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Abstract

BACKGROUND

Responses of the soil microbial and nematode community to organic and conventional

agricultural practices were studied using the Teagasc Kinsealy Systems Comparison trial as

the experimental system. The trial is a long term field experiment which divides conventional

and organic agriculture into component pest-control and soil treatment practices. We

hypothesised that management practices would affect soil ecology and used community level

physiological profiles (CLPP), microbial and nematode counts, and denaturing gradient gel

electrophoresis (DGGE) to characterise soil microbial communities in plots used for onion

(Allium cepa L.) cultivation.

mailto:kim.reilly@teagasc.ie
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RESULTS

Microbial activity and culturable bacterial counts were significantly higher under fully organic

management. Culturable fungi, actinomycete and nematode counts showed a consistent trend

towards higher numbers under fully organic management but these data were not statistically

significant. No differences were found in the fungal/bacterial ratio. DGGE banding patterns and

sequencing of excised bands showed clear differences between treatments. Putative onion

fungal pathogens were predominantly sequenced under conventional soil treatment practices

whilst putative soil suppressive bacterial species were predominantly sequenced from the

organic pest-control treatment plots.

CONCLUSION

Organic management increased microbial activity and diversity. Sequence data was indicative

of differences in functional groups and warrants further investigation.

Keywords

Biolog Eco-plates; microbial diversity; community level physiological profile; denaturing

gradient gel electrophoresis; organic agriculture

INTRODUCTION

Good soil husbandry is fundamental to sustainable long term crop production and plant health,

and is a focus of many techniques used by organic and conventional growers. However our

understanding of how agricultural practices affect soil ecology and contribute to soil functioning

is incomplete. Soil health is broadly defined as “the competence with which soil functional

processes (e.g. nutrient cycling, energy flow) are able to support viable, self sustaining (micro)

faunal and (micro) floral ecosystems”
1
. In contrast soil quality is defined by its “suitability for a

specific use”. This definition encompasses biological, physical and chemical attributes and is

dependant on the soil type and land use context
2.

A number of studies have shown that biotic measures of soil quality and soil health can be

affected by agricultural practices. Some studies have indicated that practices used in organic

and sustainable conventional agriculture such as addition of organic matter, use of green

manure or ley crops, crop rotations, reduced application of synthetic nutrients, and the
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absence of synthetic pesticides can increase indices of soil quality,
2-4

soil disease

suppressiveness
5
, and soil microbiological activity and diversity

6-8
. Conversely certain

agrochemicals for example phenyl urea herbicides such as linuron, the benzimidazole

fungicide carbendazim, and the biological pesticide azadirachtin have been shown to impact

soil microbial community structure
9, 10

.A number of techniques have been used to assess soil

microbial diversity. Traditional techniques relied on the use of selective or semi selective

media, however CLPP (Community Level Physiological Profiling) and DGGE (Denaturing

Gradient Gel Electrophoresis) have become widely used. CLPP is carried out using Biolog

Eco-plates or Biolog GN plates which contain 31 or 95 different sole carbon sources

respectively. The subset of sole C sources used in the Eco-plates are known to occur in plant

root exudates and/or to have a high discriminatory power among soil communities
11,12

. Biolog

plates enable assessment of soil functional (rather than taxonomic) diversity and of changes in

substrate utilization patterns. However it is a culture dependant method with a bias towards

culturable, fast growing species. DGGE is a technique based on electrophoresis of PCR

amplified DNA samples across a denaturing gradient in an acrylimide gel. To date most soil

DGGE community studies have used PCR products generated using primers based on the

16S rRNA gene for bacteria and archaea
9,13-15

and the 18S small subunit region (SSU) of the

fungal ribosomal RNA gene cluster
16-18

. Separation of the mixture of PCR products generated

on a DGGE gel gives rise to a community fingerprint which can be analysed using image

analysis software and/or by sequencing of excised bands.

The aim of the present study was to examine the effect of organic, conventional and

mixed agricultural practices on soil microbial and nematode community structure. The

experimental system is a long term field trial that was set up so as to divide “organic” and

“conventional” agriculture into component parts, namely a) soil management, and b) pest-

control. The trial is a factorial split plot design which investigates the effect of, and any

interaction between, production system components. Onion plots within this trial were was

selected for study since onion crops are highly dependant on rhizosphere associations and

susceptible to soil-borne pathogens.

MATERIALS AND METHODS

Field trial
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Soil samples were from plots used for onion cultivation in the systems comparison field trial at

Teagasc, Kinsealy (53° 25’ N Lat 6° 10’ W), located in north county Dublin, Ireland. Soil type is

loam to clay loam belonging to the grey brown podzolic soil group. (Altitude: 28 metres O.D.,

Slope: 1
o
, moderately well drained). The trial is a factorial split plot design with 4 replicates and

follows commercial vegetable production practices in Ireland. Carrot (Daucus carota), broccoli

(Brassica oheracea var. itahica) and onion (Ahhium cepa) are grown each year and are assigned

as the main plot. There are 2 levels of soil treatment – an organic soil treatment (OS) and a

conventional soil treatment (CS); and 2 levels of pest-control – an organic pest-control

treatment (OP) and a conventional pest-control treatment (CP). The trial was established in

spring 2009 on land that had previously been under grass set-aside for over 10 years. The

organic cultivation practices used were in compliance with EC1990/92, EC 834/2007
19,20

and

with standards for organic certification set out by the Irish organic certification bodies, with the

exception that for experimental purposes the separation distance required between adjacent

organic and conventional commercial enterprises was not practised between organic and

conventional treatment plots.

The organic soil (OS) treatments comprised certified organic fertilizer inputs; a 4 year

horticultural crop rotation including a fertility building red clover ley (Trifohium pratense); and

use of small grain or legume winter cover crops. The conventional soil (CS) treatment

comprised use of mineral fertilizers, with no set crop rotation (crops randomly allocated each

year) and no winter cover crop. Equivalent rates of nitrogen (N), phosphorus (P) and

potassium (K) were applied to both CS and OS treatments for each crop following a spring soil

test and the rates applied were according to Teagasc recommendations for the crop
21.

Fertilizer was applied as calcium ammonium nitrate (CAN), single super-phosphate and

sulphate of potash for the CS treatment; or Greenvale (3:3:1) and ProKali for the OS treatment.

Conventional pest-control (CP) treatments comprised pesticide spray applications for the

control of weeds, pests and diseases in accordance with Integrated Pest Management

strategies typical of north county Dublin commercial vegetable production and in accordance

with
22

. Organic pest-control (OP) treatments comprised mechanical weed and pest-control

methods; certified treatments of biological origin if required and appropriate to the crop; and

provision of a refuge area to encourage beneficial insects. Applied inputs for onion cultivation

in 2011 are shown in Table 1. Mean harvested bulb weight was in the range 178 to 191 g and

did not differ between treatments, although total yield per plot was significantly higher under
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fully conventional (CSCP) management. No differences in disease incidence between

treatments were observed. Additional information on the field trial layout, and climatic

conditions is available at http://www.ipfn.ie/publications/agronomic/

Onions cv. ‘Hyskin’ were transplanted to V1 onion main plots as multi-seeded modular

transplants at 3 rows per 152cm bed and 25cm in row spacing on 26
th

April 2011 and were

harvested on 19
th

September 2011. Soil samples used for BIOLOG and DGGE analyses were

collected on 4
th

July 2011. Initial nematode counts were lower than expected, therefore

culturable microbial population and total nematode counts were assessed from soil samples

taken 7
th

November 2011 after onion harvest and before winter cover crop initiation in OS split

plots. On both sample dates, 6 to 8 soil cores (10cm depth) were taken using a cone auger

from each onion plot and hand mixed to form a composite sample.

CLPP analysis

The substrate utilization pattern of soil samples was assessed using Biolog Eco plates (Biolog

Inc. Hayward, CA) according to the recommendations of the manufacturer. Freshly obtained

composite soil samples from each plot were sequentially reduced and a 5g sub-sample was

weighed into a sterile falcon tube with 50ml 1/4 strength Ringers solution (Oxoid). Samples were

placed in a shaking incubator at room temperature and 300 rpm for 30 minutes and were then

allowed to settle for 10 minutes. An aliquot (10ml) of each solution was transferred to a fresh

tube and further diluted an absorbance A590 of 0.4 to standardise inoculum densities.

Experimental samples were randomly assigned to each Biolog plate replicate, giving a total of

6 Eco-plates. Wells were inoculated with soil suspension (150 jtl per well) and incubated at

25
o
C for 7 days. The A590 was measured on day 0 and on day 2, 3, 4 and 5 after inoculation

using an automated plate reader (Dynatech MRX). Prior to further analysis each well

absorbance reading was blanked against its own initial reading and the control well. The

average well colour development (AWCD), area under the curve (AUC) and Shannon diversity

Index (H’) were then calculated as described below.

Culturable microbial population

Five grams of each soil sample were added to 45ml sterile distilled water in a 50ml Falcon tube

and shaken on a wrist action shaker (flask shaker, Stuart scientific) for 10 minutes. Ten-fold

serial dilutions were prepared and 1 00tl aliquots were spread onto trypic soy agar for total

http://www.ipfn.ie/publications/agronomic/
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bacterial counts; potato dextrose agar with streptomycin (50tg ml
-1
) for total fungal counts and

water agar with nystatin (50tg ml
-1
) for actinomycete counts. Plates for bacterial and fungal

counts were incubated at 25
o
C for 2-4 days. Fungal genera were identified by morphological

and microscopic examination. Plates for actinomycete counts were incubated at 28
o
C for 10-

14 days.

Nematode abundance

Nematodes were extracted from 100 g composite soil samples by Oostenbrink elutriator and

Baermann funnel techniques, collected after 48 h, and preserved in DESS according to
23.

Total nematode numbers were determined. Counts were adjusted for soil moisture content and

expressed as nematode abundance g dry soil
-1
.

Data analysis

Statistical analysis was carried out using SAS 9.1 (Cary, NC). For CLPP analysis AWCD for

each experimental treatment was calculated over time. The area under the curve (AUC) for

each substrate was calculated according to
24

and the Shannon diversity index (H’) was

calculated according to the formula:

S

H ' pi In pi

= — 

i 1

The AUC for each sole carbon source in the fully conventional (CSCP) and fully organic

(OSOP) treatments were subjected to a paired t -test for significant differences between

treatments. AWCD data, H’ data, microbial and nematode count data and F/B ratio data were

analysed using an ANOVA mixed model containing a contrast code to compare the fully

organic (OSOP) and fully conventional (CSCP) treatments as well as the individua l treatments

and interactions (SAS 9.1).

DGGE analysis

Microbial DNA was extracted from soil samples using the MOBIO Ultraclean Soil DNA Isolation

kit according to the specifications of the manufacturer. For the analysis of fungal diversity a

segment of the fungal 18S small subunit (SSU) rDNA gene (around 390bp) was amplified
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using primer pair FR1 and FF390 as described by Vainio and Hantula
17

. Each PCR reaction

contained 25jtl MyTaqRed (Bioline), 0.1jtM of each primer and around 10ng of template DNA

to a final volume of 50jtl. PCR cycles were as described in
17

. For the analysis of soil bacterial

diversity a 433bp fragment of the bacterial 1 6s rDNA gene was amplified using primers

F984GC and R1 378 described in
14

. PCR was carried out in a volume of 50jtl as above using

the following cycle: initial denaturing step 5 minutes at 94
o
C, 35 cycles comprising 1 minute

denaturing at 94
o
C, 1 minute annealing at 53

o
C, 2 minutes extension at 72

o
C, followed by a

final extension step of 10 minutes at 72
o
C. Aliquots (5jtl) of each reaction were

electrophoresed on a 1% (w/v) agarose gel to verify similar concentrations of PCR products

had been amplified from each soil sample. The remaining PCR reaction products (45 jtl) were

then analysed by DGGE using a 45-60% denaturing gradient (100% denaturant contained 7M

urea and 40% fomamide) on a 6.5% (w/v) polyacrylimide gel for fungal samples or a 30 - 60%

denaturing gradient for bacterial samples
14,17,25

. DGGE gels were prepared using a Biorad 475

Gradient Delivery System (Biorad) and were allowed to polymerise overnight. Gels were run

at 50v and 60
o
C for 17 hours in 1X TAE re-circulating buffer for separation of fungal DNA or

at 150V and 60
o
C for 5 hours in 0.5X TAE for bacterial gels. Bands were stained by

immersing the gel in 1x TAE buffer containing Gelstar GelRed stain (Lonza) according to the

specifications of the manufacturer and were visualised under UV light. To compare the

separation patterns of all four soil treatments (OSOP, OSCP, CSOP, CSCP) on a single DGGE

gel, initial DGGE gels containing all four replicates of each treatment (16 lanes) were run and

checked for consistency across the replicates. Subsequently representative samples for each

treatment were re-amplified as above and run on a single DGGE gel.

DGGE band sequencing and sequence analysis

Bands of interest were excised from the DGGE gel and eluted into a small volume (20 – 50jtl)

ofsterile PCR grade water using a “crush and soak” method. Five microlitres of the solution

was used to re-amplify the excised fragment using the same primer pair and PCR conditions

as previously described. PCR products were purified from a 1% (w/v) agarose gel using the

QiaxII gel extraction kit (Qiagen), sub-cloned into the pGEMT-easy vector (Promega) and

transformed into competent E.coli JM109 cells (Promega). Since co-migration of multiple

sequences within the same DGGE band has been noted
26-28

three to four clones containing an
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insert of the expected size were sequenced for each expected band. Where identical duplicate

sequences were obtained from the same band, one sequence only is presented. Sequencing

was carried out using universal pUC13/M13 forward sequencing primer (5’-

CGCCAGGGTTTTCCCAGTCACGAC-3’). Bacterial sequences were identified by a blastn

search alignment against 16s ribosomal DNA sequences on the NCBI database

(http://blast.ncbi.nlm.nih.gov)
29

. Fungal sequences were identified by blastn search alignment

using the nucleotide collection (nr/nt) database. Uncultured/environmental sample sequences

were excluded from both fungal and bacterial search parameters. For identification based on

blast search homology the criteria used were consistent similarity at ≥98% to the same species

or genus. Sequences identified were submitted to the Genbank database using the Bankit

submission tool.

Nucleotide sequence accession numbers

Nucleotide sequences for bacterial 16s bands B1-B6 and fungal 18s bands K1-K22 have been

deposited in the Genbank database. Accession numbers are shown in Tables 4 and 5.

RESULTS AND DISCUSSION

CLPP analysis

Our data indicated significantly higher levels of microbial activity and functional diversity in soil

under the fully organic (OSOP) treatment compared to the fully conventional (CSCP)

treatment. Three indices – average well colour development (AWCD), Shannon diversity index

(H’), and area under the curve (AUC) for individual carbon sources - were calculated using the

Biolog substrate utilization data (Figure 1 and Table 3). Where initial inoculum density has

been standardised the AWCD is a measure of the rate of microbial activity. Values for AWCD

were significantly lower under the CSCP treatment than under the OSOP treatment (p< 0.01)

indicating higher levels of microbial activity under fully organic management. The Shannon

diversity index (H’) is a measure of the potential functional diversity of the microbial community

and takes into account both the number of substrates and their degree of utilization
30.

Differences shown by AWCD were more pronounced than those observed using H’ as has

been noted elsewhere
30

. Soil treatment had a significant main effect (p<0.05) in the AWCD

http://blast.ncbi.nlm.nih.gov/
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and Shannon diversity index data. In the experimental design used here the organic soil (OS)

treatment is itself composed of crop rotation, use of organic fertilizer inputs and use of cover

crops. Thus it is not possible to identify the relative contribution of specific individual practices

within the soil treatment.. Several studies 31 32 33 report a proliferation of bacterial and fungal

populations and activity under organic management. Conversely some studies have shown

crop rotation, and in particular the specific crop species grown in the previous 3 years, to be

the dominant management factor
34.

The area under the curve (AUC) is useful as a summary statistic in analysing BIOLOG

data since it incorporates both the maximum colour development and the rate of colour

development
24

. Mean AUC values for utilisation of the 31 individual sole carbon sources

found on Biolog Eco-plates for the OSOP and CSCP treatment soils were calculated (Table 3).

The microbial community under the fully organic treatment (OSOP) showed significantly higher

utilisation of sugar derivatives, carboxylic acids and polymers (p<0.05) than under the fully

conventional CSCP treatment. In terms of individual sole carbon sources the sugars D-

cellobiose and D-xylose, and the carboxylic acids pyruvic acid methyl ester and 4-

hydroxybenzioc acid were utilised at higher levels in the organic (OSOP) plots than in the

conventional (CSCP) plots. Conversely the sugar i-erythritol showed significantly lower

utilization under the OSOP treatment.

Culturable microbial population and total nematode counts

Culturable bacteria were in the range 0.87 x 10
8

cfu g
-1

under the fully conventional CSCP

treatment to 7.87 x 10
8

cfu g
-1

under the fully organic OSOP treatment and were significantly

higher under the fully organic (OSOP)) treatment (Figure 2). Culturable fungal and

actinomycete counts were in the range 1.93 x 10
7

cfu g
-1

to 8.87 x10
7

cfu g
-1

; and 4.71 x 10
8
cfu

g
-1

to 7.71 x 10
8

cfu g
-1

respectively. Nematode abundance ranged from 1.33 ± 0.22

nematodes g
-1

dry soil under the fully conventional (CSCP) treatment to 2.14 ± 0.16

nematodes g
-1

dry soil under the fully organic (OSOP) treatment. Although there was a clear

trend of higher fungal and nematode counts under organic management the differences were

not statistically significant. Increased bacterial counts or bacterial biomass, and microbial

biomass and activity have been reported elsewhere in organically managed systems 3, 35 and

in response to crop rotation practices
36

. Similarly total nematode abundance has been
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reported to increase in response to organic matter fertiliser
37

.Animal manure or composts

are a very important component of organic agriculture, and several studies report on

pathogenic nematode and disease suppression after soils are amended with animal manures 38

. A linear decrease in the population of the plant pathogenic nematode Meloidogine incognita

with increasing numbers of bacteria after the application of chicken litter in the soil, and a lower

infection by nematodes on tomato plants when un-sterilised as compared to sterilised chicken

manure was used has been demonstrated
39,40

. Other studies report suppression of soil borne

fungal pathogens such as Pythium, Fusarium, Phytophthora and Rhizoctonia 38,41.

It has often been suggested that the soil fungal/bacterial ratio is indicative of ecological

succession, with bacteria dominant (low F/B ratio) in disrupted soils such as arable and

horticultural soils, whilst fungi are increasingly dominant (high F/B ratios) under established

grassland and forest soils. For horticultural production F/B ratios in the region of 0.3 to 1 are

generally considered optimal. Increased F/B ratios have been reported in response to a

number of agricultural practices including continuous cropping of a single crop, adoption of no

tillage systems, application of organic matter with a high C:N ratio and transition to grass 2 36,

42; whilst decreases in the F/B ratio have been reported following addition of compost, slurry,

FYM or mineral N, and in response to tillage
2,42

. The fungal/bacterial ratio based on count data

was in the range 0.08 to 0.29 (Figure 3) however no significant differences in F/B ratio under

different treatments were found.

DGGE and sequence analysis

Molecular techniques provide powerful new tools to investigate soil microbial populations.

Fungal and bacterial DGGE and sequence data in this study indicated that soil fungi

predominantly belonged to the Ascomycetes whilst isolated bacterial sequences belonged

primarily to the Actinobacteria and Proteobacteria (Tables 4 and 5). A number of previous

studies found ascomycete fungi to be predominant in agricultural and grassland soils
43.

Fungal and bacterial community fingerprints obtained by DGGE were generally

consistent across the 4 field replicates for each treatment (data not shown). Representative

samples for each treatment were then compared on a single gel (Figure 4). For the fungal

DGGE profile some variability in banding patterns between replicates was observed in the

OSCP treatment, and two lanes encompassing this variability were run. Comparison of
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sequence data suggests that both organic soil and organic pest-control treatments may have

beneficial effects in terms of disease and soil disease suppresiveness. Putative fungal onion

pathogens were sequenced primarily under the conventional soil (CSCP and CSOP)

treatments, whilst putative soil suppressive bacterial species (Lysobacter sp. and the

Actinomycetes) were sequenced predominantly under the organic pest-control treatment.

The majority of fungal species obtained belonged to the Ascomycetes, with smaller

groups of Basidiomycetes, Chitridiomycetes and Zygomycetes. Two sequences showing

relatively low homology to yeasts and to the unclassified soil flagellate Proleptomonas

faecicola formed a small out-group. Two common soil saprophyte fungi Chaetomium globosum

and Mortierella were widely distributed and were found in soil samples from all four treatments.

Sequences corresponding to the causative organisms of several important onion diseases

including Fusarium basal rot (Fusarium spp. ); leaf blotch (Cladosporium spp.); pink root

(Phoma spp.); stunting (Rhizoctonia spp.) and storage black mould (Aspergillus spp.)

were identified and were predominantly found under the conventional soil (CS) treatment.

Although the pathogenicity of the individual strains present is not known it is of interest that

10 of the 11 putative onion pathogen sequences were found in the CSCP and CSOP treatment

soil samples. Verticillium spp. can cause disease in a number of dicot crops and ornamentals,

but do not affect monocots such as onion and were sequenced from OSOP and OSCP

treatments. Fungal genera which can contribute to soil disease suppressiveness include non-

pathogenic Fusarium spp., Penicillium spp., and Trichoderma spp.
43

.Potential soil

suppressive DGGE bands included one Trichoderma sequence found under the OSOP

treatment, and a second found in the CSCP treatment. A number of parasitic or

entomopathogenic fungi were also identified.

Nine unique bacterial sequences including Nocaroides, Friedmaniella, Cellvibrio, and

Lysobacter species were obtained for the fully organic treatment. All nine sequences belonged

to the Proteobacteria or Actinobacteria (including Actinomcyete) groups. The occurrence of

Actinomycetes and Lysobacter species are of particular interest since they have been

implicated in soil disease suppresivenesss
44-46

. Seven unique bacterial sequences including

Friedmaniella and Mycobacterium sp. were obtained from the fully conventional treatment.

These sequences were phylogenetically more diverse and belonged to Verucomicrobia,

Parachlamidiae, Actinobacteria (including Actinomycete and Mycobacteriaceae) groups. No

onion pathogenic bacterial species were identified under any treatment.
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CONCLUSIONS

Data presented here indicate that organic management practices can have a beneficial effect

on biotic aspects of soil health in a cultivated onion crop, including microbial activity and

diversity. The sequence data is indicative of the predominance of different functional groups

(i.e. soil suppressive vs. potential pathogens) under different management practices and

warrants further investigation. Application of large scale pyrosequencing
43

and/or use of

primers for specific species or for specific functional groups in combination with DGGE, qPCR

and conventional PCR
34,47-49

would be of interest over a range of time-points to characterize

functional microbial groups under the agricultural management treatments used in this study.
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Table 1. Onion pest-control and soil treatments used in the Teagasc Kinsealy Systems

Comparison trial in 2011

PEST-CONTROL

Organic pest-control (OP) Mechanical weeding (hand hoeing).

Conventional pest-control (CP) Proplant2 (10ml m2-1 modular drench) , Roundup1 (4L ha-1) , Stomp1 (3.3L ha-1), CICP1 (4.2L ha-1), Defy1

(3.3L ha-1), Folio Gold 2 (2L ha-1), Penncozeb2 (4.4 kg ha-1).

SOIL TREATMENT

Organic soil treatment (OS) Previous crop – broccoli cv. Belstar

N 70 kg ha-1

P20kgha
-1

K215 kg ha-1

Applied as Greenvale plant food (4.5:3:3) (pelleted chicken manure + calcified seaweed) and ProKali
(3:0:14). A top dress equivalent to 35kg ha

-1
N, and contributing 25kg ha

-1
P and 24kg ha

-1
K was

applied on 22nd June 2011.

Conventional soil treatment (CS) Previous crop – broccoli / carrot / lettuce

N 70 kg ha-1

P20kgha-1

K215 kg ha-1

Applied as CAN (27% N), single superphosphate (7.8%P) and sulphate of potash (42% K). A top
dress equivalent to 35kg ha-1 N, 25kg ha-1 P and 24kg ha-1 K was applied on 22nd June 2011.

1 Herbicide, 2 Fungicide. No insecticide treatments were required.

Table 2. Primers used for DGGE PCR.

Primer Target Sequence 5’ - 3’ Product Ref.
size (bp)

FR1 Fungal 18S rDNA * AICCATTCAATCGGTAIT

FF390 Fungal 18S rDNA CGATAACGAACGAGACCT 390 1

R1378 Bacterial 16S rDNA CGGTGTGTACAAGGCCCGGGAACG

F984GC Bacterial 16S rDNA *AAC GCG AAG AAC CTT AC 433 2

* GC clamp 5’-CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCACGGGGGG -3’
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Table 3. Sole carbon source utilisation profiles on BIOLOG Eco-plates for soils under fully
organic (OSOP) and fully conventional (CSCP) treatments. Values shown are the mean area
under the curve (AUC) values for each C source ± SE (n=4). Values with the same letter were
significantly different between treatments.

OSOP CSCP

SUGAR DERIVATIVES D-Cellobiose 2.82 ± 0.06 a 0.36 ± 0.21 a

a-D-Lactose 0.74 ± 0.05 0.24 ± 0.24

p-Methyl- D-Glucoside 1.91 ± 0.35 0.71 ± 0.51

D-Xylose 0.54 ± 0.10 b 0.03 ± 0.10 b

i-Erythritol -0.07 ± 0.02 c 0.03 ± 0.02 c

D-Mannitol 2.20 ± 0.27 1.81 ± 0.16

N-Acetyl-D-Glucosamine 2.62 ± 0.24 1.79 ± 0.50

TOTAL SUGAR DERIVATIVES 10.75 ± 0.79 f 4.97 ± 1.47 f

SUGAR PHOSPHATES
D,L-a-Glycerol Phosphate

0.35 ± 0.03 0.39 ± 0.06

Glucose-1-Phosphate 0.09 ± 0.15 -0.07 ± 0.07

TOTAL SUGAR PHOSPHATES 0.44 ± 0.17 0.31 ± 0.08

CARBOXYLIC ACIDS Pyruvic Acid Methyl Ester 1.96 ± 0.13 d 1.36 ± 0.08 d

D-Glucosaminic Acid 0.29 ± 0.04 0.23 ± 0.04

D-Galactonic Acid y-Lactone 1.80 ± 0.07 1.79 ± 0.12

D-Galacturonic Acid 1.90 ± 0.15 1.55 ± 0.36

2-Hydroxy Benzoic Acid 0.60 ± 0.42 -0.01 ± 0.06

4-Hydroxy Benzoic Acid 2.36 ±0.32e 1.43 ±0.10e

y-HydroxybutyricAcid 0.15 ± 0.11 0.20 ± 0.13

Itaconic acid 1.19 ± 0.02 1.22 ± 0.61

aKetobutyric Acid -0.18 ± 0.03 -0.17 ± 0.03

D-Malic Acid 1.37 ± 0.16 0.57 ± 0.24

TOTAL CARBOXYLIC ACIDS 11.45 ± 0.46 g 8.16 ± 1.15 g

AMINO ACIDS L-Arginine 2.03 ± 0.23 1.48 ± 0.21

L-Asparagine 3.75 ± 0.32 3.25 ± 0.22

L-Phenylalanine 0.49 ± 0.07 0.16 ± 0.11

L-Serine 2.37 ± 0.18 2.13 ± 0.15

L-Threonine 0.16 ± 0.19 -0.09 ± 0.04

Glycyl-L-Glutamic Acid 0.25 ± 0.12 0.09 ± 0.12

Phenylethylamine 1.46 ± 0.38 1.02 ± 0.14

Putrescine 1.90 ± 0.27 1.94 ± 0.07

TOTAL AMINO ACIDS 12.40 ± 1.09 9.98 ± 0.42

POLYMERS Tween40 1.05 ±0.06 0.64±0.21

Tween80 1.72 ± 0.13 1.86 ±0.15

a-Cyclodextrin 0.29 ± 0.12 0.03 ± 0.07

Glycogen 2.67 ± 0.58 0.92 ± 0.69

TOTAL POLYMERS 5.73 ± 0.64 h 3.44 ± 0.87 h



20



21

Table 4. Identification, classification and assigned Genbank accession numbers of cloned fungal 1 8s SSU ribosomal DGGE bands from soil under different treatments.

Potential onion pathogens are indicated in bold. Potential soil disease suppressive fungal genera are highlighted in grey text.

Soil Pest control DGGE Band Identity Closest hit (blast n) Maximum Genbank
treatment treatment identity Accession

number

CS CP K5 Mortierella sp. Mortierella sp (EU71 0842.1) 99% JX560271

CS CP K5b Mortierella sp. Mortierella sp. (JF895929.1 ) 99% JX560272

CS CP K5c Mortierella sp. Mortierella sp. (JF895929.1 ) 99% JX560273

CS CP K5d Mortierella sp. Mortierella sp. (JF895929.1 ) 99% JX560274

CS CP K6 Tricholoma sp. Tricholoma ponderosum (D84673. 1) 98% JX560275

CS CP K6b Chaetomium globosum Chaetomium globosum (JN639021 .1) 99% JX560276

CS CP K6c Fusarium sp. Fusarium oxysporum (JF807401 .1) 100% JX560277

CS CP K1 1b Similar to Proleptomonas faecicola Proleptomonas faecicola (GQ377682. 1) 86% JX560284

CS CP K1 1 d Similar to Stilbella fimetaria Stilbella fimetaria (FJ939395. 1 ) 99% JX560285

CS CP K1 1 e Similar to Nectria lugdunensis Nectria lugdunensis (AY357278.1 ) 99% JX560286

CS CP K1 1f Similar to Spathaspora sp. Spathaspora passalidarum (DQ232894.1 ) 89% JX560287

CS CP K1 1g Similar to Resupinatus alboniger Resupinatus alboniger (DQ851 586.1) 100% JX560288

CS CP K1 1 h Chaetomium globosum Chaetomium globosum (JN639021 .1) 99% JX560289

CS CP K7c Thelebolus sp. Thelebolus sp. (GU004234.1 ) 99% JX560278

CS CP K7b Tricholoma sp. Tricholoma ponderosum (D84673. 1) 98% JX560279

CS CP K7d Anguillospora sp. Anguillospora mediocres (AY357264.1) 99% JX560280

CS CP K10a Phoma sp. Phoma sp. (JQ83801 1.1) 99% JX560281

CS CP K10b Trichoderma sp. Trichoderma harzianum (JQ806366.1) 99% JX560282

CS CP K1 0c Similar to Tricholoma sp. Tricholoma ponderosum (D84673. 1) 97% JX560283

CS OP K1 Mortierella sp. Mortierella sp. (EU71 0842.1) 98% JX560256

CS OP K1 b Similar to Acremonium Acremonium minutisporum (HQ2321 99.1) 98% JX560257

CS OP K1 c Fusarium merismoides Fusarium merismoides (AF1 41950.1) 100% JX560258

CS OP K1d Chaetomium globosum Chaetomium globosum strain (JN639021 .1) 100% JX560259

CS OP K1e Phoma sp. Phoma exigua var. Exigua (EU342941 .1) 99% JX560260

CS OP K2a Chaetomium globosum Chaetomium globosum (JN639021 .1) 99% JX560261

CS OP K2b Fusarium oxysporum Fusarium oxysporum (JQ926985.1) 100% JX560262

CS OP K3 Phoma sp. Phoma sp. (JQ83801 1.1) 99% JX560263
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CS OP K3b Aspergilus sp. Aspergillus niger (JX1 12703.1) 99% JX560264

CS OP K3c Phoma sp. Phoma sp. (JQ83801 1.1) 99% JX560264

CS OP K3d Rhizoctonia solani Rhizoctonia solani (D85643.1) 99% JX560266

CS OP K4a Thelebolus sp. Thelebolus sp. (GU004234.1 ) 100% JX560267

CS OP K4b Cladosporium sp. Cladosporium bruhnei (JN397376.1) 99% JX560268

CS OP K4e Thelebolus sp. Thelebolus sp. (GU004234.1 ) 98% JX560269

CS OP K4f Chaetomium globosum Chaetomium globosum (JN639021 .1) 99% JX560270

OS CP K1 2a Similar to Elaphocordyceps sp. Elaphocordyceps ophioglossoides (JN941 734.1) 99% JX560290

OS CP K12b Chaetomium globosum Chaetomium globosum (JN639021 .1) 99% JX560291

OS CP K12d Similar to Verticillium sp. Verticillium sp. (AJ557787.1 ) 99% JX560292

OS CP K1 5a Chaetomium globosum Chaetomium globosum (JN639021 .1) 99% JX560293

OS CP K1 5b Similar to Phyllachora graminis Phyllachora graminis (AF064051 .1) 98% JX560294

OS CP K1 5c Fusarium sp. Fusarium oxysporum (JQ926985.1 ) 100% JX560295

OS CP K16a Chaetomium globosum Chaetomium globosum (JN639021 .1) 100% JX560296

OS CP K16b Similar to Humicola sp. Humicola sp. (EU71 0839.1) 99% JX560297

OS CP K1 7b Trichosporon sp. Trichosporon gracile (JN939432. 1) 100% JX560298

OS CP K1 7c Similar to Chytridium polysiphoniae Chytridium polysiphoniae (AY032608. 1) 96% JX560299

OS OP K1 8a Cordyceps gunnii Cordyceps gunnii (HM1 35160.1) 99% JX560300

OS OP K18b Similar to Miladina lecithina Miladina lecithina (DQ646538.1 ) 99% JX560301

OS OP K18c Chaetomium globosum Chaetomium globosum (JN639021 .1) 99% JX560302

OS OP K18d Verticillium sp. Verticillium sp. (AJ557787.1 ) 99% JX560303

OS OP K1 9a Mucor sp. Mucor hiemalis (JN397378. 1) 99% JX560304

OS OP K19b Mortierella sp. Mortierella sp. (JF895929.1) 99% JX560305

OS OP K20a Mortierella sp. Mortierella indohii (EU688965. 1) 99% JX560306

OS OP K20c Chaetomium globosum Chaetomium globosum (JN639021 .1) 100% JX560307

OS OP K21 c Powellomycetaceae sp. Powellomycetaceae sp. (HQ901 755.1) 99% JX560308

OS OP K21d Chaetomium globosum Chaetomium globosum (JN639021 .1) 100% JX560309

OS OP K21b Similar to Clavicepspurpurea Clavicepspurpurea (AB490177.1 ) 99% JX560310

OS OP K22b Similar to Trichoderma sp. Trichoderma sp. (JF895925.1 ) 99% JX56031 1
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