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Theuse of a BDFmethod as a tool to correct the direction of predictionsmade using curve fitting techniques is investigated. Random
data is generated in such a fashion that it has the same properties as the datawe aremodelling.Thedata is assumed to have “memory”
such that certain information imbedded in the data will remain within a certain range of points. Data within this period where
“memory” exists—say at time steps 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
—is curve-fitted to produce a prediction at the next discrete time step, 𝑡

𝑛+1
. In this

manner a vector of predictions is generated and converted into a discrete ordinary differential representing the gradient of the data.
The BDF method implemented with this lower order approximation is used as a means of improving upon the direction of the
generated predictions. The use of the BDF method in this manner improves the prediction of the direction of the time series by
approximately 30%.

1. Introduction

In this brief note we show how a BDF method can be used
as a corrector for predictions. BDF methods are backward
differentiation formulae which are a family of multistep
implicit methods. They are designed to solve initial value
ordinary differential equations.The derivative of a function is
approximated using information computed from earlier time
steps, thereby increasing the accuracy of the approximation.
This characteristic makes BDF methods ideal for our pur-
poses where we seek to improve upon already existing data
in the form of predictions. The predictions aim at accurately
reflecting the direction of random data and are made using
curve fitting techniques. This research comes out of a project
undertaken to predict the direction of a subset of the South
African market. The approach taken in analysing the data
assumes that the data has a “memory.” More precisely this
presupposes that a time series will have certain periods when
the data has the same inherent information and dynamics.
This allows us to conclude that the same information embed-
ded in a previous selection of data points is still contained
within the data point to be predicted from that set. While the

data we generate in this paper is random with zero mean we
are still able to show how an application of a BDF method
improves the degree of accuracy in predicting the direction
the data takes. The BDF formulae are constructed by satisfy-
ing the differential equation exactly at one point 𝑡

𝑛
and then

interpolating 𝑘 previous points. A Lagrangian interpolation
is typically used. The initial prediction of direction is made
using linear/spline curve fitting. The implementation of the
BDF is not done directly; rather it is combined with a lower
order approximation of the gradient of the data vector which
leads to the difference equation we aim to use. The novelty
of the approach taken here is that we iterate the difference
equation structured from the BDF formula and the lower
order approximation of the gradient to convergence.

The random walk hypothesis has had its fair share of
attention as a means of explaining stock price movements.
This financial theory states that stock market prices evolve
according to a random walk and thus the prices of the stock
market cannot be predicted. While the work undertaken in
this paper concurs with this theorywith regard to the random
walk followed by the relevant data, we still maintain an
assumption that there exists embedded information within
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the relevant data which can be modelled. Thus we assume a
consistent underlying dynamic which can be identified and
used as a means of extrapolating beyond known data points,
that is, predict future movements in market prices. Theoret-
ical developments in mathematics of finance have centred
around the random walk hypothesis [1, 2] and the fact that
the market cannot be predicted when using this hypothesis.
Various modifications to this hypothesis have been proposed
with the development of the theory of Martingales [3, 4].The
validity of the random walk hypothesis has been questioned
in many studies. Most prominent among these is the book by
Lo and MacKinlay [5].

While themathematical theory used to develop themath-
ematical aspects of finance has not really focused on predict-
ing returns there has been a strong interest in developing
tools which can give a sense of the direction the market is
going to take or when possible turning points will occur.
The inclusion of ideas from the social sciences in financial
mathematics has heralded the potential development of tools
that can be used to aid the prediction of market trends.
Among these ideas are aspects of behavioral science [6, 7]
which studies the influence of psychology on the behaviour of
financial practitioners and the subsequent effect on markets
[8]. This theory suggests that, since the irrational behaviours
of traders impact price movements, a time series of prices
contains information which does not reflect what could
be termed logical or mathematical dynamics. Behavioural
science brings our attention to the possibility that “noise”
may have been incorporated into the data obtained from
price movements which makes it difficult to determine some
identifiable characteristics which can be used to predict
future movements. This theory is related to the random walk
hypothesis in the sense that both indicate some irrational
behaviour in the data. In this paper we have assumed that
there is however some rational underlying dynamics which
can be investigated mathematically which allows us to make
predictions of future price movements. In some sense the
impact of “noise,” due to the irrational behaviour of traders,
on price movements is an obstacle which we believe we have
overcome by being able to improve upon the direction of
our predictions. Other tools considered as aids for predicting
market trends are notions of overreaction, underreaction,
and contrarian strategies [7, 9–12]. Berman [13] has attempted
one of the first studies to analyse the Global Real Estate
Securities market using aspects of these contrarian ideas.

The paper is set out as follows. In Section 2 we develop
and motivate the algorithm. Convergence properties of the
algorithm are discussed in Section 3. Results and concluding
remarks are presented in Section 4.

2. Algorithm Description

The first part of this analysis is to generate random data that
may be used to simulate an actual financial time series. Here
we use the MATLAB function randn that generates pseu-
dorandom scalar values drawn from a normal distribution
with mean zero and standard deviation one. The code used
to generate this data is presented in Algorithm 1. We start out
with an element that has value zero and then start stepping

repeat
for 𝑗 from 1 to 100
𝑥(1) = 0;
for 𝑖 from 1 to 99;
𝑧 = randn;
if 𝑧 < 0.5
𝑥(𝑖 + 1) = 𝑥(𝑖) + 𝑧;

else
𝑥(𝑖 + 1) = 𝑥(𝑖) − 𝑧;

end
end
𝑦(𝑗) = 𝑥(𝑛);

end

Algorithm 1:MATLAB code implemented to generate data capable
of simulating an actual time series of returns.

along the 𝑥-axis.The direction in which we step is dependent
on whether the number outputted by randn is greater or less
than a half. The magnitude of the step is determined by the
magnitude of the number outputted by randn. We continue
stepping in this way a finite number of times; 100 steps were
chosen in this instance.The last data point is put into a vector
which we use to simulate our times series of returns. Only
the last point is chosen since the vector which has just been
created consists of points with relative small errors between
them; that is, this vector is not a good representation of the
data we are trying to simulate. We continue running the
random walk until we have a vector of returns. We subtract
the mean and divide by the variance in order to produce
data that is more reflective of financial returns obtained from
price movements, that is, data within the range [0, 1]. The
return data generated in thisway has zeromeanwith standard
deviation smaller than one.The standard deviation is not one
since the data has not been normalised; that is, we divided by
the variance and not the standard deviation. This was done
in order to maintain the strict range of [0, 1] for the data. In
Figure 1 we plot three simulations of return data obtained in
this way. When we compare the generated data to an actual
times series of returns from the South Africanmarket we find
that our simulation is fairly accurate since the movements
exhibited by the returns of the South African market are
similar to those depicted in Figure 1.

We then choose an appropriate length of data to indicate
what we term “memory” in the data. For the purposes of this
paperwe assume that using four initial data points is sufficient
to account for the memory. Given the fact that the behaviour
observed in Figure 1 is highly oscillatory a shortmemory span
of four points seems sensible for a data series of 100 points as
was chosen here. This indicates that any rational underlying
dynamics are not observed in the long term but rather in the
short term. We then curve-fit through the initial four points
of the vector which represents our actual known data points,
𝑦
1
, 𝑦
2
, 𝑦
3
, and 𝑦

4
. We use this fitted curve to predict the value

of the fifth point, 𝑦
5
. We then use data values two to five, 𝑦

2
,

𝑦
3
, 𝑦
4
, and 𝑦

5
, to predict the sixth value, 𝑦

6
. Continuing in

this way we end up with a vector of actual known values and
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Figure 1: Plot of three different simulated data series.

a vector of predicted values—four data points shorter than
the original.

Our aim is to predict—and improve upon—the direction
of the data, that is, whether the quantitative value is positive
or negative, which is indicative of whether market prices
are moving up or down. Since most forecasting systems are
far from accurate when predicting the quantitative value,
predicting direction is far easier and can be equally profitable.
For instance, for a system that draws its conclusion of how
to trade tomorrow from the closing price of today’s action,
getting the direction is vitally important. We are not looking
at this from a multisignal/asset point of view which would
require the determination of how much to invest in each
asset. This would be along the lines of an efficient frontier in
Modern PortfolioTheory which would take factors like stan-
dard deviation and error in the forecast into account. Rather,
we are simply wishing to trade on the back of successfully
predicting direction.Thus while considering the distribution
of the time series itself and the relevant mean and standard
deviationmay bemore accurate quantitatively, trading on the
predictions of the direction the prices are moving in can in
itself be very profitable.

As a consequence the success of our methodology is
calculated by considering the percentage of times the sign
of the predicted data matches the sign of the actual origi-
nally generated data. To improve the accuracy of predicting
direction we make use of the fact that the direction is just
the gradient of the data. By creating a vector of gradients we
have the numerical representation of an ordinary differential
equation. We then use the structure of a BDF method to
numerically solve the ordinary differential equation. BDF
methods are appropriate because they depend on previous
values. Some examples of BDF methods for solving the first
order ordinary differential equation

𝑦

= 𝑓 (𝑡, 𝑦) (1)

are given by

𝑦
𝑛+1
= 𝑦
𝑛
+ ℎ𝑓
𝑛+1
, (2)

𝑦
𝑛+1
=
4

3
𝑦
𝑛
−
1

3
𝑦
𝑛−1
+
2

3
ℎ𝑓
𝑛+1
, (3)

𝑦
𝑛+1
=
18

11
𝑦
𝑛
−
9

11
𝑦
𝑛−1
+
2

11
𝑦
𝑛−2
+
6

11
ℎ𝑓
𝑛+1
, (4)

where we have used the conventions 𝑦
𝑛
= 𝑦(𝑡

𝑛
) and 𝑓

𝑛+1
=

𝑓(𝑡
𝑛+1
, 𝑦
𝑛+1
).

Using a forward difference approximation to the deriva-
tive we find that

𝑓 (𝑡
𝑛+1
, 𝑦
𝑛+1
) =
𝑦
∗

𝑛+1
− 𝑦
𝑛

ℎ
, (5)

where 𝑦∗ is the value we are trying to improve. The BDF
method (3) becomes

𝑦
∗(𝑗+1)

𝑛+1
=
2

3
𝑦
∗(𝑗)

𝑛+1
+
2

3
𝑦
𝑛
−
1

3
𝑦
𝑛−1
. (6)

Similarly, by approximating the derivative by a central differ-
ence approximation we obtain

𝑦
∗(𝑗+1)

𝑛+1
=
1

3
𝑦
∗(𝑗)

𝑛+1
+
4

3
𝑦
𝑛
−
2

3
𝑦
𝑛−1
. (7)

As stated in their names, BDF methods are backward
approximations of the first order derivative in a first order
ordinary differential equation. In this instance, however, we
are not applying the BDF method to an ODE but rather to
actual discrete data points. Equations (2)–(4), being discrete,
are applicable when considering actual data instead of an
ODE as is usually the case. Since we do not have a function𝑓,
as per (1), we take an approximation of the first order deriva-
tive as per (5). The BDF method approximates a differential
equation whereas finite difference approximations could be
said to be a means of approximating the gradient making
it a convenient way of approximating 𝑓. This means that a
lower order approximation of a gradient, that is, the finite
difference approximation of 𝑓, is incorporated into a higher
order approximation of what we can term our discrete ODE.

Thus (6) mixes first and second order approximations
of the first order derivative. Equation (7) mixes a centred
approximation at position 𝑥

𝑛
and a backward approximation

at position 𝑥
𝑛+1

which is equivalent to a 0 order approxi-
mation. The reason why all the terms do not cancel out in
formulae (6) and (7) and why this approach is still relevant is
due to the fact that the formulae mix different order approx-
imations. Our purpose is to improve upon already obtained
predictions—or an already obtained solution. More precisely
our predictions are our 𝑦 function and it is exactly the 𝑦
function as discrete points which we aim to improve upon in
the same way predictor correctors are used to improve upon
solutions obtained via other numerical methods such as
Euler’s method. Hence we are in fact not solving the ODE
again, only improving on already known data in a pointwise
fashion.

It is important to note that we are not implementing
the BDF method in a direct fashion. We are incorporating
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a lower order approximation into the method in order to
obtain a means of improving on already generated data. In
the computational implementation of this work, the BDF
method given by (6) is iterated to convergence. The initial
value 𝑦∗(0)

𝑛+1
= 𝑦
𝑛+1

is obtained from either a linear or spline
interpolation. The value of 𝑦

𝑛+1
can be obtained using a

neural network as discussed in other literature [14–16].

3. Convergence Properties

In this section we investigate the convergence properties of
the difference equations (6) and (7). We want to show that


𝑦
∗(𝑗+1)

𝑛+1
− 𝑦
∗(𝑗)

𝑛+1


→ 0, (8)

by considering the general solution to (6) which is

𝑦
∗(𝑗)

𝑛+1
= 2𝑦
𝑛
− 𝑦
𝑛−1
+ (
2

3
)

𝑗

(𝑦
∗(0)

𝑛+1
− 2𝑦
𝑛
+ 𝑦
𝑛−1
) . (9)

By considering (9) as follows


𝑦
∗(𝑗+1)

𝑛+1
− 𝑦
∗(𝑗)

𝑛+1


= −(
1

3
)

𝑗

(𝑦
∗(0)

𝑛+1
− 2𝑦
𝑛
+ 𝑦
𝑛−1
) , (10)

we find that as 𝑗 → ∞ (8) holds. In a similar fashion it is
relatively easy to show that (8) is satisfied for (7), indicating
convergence. In fact, scheme (7) converges faster than (6)
since the coefficient of 𝑦∗(𝑗)

𝑛+1
is smaller.

When either (6) or (7) is iterated to convergence we have
𝑦
∗(𝑗+1)

𝑛+1
= 𝑦
∗(𝑗)

𝑛+1
± 𝜖 = 𝑦

∗

𝑛+1
± 𝜖, where 𝜖 ≪ 1 is the tolerance.

For both (6) and (7) we find that at convergence

𝑦
∗

𝑛+1
= 2𝑦
𝑛
− 𝑦
𝑛−1
∓ 𝜖. (11)

It is in fact the right hand side of (11) which indicates the “cor-
rection” made to the original prediction. By implementing a
lower order approximation within a higher order approxima-
tion as we have done in the previous section we have been
able to obtain this necessary difference equation which is the
manner in which the predictions are improved upon.

The results and concluding remarks are presented in the
next section.

4. Results and Concluding Remarks

As ameans of evaluating the effectiveness of the BDFmethod
as implemented above to improve upon the prediction of the
direction of data we compare the accuracy of the originally
fitted data and the corrected data. Direction success rate can
be seen as a simple bimodal result. If we let 𝑦𝑇

𝑛+1
be the true

value then

𝑦
𝑇

𝑛+1
𝑦
∗

𝑛+1
= {

positive ⇒ success,
negative ⇒ failure. (12)

Choosing a sign based criterion is a standard method in
financial analysis. The criteria are appropriate within the
context of stock market modelling given the growing interest
in developing tools which can give a sense of the direction in

which the market may move or when possible turning points
or shocks in returns will occur. This information is critical
irrespective of the actual numerical value assigned to the
movement given that the numerical values of the data used
and analysed within this context are not necessarily useful in
identifying characteristics which can be used to predict future
movements. Hence, if the return on a stock decreases from
0.15 to 0.14, that is, by 0.01, for example, a prediction of −1 is
ofmore value than a prediction of +0.01.This is due to the fact
that the former prediction indicates themarket trendwhereas
the latter only indicates a numerical value which within the
context of market modelling loses value since it indicates a
rise in the return at the next time step which is false. Thus
the numerical value does not hold as much value in market
trend trading as does the direction indicated by the sign of
our prediction. In terms of our criterion, we have simply fol-
lowed convention based upon methods currently employed
by traders who trade according to market directions or
trends.

In Table 1 we compare the percentage accuracy of pre-
dictions obtained through fitting a linear curve or spline
through four points and the improved predictions found
via (6). On average, this simple approach ensures that we
get the direction correct 87% of the time in comparison to
48% for a linear curve and 86% when compared to 52% for
a spline curve. These percentages have been calculated by
simply counting the amount of times the sign of the actual
point is generated, such as the three samples represented in
Figure 1, and either the fitted or corrected point is the same
and divided by the overall number of points. The number
of points used—as indicated before—was 100. This is an
arbitrary choice simply done for convenience.

Table 1 reflects the implementation of (6) obtained from
the BDF method (3) and by using a forward difference
approximation for the first derivative. If we instead incorpo-
rate a central difference approximation as per (7) we are able
to improve a direction success rate of 50% for a linear curve
to 80%. A comparison done against the spline fitting showed
an improvement from 50% to 79%. We have also considered
(4) with a forward and central difference approximation for
the first derivative, respectively. The former choice showed
an increase from approximately 48% to 80% for the linear
comparison and 49% to 79% for the spline comparison.
The latter case indicated an increase in the accuracy of the
direction from 50% to 81% when the original predictions are
obtained via a linear fitting and 49% to 81% when a spline is
implemented.

In this paper we have shown how the implementation of
the BDF method with a lower order approximation of the
gradient of discrete data can improve the accuracy of predict-
ing the direction of random data. The motivation for using a
numerical ordinary differential equation solver comes from
the fact that direction is just a gradient. We form a discrete
ordinary differential equation from our vector of predictions.
This discrete ordinary differential equation is solved with
the implementation of a lower order approximation of the
gradient with a BDF method. We find that the accuracy of
our predictions improves from an accuracy of approximately
50% to an accuracy of approximately 87%.
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Table 1: Table comparing percentage accuracy of predicting direc-
tion.

Linear Spline
Fitted Corrected Fitted Corrected
51.0417% 80.0000% 56.2500% 88.4211%
52.0833% 92.6316% 50.0000% 86.3158%
52.0833% 90.5263% 52.0833% 86.3158%
45.8333% 87.3684% 47.9167% 88.4211%
55.2083% 92.6316% 41.6667% 85.2632%
46.8750% 85.2632% 53.1250% 91.5789%
48.9583% 84.2105% 48.9583% 85.2632%
42.7083% 85.2632% 59.3750% 86.3158%
35.4167% 87.3684% 44.7917% 76.8421%
48.9583% 88.4211% 52.0833% 85.2632%

An advantage of the approach taken in this paper is that
the BDF scheme is a marching scheme. Irrespective of how
big the data set is, the scheme will march through the data
accordingly. The “speed” of the algorithm on very large data
sets can be improved upon by using a computer with a faster
CPU.
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