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Abstract. In this note, we consider the linear topological invariant e
 for
Fréchet spaces of global analytic functions on Stein manifolds. We show that
O (M) ; for a Stein manifold M; enjoys the property e
 if and only if every
compact subset of M lies in a relatively compact sublevel set of a bounded
plurisubharmonic function de�ned on M: We also look at some immediate
implications of this characterization.

1. Introduction

Spaces of analytic functions, regarded as an important class of nuclear Fréchet
spaces contributed amply to the development of the structure theory of Fréchet
spaces. A profound example is the pioneering result of Dragilev [6] on the ab-
soluteness of bases in the space of analytic functions on the unit disc with the usual
topology. This paved the way to the far-reaching theorem of Dynin-Mitiagin [7] on
the absoluteness of bases in every nuclear Fréchet space. Many more examples could
readily be provided. Of course this in�uence has not been one-sided. Techniques
and concepts from functional analysis were extensively used in complex analysis.
Advances in the structure theory of Fréchet spaces, found some applications in the
Mitiagin-Henkin [10] program on the linearization of basic results of the theory of
analytic functions. (See, for example [2],[17],[3]). In order to use the results of the
structure theory of Fréchet spaces e¤ectively it is imperative to analyze the complex
analytic properties shared by the complex manifolds whose analytic function spaces
possess a common linear topological invariant. The present note is written from
this perspective and aims to characterize Stein manifolds whose analytic function
spaces possess the property e
 of Vogt [13]. (See section 1 for the de�nition)

Throughout this note we will denote the space of analytic functions on a Stein
manifold M with the compact-open topology by O (M).

In the �rst section we compile some background material for the linear topo-
logical invariant e
.

The second section is devoted to the proof of the characterization of Stein
manifolds M for which O (M) has the property e
 as those manifolds with the
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property that every compact set of M lie in a precompact sublevel set of a suitably
chosen bounded plurisubharmonic function (on M).

Considering the class of Stein manifolds M for which O (M) has the propertye
; in the third section we show, as an immediate corollary of the characterization
theorem, the existence of pluricomplex Green functions with certain special prop-
erties for this class. The note ends with two examples among bounded domains in
C; one in the class and one not in the class.

The manifolds considered in this note are always assumed to be connected. We
will use the standard terminology and results from functional analysis and complex
potential theory, as presented in [9] and [8] respectively. Throughout this note, the
notation �� will be used to denote relatively compact containments.

2. The linear topological invariant e

In this section we give some background material on the linear topological

invariant e
:
Definition 1. (Vogt [13]) Let E be a Fréchet space with a generating system

of seminorms (k:kk)k. E is said to have the property e
; in case :
8p 9 q; d > 0; 8k 9 C > 0 8'�E� : k'k�q � C

�
k'k�p

� d
1+d �k'k�k� 1

1+d

where
�
k:k�k

�
k
are the seminorms dual to (k:kk)k :

Note that this property does not depend on the generating semi-norm system.
If E is a nuclear Fréchet space, it turns out that the conditions below are also
equivalent to the condition given in the de�nition of the property e
 :

� There exists a closed bounded absolutely convex set B in E :

8p 9 q; d > 0; 9 C > 0 8'�E� : k'k�q � C
�
k'k�p

� d
1+d �k'k�B� 1

1+d

� There exists a closed bounded absolutely convex set B in E :

8p 9 q; d > 0; C > 0; such that for all r > 0 :

Uq � CrB +
1

rd
Up

� 8p 9 q; d > 0; 8k 9C > 0; such that for all r > 0 :

Uq � CrUk +
1

rd
Up

where Us denotes the unit ball of the seminorm kks, s = 1; 2; ::: (see [12],
[5]).

This property is stronger than 
; and is weaker than 
 conditions of Vogt, and
as with all 
- type invariants, is inherited by quotients [13]. This invariant plays
an important role in investigations of �nding "non-polar" bounded sets in nuclear
Fréchet spaces initiated by a question of P.Lelong. We refer reader to [5] for details
on this matter.

Another interesting feature of nuclear Fréchet spaces with the property e
 is
that continuous linear operators from such a space into a nuclear weakly stable
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in�nite type power series space are necessarily compact [13]. In particular nuclear
weakly stable in�nite type power series spaces, e.g. O (M) ; for parabolic Stein
manifolds M [4], cannot not have the property e
: More generally we have,

Proposition 1. Let X be a nuclear Fréchet space. If the diametral dimension
is equal to the diametral dimension of an nuclear weakly stable in�nite type power
series space the X cannot have the property e
:

Proof. Suppose that X has the property e
 and assume that the diametral
dimension of X; �(X) ; satis�es �(X) = � (�1 (�n)) for some nuclear weakly
stable exponent sequence (�n) : Choose a generating seminorm system (k:kk)k so
that p+ 1 is the index q assigned to p by the condition e
.

Let F $ f(xn) : sup jxnj dn (Up+1; Up) <1;8pg with the natural Fréchet space
structure.

Since F is in �(X) ; and �(�1 (�n)) = ((xn) : 9 R � 1; sup jxnjR�n <1) ;
in view of Grothendieck factorization theorem there is an R0 such that

8p , lim sup
n

� ln dn (Up+1; Up)
�n

� lnR0.

On the other hand considering the usual topology on �(X) [11], which rep-
resents it as a projective limit of inductive limit of Banach spaces, the continuous
inclusion �(X) � �(�1 (�n)) gives:

8R � 1 and p 9 q, C > 0 : sup
n
R�ndn (Uq; Up) � C:

In particular :

8R � 1 and p 9 q : lnR � lim inf
n

� ln dn (Uq; Up)
�n

We now utilize the condition e
, which in our notation, reads as: There exists
a closed bounded set B � X such that:

8p 9 d > 0 ; C > 0; such that for all r > 0 :

Up+1 � CrB +
1

rd
Up:

Following the argument given in [11], we arrive at the estimate:

8p 9 d > 0 ; C > 0, �ln dn (B;Up) � (1 + d) (� ln dn (Up+1; Up))+C, n = 1; 2; :::.

Lets �x a p and choose an R >> (R0)
(1+d) where d is the constant appearing

in the above equation: Putting all the above implications together, we get;

lnR � lim inf
n

� ln dn (Uq; Up)
�n

� lim inf
n

� ln dn (B;Up)
�n

� lim inf
n

(1 + d) (� ln dn (Up+1; Up))
�n

� (1 + d) lnR0:

This contradiction �nishes the proof of the proposition. �

We would like to �nish this section by making some immediate observations,
in view of the things said above, about the class of Stein manifolds whose analytic
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function spaces have the property e
: Smoothly bounded domains of holomorphy
in Cn; complete bounded Reinhard domains, more generally hyperconvex Stein
manifolds belong to this class since their analytic function spaces possess a stronger
property 
 [15] [1]. On the other hand Cd, d = 1; 2; ::, or more generally, parabolic
Stein manifolds do not belong to this class [4].

3. Main result

In this section we give a characterization of Stein manifoldsM for which O (M)
has the property e
:

Theorem 1. Let M be a Stein manifold. The Fréchet space O (M) has the
property e
 if and only if for every compact subset K of M there exists a negative
plurisubharmonic function ' on M and a � < 0 such that

K � (z�M : ' (z) < �) ��M:

Proof. Throughout the proof we will use the notation of Lemma 1 of [1]. To
this end we �x a hermitian metric onM , and denote by d" the measure cd� where �
is the measure (equivalent to the volume form) and c is the positive continuous func-
tion, respectively, of Lemma 1 [1]. We also choose a C1 strictly plurisubharmonic
exhaustion function � of M and let,

Dn $ (z�M : � (z) < n) , n = 1:2::::.

()) It su¢ ces to show that each Kn $ Dn, n = 1; 2; :::, is contained in a
relatively compact sub-level set of a bounded plurisubharmonic function. To this
end �x a Kn0 : Choose, as in [16] ([17]), a Hilbert space (H0; [:]0) with continuous
injections,

O (Kn0) ,! H0 ,! AC (Kn0)

where O (Kn0) denotes the germs of analytic functions on Kn0 with the usual
inductive limit topology and AC (Kn0) denotes the closure, in C (Kn0) ; of the
restriction of O (Kn0) to Kn0 : For n > n0, the pair fKn0 ; Dng is a regular pair in
the sense of [16] and hence the relative extremal function

!n (z) $ sup fu (z) : u�PSH (Dn) ; u � �1 on Kn0 and u � 0 on Dng
is a continuous function on Dn [16]. Clearly (!n)n>n0 forms a decreasing sequence
of plurisubharmonic functions. For k = 1; 2; :::we de�ne a norm on O (M) by:

[f ]k $
 Z

Dk+n0

jf j2 d"
! 1

2

; f�O (M) :

We will denote the corresponding Hilbert spaces by Hk, k = 1; 2; :::. The norm
system ([�]k)

1
k=0 generates the topology of O (M). Denoting the dual norms by�

[�]�k
�1
k=0

, there exists, in view of our assumption, an index n1 and d > 0 so that,

8k 9 C > 0 : [:]�n1 � C
�
[:]
�
k

� d
1+d
�
[:]
�
0

� 1
1+d :

Fix an m > n1: The inclusion �m : Hm ,! H0, being a compact continuous
operator, can be represented as

�m (x) =
X
n

�nhx; fnimen, 8n; �n � 0 ; lim�n = 0;
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for some orthonormal sequences (fn)n, (en)n of Hm and H0 respectively. Let

dn $ � ln�n; n = 1; 2; :::
We will regard, �m as inclusion and identify fn with �nen; n = 1; 2; :::. It

is shown in [1] ([16]) that (en)n forms a basis of O (Dm+n0) and that this space
can be represented as a �nite center of the Hilbert scale generated by Hmand H0:
Moreover the coordinate functionals (e�n)n on O (M) satisfy

[e�n]
�
m = e

�dn ; n = 1; 2; :

In view of Proposition I.11 of [1] ([16]), the relative extremal function can be
represented as:

1 + !n0+m (z) = lim sup
�!z

lim sup
n

ln jen (�)j
dn

8z�Dn0+m nKn0 :

Fix an �; with 0 < � < d
1+d : In view of Hartogs lemma (Theorem 2.6.4 [8]):

8� > 0 9 C > 0 : jenjK�
� Ce�dn

where j:j
��
denotes the sup norm on the precompact sub-level set

�� $ (z�Dn0+m : 1 + !n0+m (z) � �) :
For a given f�O (M) we estimate on �� :

jf (z)j �
X
n

je�n (f)j jen (z)j � C
X
n

[e�n]
�
n1
[f ]n1 e

�dn

� C
X
n

�
[e�n]

�
m

� d
1+d
�
[e�n]

�
0

� 1
1+d [f ]n1 e

�dn

� eC  X
n

e(��
d

1+d )dn

!
[f ]n1 � bC [f ]n1

since (dn) = O
�
n

1
dimM

�
([17]). Moreover from the de�nition of [:]n1 ; there is a

constant C which does not depend upon f such that

[f ]n1 � C jf jKn0+n1+1

where j:jKn0+n1+1
denotes the sup norm on Kn0+n1+1: Hence we have the estimate

9 C1 > 0 : jf j�� � C1 jf jKn0+n1+1
;8f�O (M) ;

between the sup norms. By considering powers, as usual, we can take C1 = 1; and
also taking into account that Kn0+n1+1 = Dn0+n1+1 is holomorphically convex in
M; we see that

Kn0 � (z�Dn0+m : 1 + !n0+m (z) � �) � Dn0+n1+1 ��M
for a �xed �; with 0 < � < d

1+d and for every m > n1:
We let

!n0 $ lim
m

!n0+m:

Being the limit of a decreasing sequence of plurisubharmonic functions, !n0 is
a negative plurisubharmonic function onM and is identically �1 on Kn0 : Moreover
for any � with 0 < � < d

1+d ; we have:

Kn0 � fz�M : !n0 < �g � Dn0+n1+1 ��M:
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(() In this part of the proof we will follow the argument given in Th1 of [1]
rather closely. Using the notation �xed at the beginning of the proof we �x a
generating system for O (M) given by the norms,

kfkk $
�Z

Dk

jf j2 d"
� 1

2

where Dk =(z�M : � (z) � k) ; k = 1; 2; :: :As usual we will use the notation Uk
to denote the unit ball corresponding to kkk, k = 1; 2; :::.

Let k0�N be given. By our assumption there is a negative plurisubharmonic
function � on M and �1 < 0; such that,

Dk0 � (z�M : � (z) < �1) ��M:
Choose negative numbers �0 < �1, �2 and k1�N; k0 << k1 such that

Dk0 � (z�M : � (z) < �0) � (z�M : � (z) < �1)

�� Dk1 � (z�M : � (z) < �2) :

and let

� $ Dk1 ; 
+ $ (z�M : � (z) < �1)

c
:

For a �xed t > 0; we let,

�t (z) $ �
t

�0
� (z) + t:

Clearly �t is a bounded plurisubharmonic function on M .

Fix an f�O (M) with kfkk1 $
�R

Dk1
jf j2 d"

� 1
2 � 1:

For such an f; we have the estimate,Z

�\
+

jf j2 e��td� � C sup
w�
�\
+

e��t(w) � Ce��t

for some C > 0 where � $ 1� �1
�0
:

In view of Lemma 1 of [1] we can decompose f on 
� \ 
+ as f = f+ + f�
with f+�O (
+) ; f��O (
�) ; moreover,Z


+

jf+j2 e��td" � Ce��t;
Z

�

jf�j2 e��td" � Ce��t

for some constant C > 0 which is independent of f and t:
Hence, Z


+

jf+j2 d" � Cet(1��);
Z

�

jf�j2 d" � Cet(1��)

Taking into account that �t � 0 on Dk0 , we also have;Z
Dk0

jf�j2 d" �
Z
Dk0

jf�j2 e��td" � Ce��t:

Set

F =

�
f+ on 
+

f � f� on 
�
The function F is analytic on M and from above we see that there is a K > 0 :Z

jF j2 d" � Ket(1��):
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Also from the above considerations we have :Z
Dk0

jF � f j2 d" =
Z
Dk0

jf�j2 d" � Ce��t

Now let

B $
�
g�O (M) :

Z
jgj2 d" � 1

�
:

Setting r = et(1��); the analysis above can be summarized as:

8 k0 9 k1 and C > 0 : Uk1 �
1

r
�

1��
Uk0 + CrB 8r � 1:

Since the inclusion above is trivially true for 0 < r � 1 we conclude that O (M)
has the property e
:

This �nishes the proof of the theorem. �

4. Concluding Remarks

Although the assignmentM ! O (M) from Stein manifolds, into Fréchet spaces
is not a complete invariant, often,some complex potential theoretic properties of the
given manifold M can be deduced from the knowledge of the type of the Fréchet
space O (M) : We will look for a case in point in the context of the property e
:

LetM be a Stein manifold and z0�M: Recall that the pluricomplex Green func-
tion gM (�; z0) ofM with pole at z0 is the plurisubharmonic function onM de�ned
as:

gM (z; z0) = lim sup
�!z

fsupu (�) : u �PSH (M) ; u � 0; and

(in the local coordinates) u (w)� log kw � z0k � O (1) as w ! z0g

(see [8] and the references given there). In one variable it coincides with the classical
Green function and as is well known, they exists if and only if the space is not
parabolic. Moreover if it exists, it is harmonic o¤ its pole hence is a very "regular"
function. The situation is rather di¤erent in higher dimensions. ([8], p.232). For
example, denoting the unit disc by �, if we look at the domain C � � � C2; we
immediately see that gC�� ((z; w) ;0) = log jwj ; so the pluricomplex Green function
is identically �1 on the whole complex line C� (0) :

Let us call a plurisubharmonic function u :M ! [�1;1) semi-proper in case
there exists a number c such that (z�M : u (z) < c) is non-empty and is relatively
compact in M: As a corollary of our theorem we have,

Corollary 1. Let M be a Stein manifold and assume that O (M) has the
property e
: Then for each z0�M; the pluricomplex Green function

gM (�; z0) is semi proper and satis�es gM (�; z0)�1 (�1) = (z0) :

Proof. Fix z0�M; and choose a compact set K containing z0 in its interior:
In view of the theorem above, there exists a negative plurisubharmonic function �
on M and c > 0 such that

K � (z�M : � (z) < �c) ��M:
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Let �c+ $ maxz�K � (z) and set b� $ �+c+:We choose a strictly pseudoconvex,
D ��M with

K � (z�M : b� (z) < 0) � (z�M : b� (z) < �) �� D ��M

where � $ c+ � c: We let � $ gD (�; z0) : The plurisubharmonic function � is a
nice function, in the sense that e� is continuous on D ([8, Corollary 6.2.3]). We �x
r1 < r2 < 0 so that

(z�D : � < r1) � K � (z�M : b� (z) < �) �� (z�D : � < r2) �� D ��M:

Finally set

� $
�
r2 � r1
�

�b� + r1:
We will consider the open sets

U $ (z�D : � < r2) ; V $ (z�D : � < r1)
c \ (z�D : � < r2)

of D: For any z�@V \ U , lim sup�!z � (�) � � (z), by construction. Hence in view
of Corollary 2.9.15 [8], the function u de�ned by;

u $
�
max (�;�) on V

� on U � V

is a plurisubharmonic function on U $ (z�D : � < r2).
Moreover on (z�M : b� (z) < �)c\(z�D : � < r2), max (�;�) = �: Hence we can

extend u to a bounded plurisubharmonic function on whole of M by setting u to
be equal to � outside (z�D : � < r2) : Now u � supM u; is a semi-proper negative
plurisubharmonic function and since near z0; it is equal to gD (�; z0)� supM u;

gD (�; z0) � u� sup
M
u

on M: From this, it follows that gD (�; z0) is a semi-proper plurisubharmonic func-
tion with gD (�; z0)�1 (�1) = (z0) : This �nishes the proof of the corollary. �

We would like to �nish this note by looking at two simple, yet typical examples.
The �rst example we want to look at is the punctured unit disc, ��f0g : Since

every bounded plurisubharmonic function on it extends to a bounded plurisubhar-
monic function on the unit disc, it is not possible to put, say K =

�
z�C : jzj = 1

2

�
;

into a precompact sublevel set of a bounded plurisubharmonic function on ��f0g
in view of the maximum principle for plurisubharmonic functions. Actually it is
not di¢ cult to see that O (�� f0g) is isomorphic to O (�) � O (C) as Fréchet
spaces. Hence O (�� f0g) admits O (C) as a quotient space and so can not have
the property e
:

The second example we will look at is also a subdomain of the unit disc. This
time we will throw away in�nite number of closed discs with radii tending to zero
along with the origin from the unit disc. To this end �x an n0 such that the closed
discs;

Kn $
�
z�C :

����z � 1

en

���� � 1

e
1
n3

�



PROPERTY e
 9

are disjoint for n � n0: Let


 $ ��

0@ [
n�n0

Kn [ f0g

1A :
Fix a holomorphically convex smoothly bounded compact subsetK of 
: Choose

a subdomain � of 
 obtained from � by deleting only �nite number of K 0
ns de�ned

above such that it contains K as a holomorphically convex (in �) ; compact subset.
Since � is hyperconvex ([8], p 80), the relative extremal function !�K of K; ( in �) ;
is a continuous function and

�
z�� : !�K (z) = �1

�
= K ([16]). For constants c near

�1; the corresponding sublevel sets of !�K restricted to 
; are precompact in 
 and
certainly they contain K: Since we can �nd an exhaustion of 
 by such compact
sets K; the space O (
) has the property e
, in view of the theorem above. However,
O (
) does not have the stronger property 
. This follows because the radii (rn)n
of the deleted discs satisfy; X n

ln
�
1
rn

� <1;
and hence, by a result of Zaharyuta [14], O (
) � O (�) : In fact not much is known
about the linear topological properties of the Fréchet space O (
) :
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