncture of the brachial vein and 

withdraw of up to 300 µl of blood in heparinized microcapillary tubes. All blood samples 

were collected within 3 minutes of bird capture (Romero & Reed 2005) and they were kept 

on ice and centrifuged as soon as possible at 3,500 rpm for 5 minutes at 4°C. Plasma was 

removed after centrifugation with a Hamilton syringe and both plasma and red blood cells 

(RBCs) were frozen at -80°C. Females were blood sampled once on day 0 to measure the 

plasma CORT baseline and their antioxidant capacity just before the start of the 

supplementation, and once at day 20, 3 days after the last day of CORT supplementation. In 

order to validate the CORT supplementation and confirm that the CORT treatment mimicked 

a repeated acute stressful event within a natural range of the species, one female from each 

group was randomly chosen each day between day 1 and day 13 and bled 10 minutes after a 

mealworm was consumed. 

 

3.2.2.4. Radioimmunoassay 

Plasma CORT was extracted in dichloromethane from each aliquot of 4 to 20 µl of plasma 

(mean ± SD = 18.82 ± 2.28 µl of plasma) (N = 22). Plasma CORT concentrations were 

measured by radioimmunoassay using anti-CORT antiserum code Esoterix Endocrinology 

USA B3-163 (1:100 dilution in assay buffer: 0.01M PBS pH = 7.4, 0.25% BSA; Esoterix, 
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Austin, TX) and [1, 2, 6, 7-
3
H]-CORT label (Perkin Elmer, NET 399) as described in Spencer 

et al. (2009). The mean extraction efficiency was 48 ± 0.07%, the detection limit for this 

assay was 0.08 ng ml
-1

 and the assay was run with 50% binding at 1.85 ng ml
-1

. All samples 

were run in duplicate in the same assay and the intra-assay coefficient of variation was 13%. 

 

3.2.2.5. Antioxidant analysis 

Antioxidants were measured using the spare RBCs available for each female after the 

radioimmunoassay was performed. SOD activity was measured in RBCs of 21 females using 

the Arbor Assays SOD Colorimetric Activity Kit (Arbor Assays, Inc., Ann Arbor, MI) 

following the vendor’s instructions. Two randomly chosen samples were diluted by 100, 200, 

400, and 800 in order to determine the best dilution which was 1:100. The mean intra-assay 

coefficient of variation was 7.4%, and the inter-assay coefficient of variation was 6.7%. 

Briefly, RBCs were lysed by adding ice cold deionized water to them and centrifuging at 

3,500 rpm for 30 minutes at 4ºC to remove debris. RBCs were then diluted 1:100 in assay 

buffer prior to assaying. All standards and samples were assayed in duplicate. The reaction 

was initiated by adding 25 µl of xanthine oxidase to each well, and then the plate was 

incubated at room temperature for 20 minutes. The absorbance of each standard and sample 

was read at 450 nm using a microplate reader (ANTHOS 2010, AnthosLabtec Instrument). 

SOD activity was calculated from the equation of a four-parameter logistic curve obtained 

from the standard values. One unit of SOD is defined as the amount of enzyme causing half 

the maximum inhibition of the reduction of 1.5 mM nitro blue tetrazolium in the presence of 

riboflavin at 25ºC and at pH 7.8. All samples from a single individual were quantified in the 

same assay and treatment groups were equally represented within each assay (two plates).  

Glutathione (GSH) concentration was also measured in lysed RBCs (see previous Methods) 

of 17 females using the Arbor Assays Glutathione Colorimetric Detection Kit (Arbor Assays, 
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Inc, Ann Arbor, MI) following the vendor’s instructions. RBCs were deproteinized and 

diluted 1:40 in SSA (aqueous 5-sulfo-salicylic acid dehydrate) solution prior to assaying. 

Two random samples were preliminary diluted by 40, 80 and 160 times before being tested in 

order to determine the best dilution for the assay; which was 1:40. The mean intra-assay 

coefficient of variation was 3.01%, and the inter-assay coefficient of variation was 9.7%. 

Samples were either treated with 2-Vinylpyridine (2VP) to block free GSH by alkylation or 

left untreated, in order to measure oxidized Glutathione (GSSG). All standards and samples 

were assayed in duplicate and 25 µl of Colorimetric Detection reagent was added to each 

well. The reaction was initiated by adding 25 µl of the reaction mixture to each well, and then 

the plate was incubated at room temperature for 20 minutes. The absorbance of each standard 

and sample was read at 405 nm using a microplate reader (ANTHOS 2010, AnthosLabtec 

Instrument). GSH concentrations (µM) were calculated from the equation of a four-parameter 

logistic curve obtained from the standard values. GSSG concentrations (µM) of the samples 

were determined from the data obtained from the 2VP- treated samples read off a 2VP-treated 

standard curve. Free GSH concentrations (µM) were obtained by subtracting the GSSG 

measures obtained from the 2VP-treated standards and samples from non-treated standards 

and samples (i.e., the total GSH). All samples from a single individual were quantified in the 

same assay and treatment groups were equally represented within each assay (four plates).  

 

3.2.2.6. Egg collection 

The mass of all eggs was measured (to the nearest 0.01 g) using a Mettler AE163 electronic 

balance. Eggs that were collected on day -2 to day 0 were used to measure pre-treatment egg 

characteristics (i.e. mass, eggshell colouration and pigment concentration) and then on day 12 

to day 14 (i.e. final supplementation day) to allow enough time for maternal CORT to be 
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transferred to the eggs (Hayward & Wingfield 2004) and to assess the effect of CORT 

supplementation on egg characteristics. 

 

3.2.2.7. Analysis of eggshell maculation by digital photography 

Photographs of all eggs on their laying day were taken in a windowless room using a light-

box and two bulb lights positioned at equal distances from each side of the light box, as the 

only constant light source. Constant lighting and long exposures, rather than flash 

photography, were used to protect the eggshell pigments. A Nikon D90 camera with a 

105mm lens was used and was activated using a remote control. For the photographs, each 

egg was placed on a stand against a black card as a photographic standard background and 

next to a colour chart (Macbeth Mini Color Checker) and white graph-paper inside the light-

box. Six eggs per female were photographed, and the picture of each egg was taken including 

a label identifying the date and the female. Each 90° rotation of each egg was photographed 

providing four images in total. The camera was focused on one side (i.e., quarter) of the egg 

and for the three subsequent images the focus was maintained. 

All digital images of eggs were saved in standardized RAW format that is beneficial for 

colour analyses. The characterization of the camera’s spectral sensitivities and the calibration 

process is described in Lovell et al. (2005). The linear RAW images were converted to XYZ 

(CIE XYZ colour-space coordinates (CIE, 1986)), and subsequent conversion from XYZ to 

CIELAB space was implemented using Matlab image processing toolbox (2008a, The 

MathWorks, Natick, MA, USA). Variations in the illumination of the photographed scene 

were controlled-for by normalizing the luminance values (the L channel) to 0 for the darkest 

area of the black card and to 60 for the white graph-paper. The area of the photograph 

occupied by the egg was identified, and for pixels in this area a histogram of the spread of 

luminance values was plotted, giving a bi-modal distribution of luminance values 
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corresponding to maculated (darker values) and background (lighter) regions. I manually 

selected the cut-off between the foreground and background areas for each photograph. 

Finally, the degree of maculation (spot coverage) present in an egg photograph was computed 

as the percentage of the foreground and background regions. The darker regions were 

assumed to be the foreground ‘spots’ and the spot percentage was calculated as the number of 

pixels in the foreground region divided by the sum of total pixels in the background and in 

the foreground regions (mean: 67.1%; range: 37.3-89.3%). 

All eggs were then carefully opened along the longitudinal axis using dissecting scissors. The 

eggshells were collected, washed with distilled water and stored in a dark box to dry at room 

temperature and to avoid direct exposure to light that causes pigment degradation (Cassey et 

al. 2011a).  

 

3.2.2.8. Measurement of eggshell colouration by spectrophotometry 

3.2.2.8.1. Shape model 

On the three days following the last day of CORT supplementation (days 15, 16 and 17), 

eggshell reflectance was measured between 300 and 700 nm in the laboratory using an Ocean 

Optics USB4000 Miniature Fibre Optic spectrophotometer with a DH-2000-FHS deuterium-

halogen light source (Ocean Optics, Eerbek, The Netherlands). A 90-degree probe with a 

black plastic extension was used to ensure stability for measurement and to maintain a 

consistent angle and distance between the eggshell and the measuring fibre optics. Two spots 

were randomly chosen from each half of an egg, one in each area of the half (top and 

bottom), thereby totalling four spots per egg. One reflectance measurement was performed at 

each of these four spots. For eggshell background, two measures were taken on each eggshell 

half, one at the top and one at the bottom (i.e., four background reflectance measures per 
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egg). Spectra were expressed relative to a white Ocean Optics WS-1 and a black standard that 

were measured before each session of spectrophotometric measurement. 

As described in Duval et al. (2013) (Chapter Two, Section 2.3.2.4), brightness, UV chroma, 

blue-green chroma and red chroma were extracted from these spectral measurements as 

spectral shape descriptors using the software Avicol (Gomez 2006, Doutrelant et al. 2008). I 

compared between and within-clutch variation in spot and background reflectance of the 

three eggs per female (total N = 62) at the beginning and at the end (total N = 65) of the 

experiment by calculating intra-class correlation coefficient (r) repeatability estimates 

(Lessells & Boag 1987) and found that spot and background colour variables were highly 

repeatable within a female at the start (0.71 < all rs < 0.90, all Ps < 0.05) and at the end of the 

experiment (0.64 < all rs < 0.82, all Ps < 0.05) for each colour variable.  

 

3.2.2.8.2. Vision model 

To account for the avian visual system, I used the photoreceptor spectral sensitivities and 

relative densities data available for the domestic chicken to compute both chromatic (ΔS; 

colour) and achromatic (ΔQ; brightness and forms) contrasts (Duval et al. 2013) using the 

software Avicol (Gomez 2006) (see Chapter Two section 2.3.2.4 for further details). 

 

3.2.2.9. Eggshell pigment determination and quantification 

The pigment content of the whole eggshell was analysed for each female. These were 

identified and quantified using HPLC (Mikšík et al. 1996) following (Cassey et al. 2012a, 

Duval et al. 2013) (see Chapter Two section 2.3.2.5 for a detailed protocol). 
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3.2.2.10. Data analysis 

As previously reported by Duval et al. (2013) and in Chapter Two, eggshell reflectance did 

not vary between eggshell areas (i.e. top vs. bottom). Therefore, the mean spot and 

background reflectance values per egg were calculated for all four colour variables (i.e. 

brightness, UV chroma, blue-green chroma and red chroma). All subsequent analysis was 

conducted on means data across the whole egg.  

Body condition of each female was calculated as the residual from a linear regression of body 

mass on tarsus length. Repeated-measures ANOVAs (SPSS Statistics 19.0.0) were performed 

to test whether CORT supplementation influenced female characteristics (i.e. body condition, 

plasma CORT baseline, SOD activity and GSH concentration). Time of bleeding (initial and 

after the CORT supplementation period) was the within-subject factor, and the treatment 

group was the between-subjects factor. I tested the effect of CORT supplementation on the 10 

minutes peak of CORT concentration in both groups, using an independent samples Mann-

Whitney test.  

After checking for normality of residuals, I used Generalized Linear Mixed Models 

(GLMMs) fitted with a linear distribution to test for the effect of CORT supplementation on 

egg mass, eggshell maculation and eggshell reflectance, which were added as dependent 

variables. Time (before and after the CORT supplementation period), (CORT and Control) 

and the interaction term (time × group) were included as fixed factors, and egg ID nested in 

female ID (i.e. female ID (egg ID)) was included as a random factor to account for multiple 

eggs from the same female.  

Average egg detectability and discriminability were examined. I tested whether the average 

differences in the mean egg colour within and between females were perceived by a chicken 

visual model by comparing the within and between-female contrasts using one-sample t-tests 
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(all JNDs were normally distributed). Paired t-tests were performed to test whether the within 

and between-female contrasts were significantly different for each type of contrast computed. 

A Kruskal-Wallis analysis was performed to test whether the chromatic and achromatic 

contrasts between the eggs laid before and after CORT supplementation were different 

between the experimental treatment groups. Using the same avian visual model, I computed 

spot/background contrast before and after CORT supplementation, and repeated-measures 

ANOVA was performed to test whether the treatment, time and the time × treatment term had 

statistically significant effects on this specific contrast. 

As biliverdin concentrations were significantly different between control and CORT-

supplemented females at the start of the experiment (H = 8.68, P = 0.01, N = 61), I used 

univariate general linear mixed model (GLMMs) to test for the difference in biliverdin and 

protoporphyrin concentrations, between the three eggs collected before the start of CORT 

supplementation, and between the three eggs collected after the CORT supplementation, with 

pigment concentration as dependent variables, egg number (i.e.,1, 2 or 3) as the fixed factor 

and female as a random factor. As egg number had no significant effect on pigment 

concentration before and after the CORT supplementation (0.17 < all F-values < 1.85, all P-

values > 0.05), I calculated the mean concentration for each pigment per female before and 

after the treatment. I performed a Pearson correlation between the mean concentration of 

biliverdin and the mean concentration of protoporphyrin for all females to test for the degree 

of interrelation between the two pigments. 

I tested for the effect of CORT supplementation on the change (Δ) in eggshell pigment 

concentration and protoporphyrin proportion (protoporphyrin/total pigment) over the 

supplementation period by calculating the difference in biliverdin and protoporphyrin 

concentrations and protoporphyrin proportion between the pre- and post-supplementation 

eggs. I used a univariate GLMM with the difference in biliverdin and protoporphyrin 
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proportions as dependent variables, group as a fixed factor and pigment concentration and 

proportions at the start of the experiment as covariates. All statistical analyses were 

performed in SPSS Statistics 19.0.0. 

 

3.2.3. Results 

3.2.3.1. Effect of CORT supplementation on females 

Female body condition was normally distributed and not different between groups before 

CORT supplementation after checking for variances equality (t-test: t = -1.04, P = 0.31, N = 

22), and did not change significantly with the treatment (repeated-measures ANOVA: time: F 

1,21< 0.001, P = 1.00; group: F 1,21 = 0.72, P = 0.40; time × group: F 1,21= 0.42, P = 0.52, N = 

22).   

Female basal plasma CORT, RBC’s SOD activity, total GSH concentration or GSSG 

concentration were normally distributed after checking for variances equality, and were not 

different between groups before CORT supplementation (t-test: t = -1.20 < all t-values < -

0.25, 0.25 < all P-values < 0.80, N (SOD) = 21, N (GSH, GSSG) = 17). In addition, CORT 

supplementation did not have any significant effect on these female physiological parameters 

(see Table 3.1). 
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Table 3.1. Effect of CORT supplementation (see text for details) on female physiological parameters 

of Japanese quail (GLMM). All females were exposed to ad libitum food with peanut oil 

supplementation or CORT supplementation. Time corresponds to the blood sampling performed 

before and after the CORT supplementation, and group corresponds to CORT-fed or control birds. 

Trait Factor dfs F P 

     

Basal CORT Time 1,21 0.03 0.96 

 Group 1,21 0.51 0.48 

 Time × group 1,21 0.16 0.69 

SOD activity Time 1,20 1.91 0.18 

 Group 1,20 0.94 0.34 

 Time × group 1,20 0.49 0.49 

Total GSH Time 1,16 4.44 0.07 

 Group 1,16 1.76 0.20 

 Time × group 1,16 0.33 0.57 

GSSG Time 1,16 2.36 0.15 

 Group 1,16 0.63 0.44 

 Time × group 1,16 0.62 0.44 

 

 

There was a significant effect of CORT supplementation on the plasma CORT concentration 

after 10 minutes of mealworm ingestion, with a peak significantly higher in CORT-fed 

females compared with controls (U22 = 88, P = 0.02, N = 22). In addition, the 10 minutes 

peak of CORT concentrations in CORT-fed females blood (range: 1.75–52.31; mean ± SD = 

16.56 ± 14.65 ng/ml) was within a physiological range and comparable with stress-induced 

concentrations in similar-aged birds (range: 1.43–62.16; mean ± SD = 19.52 ± 16.50 ng/ml; 

KAS unpublished data). The basal CORT concentrations of controls (range: 2.18–12.14; 

mean ± SD = 4.82 ± 3.63 ng/ml) were also comparable to similar-aged birds (range: 0.87–

26.47; mean ± SD = 8.16 ± 7.91 ng/ml) (KAS unpublished data). 
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3.2.3.2. Effect of CORT supplementation on eggs 

I found no significant effect of CORT supplementation on egg mass (GLMM: time: F 1,123 = 

0.05, P= 0.82; group: F 1,123= 0.43, P = 0.51; time × group: F 1,123 = 0.04, P = 0.84). There 

was no effect of CORT supplementation on eggshell maculation (GLMM: time: F 1,95 = 2.15, 

P = 0.15; group: F 1,95 = 1.40, P = 0.24; time × group: F 1,95 = 1.43, P = 0.23). Eggshell colour 

variables were also unaffected by CORT supplementation, except for spot brightness, which 

significantly increased in CORT-supplemented females (Table 3.2, Fig. 3.1). 

 

Figure 3.1. Effect of CORT supplementation on eggshell spot brightness (mean ± 1 SE; N = 123). 

Female Japanese quails were either fed with peanut oil alone (controls) or with CORT within peanut 

oil (see text for details). Open bars and grey bars represent pre-treatment and post-treatment effects, 

respectively. The boundary of the box closest to zero indicates the 25th percentile, the line within the 

box marks the median, and the boundary of the box farthest from zero indicates the 75th percentile. 

Whiskers indicate standard errors. Different lowercase letters reflect statistically significant 

differences.
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Table 3.2. Effect of CORT supplementation (see text for details) on eggshell colour parameters 

(descriptive model) of Japanese quail (GLMM, df = 1, N = 123). The 22 female Japanese quails were 

exposed to ad libitum food with peanut oil supplementation or CORT supplementation. Time 

corresponds to the measurements performed before and after the CORT supplementation, and group 

corresponds to CORT-fed or control birds. Bold text indicates statistical significance. 

Parameter Factor F P 

Spot reflectance    

Brightness Time 3.61 0.06 

 Group 3.66 0.058 

 Time × group 7.33 < 0.01 

UV Chroma Time 3.25 0.07 

 Group 0.26 0.61 

 Time × group 0.23 0.63 

Blue-Green Chroma Time 8.06 0.01 

 Group 0.10 0.75 

 Time × group 0.07 0.79 

Red Chroma Time 4.99 0.03 

 Group 0.21 0.64 

 Time × group 0.34 0.56 

Background reflectance    

Brightness Time 0.24 0.63 

 Group 0.16 0.69 

 Time × group 0.48 0.49 

UV Chroma Time 7.2 < 0.01 

 Group 1.83 0.20 

 Time × group 0.08 0.78 

Blue-Green Chroma Time 0.007 0.93 

 Group 0.16 0.69 

 Time × group 0.13 0.72 

Red Chroma Time 8.24 < 0.01 

 Group 1.99 0.16 

 Time × group 0.07 0.79 
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Moreover, there was a significant effect of time on some characteristics of eggshell 

reflectance (Table 3.2) with a decrease in spot and background red chroma, an increase in 

their UV chroma, and an increase in spot blue-green chroma (Table 3.2). 

My vision model suggested that some of the colour variation, measured with reflectance 

spectrophotometry, would be more detectable than others by an avian visual system. For each 

female, the average contrast for eggshell colour was greater when comparing eggs between-

females than within-females for background (paired t-test: within vs. between ΔS: t21= -11.2, 

P < 0.001; within vs. between ΔQ: t21= -9.8, P < 0.001) and for spots (paired t-test: within vs. 

between ΔS: t22 = -3.8, P = 0.001; within vs. between ΔQ: t22= -2.1, P = 0.05) contrasts. 

Background contrasts were greater than 1 JND compared to spot contrasts that were lower 

than 1 JND, suggesting that background colour differences would be more detectable by an 

avian visual model than spot colour differences. However, I found no significant effect of 

CORT supplementation on the perceived eggshell spot and background chromatic and 

achromatic contrasts (Kruskal-Wallis: spot ΔS: H = 0.28, P = 0.60; spot ΔQ: H = 0.74, P = 

0.39; background ΔS: H = 0.06, P = 0.81; background ΔQ: H = 0.06, P = 0.81). There was no 

significant effect of female treatment on eggshell spot/background chromatic (repeated-

measures ANOVA: time: F = 0.99, P = 0.33; group: F = 0.13, P = 0.72; time × group: F = 

1.08, P = 0.31) and achromatic (time: F = 0.91, P = 0.35; group: F = 0.16, P = 0.70; time × 

group: F = 0.75, P = 0.39) contrasts.  

Pigment analyses revealed that eggshells contained both protoporphyrin IX (113.89 µg g
-1

 

eggshell, SD = 41) and biliverdin (104.46 µg g
-1

 eggshell, SD = 48.16), both quantities being 

positively correlated (Pearson correlation: r = 0.68, P< 0.001, N = 44). This result was 

supported by the use of a bootstrap simulation in R 2.14.0 (R Development Core Team 2011), 

that demonstrated after 1000 bootstraps of size N = 22 (total number of females) chosen with 

replacement, that 80% of the simulated coefficients were greater than r = 0.7. 
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Controlling for the initial pigment concentrations, I did not find any significant effect of 

CORT supplementation on the mean change in pigment concentrations and proportions 

(univariate GLMs: Δbiliverdin: F1,21 = 2.31, P = 0.14, observed power = 30%; 

Δprotoporphyrin: F1,21 = 3.15, P = 0.10, observed power = 40%; Δprotoporphyrin proportion: 

F1,21 = 0.06, P = 0.81, observed power = 56%). 

 

3.2.4. Discussion 

I experimentally exposed female Japanese quails to physiological doses of CORT (Spencer et 

al. 2009) and found that elevated stress hormones did not have any effect on their basal 

CORT concentration, antioxidant capacity or eggshell pigment content. However, contrary to 

my predictions, and despite the consistency of eggshell reflectance in the species (Duval et al. 

2013, Chapter Two), I found that stressed birds laid eggs with significantly brighter spots but 

with maculation that remained constant compared with control birds. This is the first study 

that experimentally investigated the relationship between eggshell pigmentation and female 

stress exposure in an ecological context. 

Contrary to my predictions, I did not find any effect of CORT supplementation on the 

concentration of eggshell pigments deposited. Interestingly, Duval et al. (2013) demonstrated 

that female Japanese quail in lower body condition deposited more protoporphyrin, but less 

biliverdin, into their eggshells under food restriction. In the present study, I found no 

significant effect of CORT supplementation on either female body condition or eggshell 

characteristics. I did, however, observe a peak in plasma CORT in CORT-fed birds after 10 

minutes of oral dosing (mean ± SD: 16.56 ± 14.65 ng/ml). This suggests that the CORT 

treatment mimicked a repeated acute stressful event in the experimental group within a 

natural range of the species. However, the increase in plasma CORT concentration did not 

induce any change in eggshell pigment concentration. One explanation could be that the dose 
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I administered was not sufficiently high to induce a change in female physiology and body 

condition. Indeed, other studies have found contradictory results on the effect of CORT 

administration on food intake or variation in body mass of individuals (Silverin 1986, 

Malheiros et al. 2003, Lin et al. 2004). Similar to our findings, CORT did not influence body 

mass during the period of supplementation, in common kestrels (Costantini 2008). 

CORT is one factor that can influence red-ox balance in birds (Costantini et al. 2008). In 

chickens chronic CORT administration is associated with increased plasma lipid 

peroxidation, plasma antioxidant activity and uric acid, but not with SOD activity (Lin et al. 

2004). Despite the lack of experimental evidence for the roles of biliverdin and 

protoporphyrin in avian red-ox balance, it has been proposed that both pigments are related to 

female oxidative stress due to the pro-oxidant properties of protoporphyrin and the 

antioxidant properties of biliverdin (Moreno & Osorno, 2003). Some correlative and 

experimental studies of blue-green eggs have found ambiguous results regarding the 

relationship between eggshell colouration and female antioxidant capacities. For example, 

there was no effect of antioxidant (carotenoid) supplementation on eggshell colouration of 

Araucana chickens (Dearborn et al. 2012). Cassey et al. (2008a) found no evidence for a 

signalling function for blue-green eggshell colouration in the context of maternal investment 

(yolk carotenoids) in thrushes. However, female gray catbirds which laid eggs with higher 

blue-green chroma also showed higher total antioxidant capacity (Hanley et al. 2008). In 

European pied flycatchers, females which laid more colourful eggs showed lower plasma 

total antioxidant levels (Trolox equivalent antioxidant capacity) after an experimentally 

increased reproductive effort through nest removal. This would suggest that eggshell 

pigmentation is a costly process for the antioxidant system, and that females face a trade-off 

in investment between the two traits (Morales et al. 2008). Thus, the relationship between 
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eggshell pigment deposition and female oxidative stress remains unclear, particularly in 

brown-spotted eggs. 

I predicted that CORT supplementation would increase female oxidative stress resulting in a 

decrease in eggshell biliverdin investment and an increase in protoporphyrin deposition. 

However, I did not find any significant effect of CORT on antioxidant capacities which might 

explain the lack of change in eggshell pigment concentration, given the properties of 

biliverdin and protoporphyrin. This may suggest that CORT supplementation did not disturb 

the oxidative stress balance in my study birds. However, I did not directly measure 

parameters reflecting the production of free radicals and the degree of oxidative damage and 

plasma antioxidant capacity. Thus, I must be conservative in my conclusions about female 

oxidative stress (Costantini & Verhulst 2009). 

In my study, eggshell colour analysis partly contradicted the findings of Duval et al. (2013) 

and Chapter Two that showed a high constancy of eggshell reflectance despite variations in 

eggshell pigment content in Japanese quail. The observed decrease in eggshell spot and 

background red chroma between the start and the end of the laying sequence, combined with 

the increase in spot blue-green chroma in both groups, suggests a potential reallocation of 

pigments throughout the experiment. Indeed, protoporphyrin could have been re-distributed 

across the eggshell and in particular away from spots,  resulting in a more even distribution of 

brown colouration manifested as a greater relative ‘blueness’ due to reflectance of the 

pigment biliverdin. Surprisingly, even though there were no significant changes in total 

eggshell pigment concentration, I found that CORT-supplemented birds laid eggshells with 

brighter spots than the controls. As brightness is defined as the total light reflected by 

eggshell spots or background in my study (Montgomery 2006), the observed increase in 

eggshell spot brightness could be attributed to a change in the shape of the spectra that I did 

not measure.  Indeed, I chose to measure blue-green chroma (400–575 nm) and red chroma 
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(595–655 nm) as they correspond to the maximum reflectance generated by the pigments 

biliverdin (Ding & Xu 2002) and protoporphyrin (Scalise & Durantini 2004). However, 

reflectance changes in other portions of the spectrum such as the green-yellow region (570–

610 nm) could have also occurred but remained undetected by my shape model analysis. 

Alternately, this may support the hypothesis of potential reallocation of protoporphyrin across 

the eggshell as the change of brightness between the start and the end of the laying sequence 

was stronger in stressed females, and could be associated with a change in eggshell structure 

itself due to CORT supplementation rather than to only pigment deposition, but this remains 

speculative. Measuring the local distribution of pigment concentration across the eggshell 

remains untested, to date, and would allow important insights into the process of pigment 

deposition under variations in environmental conditions. 

I did not find any significant effect of CORT supplementation on female body condition or 

maternal investment (i.e. in egg mass), but I cannot rule out that my treatments modified the 

assimilation and metabolism of certain nutrients such as calcium, an element that is 

fundamental to the integrity of the eggshell strength as suggested by the structural function 

hypothesis (Gosler et al. 2005) to explain eggshell pigmentation. Thus, it is possible that 

CORT treatment may have affected some aspects of the eggshell matrix structure that are not 

directly related to eggshell pigments (Mills et al. 1991, Nys et al. 1991, Butcher & Miles 

2011) but that might change eggshell gloss (Maurer et al. 2011b) and thus explaining why I 

found a change in eggshell brightness but not in eggshell red or blue-green chroma due to the 

treatment. Nevertheless, neither chromatic nor achromatic visual contrasts were influenced by 

CORT supplementation, suggesting that the change in eggshell reflectance due to the 

treatment would be undetected by an avian visual model.  

In conclusion combined with previous findings revealing how eggshell pigment content is a 

condition-dependent trait in Japanese quail (e.g. Duval et al. 2013; Chapter Two), the present 
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study supports the idea that eggshell reflectance in spotted eggs varies over the laying 

sequence, and in particular that eggshell spot reflectance is a key factor affected by females 

exposure to stress during reproduction, even if the changes were not detected by a 

photoreceptor noise-limited colour opponent model of avian visual perception in my study. It 

is conceivable that stress may potentially impair egg crypsis in a species which maximises 

choices of laying substrate in order to maximise camouflage such as the Japanese quail 

(Lovell et al. 2013), but this remains speculative. 
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3.3. Stress during early life affects eggshell pigmentation strategy 

under stress during reproduction 

 

3.3.1. Introduction 

Eggshell colouration is thought to have many adaptive roles (reviewed in Reynolds et al. 

2009) and the presence of biliverdin and protoporphyrin, the two main eggshell pigments, 

might be related to the body condition of the breeding female (Duval et al. 2013; Section 2.3, 

Chapter Two). Their investment might potentially benefit the embryo via protection against 

harmful effects of solar radiation or enhancement of its development by photo-acceleration 

(reviewed in Maurer et al. 2011a). Few experimental studies have manipulated female body 

condition to investigate the effect on eggshell pigmentation (Moreno et al. 2006, Morales et 

al. 2011, Dearborn et al. 2012, Duval et al. 2013, Hargitai et al. 2013) but have found mixed 

results and need further investigation. Duval et al. (2013) found that food-restricted female 

Japanese quails that were in lower body condition, elevated the deposition of protoporphyrin 

compared to biliverdin into their eggshells (Section 2.3, Chapter Two) and that control 

females (on ad libitum food) were able to adjust the degree of maculation on their eggshells 

(section 2.4) and to maintain reflectance characteristics within a natural range of variation 

(section 2.3). Thus, eggshell appearance may be strongly influenced by changes in female 

body condition during egg formation. 

One major factor that can alter phenotype over the short and long-term is the stress 

experienced at different stages of individual’s life. As already discussed above (section 

3.2.1), many environmental factors can act as stressors, resulting in an increase in individual 

CORT. Chronic stress has been shown to affect individual physiology such as antioxidant 

defences (Costantini et al. 2011). When stress arises at a particularly sensitive period such as 
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reproduction, mothers can alter their maternal care but also transfer GCs via the egg yolk 

(Hayward & Wingfield 2004, Love et al. 2008, Almasi et al. 2012) through maternal effects 

(Mousseau & Fox 1998, Räsänen & Kruuk 2007). Any change in mothers’ environmental 

conditions during egg-laying can affect the developing embryo, in particular its hatching 

mass, size and growth (Hayward & Wingfield 2004, Love & Williams 2008b, reviewed in 

Sheriff & Love 2013). For instance, an experimental injection of CORT into eggs directly can 

induce embryonic mortality, impaired embryonic development, altered embryonic 

vocalizations, reduced hatching mass and chick growth rates, and reduced begging display 

(Eriksen et al. 2003, Heiblum et al. 2001, Mashaly 1991, Rubolini et al. 2005). Yet, negative 

effects of stress on hatching mass and chicks growth rate can be compensated by a period of 

catch-up growth, which may potentially have its own costs for the growing individual 

(reviewed in Metcalfe & Monaghan 2001). Long lasting effects have also been associated 

with pre-natal stress, such as modifications of the HPA-axis stress response (Hayward & 

Wingfield 2004), altered reproductive organs in males leading to negative consequences on 

their fitness (Satterlee et al. 2007), or behavioural changes such as anxiety, fearfulness and an 

inability to compete for food (Janczak et al. 2007, Davis et al. 2008, Marasco et al. 2012, 

Zimmer et al. 2013). 

Post-natal stress, such as changes in parental behaviour, nutritional state, sibling interactions, 

and parasite loads, are factors that increase the exposure of a developing organism to GCs, 

and can affect offspring phenotype in the short-term (Schoech et al. 2011). For instance, 

many studies that employ food restriction, brood size manipulation or direct administration of 

exogenous CORT have shown associated changes in chick growth rate, begging behaviour, 

and immune response (Saino et al. 2003, Kitaysky et al. 2006, Loiseau et al. 2008, Sears & 

Hatch 2008, Honarmand et al. 2010). In the long-term, early life exposure to GCs can impact 

on song characteristics (Spencer et al. 2003), neophobia (Spencer & Verhulst 2007), 
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cognitive abilities (Kitaysky et al. 2006, Spencer & Verhulst 2007, Schoech et al. 2009) and 

induce permanent changes in the HPA axis (Spencer et al. 2009, Marasco et al. 2012). 

Thus, both pre- and post-natal stress may induce negative enduring effects on an individual’s 

phenotype and physiology that could alter its fitness (Metcalfe & Monaghan 2001, Tschirren 

et al. 2009). However, an alternative hypothesis has suggested that early life stress may be 

beneficial and adaptive for the offspring (Nesse & Young 2000). Indeed, maternal stress 

hormones may shape offspring’s phenotype to programme it to better cope in a hostile post-

natal environment that matches its mother’s one (Bateson et al. 2004, Gluckman & Hanson 

2004). A mismatch between the maternal and post-natal environmental conditions may 

explain the long-term negative effects of pre-natal stress on offspring phenotype (Monaghan 

2008). In addition, both pre- and post-natal stress may act in an additive or interactive ways 

to shape adult phenotypes to modulate the long-term effects of early-life stress on individual 

physiology such as their redox balance (Marasco et al. 2013) or behaviour such as risk-taking 

(Zimmer et al. 2013). 

As eggshell appearance is an extended phenotypic trait intrinsically linked to a female’s body 

condition, it might be influenced by both her developmental history and the environmental 

conditions under which she breeds (Love et al. 2008, Cohen et al. 2012). Whilst many studies 

have shown pleiotropic effects of maternally derived stress (MDS) on egg compounds and 

offspring phenotype (Henriksen et al. 2011, Sheriff & Love 2013), much less is known about 

the effects of stress experienced in early life on eggshell characteristics, and in particular 

eggshell pigmentation. Interestingly, Martínez-de la Puente et al. (2007) found that in blue 

tits, females laying eggs with more spots showed a lower body condition, and had higher 

cellular concentrations of HSP70, and marginally lower total immunoglobulin blood levels 

than those laying less spotted eggs. My previous work (section 3.2, Duval et al. in press) 

showed that female exposure to stress during reproduction induced a change in eggshell 
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appearance. Nevertheless, not only might the stress experienced during reproduction 

influence female physiology, but also the stress that they experienced early in life. Yet, no 

study has investigated whether eggshell patterning could reflect any stress experienced by 

females during their development. 

In the present study, I tested the effect of early life – both pre and post-natal development on 

eggshell characteristics (i.e. maculation, reflectance and pigments concentrations) and how 

these interact with adult breeding conditions to further influence these traits. I studied 

Japanese quail eggs laid by females that had been exposed to pre- and post-natal stress or to 

no such stressor, and that were exposed to stress during reproduction using random food-

removal (see detailed methods in Zimmer et al. 2013). If current stress affects eggshell spot 

reflectance only (see section 3.2, Duval et al. in press), I predicted that females breeding 

under stress would lay brighter eggshells but maintain their eggshell pigment concentrations 

and maculation. In addition, if the adaptive view of developmental stress is correct then 

females that experienced both pre- and post-natal stress should be better prepared for stressful 

environments during breeding, thus they should be less affected by stress during reproduction 

and should maintain eggshell pigment concentrations, colour and maculation. 

 

3.3.2. Materials and methods 

3.3.2.1. Pre- and post-natal stress 

Unrelated Japanese quail eggs (N = 76) were randomly assigned to one of two groups: CORT 

injection (CORT: N = 38) or Control (Ctrl: N = 38). Fertile eggs in the CORT group were 

then injected with 10 µl of a sterile solution of CORT that elevated endogenous CORT 

concentration within the yolk by a factor of 1.8 above controls within a natural range in the 

breeding population (Ctrl: 8.7 ± 5. (SD) ng ml
-1

; CORT: 17.1 ± 8.3 (SD) ng ml
-1

; Boogert et 

al. 2012). Controls were injected with 25 µl of sterile peanut oil alone. After 14 days, all eggs 
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were transferred to a hatcher maintained at 37°C until hatching (after 18 days). The 59 chicks 

that hatched (preCORT: N = 31; preCtrl: N = 28) were allocated to a post-natal food 

treatment at 4 days of age: either food removal for 25% of daylight hours (i.e. 3.5 hours) on a 

random daily schedule for 15 days (postFood-: N = 28), which would increase stress 

hormones in birds (Cuthill et al. 2000, Buchanan et al. 2003), or ad libitum food at all times 

(postCtrl: N = 31) (see Table 3.3 for a full description of the experimental groups). The 

experiment was repeated and conducted in two batches (batch 1 = 31 chicks; batch 2 = 28 

chicks). Birds were fed with a standard commercial diet (Layer pellets, ARGO Feeds). 

 

Table 3.3. Matrix of the combinations between pre- and post-natal treatments and sample sizes of the 

four experimental groups of Japanese quails (male and female) created.  

Pre-natal condition Post-natal condition Groups 

Control = preCtrl  Control = postCtrl preCtrl/postCtrl (N = 15) 

  preCtrl/postFood- (N = 13) 

CORT-injected = preCORT Food removal = postFood- preCORT/postCtrl (N = 16) 

  preCORT/postFood- (N = 15) 

 

3.3.2.2. Adult stress during reproduction 

Food removal from adult females began between 12 and 16 weeks of age. Females (N = 30) 

from the four previous experimental groups (group 1: preCtrl/postCtrl, N = 6; group 2: 

preCtrl/postFood-, N = 6; group 3: preCORT/postCtrl, N = 12 and group 4: 

preCORT/postFood-, N = 6) were allocated to one of two further groups (housed in two 

identical rooms): unpredictable food availability (AdFood-) or ad libitum food (AdCtrl) (with 

Ad referring to Adult). Females in the unpredictable group experienced removal of all food 

items for 25% of daylight hours (3.5 hours) on a random schedule between the hours of 8AM 
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and 8PM (GMT). Controls were provided with ad libitum food throughout this breeding 

period. At the same time, one male was allocated to four females and put into a cage with a 

female for 20 minutes a day in order to obtain fertile eggs. Each female laid two clutches 

(with a break of 2 months) under the two different conditions (AdCtrl and AdFood-), which 

allowed repeated-measures within individuals, and the order of each treatment was 

randomized to control for any effect of the first clutch treatment on the response for the 

second clutch. 

 

3.3.2.3. Egg collection  

Three eggs per female were randomly collected after 10 days of mating which is the 

minimum time needed to obtain fertile eggs (Adkins-Regan 1995), and this was repeated for 

the second clutch.  Eggs were collected, washed with distilled water and stored in a dark box 

to dry at room temperature and to avoid direct exposure to light that could cause pigment 

degradation (Cassey et al. 2011a).  

 

3.3.2.4. Analysis of eggshell appearance and pigments concentrations  

Photographs were taken using the protocol described in the previous section of this chapter 

(section 3.2.2.6, Duval et al. in press). The degree of maculation (spot coverage) present in 

an egg photograph was estimated as percentage of the foreground and background regions 

(average 32.8 %; range 5.5-54.1 %). Eggshell reflectance was then measured following the 

protocol described previously in section 3.2.2.8.1 (see Chapter Two for further details). 

Finally, HPLC chromatography (Mikšík et al. 1996) was used to identify and quantify the 

whole content of eggshell pigments and was analysed in all the eggshells collected for each 

female, following the protocol described previously in section 2.3.2.4 (see Chapter Two for 

further details). 
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 3.3.2.5. Statistical analyses 

I tested the effect of stress during reproduction on female body mass change between the start 

and the end of each clutch by using a GLMM. Female body mass change (end – start of the 

clutch) was added as a dependent variable and adult treatment (AdCtrl or AdFood-) was 

added as a repeated factor. Female was added as a random factor.  

I tested the effect of pre-natal, post-natal stress, and adult stress on eggshell maculation (e.g. 

spot coverage), pigment concentration and reflectance using GLMMs. Eggshell maculation, 

pigment concentrations and reflectance were specified as dependent variables. Pre-natal 

treatment (preCtrl or preCORT) and post-natal treatment (postCtrl or postFood-) were added 

as fixed factors. Adult treatment (AdCtrl or AdFood-) was added as a repeated factor, and the 

interaction terms were added as fixed factors in the model. Female and egg number were 

included as random factors. 

Finally, a Pearson’s correlation was used to test the relationship between biliverdin and 

protoporphyrin concentrations.  

GLMMs were fitted using the Mixed PROC in SAS (SAS Institute Corporation), after 

checking for normality of residuals. The REML (Residual Maximum Likelihood) was used as 

the estimation method. Tukey-Kramer multiple comparison adjustment was applied to obtain 

corrected P values. An alpha threshold of 0.05 was used and data are presented as means ± 

SEMs. 
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3.3.3. Results 

3.3.3.1. Effect of breeding stress on female body mass 

During reproduction, females under ad libitum food gained body mass (mean body mass 

change ± 1 SE: 12.67 ± 3.83 g), but slightly lost it when food was removed (mean body mass 

change ± 1 SE: -0.55 ± 4.83 g) (GLMM: F1, 36.8 = 5.65, P = 0.02). 

 

3.3.3.2. Effect of pre-natal stress on adult reproduction 

There was a significant effect of the interaction between pre-natal stress and adult food 

removal on eggshell maculation. Although multiple comparisons did not show significant 

differences between treatment groups, pre-natal control females tended to lay more maculated 

eggshells under adult food removal condition during breeding than under control condition. 

In contrast, pre-natally stressed females maintained eggshell maculation across the two 

clutches (pre-natal: F1,26 = 0.89, P = 0.35; post-natal: F1,26 = 0.07, P = 0.80; adult: F1,117 = 

0.10, P = 0.75; pre-natal × adult: F1,117 = 5.10, P = 0.03, Fig. 3.2). 
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Figure 3.2. Effect of pre-natal stress and breeding stress on mean (+ 1 SE) eggshell maculation of 

Japanese quail eggs from four different experimental groups: preCtrl/AdCtrl (pre-natal control, 

reproduction control), preCtrl/AdFood- (pre-natal control, reproduction stress), preCORT/AdCtrl 

(pre-natal stress, reproduction control), and preCORT/AdFood- (pre-natal stress, reproduction stress) 

(see text for further details). 

 

In addition, there was a significant interaction between pre-natal and adult stress on eggshell 

protoporphyrin concentration. Pre-natal control females deposited more protoporphyrin under 

food removal conditions during breeding than under control conditions, compared to pre-

natally stressed birds that did not change pigment concentration across the two treatments  

(Tukey-Kramer test: t = -3.90, P = 0.001) (Fig. 3.3, Table 3.4). Eggshell biliverdin and 

protoporphyrin concentrations were positively correlated under both control (R
2 

= 0.77, P < 

0.0001, N = 55) and food-removal (R
2 

= 0.68, P < 0.0001, N = 57) treatments. 
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Figure 3.3. Effect of pre-natal stress and breeding stress on mean (+ 1 SE) eggshell protoporphyrin 

concentration of Japanese quail eggs from four different experimental groups: preCtrl/AdCtrl (pre-

natal control, reproduction control), preCtrl/AdFood- (pre-natal control, reproduction stress), 

preCORT/AdCtrl (pre-natal stress, reproduction control), and preCORT/AdFood- (pre-natal stress, 

reproduction stress) (see text for further details). Asterisk denotes statistically significant differences 

between groups. 
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Table 3.4. Effects of pre-natal and post-natal stress and breeding stress on eggshell colouration and 

pigment concentrations of female Japanese quails (see text for further details). GLMMs were 

performed to test whether stress influenced eggshell reflectance and pigments concentrations. Bold 

text indicates statistical significance. 

Eggshell trait Parameter Factor dfs F P 

Spot reflectance Brightness Pre-natal stress 1, 26.2 1.98 0.17 

  Post-natal stress 1, 26.2 0.12 0.73 

  Adult stress 1, 127 1.16 0.28 

  Post-natal × adult stress 1, 127 3.33 0.07 

 Red chroma Pre-natal stress 1, 25.3 0.11 0.75 

  Post-natal stress 1, 25.3 0.00 0.96 

  Adult stress 1, 129 0.52 0.47 

  Post-natal × adult stress 1, 129 5.95 0.02 

 Blue-green chroma Pre-natal stress 1, 26 0.07 0.79 

  Post-natal stress 1, 26 0.02 0.89 

  Adult stress 1, 126 0.03 0.86 

  Post-natal × adult stress 1, 126 1.54 0.22 

Background reflectance Brightness Pre-natal stress 1, 26.1 3.64 0.07 

  Post-natal stress 1, 26.1 0.08 0.78 

  Adult stress 1, 128 0.11 0.74 

  Post-natal × adult stress 1, 128 2.21 0.17 

 Red chroma Pre-natal stress 1, 27.7 3.28 0.08 

  Post-natal stress 1, 27.7 0.90 0.35 

  Adult stress 1, 132 0.03 0.86 

  Post-natal × adult stress 1, 132 5.16 0.02 

 Blue-green chroma Pre-natal stress 1, 26.3 1.07 0.31 

  Post-natal stress 1, 26.3 0.37 0.54 

  Adult stress 1, 128 2.17 0.14 

  Post-natal × adult stress 1, 128 0.19 0.66 

Eggshell pigment Protoporphyrin Pre-natal stress 1, 26.4 1.60 0.22 

  Post-natal stress 1, 26.4 0.29 0.60 

  Adult stress 1, 81.4 9.67 <0.01 

  Pre-natal × adult stress 1, 81.4 4.46 0.04 

 Biliverdin Pre-natal stress 1, 25.2 0.63 0.43 

  Post-natal stress 1, 25.2 0.70 0.41 

  Adult stress 1, 47.7 19.55 <0.01 

  Post-natal × adult stress 1, 47.7 7.38 <0.01 
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3.3.3.3. Effect of post-natal stress on adult reproduction 

There was a significant interaction between post-natal and adult stress on eggshell reflectance 

(Table 3.4). Although multiple comparisons did not show significant differences between 

treatment groups, post-natally stressed females tended to lay eggs with redder spots and 

backgrounds (Fig. 3.4) under food removal conditions during breeding than under control 

conditions (Table 3.4). However, neither brightness nor blue-green chroma were affected by 

stress (all Ps > 0.05) (Table 3.4). In addition, pre-natal stress did not have any influence on 

eggshell colouration (all Ps > 0.05) (Table 3.4). 

In addition, eggshell biliverdin concentration was significantly affected by the interaction 

between post-natal stress and adult breeding stress (Table 3.4). Post-natally stressed females 

deposited more biliverdin into their eggshells under food removal conditions during breeding 

than under control conditions (Tukey-Kramer test: t = -4.36, P = 0.0002) (Table 3.4, Fig. 3.5). 

In contrast, pre- and post-natal control females did not change their biliverdin allocation 

strategy when food was removed during reproduction. 
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Figure 3.4. Effect of post-natal stress and breeding stress on mean (+ 1 SE) (a) spot red chroma and 

(b) background red chroma of Japanese quail eggs from four different experimental groups: 

postCtrl/AdCtrl (post-natal control, reproduction control), postCtrl/AdFood- (post-natal control, 

reproduction stress), postFood-/AdCtrl (post-natal stress, reproduction control), and postFood-

/AdFood- (post-natal stress, reproduction stress) (see text for further details). 
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Figure 3.5. Effect of post-natal stress and breeding stress on mean (+ 1 SE) eggshell biliverdin 

concentration of Japanese quail eggs from four different experimental groups: postCtrl/AdCtrl (post-

natal control, reproduction control), postCtrl/AdFood- (post-natal control, reproduction stress), 

postFood-/AdCtrl (post-natal stress, reproduction control), and postFood-/AdFood- (post-natal stress, 

reproduction stress). Asterisk denotes significant differences. 

 

3.3.4. Discussion 

In this study, I showed for the first time that developmental stress interacts with the response 

to adult reproductive conditions to alter eggshell pigmentation. The degree and direction of 

eggshell changes differ depending upon the timing of stress. Stress in ovo might facilitate egg 

camouflage in a stressful breeding environment, whereas post-natal stress enhanced eggshell 

biliverdin investment, potentially enhancing fitness but to the detriment of egg camouflage. 

This study gives potential evidence in favour of the ‘environmental matching hypothesis’. 
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I found that pre-natal stress significantly influenced eggshell maculation and protoporphyrin 

deposition in adulthood. Females which had experienced pre-natal stress maintained eggshell 

maculation and concentration of protoporphyrin in their eggshells across the two clutch 

conditions. In contrast, females which had not experienced pre-natal stress increased eggshell 

maculation and protoporphyrin deposition under stressful breeding conditions compared to 

their control clutch. Protoporphyrin is a pro-oxidant pigment (Afonso et al. 1999) responsible 

for the brown maculation visible on spotted eggshells. The removal of food during breeding 

caused a slight reduction in female mass, whereas control conditions resulted in females 

showing a slight body mass increase (see also Buchanan et al. 2003). My results indicate that 

pre-natal control females may have suffered from an increased oxidative stress following the 

food removal manipulation during reproduction, and increased the deposition of the brown 

pigment into the eggshell to eliminate it. This suggests that experiencing pre-natal exposure 

to stress might have enhanced a female’s physiological ability to respond to stress during 

reproduction, as suggested by the ‘environment matching hypothesis’ (Monaghan 2008). It is 

possible that these females might be able to cope physiologically with an increased allostatic 

load during reproduction and may show better immune response such as antioxidant capacity 

(Marasco et al. 2013). This may enable individuals to tolerate high concentrations of the pro-

oxidant pigment while enduring stress during reproduction, during which they maintain 

eggshell maculation. The stress experienced by females pre-natally may shape their ability to 

camouflage their egg later in life, which may be a crucial component of Japanese quail clutch 

survival strategy (Lovell et al. 2013).  

I found that post-natal stress significantly influenced eggshell reflectance and biliverdin 

deposition during adulthood. When reproducing under stressful conditions, females that had 

experienced post-natal stress laid redder eggshells containing more biliverdin. However, 

eggshell brightness was not affected by female stress exposure contrary to my predictions. In 
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contrast, post-natal control females kept eggshell reflectance and biliverdin concentration 

constant across the two clutch conditions. Biliverdin is a blue-green pigment that possesses 

antioxidant properties (McDonagh 2001) and might signal female antioxidant capacity 

(Moreno & Osorno 2003). However, the role of biliverdin colouration in brown-spotted eggs 

remains largely untested, as most of the focus has been on protoporphyrin which is mainly 

responsible for brown-spots (i.e. maculation) in these species. Yet, in Japanese quail, 

biliverdin may also play a role in brown-spotted eggshells (Duval et al. 2013) and, for 

instance, interact with eggshell structure. Pigment function and allocation into different 

compartments of the eggshell remain highly speculative and further studies should investigate 

pigment deposition in eggshell spots and background independently. Nevertheless, I found 

that post-natal stress facilitates biliverdin deposition in the eggshell under conditions of 

breeding stress, which may be related to female antioxidant capacity. Recently, it has been 

shown that post-natal diet restriction diminishes oxidative damage in yellow-legged gull 

chicks (Larus michahellis) (Noguera et al. 2011). It is conceivable that post-natally stressed 

females may have enhanced antioxidant capacity that allowed them to face oxidative stress 

during reproduction and deposit more biliverdin into their eggshells. However, I also found 

that eggshell reflectance was modified in post-natally stressed females under stressful 

breeding conditions, which suggests that they might not be able to maximise the camouflage 

of their eggs. This implies that biliverdin allocation might be costly to the female under 

stressful conditions and may confer advantages to the embryo, such as favouring its 

development as in amphibians (Falchuk et al. 2002) and ensuring protection against bacterial 

infection (Ishikawa et al. 2010) or solar radiations (Lahti 2008). Post-natally stressed females 

might optimise embryo development under stressful reproduction at the risk of impairing egg 

camouflage and suffering from potential costs in term of oxidative stress that could induce 

delayed effects on female antioxidant response over a long-term.     
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To conclude, the interaction between development and adult environments is crucial for 

shaping phenotypic traits such as eggshell appearance. Both pre- and post-natal stresses have 

independent effects on female eggshell pigmentation strategy but my data did not show any 

interactive effects. Protoporphyrin is mainly responsible for eggshell maculation in Japanese 

quail, and might be essential for egg camouflage (Lovell et al. 2013). Thus, it is possible that 

shaping eggshell maculation strategy as early as at the pre-natal stage might be essential as it 

will determine egg and chick survival later in life in future generations. In contrast, biliverdin 

deposition strategy in adults may be more sensitive to post-natal stress, would be costly to 

females and may impair other processes such as their ability to keep eggshell reflectance 

constant.  

 

3.4. Chapter Three - Summary and perspectives 

In this chapter, I experimentally investigated the relationship between maternal stress 

exposure at different life stages and eggshell pigmentation, in brown-spotted eggshells laid 

by Japanese quails. The study of females exposed to stress during reproduction showed that 

CORT-fed females laid eggs displaying brighter spots compared to control females whose 

eggs showed an unchanged reflectance. My findings suggest that stress may have affected 

female assimilation of certain nutrients such as calcium that we did not measure, influencing 

some aspects of the eggshell matrix structure that are not directly related to eggshell 

pigments, but that might change eggshell gloss, explaining the change in eggshell brightness. 

In contrast, unstressed females were able to keep a constant eggshell reflectance, which might 

be crucial in hiding eggs from predators. Recent work has shown that female quails maximise 

their choice of laying substrate in order to maximise camouflage (Lovell et al. 2013). If stress 

has an impact on eggshell spot reflectance, further studies should manipulate female stress 
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and examine the effect on laying substrate choice within the context of the use of egg 

camouflage as a signal of female quality. 

The results of the early stress exposure in the life of the bird showed that pre- and post-natal 

stress influence eggshell pigmentation strategies later in life under stressful breeding 

conditions and the effects are independent of one another. Eggshell protoporphyrin 

concentration and maculation were affected by pre-natal stress, compared to eggshell 

reflectance and biliverdin concentration that were influenced by post-natal stress. My 

findings imply that pre-natal environment plays a key role in determining eggshell 

characteristics that are crucial in egg camouflage in Japanese quail (Lovell et al. 2013). In 

contrast, the stress experienced during an individual’s post-natal development might impact 

on its decision to deposit compounds into eggs that may favour embryo development but at 

the risk of impairing egg camouflage later in life. 

I encourage further studies that investigate in a more specific way the role of both 

protoporphyrin and biliverdin in eggshell structure and embryo development (reviewed in 

Maurer et al. 2011a). Investigating the effect of pre- and post-natal stress on the development 

of the female reproductive system could help us to understand the variation in eggshell 

pigmentation strategy in response to changes in the breeding environmental conditions.  

Overall, I have shown that eggshell pigmentation of Japanese quail indicates the stress 

experienced by the female at different stages of her life. 



 

120 
 

 

 

 

 

 

 

Chapter Four 

TESTING THE IMPORTANCE OF EGGSHELL 

PIGMENTATION FOR EGG CRYPSIS IN 

BROWN-SPOTTED EGGS
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4.1 Abstract 

Resembling the background (background matching) or visually breaking contours (disruptive 

colouration) are two keys strategies used for camouflage. It has been shown that captive 

Japanese quails choose the laying substrate colour that maximizes egg crypsis via disruptive 

colouration. Whether substrate heterogeneity enhances egg camouflage has never been 

experimentally explored so far. I investigated whether female Japanese quails maximise egg 

camouflage when choosing between heterogeneous laying substrates to ascertain whether 1) 

the previous study is repeatable and 2) whether birds use other clues than substrate colour 

when choosing their laying area. Nineteen females were offered eight differently coloured and 

patterned substrates on which to lay. Females should match egg maculation colour, conceal 

egg outline and contrast egg background colour.  If females match laying-background 

appearance, they should prefer heterogeneous substrates. Using digital photography analyses, 

I confirmed that female quails maximize disruptive colouration when they lay, but 

independently on egg maculation degree. Female choice may not be explained by substrate 

heterogeneity either, however further analysis on substrate texture is required to bring new 

knowledge on the importance of substrate heterogeneity on female decisions to lay in the 

context of egg camouflage in ground-laying species.
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4.2. Introduction 

Many hypotheses have been proposed to explain the diversity of eggshell colour and patterns 

observed in avian species. These include egg recognition and mimicry, eggshell strength, 

thermoregulation (reviewed in detail by Underwood & Sealy 2002), signalling of female 

quality (reviewed in Riehl 2011), and embryo protection (reviewed in Maurer et al. 2011a). 

Camouflage was among the first hypotheses proposed to explain the adaptive significance of 

eggshell colour in birds (Wallace 1889). Visual crypsis of eggs is effective when egg 

appearance (e.g. size, colour and pattern) matches the background such that detection by a 

predator is compromised (Endler 1978). To make their eggs undetectable, birds have evolved 

different strategies depending on their nesting environment. Indeed, Hewitson (1838) noted 

that cavity birds most likely laid white eggs, which would enhance egg detectability by 

parents in dim light (Lack 1958). Similarly, white or blue eggs are laid by species that 

construct nests that are domed or cover the clutch to conceal the eggs (Wallace 1889). Thus, 

eggshell patterning may have evolved as an adaptation to the specific micro-environment of 

each nest to avoid predation (Wallace 1889), in particular in ground-nesting species, that do 

not always cover their eggs. In those species in particular, matching egg colour with the 

colour of the nest background may enhance egg crypsis (Tinbergen 1962, Collias & Collias 

1984). 

There is currently mixed support for egg crypsis, mainly due to methodological limitations,  

such as the use of dummy eggs (e.g. painted) or artificial nests that do not always mimic 

natural ones (reviewed in Underwood & Sealy 2002). Brown and spotted eggshells may be 

less predated in several species with varying nesting strategies. To test the difference in 

predation rates of song thrushes nests, Götmark (1992) used quail eggs to mimic thrush’s 

eggs, and painted them either in blue, white, or blue with dark brown spots, and placed them 

in trees, either concealed or exposed to predators such as corvids. The author found that 
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spotted eggs were less predated than blue and white eggs, for both concealed and exposed 

nests (Götmark 1992). In a similar experiment, Yahner and Mahan (1996) built artificial nests 

containing brown chicken eggs, white chicken eggs, or Northern bobwhite eggs, and 

investigated the rate of nest disturbance by predators. The authors showed that nests 

containing brown chicken eggs were less disturbed than the ones containing white chicken or 

Northern bobwhite eggs (Yahner & Mahan 1996). In a similar study in the ground-nesting 

Red-legged partridges, it was shown that brown and brown-spotted eggs had higher survival 

advantage compared to white and white-spotted eggs, and this was related to the type of 

predator (i.e. mammalian or avian) and type of habitat (forest or fallow) (Castilla et al. 2007). 

Westmoreland (2008) recently tested the nest-crypsis hypothesis using american robins nests, 

containing eggs of red-winged blackbirds (Agelaius phoneiceus), brewer’s blackbirds 

(Euphagus cyanocephalus), and yellow-headed blackbirds (Xanthocephalus xanthocephalus) 

across three successive predation trials. All eggs differed in both eggshell colour and pattern. 

The author found that clutches survival was equivalent, but the Red-winged blackbird eggs 

that were more reflective, were discovered sooner by predators, suggesting a higher risk of 

predation for conspicuous eggs (Westmorland 2008). However, most experimental studies 

using painted eggs actually found no difference in predation rates between natural and 

painted eggs (e.g. Tinbergen et al. 1962, Montevecchi 1976, Weidinger 2001). Artificial nests 

were predated significantly more often than American robin nests tested in their natural 

environment, even when using brown-spotted Japanese quail eggs to attract predators (Ortega 

et al. 1998).  

Despite these limitations, there is some support for the benefit of the nest background 

matching strategy for egg camouflage and clutch survival. In Stone curlews which build nests 

on the ground with very little material, Solís and De Lope (1995) examined the efficiency of 

the background-matching strategy using natural nests. They showed that eggs that did not 
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match the nest background colour were more predated by avian predators, compared to the 

eggs that were matching nest background appropriately, enhancing hatching success in those 

nests. In semi-palmated plovers, eggs with cryptic colour were less conspicuous (Nguyen et 

al. 2003). Similarly, in natural nests of black-tailed gulls (Larus crassirostris) which lay 

greenish eggs with dark brown spots, eggs that matched nest background colour were more 

likely to survive through to hatching. This was particularly true for eggs laid in nests with 

poor concealment (Lee et al. 2010). Thus, both nest concealment and egg colouration may be 

crucial to avoid predation and ensure egg survival (Underwood & Sealy 2002). However, 

none of these studies considered egg maculation (i.e. presence of brown markings) as a 

potential factor involved in egg camouflage strategy, and instead focused on egg background 

colouration. 

Recently, a study on laying substrate choice in Japanese quail showed that females laid on the 

substrate that resembled egg maculation colour and concealed the outline of the egg. In 

particular, females laying egg with a high degree of maculation selected the substrate that 

contrasted eggshell background colouration the most, leading to camouflage through 

disruptive colouration (Lovell et al. 2013). Disruptive colouration is defined as the 

development of markings that create the appearance of deceptive edges and obstruct the 

recognition or detection of an object, and is the second main strategy for enhancement of 

animal camouflage (Stevens & Merilaita 2009). For instance, disruptive colouration may 

have evolved in mammals (Stoner et al. 2003), fishes (Kelman et al. 2007), snakes (Beatson 

1976), cephalopods (Chiao et al. 2005, Kelman et al. 2007), and birds (Graul 1973, Götmark 

& Hohlfält 1995). Lovell et al. (2013) study added to the knowledge that female birds have 

some prior awareness of their own egg colouration, as previously shown in species subject to 

brood parasitism (Lyon 2003, Petrie et al. 2009). Japanese quails are able to recognize their 

own eggs (Pike 2011) and Lovell and colleagues demonstrated that they use disruptive 
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colouration to make their egg less visually detectable (Lovell et al. 2013). Interestingly, they 

based their experimental design on four substrates that differed only in their colour; however, 

it is possible that substrate heterogeneity (or complexity) such as the presence of stones or 

other materials, may also influence female choice to nest. Indeed, in such a species that lays 

heavily maculated eggs, laying on visually complex substrates that look similar to the pattern 

of the eggshell may enhance egg camouflage via background-matching strategy 

(Westmoreland & Kiltie 1996, Colwell et al. 2011), in addition to disruptive colouration 

already demonstrated previously (Lovell et al. 2013). For instance, in species that lay in open 

nests, specific characteristics of the substrate such as the presence of egg-size stones may 

enhance egg crypsis (Colwell et al. 2011) but this remains poorly tested so far. Additionally, 

within-clutch variation in egg colour has been positively related to nest survival in the 

namaqua sandgrouse (Pterocles namaqua) (Lloyd et al. 2000), suggesting that pattern 

variability between eggs may also decrease their detectability compared to uniformly 

coloured eggs.  

In this study, I experimentally investigated the importance of substrate colour and 

heterogeneity using coloured sands where I added differently coloured and sized stones, in a 

laying choice experiment using Japanese quail females. As both substrate matching and 

disruptive colouration appear important in enabling egg camouflage, depending upon the 

degree of eggshell patterning (Lovell et al. 2013), I expected that female would lay on the 

substrate that matched egg maculation colour, concealed egg outline and contrasted egg 

background colouration. In particular, I predicted that female would lay preferentially on the 

heterogeneous substrates that potentially resemble the egg patterning, to enhance the 

matching between egg/laying substrate appearance, and should choose the substrate with 

stones that matched the size of egg spots.  
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4.3. Materials and methods 

4.3.1. Study species and experimental procedure 

All experiments were carried out with ethical approval from the University of St Andrews 

and under Home Office Project License 60/4068 held by Dr Karen Spencer, and Personal 

License 30/8939 held by me. 

I used 19 female Japanese quails that were provided by a private supplier from Scotland 

(Hillfoots Hutz and Henz, Dollar, UK), all identified with a white numbered leg ring. Before 

the start of the experiment, birds were all laying and were housed in an indoor aviary (110 cm 

high × 300 cm wide × 300 cm long) for 1 week to allow quarantine and habituation to new 

housing conditions before the experiment commenced. During habituation, birds were fed ad 

libitum with a standard commercial diet (Layer pellets, ARGO Feeds), the room temperature 

was maintained between 20 and 22°C and the light regime was 14L:10D. I provided the 

females with cardboard trays (29.2 cm long × 21.5 cm wide × 4.2 cm deep) (Tiny Box 

Company, West Sussex, UK) that were then used as laying arenas in my experiment, filled 

with white, brown and black sands in turns as the substrate (Trixie 76130 Desert Sand for 

Terrariums, TRIXIE Heimtierbedarf GmbH & Co, Germany) to habituate them to this new 

material.  

All quails were then housed singly in arenas (100 cm long x 60 cm wide x 92 cm high) and 

were in acoustic contact with the other females at all times. To avoid any imitation of laying 

choice between females that may happen if females can see each other, an opaque plastic 

screen was placed on the side of each arena to prevent visual contact between birds. Within 

each arena, a female was provided with eight differently coloured and patterned (i.e. 

heterogeneous) sand substrates (Fig. 4.1) in cardboard trays.  
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Figure 4.1.  The photograph of the laying arena with eight different coloured and patterned substrates 

that were offered to Japanese quails in a choice experiment: (a) plain brown, (b) small black stones, 

(c) small brown stones, (d) plain white, (e) big brown stones, (f)  plain black, (g) random stones and 

(h) big black stones.  

 

Heterogeneous substrates were made of the same sand as for the plain substrates, but 20 

small-sized (0.5 cm) or big-sized (1 cm) gravels were added to each substrate. To test 

whether females were able to discriminate between gravel particles by their colour, the stones 

were either painted brown (Figs. 4.1c and 4.1d) or black (Figs. 4.1b and 4.1g) (ECOS 

Organic Paints, Heysham, Lancs UK). In addition, one substrate was patterned with a mix of 

gravels of both sizes and unpainted (Fig. 4.1f). The position of each substrate was randomly 

changed every day to avoid any location effect. Each female experienced one laying trial that 

lasted for 7 days, most females laid 7 eggs except for two females which laid three and six 

eggs and a total of 128 eggs were laid during the experiment.  
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4.3.2. Digital photography 

Eggs were collected every day and the substrate where each egg was laid was recorded.  

Photographs were taken using a calibrated Nikon D90 camera with a Nikon 105 mm lens 

activated using a remote control (see Chapter Two for further details). Constant lighting and 

long exposures, rather than flash photography, were used to protect the eggshell pigments 

from photo-degradation.  

Two digital photographs of all 8 substrates, one including the egg on its laid position (Fig. 

4.2a) and one with the egg placed upon a black card (Fig. 4.2b) were taken every day, 

including a colour chart in the image (Macbeth Mini ColorChecker) to allow a normalisation 

of estimated chromaticity values to the mean of the measured Macbeth tiles values, 

controlling for a potential variation in illumination across the different cages.  

 

Figure 4.2. Photograph of the laying arena with one egg its laid position (a), and the same egg on a 

black disk (b) where the red dot represents the pointy end, and the green dot represents the blunt end 

of the egg. The Macbeth colour chart was positioned on the top right corner of the laying arena.  

 

My aim was to evaluate the degree of egg crypsis on each of the eight substrates available. 

Thus it was necessary to artificially isolate the egg and to position it on the other seven non-

chosen substrates. To do this, I created a binary image of each substrate using a region of 

interest (ROI) in Matlab, and repeated this selection for the egg on its black disk and for the 
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Macbeth colour chart (Fig. 4.3). Selected regions of interest were not shrunk or modified so 

that the proportion between the egg area and the sand area was identical to the real set up.  

 

Figure 4.3. Matlab image of the Regions of Interest (blue lines) selected on each substrate, around the 

MacBeth colour chart and around the egg. The ROI corresponding to the MacBeth colour chart was 

positioned on the centres of the corner coloured tiles. The ROI corresponding to the egg was 

positioned upon the black disk, and for each substrate, shadows were avoided. 

  

The RGB (Red Blue Green colour model) egg masks were checked in Gimp 2.8.2 software 

(http://www.gimp.org) to insure that the area that corresponded to the egg on each 

photograph was correctly delimited. The binary images created were used as masks and 

chimeric images were built by artificially placing the parts of the egg photograph into the 

central area of photographs of the potential laying substrates. All test images were 

constructed automatically within Matlab.  

Chromatic analyses were conducted in CIELab space which is defined by L* (Luminance), 

a* (red-green) and b* (yellow-blue) colour dimensions. The CIELab space is modeled on the 

human visual system, and the values are perceptually uniform. Consequently, changes of 
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similar numerical values in the L*, a*, and b* axes will be perceived as having a similar 

perceptual difference (Martinkauppi 2002).  

Once each chimeric image was built (Fig. 4.4), the maculated (i.e. brown-spotted) and 

background regions of the egg were identified.  

 

Figure 4.4. (a) Original photograph of an egg upon the chosen laying substrate. (b) Constructed 

chimeric egg photograph used in all subsequent analyses (modified from Lovell et al. 2013). 

 

To do this, a k-means clustering algorithm in Matlab was applied to the CIELab pixel values 

for the egg area of each image, assuming two predominant colours within the sampled region 

(k = 2, giving a target of two centroids) (Lovell et al. 2013). Once egg maculate, egg 

background and substrate areas were segregated, the maculation degree (i.e. percentage of 

dark pixels) was calculated, and the mean CIELab values for each region were computed (i.e. 

the mean chromaticity for egg maculation and egg background, and for the substrate) by 

taking the mean Lab values for all pixels in each zone. Then, the Euclidian distance between 

these averaged Lab values (Delta E) was calculated to analyse the chromatic differences 

between the substrate and egg regions (i.e. maculate and background), for the chosen and 

non-chosen substrates. Higher Delta E values indicated a higher difference in colour and 

luminance between the egg region and the laying substrate, and thus a lower camouflage 

efficiency.  



Chapter Four                                                                                                           Spotted-eggs crypsis. 

131 
 

Egg contour (i.e. outline) was assessed using a visibility ratio variable (VisRat) and was first 

detected using the Canny edge-detection algorithm in Matlab (Lovell et al. 2013). Then, 

contour pixels were scored as part of the egg if they were in an area near the edge of the egg 

mask (four pixels into the mask and eight pixels beyond the mask; equivalent to a range of 1 

mm), or as part of the substrate if they were outside the egg mask and beyond the 1 mm egg 

boundary area. The ratio between substrate contours and the amount of the egg’s own contour 

was calculated and was used for the rest of the analysis as the visibility ratio VisRat (VisRat 

= egg edges / substrate edges) (Fig. 4.5). Higher VisRat values indicated a higher visibility of 

egg outline, thus lower camouflage efficiency. This variable is of a particular interest as this 

characterizes a camouflage strategy that involves placing the egg into a more heterogeneous 

substrate to diminish its detectability (Dimitrova & Merilaita 2012). 

 

Figure 4.5. Schematic illustration of the calculation of the visibility ratio (VisRat) for an egg. 

Contours within the egg edge region (red segments within the two black dashed lines) were scored as 

being part of the detected egg contour, and the corresponding value became the numerator (i.e. egg 

edges). Contours within the substrate region (green segments) were summed and became the 

denominator in the VisRat calculation (i.e. substrate edges). In the current model the yellow contours 

were ignored (modified from Lovell et al. 2013). 
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Egg maculation (i.e. brown spots) size was calculated using the ellipse fitting function in 

Matlab. Ellipses were fitted around egg spots and the number of pixels in each ellipse was 

counted. As the maculation size was not normally distributed within an egg, the maculation 

size at the 50
th

 percentile of the distribution was used to represent the most abundant size of 

maculation found on each egg.  

 

4.3.3. Statistical analyses 

I first analysed the distribution of laying choices among the substrates available to the 

females using a Chi square test for all females. Laying choice repeatability within female was 

statistically significant but low (r = 0.21, P = 0.001) (Lessells & Boag 1987). 

To test whether CIELab differences (Delta E) for each egg region (egg background and 

maculation) differed between chosen and non-chosen substrates, I performed a repeated-

measures GLM with CIELab differences (Delta E) for each egg as the dependent variable, 

egg number as the repeated factor, egg region (background or maculation) and substrate 

(chosen or mean of non-chosen) as between subjects factors, and egg region × substrate as the 

interaction term. The mean of all non-chosen substrate was used in the analysis. 

To examine what parameters drive female choice for a specific laying substrate, I examined 

every laying choice and ranked each substrate from 1 to 8 according to its camouflage 

efficiency, 1 being the most optimal (i.e. most camouflaging) and 8 being the least. I applied 

this ranking to the three variables examined: Delta E maculation, Delta E background, and 

VisRat. I then conducted a Chi-square analysis to examine the distribution of optimality ranks 

for the chosen substrates for all females. I also performed a Chi square analysis to test the 

effect of eggshell maculation degree on the distribution of optimality ranks, tabulating 

maculation degree against choice rank for all three variables: Delta E maculation, Delta E 
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background and VisRat. For this analysis, maculation degree was grouped into four 

percentiles (Table 4.1).  

Table 4.1. Table that shows the amount of egg maculation (% of dark pixels) in each percentile 

group. 

Quartile Minimum Mean Maximum 

1 16.5% 29.7% 38.3% 

2 38.4% 41.8% 45.5% 

3 46.0% 49.9% 54.1% 

4 54.4% 62.9% 83.4% 

 

I only used the mean CIELab (i.e. L, a and b) values for all pixels in these regions as Lovell 

et al. (2013) did not find any differences in biologically relevant variables using the same 

camera, when they performed the analyses using two other approaches, CIE luminance (L) 

data and the raw green pixel outputs from the camera (camera sensitivity peak = 537 nm, 

action spectra 71 nm FWHM). 

To examine the effect of substrate heterogeneity on female choice, I ran the same analyses as 

previously, but only on eggs (N = 34) that were laid on the heterogeneous substrates with 

stones. I ran a Chi square analysis to examine the distribution of optimality ranks for the 

chosen heterogeneous substrates. In addition, I used a Kruskal-Wallis one-way analysis of 

variance to compare the maculation size at the 50
th

 percentile with the size of the stones on 

the chosen heterogeneous substrates, to test whether egg maculation size had an effect of 

female choice between the three categories of stones that were available on the heterogeneous 

substrates. 
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4.4. Results 

4.4.1. Distribution of laying choices 

Laying choices were not evenly distributed between the substrates, with 26.6 % of the eggs 

being laid on the heterogeneous substrates, 52.3 % on the plain substrates, and the remaining 

21.1 % off arena (X
2 

= 77.03,
 
df = 8, p < 0.0001; Fig. 4.6). 

 

Figure 4.6. Distribution of laying choices between the  substrates available to female Japanese quail, 

including off the arena: plain white, plain brown, plain black, small black stones, small brown stones, 

big black stones, big brown stones, random stones and off arena (total N = 128 eggs). 

 

4.4.2. Chromaticity analysis 

Females chose to lay on the substrate that most matched the chromaticity of their egg 

maculation (i.e. there was a lower Delta E maculation on chosen substrate), but that 
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contrasted with the colour of their background (i.e. there was a higher Delta E background on 

chosen-substrate) (Fig. 4.7). There was a significant interaction between substrate (chosen or 

non-chosen) and egg region (background or maculation) (repeated-measures GLM: substrate: 

F1,64 = 1.08, P = 0.30, egg region: F1,64 = 0.13, P = 0.72, substrate × egg region: F1,64 = 4.88, P 

= 0.03). This suggests that quails chose laying substrates in accordance with their egg colour, 

and this might be driven by the heavily maculated eggs as the interaction in not significant 

anymore when removing the eggs from the 4
th

 quartile (heavily maculated) from the analysis 

(substrate: F1,20 = 0.92, P = 0.35, egg region: F1,20 = 0.12, P = 0.73, substrate × egg region: 

F1,64 = 0.66, P = 0.42). 

 

Figure 4.7. Mean Delta E values (chromatic differences) (± 1 SE) for maculation and background 

regions of Japanese quail eggs when comparing both chosen and non-chosen substrates are shown. 
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4.4.3. Distribution of the optimality of laying choices 

There were significant differences between optimality choices, as the distribution of laying 

ranks (1 = the most camouflaging, 8 = the least camouflaging) was skewed for all three 

variables that were computed (VisRat, Delta E maculation and Delta E background) (Table 

4.2.a). There were significantly more eggs ranked at position 1 (i.e. most optimal substrate) 

and fewer laid on position 8 (i.e. least optimal substrate) than expected (expected value = 16) 

for both VisRat (Fig. 4.8.a) and Delta E maculation (Fig. 4.8.b). However, I found an inverse 

relationship for Delta E background, as more eggs were ranked at position 8 and fewer at 

position 1 (Fig. 4.8.c). This suggests that females chose to lay on substrates that concealed 

the outline of their eggs and matched the colour of egg maculation, but contrasted the colour 

of egg background. 

Table 4.2. Statistical results from (a) a Chi square analysis of ranks optimality for each of the three 

variable analysed: VisRat, delta E maculation and Delta E background and (b) Chi square analysis to 

examine the effect of egg maculation degree on female choice optimality for the three camouflage 

variables. 

Variable df X
2
 P 

a)    

VisRat 7 93.00 < 0.0001 

Delta E maculation 7 106.12 < 0.0001 

Delta E background 7 37.12 < 0.0001 

b)    

VisRat 21 18.22 0.66 

Delta E maculation 21 22.67 0.36 

Delta E background 21 27.88 0.14 
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Figure 4.8. Distribution of optimality ranks of laying choices of Japanese quail for (a) VisRat, (b) 

Delta E maculation and (c) Delta E background (see text for details). Rank 1 corresponds to the most 

optimal choice (i.e. most camouflaging substrate) and rank 8 the least optimal (i.e. least camouflaging 

substrate). The horizontal dotted line represents the expected values if the optimality choices were 

evenly distributed. 
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I then tested the effect of egg maculation degree on female optimality of laying choice as 

there was a high variance of maculation degree (16.5% - 83.4%). There was no significant 

effect of egg maculation degree on the distribution of VisRat (Fig. 4.9.a) and Delta E 

maculation (Fig. 4.9.b) (Table 4.2.b). Within each maculation percentile, VisRat and Delta E 

distributions were skewed towards rank 1, suggesting that independently of the degree of 

maculation of their egg, females chose to maximise egg camouflage by laying on the 

substrate that concealed egg outline and matched egg maculation colour. The distribution of 

Delta E background tended to be skewed towards the rank 8 for maculation percentile 3 and 4 

(i.e. highly maculated eggs, between 46% and 83.4%) (Fig. 4.9.c), with choices more evenly 

distributed for lightly maculated eggs (1
st
 and 2

nd
 percentiles of maculation [i.e. between 

16.5% and 45.5%]) but the effect of maculation degree was not statistically significant (Table 

4.2.b). 
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Figure 4.9.  Japanese quail laying choices (rank from 1 to 8 with 1 being the most camouflaging) for 

(a) VisRat, (b) Delta E maculation and (c) Delta E background in relation to egg maculation degree. 

Each variable is split between the four percentiles of maculation degree. 

 

4.4.4. Laying choices on heterogeneous substrates  

When only examining the eggs that were laid on the substrates with stones, the distribution of 

Delta E maculation was marginally skewed towards the rank 3 (X
2 

= 12.94,
 
df = 6, p = 0.05; 

Fig. 4.10). However, there were no significant differences between optimality choice for 
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either VisRat (X
2 

= 10.06,
 
df = 6, p = 0.12) or for delta E background (X

2 
= 8.41,

 
df = 6, p = 

0.21).  

 

 
Figure 4.10. Distribution of optimality ranks of laying choices of Japanese quail on heterogeneous 

substrates only (N = 34), for Delta E maculation. Rank 1 corresponds to the most optimal choice (i.e. 

most camouflaging substrate) and rank 8 the least optimal (i.e. least camouflaging substrate). The 

horizontal dotted line represents the expected values if the optimality choices were evenly distributed. 

 

I then examined the relationship between egg maculation size and the size of the stones that 

were put on the heterogeneous substrates (i.e. small, random sized and big). There was no 

significant effect of egg maculation size at the 50
th

 percentile of the distribution, on female 

preference for small, big, or randomly sized stones where the egg was laid on the 

heterogeneous substrate (Fig. 4.11). 
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Figure 4.11. Relationship between egg maculation size at the 50
th
 percentile of the distribution of 

maculation sizes, and the size of the stones on the heterogeneous substrates. The dark line in the 

middle of the boxes is the median of egg maculation size. The bottom of the box indicates the 25th 

percentile and the top of the box represents the 75th percentile. Whiskers indicate the minimum and 

maximum. 

 

4.5. Discussion 

In this study, I showed that Japanese quails chose laying substrates that maximise the 

camouflage of their eggs, enhancing maculate colour matching and background colour 

contrast between the egg and the laying substrate, and concealing egg outline, leading to 

disruptive colouration. However, egg camouflage was not maximised on heterogeneous 

substrates, and female appeared to have avoided these specific substrates. Substrate 

colouration rather than its patterning (i.e. presence of stones) may drive female decision to 

lay in this species. This suggests that disruptive colouration rather than substrate matching 

might have evolved as an egg camouflage strategy in Japanese quail. 



Chapter Four                                                                                                           Spotted-eggs crypsis. 

142 
 

The chromaticity analysis showed that females mostly laid on the substrates that matched the 

colour of eggshell maculation (i.e. brown spots) and concealed egg outline. In addition, when 

comparing to the non-chosen substrates, females made the best choice based on the model of 

optimality ranks and laid on the most camouflaging substrates. However, they contrasted the 

colour of eggshell background (i.e. immaculate area of the eggshell). Matching between an 

individual’s appearance and its background is a strategy that is widely distributed across the 

animal kingdom, namely “background-matching”, and helps to decrease the risk of being 

detected by predators (Wallace 1889, Poulton 1890, Beddard 1895). For instance, many 

experiments using real (Sumner 1934, Popham 1942) or artificial backgrounds and predators 

(Pietrewicz & Kamil 1977) have shown that prey that least resembled the background were 

attacked more often than those that matched it. In birds, it has been suggested that nest 

background-matching has evolved to decrease egg detectability in species which do not 

conceal eggs within a built nest (Lee et al. 2010). However, this hypothesis has only been 

tested in the context of a match between the eggshell immaculate region (i.e. eggshell 

background) and the appearance of the laying area, ignoring the presence of brown 

maculation on the eggshell. If background-matching is defined as a resemblance with the 

laying area, both eggshell background and maculation should match the appearance of the 

laying substrate. My results do not support the nest background-matching hypothesis, as 

female Japanese quail only matched the colour of egg maculate with the one of the laying 

substrate, and concealed egg outline, but did not match eggshell background colour; in fact 

they actively contrasted with it. As highlighted by Thayer (1909) and Cott (1940), 

background-matching might not be sufficient as a predator deterrent as the animal’s outline 

may make them more detectable, and in turn disruptive colouration might be complimentary 

to background-matching as it may result in changes in the animal’s appearance or shape 

helping it to merge visually with its background.  In my experiment, females preferentially 
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laid on the brown and black substrates (Fig. 4.6), thus matching egg maculate and substrate 

colour, and increasing the contrast between egg background and substrate colour. This 

strategy might help to break up the outline of the egg, which was confirmed by a decreased 

egg outline visibility ratio, and may diminish the detectability of the egg on the chosen 

substrate. Thus, my results support the idea that Japanese quail females use disruptive 

colouration as a camouflage strategy in an artificial environment (Lovell et al. 2013).  

It has been previously suggested that eggshell maculation significantly varies between 

females, and that eggshell maculation degree may play a role in a female’s decision to choose 

a specific laying substrate (Lovell et al. 2013). Indeed, these authors reported that female 

quails were contrasting eggshell background colour with the colour of the chosen substrate, 

only for more maculated eggs (i.e. maculation degree from 34.1 to 66.0 %) compared to the 

lightly maculated eggs (i.e. maculation degree from 6.3 to 33.9 %) which were using a mixed 

strategy. My results do not support these findings, as there was no significant effect of egg 

maculation degree on female choice optimality for the three camouflage variables (i.e. 

VisRat, Delta E maculation, and Delta E background). Females might still tend to contrast 

eggshell background colour only for heavily maculated eggs, but because there were eight 

choices of laying substrates, it might be necessary to repeat the experiment with an increased 

number of eggs to observe a clear pattern of the effect of eggshell maculation degree on 

laying choice. An alternative explanation might be that the eggs that I used were generally 

more maculated (ranging from 16.5 to 83.4 %) than the ones studied by Lovell et al. (2013) 

(ranging from 6.3 to 66.0 %). Thus, the hypothesis that females do not enhance eggshell 

background/substrate colour contrast for lightly maculated eggs, because there is insufficient 

maculation to create disruptive colouration, might not be applicable in my focal eggs.  

Increasing visual background complexity enhances prey search time (Dimitrova & Merilaita 

2010, Dimitrova & Merilaita 2012). In addition, in least killifishes (Heterandria Formosa), 
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displaying body markings that match the heterogeneity of substrate patches may reduce the 

risk of predation by offering optimal concealment (Kjernsmo & Merilaita 2012). This 

strategy might also be applicable to eggs, and laying substrate heterogeneity could diminish 

egg detectability by predators, in particular due to the presence of stones and other materials 

within the nest area (Colwell et al. 2011). Very little is known about the nesting biology of 

Japanese quails in the wild and females have been observed to use various sites, but 

preferentially areas with sparse cover. Under semi-captive experimental conditions, Stevens 

(1961) found that females start nesting in a shallow depression in the ground, and then add 

some straw or weed stems to the nest after each egg is laid. Thus, not only does substrate 

colour play a key role in egg camouflage but its pattern and complexity may also help to 

decrease egg detectability. My preliminary results do not show any benefit of choosing the 

heterogeneous substrates (i.e. with stones) in term of egg colour matching or outline 

concealing, except a marginal choice for medium ranks (3-4).  In addition, females did not 

match the size of the stones on the heterogeneous substrates on which they laid, with the size 

of their egg maculation. This suggests that female quails did not adopt a background-

matching strategy (sensus Tinbergen 1962) on the heterogeneous substrates.  

It is also conceivable that they chose to avoid the heterogeneous substrates as only 34 eggs 

out of the 128 studied were laid on these substrates. It has been proposed that heterogeneous 

substrates potentially enhance egg detectability and diminish chances of nest survival (see 

also Patterson et al. 1991), but it is also plausible that because the stones were put on the 

plain white sand substrate only, the maculation colour was too different from the one of the 

sand, thus impairing disruptive colouration. It is also possible that females avoided the stones 

as they may increase the risk of eggshell breakage or it may be an uncomfortable substrate for 

them to lay. However, I cannot rule out that stones colour and parameters other than substrate 

colour (e.g. substrate texture) might also be important in female decision, and might explain 
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why some of the females still chose these particular substrates on which to lay. To note, 27 

eggs were laid outside of the experimental arena, which might suggest that the colour and 

pattern of the floor (blue-green mottled linoleum) conferred some benefit for egg camouflage 

in some of our focal females, but this might also indicate that some of the females avoided 

the sand, for the same reasons as they avoided the stones as mentioned above. 

In conclusion, my results mainly support previous findings (Lovell et al. 2013). Japanese 

quails adopt a disruptive colouration strategy rather than substrate background-matching to 

maximise the camouflage of their eggs within the range of substrates that are available to 

them. I have shown that eggshell colouration is a key component that drives female choice of 

laying substrate. I used different coloured and patterned substrates which highlighted that 

their laying choices are repeatable, and that egg camouflage is as an anti-predator strategy 

even in a species that has been domesticated for a long time. In addition, contrary to animals 

that adopt behavioural responses to environmental changes and change their body appearance 

to maximise background matching, quail have to make the choice of nesting area before 

laying the egg, which suggests that they make laying decision based upon their perceived 

knowledge of their egg’s appearance to maximise clutch survival. This might underline some 

perceptual and cognitive abilities specific to ground-laying species in the context of egg 

camouflage and may require further studies to investigate inter-individual abilities of 

camouflage optimization. 
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4.6. Chapter Four - Summary and perspectives 

In this chapter, I experimentally investigated the choice of laying substrate in a ground-laying 

species, the Japanese quail. The study of optimality of choice between eight differently 

coloured and patterned substrates showed that females laid on the substrate that best matched 

the colour of eggshell maculation and concealed egg outline, but contrasted with eggshell 

background colouration. However, there was no strong effect of maculation degree on laying 

choices, and laying on heterogeneous substrates did not maximise egg camouflage.  My 

findings suggest that quails have prior perceptual knowledge of their eggs that allow them to 

choose the most camouflaging substrate for laying, out of the availability of substrate types. 

Female quails seem to use substrate colour rather than heterogeneity as a cue for optimizing 

egg camouflage via disruptive colouration rather than background-matching. 

I encourage further studies that investigate not only colour matching but also texture 

matching between eggs and laying substrates, which may help to understand whether the 

presence of stones potentially increases the degree of texture matching between eggs and 

substrate. In addition, eggs are laid in a clutch and when parents leave the nest to forage or 

for self-maintenance behaviours, it is conceivable that not only individual eggs but also the 

whole clutch needs to be undetected by predators. Thus, additional experiments investigating 

clutch visibility on the same substrates may increase our knowledge of the benefits of being 

laid in a clutch for clutch camouflage.
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5.1. Thesis summary and implications 

Offspring survival is the primary goal for parents to optimise their fitness, and two strategies 

have evolved in vertebrates to insure embryonic protection: developing inside the mother’s 

body in viviparous species, or laying eggs in a safe environment in oviparous species. In 

birds, eggs are exposed to both biotic (e.g. bacteria, predators) and abiotic threats (e.g. 

temperature changes), and one strategy that may help to protect them against predation is to 

lay a cryptic clutch (reviewed in Kilner 2006). In many species, parents build a dome and use 

nest materials to conceal and hide the eggs (McCrimmon 1980, Collias & Collias 1984). 

However, in most ground laying species, matching the colour of the eggs with the laying area 

background may be the best strategy to decrease egg visibility by predators (Solís & de Lope 

1995, Šálek & Cepáková 2006, Mayer et al. 2009). Thus, egg crypsis is one of the earliest 

hypotheses proposed to explain the adaptive role of eggshell pigmentation in birds (Wallace 

1889). Besides optimizing egg camouflage, eggshell pigmentation may help achieve egg 

mimicry and defence against brood parasitism (Moksnes & Røskaft 1995, Stokke et al. 

2002b), reinforce eggshell structure (Gosler et al. 2005), enhance embryo protection 

(reviewed in Maurer et al. 2011) and act as a signal  of female immuno-competence towards 

male (Moreno & Osorno 2003, Hanley et al. 2010). Eggshell pigmentation may also be 

strongly related to female physiological condition due to the physiological properties of 

biliverdin and protoporphyrin. Many correlative and empirical studies have attempted to 

investigate the relationship between female condition and eggshell pigmentation, however a 

large number of unanswered questions remain, especially in species where maintaining a 

constant eggshell appearance may be crucial for egg camouflage such as ground-laying 

species like the Japanese quail.  
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My thesis addressed some of these unanswered questions using an experimental approach to 

test the effects of changes in the maternal environment such as food availability restriction or 

exposure to stress hormones, on female physiology, eggshell appearance and pigment 

concentrations. In addition, I have provided support for preliminary information on the 

potential role of eggshell patterning in egg camouflage in my study species by experimentally 

testing to what extent females make specific choices of laying substrates that maximise the 

crypsis of their eggs. 

Both biliverdin and protoporphyrin possess opposite physiological properties, the former 

being antioxidant and the latter pro-oxidant (Vanore & Batlle 1999, McDonagh 2001). Thus, 

their deposition into the eggshell may strongly depend on female condition and immuno-

competence at the time of laying, and variations in eggshell pigmentation strategy may 

directly result into changes in eggshell colouration and maculation pattern in spotted eggs. 

One particular environmental condition that may change during reproduction is the 

abundance of resource available to the female (Stearns 1992). In Chapter Two, I examined 

the effect of food quantity restriction on female body condition and eggshell pigmentation. I 

showed that eggshell pigment deposition strongly depended on female body condition, and 

that maintaining eggshell reflectance, via manipulation of eggshell maculation, may be a 

strategy adopted by better females to maximise the camouflage of their eggs. In that context, 

other studies have experimentally manipulated female environmental conditions via food, 

calcium or carotenoids supplementation (Moreno et al. 2006, Morales et al. 2011, Dearborn 

et al. 2012, Hargitai et al. 2013) in species laying either blue or brown-spotted eggs. 

However, I stressed two major limits of these studies: 1) the absence of eggshell pigments 

quantification speculating that eggshell colour is a direct proxy of its pigment content (see 

Cassey et al. 2012a), and 2) the supplementation of individuals that do not require more 

nutrients, which might explain the inconsistency of results obtained. Using food restriction as 
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an experimental manipulation allowed me to induce an energetic challenge in females, which 

induced a decreased body condition. I proposed that females might face a trade-off between 

fighting against oxidative stress, while preserving the appearance of the egg to keep it cryptic. 

The potential relationship between female immuno-competence and the crypsis of their eggs 

is a novel idea that has never been investigated to date. 

Unpredictable or restricted access to food during reproduction can have negative impact on 

the immune system (Alonso-Alvarez & Tella 2001) and affect individual physiology, 

inducing weight loss or increased plasma stress hormones, such as corticosterone in birds 

(Lynn et al. 2010). If both biliverdin and protoporphyrin deposition strongly depend on 

maternal immunocompetence before clutch formation, stress might be one factor that 

influences the quantity of pigments deposited in the eggshell. In Chapter Three, I 

experimentally supplemented females with corticosterone and investigated the effects of 

stress exposure on eggshell appearance and pigments concentrations. I found that eggshell 

reflectance varied in all individuals, and in particular in stressed females which laid brighter 

eggshells, but eggshell pigment concentrations remained unchanged. I hypothesised that 

stress might affect the assimilation of some nutrients such as calcium, modifying eggshell 

structure and appearance independently from eggshell pigment allocation. Only one recent 

study has found that females showing a higher stress level (e.g. heat shock proteins 

concentration) lay more maculated eggs (Martínez-de la Puente et al. 2007). Thus it is 

conceivable that females may face a trade-off between maintaining their egg cryptic while 

coping with their own physiological stress, at the risk of suffering from long-term effects of 

stress later in life. 

Stress experienced during development may also influence female reproductive performances 

(Lindström 1999), either via affecting their immune system such as antioxidant capacities 

(Marasco et al. 2013) or potentially affecting the development of reproductive organs and 
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their function (Hull et al. 2007) such as pigment deposition via the shell gland. In addition, an 

alternative hypothesis proposed that early life stress may be beneficial to the developing 

embryo, as it may shape its phenotype to be able to cope in a similar hostile environment 

(Gluckman et al. 2007, Monaghan 2008, Mangel 2008). In Chapter Three, I also measured 

eggshell pigmentation of eggs laid by females that had experienced developmental stress or 

undisturbed development, and bred under stressful or control conditions. I found that 

biliverdin and protoporphyrin were differentially affected by developmental stress, depending 

on the stage of life at which it occurred. I proposed that pre-natal stress may shape eggshell 

characteristics that play a major role in egg camouflage in Japanese quail, such as 

protoporphyrin concentration and eggshell maculation. Experiencing pre-natal stress may 

improve female resistance to stress during reproduction, in particular oxidative stress, thus 

they would be able to cope better with higher concentrations of protoporphyrin and keep 

constant eggshell protoporphyrin concentration and maculation, insuring egg crypsis in such 

stressful breeding conditions. However sustaining high concentrations of protoporphyrin 

would induce oxidative stress when accumulated in the liver (Afonso et al. 1999). Thus, my 

results provide an evidence for a potential adaptive role of pre-natal stress, but at the risk of 

suffering from delayed negative effects associated to an increased oxidative stress later in 

life. In addition, post-natal stress only influenced biliverdin deposition and eggshell 

reflectance. I proposed that post-natal stress may influence a mother’s decision to allocate the 

antioxidant pigment into the eggshell, at the cost of her own antioxidant response and at the 

risk of long-term consequences. This assumes that biliverdin could confer benefits such as 

antibacterial or solar protection properties to the offspring under hostile conditions (reviewed 

in Maurer et al. 2011). Alternatively, biliverdin deposition could be a passive process that 

depends on female antioxidant capacity and on the circulating pigment concentration. Thus, 

female with enhanced antioxidant capacity may not need to use biliverdin as a main 
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antioxidant, would possess higher circulating concentration of the pigment, and thus would 

passively deposit higher amounts into the eggshell. 

If eggshell pigmentation strongly depends on maternal condition in Japanese quail, any 

change in a mothers breeding environment may be vital for clutch survival in such a ground-

laying species in which laying camouflaged eggs might be the only strategy to hide them 

from predators. But what parameters are used by female Japanese quails to choose the laying 

substrate that will diminish the detectability of their eggs? Lovell et al. (2013) recently gave 

the first insights into egg camouflage strategies in quail, via an experimental demonstration of 

laying substrate choice, and showed that females use disruptive colouration strategy to 

maximise egg camouflage. However, not only the colour but also the heterogeneity of the 

substrate might play a key role in female laying choices and enhance egg/nest-background 

matching, hence maximising egg crypsis (Colwell et al. 2011). In Chapter Four, I provided 

female Japanese quails the choice between 8 laying substrates, plain or patterned (i.e. 

heterogeneous) with differently coloured and sized stones. I found that females laid on 

substrates that matched the colour of eggshell spots, contrasted eggshell background colour 

and concealed egg outline, independently of eggshell maculation degree. In addition, females 

did not choose the heterogeneous substrates in order to match stones size with eggshell spots 

size, according to the specific model used. I proposed that disruptive colouration have 

evolved preferentially as strategy to maximise egg camouflage in quails. 

 

5.2. Study limitations and areas of future research 

My study has shown that eggshell pigmentation in Japanese quail strongly depends on the 

environmental parameters that influence the condition of the breeding female, and the 

relationship between eggshell pigment concentrations and its appearance is complex. This has 
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vital importance, particularly in species where eggshell appearance is involved in offspring 

survival via egg camouflage. My results suggest that both eggshell maculation pattern and 

reflectance are keys factors of egg crypsis in quails, and may be the result of trade-offs 

between resource allocation to immune response and eggshell pigmentation. However, a few 

limitations to my study can be noted and require further investigation. 

One major assumption in eggshell colouration studies is the physiological role of both 

protoporphyrin and biliverdin. However, no study has yet investigated experimentally the 

effect of both biliverdin and protoporphyrin on female oxidative stress and antioxidant 

capacities, and has related female pigments concentrations to the one of the eggshell. In 

addition, further studies should restrict maternal dietary antioxidant and measure pigments in 

both their plasma and eggshell, to help to elucidate the relationship between eggshell 

colouration and female oxidative stress in both blue and brown-spotted eggshells layers.  

A second limitation is related to the methodology, in particular the quantification of pigments 

in the whole eggshell. As my results showed, the relationship between eggshell maculation, 

its reflectance, and its pigments concentrations is complex. Eggshell colouration in Japanese 

quail cannot be used as a direct proxy of its pigment content, which questions other studies 

that based their main findings on eggshell colouration with no pigment quantification. 

Additional studies should quantify pigments allocation in different zones of the eggshell 

independently (i.e. eggshell spots and background) in both blue and brown-spotted eggshells, 

to allow to clarify which proportion of colour variation is due to actual pigment quantity 

changes. 

The main assumption of my study is that maintaining eggs that are cryptic to predators may 

be the main role of eggshell pigmentation in Japanese quail, and that they try to maximise it 

even under stressful breeding conditions. It is now known that Japanese quails can recognize 
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their eggs (Pike 2011) and that they ‘know’ the maculation characteristics of their eggs 

enough to be able to choose the laying substrate that is optimal for egg camouflage (Lovell et 

al. 2013). However, whether eggs that are laid on optimal substrates are visually less 

detectable by a predator visual model remains to be tested. Further studies should use 

artificial predators to assess whether the chosen substrates actually decrease egg detectability, 

taking into account predator vision. In addition, not only individual eggs are detected but also 

the whole clutch once clutch completion is reached. Thus it is possible that laying a clutch 

containing eggs of a similar appearance might enhance crypsis, similarly to the strategy used 

by host species to recognise brood-parasite eggs (reviewed in Kilner 2006). In species such as 

the Japanese quail where intra-female variability is low in terms of egg patterning (Chapter 

Two, section 2.4) and colouration (Duval et al. 2013), it is possible that clutch background 

rather than nest background plays an important role in individual egg detectability. As more 

eggs are laid the nest area may look less like the laying substrate and more like a collection of 

eggs (Fontaine & Martin 2006). Alternatively, laying similarly patterned and coloured eggs 

close together might disrupt the detectability of the edge of each egg, and potentially that of 

the entire clutch. Thus, an additional experimental study on clutch detectability would help to 

clarify if there is a benefit of being laid in a clutch in term of predator avoidance. 

 

5.3. Conclusion 

In conclusion, I have experimentally demonstrated in a ground-laying species that eggshell 

pigmentation is a dynamic trait, and that both eggshell colour and maculation are 

independently affected by female environmental conditions changes. Eggshell patterning 

might have evolved to maximise egg camouflage in heterogeneous habitats in quails. If egg 

crypsis relies on such fluctuating characteristics, any change in eggshell appearance during 

breeding may impair egg crypsis, and may be perceived by conspecifics and in particular by 
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the male. Further interdisciplinary research should investigate egg crypsis in the context of 

sexual selection. Indeed, egg crypsis may be an honest indicator of female health that males 

may use as a post-mating sexual signal. To maximise fitness, a male may increase his 

paternal effort, such as nest defence, with a female that is able to best camouflage their eggs, 

maximising the survival of the clutch. This hypothesis has never been tested so far and my 

results open a new research area, requiring further experimental manipulation of female 

camouflage ability and male behaviour in response to the degree of camouflage of the clutch 

and the predation risk within the nesting area. 
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