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Abstract

This thesis studies the performance, performance persistence, survival and flow of Com-

modity Trading Advisors, also known as CTAs or Managed Futures Funds. One of the

main contributions of this thesis is the novel classification of CTA strategies. This is

obtained by hand-collecting information frequently by directly contacting the funds in

the database. I thus identify two main trading styles: Systematic and Discretionary

CTAs which are the main focus of this thesis. I further separate Systematic CTAs

into trend-followers with differing trading horizon. This novel dataset allows me to re-

consider many hitherto studied issues in the CTA space with an application to these

sub-strategies.

The first section investigates the differences in mortality between Systematic and

Discretionary CTAs, over the longest horizon than of any in the literature. A detailed

survival analysis over the full range of CTA strategies is provided. Systematic CTAs

have a higher median survival than Discretionary CTAs, 12 vs. 8 years. I hand collect

information on reasons for exit from the database. I propose new filters that will bet-

ter identify real failures among funds in the graveyard database. Separating graveyard

funds into real failure I re-examine the attrition rate of CTAs. The real failure rate

is 11.1%, lower than the average yearly attrition rate of 17.3% of CTAs. The effect of

various covariates including several downside risk measures is investigated in predicting

CTA failure. Controlling for performance, HWM, minimum investment, fund age and

lockup, funds with higher downside risk measures have a higher hazard rate. Compared

to other downside risk measures, the volatility of returns is less able to predict failure.

Funds that receive larger inflows are able to survive longer than funds that do not. Large
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Systematic CTAs have the highest probability of survival.

The second part studies the performance and performance persistence of Systematic

and Discretionary CTAs. Controlling for biases, after fees the average CTA is able to

add value. These results are strongest for large Systematic CTAs. I extend the seven-

factor model of Fung-Hsieh (2004a) and find that this model is better able to explain the

returns of Systematic rather than Discretionary CTAs. I find three structural breaks in

the risk loadings of CTAs different to hedge fund breaks: September 1998, March 2003

and July 2007. Using these breaks I show that systematic CTAs were able to deliver

significant alpha in every sub-period. I also find evidence of significant performance per-

sistence. However, these findings are heavily contingent on the strategy followed: the

persistence of Discretionary CTAs is driven by small funds whereas large funds drive the

performance persistence of Systematic funds. These results have important implications

for institutional investors who face capital allocation constraints. They also suggest that

contrary to the previous findings, the CTA industry does not appear to be heading to-

wards zero alpha.

The final section looks at the relationship between fund-flows and performance. In-

vestors chase past performance, the fund- flow -performance is significant and concave for

some strategies. Although there is some long-term performance persistence of System-

atic funds with the highest inflows, there is no smart money effect in the CTA literature.

I find no evidence of capacity constraints among Systematic CTAs. Investors are thus

not able to smartly allocate funds to future best performers and take full advantage of

the liquidity that CTAs offer.
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Introduction

This thesis focuses on CTAs, also known as Commodity Trading Advisors or Managed

Futures Funds, a subgroup of hedge funds which accounts for approximately 10% of all

hedge funds1, with a total AUM as of December 2012 of US$329.6B2. The term CTA

represents an industry of money managers who accept compensation for trading on be-

half of their clients in the global futures and forwards markets. Originally these funds

operated predominantly in the commodities markets but today they trade in liquid fu-

tures, forwards and other financial derivatives. Gorton and Rouwenhorst (2004) find

that the risk premium on commodity futures is the same as equities, but commodity

futures are negatively correlated with equity and bond returns. Assets held in CTAs

have been growing steadily, notwithstanding the recent financial crisis of 2008, and their

double digit performance has attracted deserved attention. CTAs have also received at-

tention from academics, who have documented several interesting facts: Firstly, CTAs

differ from hedge funds in terms of trading strategies (see for example Fung and Hsieh

(1997b) who show that CTAs follow trend-following strategies). Secondly CTAs dif-

fer from hedge funds in terms of attrition rates and survivorship bias, Liang (2004)

and liquidities, Getmansky, Lo and Makarov (2004). Some studies have suggested that

1Joenvaara et al. (2012)
2Assets reported from BarclayHedge CTA database.

15



16

CTAs have nonlinear correlations with traditional assets, stocks and bonds, and have

positive skewness (Vuille and Crisan (2004)). Thus CTAs also differ from hedge funds

in terms of correlation structures in different market environments and are therefore a

good diversification tool for portfolios of stocks, bonds and hedge funds (see earlier work

by Lintner (1983), Edwards and Park (1996) and Billingsley and Chance (1996)). Kat

(2002) and Edwards and Caglayan (2001) documented that adding CTAs to a portfolio

would allow investors to achieve a substantial reduction in volatility whilst providing

protection during bear markets. This could be attributed to the strategies employed

by CTAs. Most CTAs describe themselves as trend-followers. Fung and Hsieh (1997b)

show that the returns of the trend-following funds can be replicated using portfolios of

lookback straddles. Kazemi and Li (2010) further document that CTAs have market-

timing ability rather security selection and systematic CTAs are more skilled at market

timing than their discretionary counter parts.

Given the growing interest in this asset class, this thesis builds on earlier CTA lit-

erature, by analysing the performance, performance persistence, survival and asset flow

of CTAs. However, unlike earlier literature that mainly treats CTAs as one group of

funds, this thesis identifies and analyses the differences between the two main CTA

trading styles: systematic and discretionary. A recent Financial Times article3 high-

lights the differences between systematic and discretionary CTAs: “Should investors

favour the systematic approach, sometimes known as the black box approach, that re-

lies on computers responding to the asset selection instructions programmed into it and

removes any element of panic in attempting to ride changes in market conditions? Or

should they favour the discretionary approach that relies on the instinct and experience

3The Financial Times, June 9, 2012, “A true CTA will stick to chosen path.” by Brian Bollen.
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of humans who can smell a significant change in markets and take the necessary steps

to avoid unwanted volatility?” The systematic approach relies heavily on quantitative

models that generate buy and sell signals. These funds are fully automated and are fine

tuned over time to adapt to changing market environments. Discretionary funds, on the

other hand, base their strategies on fundamental or technical indicators or both and rely

heavily on a single manager. Thus the experience of the manager becomes key. Most

of the systems used by both types of funds are either trend-following, counter-trend

or some may engage in spread/relative value strategies. Trend-followers do not predict

trends but rather jump on them once they are identified by the system, following moving

averages or momentum indicators.

Given the differences in trading approach between systematic and discretionary

funds, there is much debate among practitioners between the advantages of the two

systems. The above mentioned article from the Financial Times addresses some points:

“Systematic trading takes the emotional element out of trading. Systematic allows for

historical back and forward testing of the trading model. Systematic allows the CTA to

trade in multiple markets simultaneously. It also removes some of the key personnel risk.

If a trader or portfolio manager leaves the firm, the CTA can still use the same model.

Advantages of the discretionary approach include the ability to move quickly to put on

or take off positions.” However, the article notes that discretionary trading has some

limitations: “It can be difficult to remove emotional elements from trading. It can be

difficult for one person to trade multiple markets simultaneously. If the decision-making

person leaves the firm, it could be tricky to maintain the same trading methods or ideas.”

Thus the arguments point to some advantages of systematic trading over discretionary.

Does the evidence support this view? In this thesis I aim to answer this question by



18

addressing the differences in survival, performance and performance persistence and the

effect of flows on performance between systematic and discretionary CTAs.

The first part of this thesis addresses the differences in mortality between systematic

and discretionary CTAs. If discretionary CTAs are more affected by the behavioral ele-

ments of human trading as well as key man risk then this will likely have an impact on

the survival of discretionary funds. Risk management is key to the success and survival

of a CTA over the long-term. CTAs will try and jump on every possible trend, with the

success of the strategy dependent on a successful stop-loss policy. Algorithmic trading

may provide a more reliable exit to unprofitable trades, rather than human judgement

impaired by emotions which could lower fund survival rates. With this hypothesis I look

at at the survival rates of the two trading systems.

Literature on CTA survival is rather sparse. This study makes several contributions

to the literature on CTA failure. Firstly, unlike previous research on CTA survival

(Brown, Goetzmann and Park (2001), Rouah (2005) and Gregoriou, Hubner, Papageor-

giou and Rouah (2005)) this study distinguishes the “real failure rate” from the attrition

rate of CTAs. This is not the first study to distinguish failure rate from attrition rate.

Previous studies have addressed this issue in the hedge fund literature only, Liang and

Park (2010). Defining failure in the hedge fund and CTA literature is a significant chal-

lenge as information on the reasons for exit from the database is rarely available. To

circumvent this problem I hand collected information on liquidation by directly con-

tacting many of the funds in the database, searching extensively on the internet and

collecting information from private sources. I am able to show that the filters proposed

in the previous hedge fund studies to distinguish failure rate are incomplete or at least

are not entirely appropriate for CTA data and provide extensions that allow one to
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discriminate between truly failed funds and those that liquidated for other reasons or

are in the graveyard because they simply stopped reporting to a database. Using this

information I re-examine attrition in the CTA industry. I find that the real failure rate

is in fact 11.1% lower than the average attrition rate of 17.3% and much lower than

previously documented levels. I also show that the failure rate of systematic CTAs is

lower than that of discretionary funds, 10.4% vs. 12.2% with an even larger difference

in the attrition rates. I further study fund survival and find that the median survival

of systematic CTAs is significantly higher than the previously reported median survival

for the entire CTA industry, 12 years vs. 2 years reported in Brown, Goetzmann and

Park (2001).

To pursue the survival issue further, I investigate the factors that determine man-

ager exit from the industry. Unlike previous studies on CTA survival, I use Cox (1972)

proportional hazards (PH) model with time-varying coefficients rather than fixed coeffi-

cients and incorporate various downside risk measures. I implement a survival analysis

for each of the three definitions: i) attrition, ii) liquidation and iii) failure. Explicitly

separating real failure from discretionary closures in the survival model avoids blurring

the effect of predictor variables on survival, Rouah (2005). The results of this analy-

sis show that CTA survival is heavily contingent on the strategy followed by the fund.

Secondly, size and fund-flows have a positive effect on CTA survival. Furthermore, with

the addition of other downside risk measures, standard deviation loses its explanatory

power. Finally, systematic and in particular large systematic CTAs have the lowest

probability of failure.

In the second part of the thesis, I present new stylized facts about CTA data biases,

performance and performance persistence. Before using data on CTAs one must address
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and minimize data biases. These according to Fung and Hsieh (2009), although well

documented in the literature, need to be updated in light of the recent financial crisis.

I find that despite an increase in the attrition rate during 2008 and 2009, the effect on

survivorship bias is negligible and results remain consistent with earlier literature: Sur-

vivorship bias for CTAs for the period 1993 to 2010 remains at 3.92% similar to the 3%

reported by Fung and Hsieh (1997b). The effect of instant history bias is also shown to

be in line with earlier results in the literature4. Using this bias-adjusted data, I provide

evidence suggesting that the average CTA is able to deliver positive and economically

as well as statistically significant risk-adjusted performance. More specifically, the ag-

gregate equally-weighted index of excess returns of all CTAs earns 0.55% per month in

excess of T-Bills. This is higher than documented by Bhardwaj (2008) and contrary to

his arguments and the negative publicity of Elton et al. (1991) is suggestive that CTAs

on average do add value. Secondly, I show the average performance is sensitive to the

CTA strategy employed. In particular, the excess return of a value-weighted portfolio of

systematic CTAs delivers an annualized return of 7.08% whilst for discretionary CTAs it

is 4.68%. The highest Sharpe ratio is achieved by systematic short-term trend-followers.

This points to the fact that unlike hedge funds, the performance of systematic CTAs

is driven by large funds rather than small funds. The annualized excess return of an

equally-weighted portfolio of discretionary funds is higher than the annualised excess

return of an equally-weighted portfolio of systematic funds, indicating that the perfor-

mance of discretionary funds is driven by small funds. The performance of discretionary

CTAs has thus similar characteristics to that of hedge funds, Joenvaara et al. (2012),

Teo (2010).

4Fung and Hsieh (2000), Bhardwaj (2008).
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I further evaluate the risk attributions of CTAs and examine whether the average

CTA is able to deliver alpha. To that end, I recognise that the risk exposures are

likely to change over time, see Bollen and Whaley (2009) and Patton and Ramadorai

(2011), hence a static analysis will not be appropriate. Fung, Hsieh, Naik and Ramado-

rai (2008) identify structural breaks in the hedge fund risk exposures. I extend their

results to the CTA data and show that the structural breaks for systematic CTAs are

not the same as for hedge funds and discretionary CTAs. In particular I show that these

breaks appear to be influenced by the changes in interest rates regimes as well as stock

market events. Using these breaks, I apply the seven factor Fung-Hsieh (2004) model,

extended with additional trend-following factors and the GSCI index and show that this

model together with structural breaks is better suited to systematic CTAs rather than

discretionary funds: The adjusted R2 for systematic CTAs is 51.2% and 29.3% for discre-

tionary CTAs. This indicates that systematic funds use trend-following strategies more

consistently than discretionary funds. This resonates with the results of Kazemi and Li

(2009) and points to momentum strategies being pursued by systematic CTAs. I also

show that trend-following systematic CTAs were able to deliver statistically significant

alpha in every sub-period and that contrary to the results of Fung et al. (2008) for hedge

funds, alpha does not appear to be heading towards zero. This poses a challenge to the

Berk and Green (2004) rational model of active portfolio management. To that end, I

also investigate the issue of performance persistence. Previous studies on hedge funds

found evidence of short-term performance persistence, Agarwal and Naik (2000a) and

(2000b) and Baquero et al. (2005). Others using more robust econometric techniques

found evidence of long-term persistence, Kosowski et al. (2007), Jaganathan, Novikov

and Malakov (2010) and Boyson (2008). Sorting on the t-statistics of alpha, I find evi-
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dence of short-term performance persistence for discretionary funds and only long-term

performance persistence for systematic funds. Furthermore, these results appear to be

sensitive to rebalancing frequency, fund strategy and fund size. In particular, contrary

to the results in the hedge fund literature, Teo (2010), the performance persistence of

systematic CTAs is driven by large funds. These results lead to another question: In

light of the recent increase in assets flows to the CTA industry, is there evidence of a

fund flow-performance relationship and are there any capacity constraints.

In the last part of this thesis, I analyse the fund flow-performance relationship of

systematic and discretionary CTAs. To the best of my knowledge, the flow-performance

relationship as well as the hypothesis of capacity constraints among CTA strategies

has not been examined rigorously in the academic literature. The only analysis which

concentrates on CTAs exclusively is by Do, Faff, Lajbcygier and Veeraraghavan (2010),

however their study treats CTAs as one group. To study the fund flow-performance

relationship I use yearly (used in most hedge fund studies5) as well as quarterly data. I

employ piecewise linear regression to model the non-linearity of the relationship. I find

that contrary to the conclusions of Ding, Getmansky, Liang and Wermers (2009), the

shape of the relationship is not driven by the presence of share restrictions. Instead, time

horizon, fund size and strategy have an effect on the fund flow-performance relationship.

In particular, using quarterly rather than annual data I find a linear relationship for all

CTAs, but concave relationship for small discretionary CTAs. I find that the relation-

ship of systematic CTAs remains linear and is driven by large funds.

I further analyse the effect of fund inflows on performance persistence. For discre-

tionary CTAs, I find no evidence of long-term performance persistence, but there is

5See Ding, Getmansky, Liang and Wermers (2009).
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some evidence on a quarterly horizon when inflows are taken into account. I document

evidence of long-term performance persistence for systematic CTAs even in the pres-

ence of inflows. Furthermore, consistent with earlier findings this is driven by large

funds. This points to a lack of capacity constraints among these funds. To that end, I

rigorously test for the presence of capacity constraints in the CTA sub-strategies using

two methodologies. I find no evidence of capacity constraints among systematic CTAs

despite the large inflows into these funds. I show that over the period 1993 to Decem-

ber 2010, systematic CTAs received more asset inflows than discretionary funds. This

shows that investors are able to discriminate between the two types of funds and are

thus aware of the advantages and disadvantages of the two strategies. I therefore test for

the smart-money effect in the CTA industry. Smart-money being defined as the ability

of investors to infer the skill of a fund manager and consequently allocate more money

to those managers, subsequently receiving superior returns in the next period than the

remaining universe of investors. Applying various methodologies and consistent with

the earlier results in the literature, I am unable to find any smart-money effect either

for systematic or discretionary CTAs: Investors do not appear to be able to fully exploit

the liquidity that CTAs provide.



Chapter 1

Survival of Commodity Trading

Advisors

1.1 Introduction

Over the last decade, the CTA and hedge fund industry has more than doubled in both

size and number of funds. Estimates indicate that, at its peak in the summer of 2008,

the entire industry managed around US$2.5 trillion. The impact of the financial crisis

of 2008-2009, however, has clearly been felt by the hedge fund and CTA industries. The

crisis is arguably the largest in modern financial history and has led assets under man-

agement to fall sharply via a combination of trading losses and investor withdrawals.

Although assets under management have decreased in the hedge fund industry as a

whole, they have increased slightly in the CTA industry over the course of this crisis.

BarclayHedge reports a level of assets under management for CTAs of over US$200

billion for the end of 2009. In addition, around 50% of funds have less than US$10

million in assets, suggesting a high number of new entrants into the industry. The rapid

24
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growth of the CTA and hedge fund industries has also been accompanied by a growth

in the number and severity of failures, however. Investors recognize that whilst hedge

funds and CTAs may produce high expected returns they may also expose investors to

potentially large downside risks.

The term CTA represents an industry of money managers known as Commodity

Trading Advisors who accept compensation for trading on behalf of their clients in the

global futures and forwards markets. These funds originally operated predominantly

in commodities markets but today they invest in liquid futures and forwards markets

in commodities, currencies, fixed income and equity indices. CTAs are usually self-

regulated and registered with the National Futures Association (NFA), a self-regulatory

organization for futures and options markets. CTAs are known to have unique risks

and nonlinear returns. Fung and Hsieh (1997b) documented CTAs to have nonlinear

and non-normal payoffs due to their dynamic trading strategies and use of derivatives.

Some of the previous research suggests that CTAs demonstrate positive skewness and

excess kurtosis and a rejection of the Jarque-Bera (1980) test for normality.1 Like hedge

funds, CTAs charge a management fee and, in particular, an incentive fee which some

have argued may create an incentive for excessive risk taking.

An important issue for both private and institutional investors is how to best achieve

a targeted return with an acceptable level of risk. A possible solution would be a di-

versified portfolio with a certain portion allocated to managed futures. Lintner (1983)

showed that the risk-adjusted return of a portfolio of stocks and bonds exhibits sub-

stantially less variance at every level of expected return when combined with managed

futures. Yet a much debated issue remains whether managed futures have done well

1See Liang (2004), Park (1995), Edwards and Park (1996), Gregoriou and Rouah (2004), Schneeweis
and Georgiev (2002).
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enough on a stand alone basis to justify the high fees that they charge, Amin and

Kat (2004), Kosowski, Naik and Teo (2007), Liang (1999), Liang (2001) and Bhardwaj,

Gorton and Rouwenhorst (2008). In order to properly address the performance issue

one needs to first account for the mortality and survivorship bias associated with these

funds. Moreover, while historically most of the money held by CTAs and hedge funds

was from high-net-worth individuals, recent growth in assets under management has

been from institutional investors such as pension plans and insurance companies. Un-

like private high-net-worth individuals, to meet their obligations institutional investors

need to allocate capital on a long-term basis with reliable return streams. Selecting al-

ternative investments that are likely to produce stable returns and remain in operation

is, therefore, of particular interest to these investors. Survival analysis can be useful as

it can provide additional due diligence and aid the selection of funds that are less likely

to liquidate.

The study of survival in the CTA industry is sparse and in its virtual infancy. Al-

though previous literature points to a higher attrition rate for CTAs relative to hedge

funds, Brown, Goetzmann and Park (2001), these studies do not take into account ex-

treme market events, simply due to their limited data sample. A few studies, however,

have shown that CTAs provide downside protection during bear market conditions.2

Analyzing survival during the recent financial crisis is of particular interest to investors

who have become ever more cautious investing in hedge funds. This thesis provides a

detailed survival analysis over a new range of CTA classifications and encompasses the

longest time horizon of any examined in the literature, including the recent financial

2Edwards and Caglayan (2001), Fung and Hsieh (1997b) and Liang (2004).
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crisis of 2008.3 In doing so, it makes several contributions. The first is to distinguish

the real failure rate from the attrition rate of CTAs. By clarifying the definition of real

failure, despite the fact that to date all CTA studies have deemed the two concepts as

one, it is possible to estimate a real failure rate of the CTA industry over the longest

period so far studied. Secondly, it finds that CTA survival is heavily dependent on the

strategy of CTAs. Whilst Baquero et al. (2005) and Liang and Park (2010) find that

hedge fund style is a factor in explaining hedge fund survival, Gregoriou et al. (2005)

examine survival over a range of CTA classifications and find that survival is heavily

related to the strategy of the CTA. Whilst these authors use the CTA classifications

directly provided by the BarclayHedge database, this study makes an important contri-

bution by reclassifying CTAs into two main trading styles: systematic and discretionary,

and shows how survival is related to these styles. The life expectancy of CTAs is in-

vestigated at the aggregate level and for all classifications, whilst the impact of various

variables on survival is analyzed.

Hedge fund databases provide information on live and dead funds. Funds no longer

reporting to the database are moved into the “Graveyard”. Fung and Hsieh (2002),

however, point out that not all funds listed in the graveyard database have in fact

liquidated. Many stopped reporting for a variety of other reasons, including merging

with another fund, name change, etc. Earlier studies on hedge funds and CTAs have

regarded moving to the graveyard as representing liquidation and failure and the at-

trition rates estimated by previous research have all been based on this classification.

Defining failure is particularly challenging as it is difficult to obtain information on the

3Fung and Hsieh (2009) note that as capital flows out of the hedge fund and CTA industry at an
unprecedented rate, the attrition rate is likely to rise. The full impact of the contraction of the assets
may take some time to manifest itself however. “Consequently the liquidation statistics from the second
half of 2009 are likely to be important in estimating survivorship bias.”



1.1. Introduction 28

reasons for exit in respect to the defunct funds, although a few databases do provide

such information. In this regard, an important contribution offered by Rouah (2005)

was explicitly to examine fundamental differences between different types of exits in

hedge fund data. His study was implemented using the HFR database which provides

three drop reason categories: liquidated, stopped reporting and closed to new invest-

ment. As such, Rouah (2005) study was able to examine the effect of different exit types

on attrition statistics, survivorship bias and the survival analysis of hedge funds. When

liquidation only was considered the average annualized attrition rate dropped to 3-5%

and the bias associated with using only live funds and funds that stopped reporting,

the survivorship bias, increased to 4.6%.4 A recent study by Liang and Park (2010) on

hedge funds also accounts for the potential shortcomings of using the entire Graveyard

database, or even just liquidated funds, as failures. Even though some databases pro-

vide information on liquidated funds, the authors argue that even liquidation does not

necessarily mean failure, as some funds may liquidate for other reasons. The authors,

therefore, propose a filtering system based on fund past performance and past asset flow

analysis to distinguish failed funds from those that had voluntary closures. Using this

new dataset, the authors reexamine the effects that contribute to real failure. To date,

there are no comparative studies for CTAs exclusively, however. Furthermore, Liang

and Park (2010) explicitly exclude managed futures from their hedge fund sample.

Early studies on CTAs regarded the entire graveyard as an indication of failure be-

cause on average such funds had poor performance, Gregoriou (2002). The attrition

4The biases present in the hedge fund and CTA data and its effects on performance are well docu-
mented in the literature (Ackermann, McEnally and Ravenscraft (1999), Fung and Hsieh (2000b), Diz
(1999a), Brown, Goetzmann, Ibbotson and Ross (1992), Fung and Hsieh (1997b) and Carpenter and
Lynch (1999)), however none of the previous studies have accounted for the different exit types. As
such, Rouah (2005) is the first to demonstrate the effect of different exit types on survivorship bias.
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rate results estimated by previous studies are all based on such a classification. Thus

previous literature on CTAs suggest that they experience lower survival than hedge

funds (see Brown, Goetzmann and Park (2001), Liang (2004)). Brown et al. (2001)

determine that the attrition of CTAs is 20% versus 15% for hedge funds. Liang (2004)

uses HFR data for the period 1994-2003 and estimates that hedge funds have an attri-

tion of 13.23% in bull markets and 16.7% in bear markets, whilst CTAs have an average

attrition of 23.5%. Getmansky, Lo and Mei (2004) also find that managed futures have

the highest average annualized attrition rate, compared to other hedge fund strategies,

with a rate of 14.4%. Fung and Hsieh (1997b) and Capocci (2005) also find an attrition

of 19%. Spurgin (1999) notes that the mortality of CTAs reached 22% in 1994. Two

recent studies however find conflicting rates. Bhardwaj et al. (2008) found an attrition

rate of 27.8% whilst Xu, Liu and Loviscek (2010) found a substantially lower rate of

11.96%. Both studies covered the latest period but used different databases. This could

account for the difference in results. As stressed by Xu et al. (2010), however, it is

important to account for attrition rates in light of the effect of the recent crisis on the

industry.

This study extends the most recent advances in survival analysis in the hedge fund

literature to CTAs, whilst encompassing the longest time period so far studied for CTAs.

To date there appears to have been no study that has analyzed CTA attrition and sur-

vival using different exit types. The most recent CTA survival study by Gregoriou,

Hubner, Papageorgiou and Rouah (2005) treats all funds in the graveyard as liquidated

possibly due to the limitations of their database. In fact the authors explicitly make a

strong assumption that all funds in the database that have stopped reporting did so due

to poor returns. The authors use the BarclayHedge database for the period 1990-2003.
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Unfortunately, BarclayHedge does not provide exit reasons for many funds in the grave-

yard. While, this study also employs BarclayHedge, since it provides the most extensive

database of CTAs, it builds on the methodology of Liang and Park (2010) to identify

failures in the CTA graveyard. One of the key contributions of this study is to extend

the failure filters proposed by Liang and Park (2010); it shows that their two return and

AUM filters are incomplete and applies extended filters to the BarclayHedge database

to reclassify the exit types of the graveyard into those that liquidated and those that are

alive but no longer report. It also separates real failures from liquidated funds. These

new criteria are based on an examination of all available information on defunct funds.

Many of the funds in the database have been contacted to confirm their liquidation

status and reason for exit. Certain information was obtained from private commercial

sources and extensive internet searches.

The second contribution of this study is to reclassify the entire CTA database into in-

vestment styles that are more commonly used in the industry. Unlike previous research,

therefore, CTAs are separated into two distinct styles: Systematic and Discretionary.

Systematic CTAs base their trading on technical models devised through rigorous statis-

tical and historical analysis. Investment decisions are made algorithmically and thus all

the rules are applied consistently and there is limited uncertainty as to their application.

The last decade has witnessed an increase in the complexity and breadth of quantitative

financial research; an increase that has been fueled by the greater availability of financial

and economic data as a result of the relentless increase in computing power. Systematic

trading that requires intensive quantitative research and the use of sophisticated com-

puter models has thus become more prevalent. Most of the entrants into this field are

trained scientists and engineers. Park, Tanrikulu and Wang (2009) argue that system-
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atic traders may hold significant advantages over discretionary traders. Even though

discretionary traders may also follow trends they still base their trading decisions on

manager discretion. Thus one of the challenges facing discretionary traders is the control

of human emotion in reacting to difficult market conditions. Systematic programs do

not have this weakness as all the trades are executed by the program. In addition there

is a lesser “key man risk” which tends to be associated with discretionary traders. Due

to their automated nature, systematic funds have the further advantage of scalability

across a multitude of markets and they can thus accept more capital whilst allowing for

more diversification across markets, strategies employed and number of trades. In light

of these differences, it is of interest to test empirically the survival rates associated with

the two strategies. A recent study by Kazemi and Li (2010) also classifies CTAs into

these two manager categories and finds that there are differences in the market timing

abilities of systematic and discretionary CTAs, notably that systematic CTAs are gen-

erally better at market timing than discretionary CTAs. This study however, further

breaks systematic funds into sub-strategies. Park, Tanrikulu and Wang (2009) note that

systematic CTAs are comprised of multiple strategies most of which can be classified

as either trend-following or relative value. Others employ trading models that fall into

neither of these categories, e.g. pattern recognition and counter trend. Trend-following

strategies are also split into programs that primarily use short-term, medium-term or

long-term signals or holding periods. Based on the previous research, one would expect

the findings of this study to indicate that systematic CTAs have better performance and

higher survival than discretionary funds, since the lack of the human emotion element

allows for better risk control and a consequent reduction in the risk of failure.

Using the classification of investment styles and the failure filtering system discussed
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above, the average annual attrition rate of the entire CTA database is found to be 17.3%

for the 1994-2009 period, i.e. similar to previous studies. The failure rate, however, is

significantly lower at 11.1%. There are also differences between systematic and discre-

tionary funds, with systematic funds having lower attrition and failure rates of 16.0%

and 10.4% versus 21.6% and 12.6% respectively. The BarclayHedge database contains

a significant number of funds with less than US$10 million under management. After

removing such funds, the average attrition and failure rates drop to 7.8% and 4.1% for

systematic and 10.8% and 5.9% for discretionary funds. These are lower than previously

estimated but comparable to the findings of Rouah (2005) and Liang and Park (2010)

for hedge funds. The results suggest that the attrition rate of CTAs may not be as high

as previously suggested and in particular systematic CTAs have a lower attrition rate

than discretionary CTAs.

Survival analysis is then implemented to determine factors affecting CTA failure.

There are a few studies in the hedge fund literature analyzing the effect of various

variables on survival, including: Liang (2000), Brown, Goetzmann and Park (2001),

Gregoriou (2002), Baquero, Horst and Verbeek (2005), Rouah (2005), Ng (2008) and

Baba and Goko (2009). In particular Brown, Goetzmann and Park (2001) find that

hedge fund survival depends on absolute as well as relative performance, seasoning and

volatility. Recently, Brown, Goetzmann, Liang and Schwarz (2009) estimated the effect

of operational risk on hedge fund survival. Using novel data from SEC filings (Form

ADV) in combination with the TASS database, the study developed a quantitative

model, the ω-score, to quantify operational risk and use it as a predictor in the Cox

(1972) proportional hazards model to predict its effect on hedge fund survival. The

study included managed futures as a sub-strategy but found that the coefficient of op-
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erational risk was insignificant for managed futures and the direction of its effect was

blurred. The score was related to conflict-of-interest issues, concentrated ownership and

reduced leverage, none of which seem to explain CTA survival. Other studies on CTA

survival are rather sparse, Diz (1999a), (1999b), Spurgin (1999) and Gregoriou et al.

(2005) each analysed CTA survival separately from hedge funds. The most recent of

these analyses is that of Gregoriou et al. (2005) who find that performance, size and

management fees have an effect on CTA survival. The influence of volatility appears

rather limited.

The particular contribution of this study is to employ downside risk measures that

incorporate higher return moments in predicting CTA failure. In doing so it incorpo-

rates time varying as well as fixed covariates. The methodology closely follows that

of Liang and Park (2010), who show that these measures are better able to capture

the non-normality of hedge fund returns. Incorporating additional risk measures is of

particular interest in respect to CTAs who have positive skewness yet can experience

large losses. Drawdown as a risk measure is also considered since this can be useful

in predicting failure. Lang, Gupta and Prestbo (2006), in fact, argue that drawdowns

are the single most significant factor that determines the likelihood of hedge fund sur-

vival. Another contribution of this study is to employ Cox (1972) proportional hazard’s

model with time-varying covariates. This is an improvement to the Gregoriou et al.

(2005) model for CTAs who employ Cox’s (1972) proportional hazard model with fixed

covariates only. By using time dependent covariates new risk measures as well as other

covariates are allowed to change with time. Finally, the aim of the study is to build a

forecasting model with better warning signals for possible fund liquidations. In order

to do this as accurately as possible, the survival analysis for three different definitions
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of failure is compared: i) attrition, ii) liquidation and iii) real failure. The results show

that standard deviation is not an appropriate risk measure in predicting the type of

failure and that downside risk measures are better able to explain real failure. As a

result, this study finds that systematic CTAs should be favoured by investors due to

their significantly higher survival than their discretionary counterparts.

The rest of chapter one of the thesis is organized as follows. Section 1.2 describes

the data. Section 1.3 explains the methods. Section 1.4 provides the empirical results

and robustness tests and section 1.5 concludes.

1.2 Data

There are several databases that collect data on CTAs. The most commonly used

databases in academic studies are TASS, CISDM and BarclayHedge. To analyze the

attrition and survival of CTAs properly this study uses monthly net-of-fees returns from

live and dead CTAs that reported to the BarclayHedge database, proprietor of one of the

most comprehensive commercially available databases of CTAs and CTA performance.

The sample period under examination in this study is from January 1994 to December

2009, a total of 192 months: a time period that spans both bull (pre 2000 and 2003-

2007) and bear markets, such as the bursting of the tech bubble in the spring of 2000

and, importantly, the financial crisis of 2007-2009. This constitutes the longest period

used to date to examine CTA survival. BarclayHedge provides a variety of information

other than performance. It collects fund names, management company, AUM, minimum

investment, start and ending dates, investment style, management and incentive fees,

HWM, leverage, fund status, share restrictions, and others. It is important to note that
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all the information contained in these databases is reported on a strictly voluntary basis

only.

The BarclayHedge database consists of both active “Live” and “Defunct” funds. The

database is divided into two separate parts: “Live” and “Graveyard” funds. Funds that

are in the live database are ones that are still operating and continue to provide updates

on their performance. Once a fund stops reporting for three consecutive months, the

fund is moved into the Graveyard. A fund can only be in a Graveyard once it has been

listed in the live database. As of the end of December 2009, there were 3436 funds

in the combined database. Out of these, 1,016 were live funds and 2,420 were defunct

funds. The majority of the funds report their returns net of management and incen-

tive fees. I eliminate from my sample funds that report quarterly or gross returns, a

total of 15 funds. I also remove various long only funds and index trackers, duplicate

entries due to multiple share classes, onshore and offshore vehicles, leveraged versions

and various feeder structures and funds born prior to 1994.5 This leaves 696 live funds

and 1750 defunct funds. I also remove all multi-manager funds. In words of Liang

(2005), “Combining CTAs with funds that manage several CTAs would not only cause

double counting problem but would also hide the differences in fee structures between

CTAs and fund-of-funds.” To eliminate backfill bias, for the empirical analysis I impose

an additional filter in which I require funds to have at least 24 months of non-missing

returns.

5Figure 1.1 was constructed using all the share classes and onshore and offshore vehicles so as to
capture total assets under management accurately across the industry.
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1.2.1 Style Classification

Hedge funds are not allowed to solicit the general public, therefore detailed strategy in-

formation is not included in the databases. In addition, several data vendors like TASS

do not include fund identities in their academic versions making it impossible to collect

information on funds from other sources. In this study, however, I had access to fund

identities that allowed me to access information through fund websites, other sources

such as Alphametrix, as well as private sources, to get a fuller understanding of each

fund’s strategy. Narang (2009) and Rami (2009) also provided a basis to understand

the complexities of the different CTA strategies. This has allowed me to segregate CTA

funds into various strategies. I therefore used funds’ self-reported strategy description

in addition to BarclayHedge categories and hand collected information and am therefore

the first to classify CTAs in this manner.

BarclayHedge classifies funds into several investment styles. There is currently no

universally accepted form with which to classify CTAs into different strategy classes.

There is some form of consensus emerging in the literature as to how best to classify

various hedge fund strategies, however nothing similar yet exists for CTAs. In fact, most

of the earlier literature treated CTAs as a single group. Recently, some studies classified

CTAs into different investment styles but these have all done so in a different manner.

Gregoriou et al. (2005) grouped the BarclayHedge classifications into five categories,

yet in their 2010 paper the same authors arrived at twelve classifications from the same

database. Capocci (2005), meanwhile, grouped the same dataset into ten classifications.

All of these authors have used the BarclayHedge database yet have created different

strategy classes. It is also unclear how previous studies arrived at their classifications
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since most funds in BarclayHedge would frequently fall into several categories represent-

ing trading style and asset class utilized. For example, a fund may select itself to be

both systematic and technical diversified, yet the authors would have both of these as a

separate category. In this study therefore, I propose a different CTA style classification

based on the one used in the industry.

Firstly, I note that almost all funds fall into one of the three main categories based on

their self-reported trading strategies: i.e. systematic, discretionary and options strate-

gies. Systematic traders systematically apply an alpha-seeking investment strategy that

is specified based on exhaustive research. This research is the first step in the creation

of a systematic trading strategy. As a result, most new entrants into the industry are

trained scientists and engineers. Market phenomena are uncovered with statistical analy-

sis of historical data. Trading algorithms are then constructed to exploit the markets and

these are applied consistently. Discretionary CTAs, on the other hand, base their mod-

els on manager’s discretion. There are several advantages of systematic trading over the

discretionary style. Firstly, the emotional element of discretionary trading is removed.

Discretionary traders may frequently suffer from disposition effect, as documented by

Shefrin and Statman (1985): they are quick to realize gains and are slow to realize losses.

In essence the main difference between the two always lies in how an investment strat-

egy is conceived and implemented rather than what the strategy actually is. Systematic

trading takes emotion out of investing and imposes a disciplined approach. Additional

benefits are reduction of key man risk, scalability and more diversification in terms of

the number of markets analyzed and the types of strategies employed. I separate options

strategies into a separate group as I believe they follow substantially different trading

strategies compared to systematic and discretionary funds. In particular, options funds
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engage in either selling options or exploiting arbitrage opportunities using options. My

final three main category classification therefore has systematic, discretionary and op-

tions CTAs. My classification is in line with recent work of Kazemi and Li (2010) who

break their CISDM database into systematic and discretionary CTAs. However, I fur-

ther their work by breaking systematic funds into several categories: trend-following,

pattern recognition and relative value. Trend-following funds are further broken into

short-term, medium-term and long-term traders. Billingsley and Chance (1996) also

separate CTAs into technical and non-technical funds, where technical funds essentially

mirror the systematic funds classified in this study. The authors further note that among

those technical funds, the majority are indeed trend-followers.6 About ten percent of

the funds in our database have no BarclayHedge classification, yet when reading their

detailed strategy description it is apparent that they still fall into one of the three main

categories.

The final count and description for the different investment styles are shown in the

Appendix. It is clear from the table that the representation of the investment style is

not evenly distributed. Systematic CTAs account for 60% of all CTAs. This is a lower

number than the one reported by BarclayHedge, which cites that approximately 80%

of all CTAs are systematic. I have employed a more stringent approach to qualify the

funds as being systematic, however, and this explains the lower figure in my study. My

classification results should still be treated with caution. Due to the nature of the in-

dustry and the lack of full information, it is impossible to arrive at strategy assessments

with absolute certainty since one is relying on the managers’ statements. I also note

that among systematic funds, trend-following is the most dominant strategy with 87%

6Fung and Hsieh (2001) show that a simple trend following strategy can be modeled using look-back
straddles that generate a non-linear payoff structure.
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of the funds. The vast majority of trend-followers employ a medium-term frame in a

variety of markets. I define short-term as anything between high frequency trading to

trades within one week. Indeed high frequency trading has become a popular strategy

in the last few years. Medium-term trend-followers are defined as those that use two

weeks up to one month trading signals and long-term trend-followers as anything above

one month. Among discretionary funds, most utilize either technical or a combination

of technical and fundamental approaches. In addition, most funds trade in diversified

markets. The Appendix provides a detailed description of strategies.

1.2.2 Distinguishing Discontinuation from Death and Failure

Within those funds assigned to the graveyard database, distinguishing between liqui-

dated funds and those that are in fact still in operation is complicated by the lack of

detailed information available on defunct hedge funds. Early studies on hedge funds

regarded moving funds to the graveyard as a de facto indication of failure. Attrition

rate calculations and survival analysis done by previous research is based on just such

a broad classification. Recently, however, data vendors began to provide information

on reasons for exit. Thus, the TASS database has seven distinct exit classifications:

fund liquidated, no longer reporting, unable to contact the manager, closed to new in-

vestment, merged into another entity, dormant, unknown. HFR, meanwhile, has only

three categories. BarclayHedge only began collecting this information very recently. As

a result, this information is only available for a small proportion of funds, the rest are

classified as unknown.7 This is in sharp contrast to other databases such as TASS or

HFR. For example, Baquero, Horst and Verbeek (2005) used the TASS database and

7Out of 2076 funds in the graveyard, only 435 funds have a recorded reason for not reporting.
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had only a small number of funds with an unknown disappearance reason. Rouah (2005)

used the HFR database and was able to report exit information for most funds. In this

study I employ the BarclayHedge database, however, as it has the advantage of having

the widest coverage of CTAs available. The limited nature of its information on exit

types, however, renders any meaningful survival analysis all but impossible. To circum-

vent this problem several studies have proposed various methods to filter for liquidated

funds in other databases as well. Baquero, Horst and Verbeek (2005) follow Agarwal,

Daniel and Naik’s (2004) quarterly flow analysis to make an assessment of the death

reason in the TASS database. Their analysis, however, concentrates on liquidation only.

Liang and Park (2010), (henceforth, LP) further make a distinction between liquida-

tion and real failure and argue that the classification provided by the databases is not

sufficient. Not all liquidated funds fail. Some funds may choose to liquidate based on

the market expectations of managers, funds merging, or simply the manager retiring.

As a consequence, LP reclassify the database using a performance and fund flow filter

system. Utilizing only failed funds they are able to examine the effects that contribute

to hedge fund failure.

Survival analysis necessitates clear definition of failure. Rouah (2005) argues that

including all the graveyard funds in the database can blur the effect of predictor vari-

ables in a survival analysis. I filter all the funds following the three criteria used by

LP: all funds in the graveyard, funds with negative average rate of return in the last 6

months, funds with a decrease in assets under management (henceforth, AUM) for the

last 12 months. This study finds that these filters would miss some of the liquidated and

failed funds. In particular it failed for many small funds in our sample and for many

funds that had experienced large losses more than 12 months before the end of data.
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Case 1. A failed fund with small AUM.

I found that my sample contained a lot of funds with assets under management of less

than US$20 million. Figure 1.1 shows the evolution of AUM in the CTA industry.

[Please insert Figure 1.1 here]

In fact, on average 96% of the total AUM of the industry is managed by funds with

assets above US$20 million, yet funds with less than US$20 million under management

comprise almost 70% of the total number of funds in our database. Kosowski et al.

(2007) argue that funds with less than US$20 million AUM should be excluded from the

analysis due to concerns that such funds may be too small for institutional investors.

Given the large proportion of these funds in the sample, removing them would greatly

reduce the available data. In addition, this study is concerned with establishing attrition

and failure rate which necessitates inclusion of all the available data. For the survival

model, however, it would be sensible to remove all the funds below the US$20 million

threshold.

Figure 1.2 shows an example of Fund A, a liquidated fund with small AUM. The

AUM of Fund A remained stable during the twelve months prior to dissolution yet, in

terms of downside risk measures, the fund has failed: it had negative average return in

the last six and twelve months. Liquidation for small funds is likely to happen quickly

without noticeable decline in assets, therefore it would be impossible to filter for these

funds using AUM criteria.

[Please insert Figure 1.2 here]



1.2. Data 42

Case 2. Assets lost more than 12 months before end of data.

LP’s filters assume very recent failures. Some funds. however, may experience large

drawdown followed by loss of assets as investor confidence fails. Still, some funds would

continue to report to the database with virtually no assets and good returns until they

finally exit. Fund B in Figure 2 is an example of a liquidated fund that continued

to report after a large drawdown and loss of assets. LP’s criteria would be unable to

identify this failure as it happened prior to 12 months before dissolution.

[Please insert Figure 1.3 here]

Case 3. Failure with positive average return in the last six months.

Some funds fail and liquidate yet in the last six months may report a positive average

return as they reduce volatility in expectation of liquidation. There is an indication that

these funds still continue to report to the database before they eventually shut down.

Figure 1.4 shows an example of fund C with a negative annualized compound rate of

return, with a loss in AUM, yet it has an positive average rate of return in the last six

months.

Case 4. Failure due to a large drawdown 24 months before liquidation.

Fund C is an example of a large fund that suffered a 78% drawdown and lost a majority

of its assets, yet it had a positive average return in the last six months. Such a fund

would not be picked up by LP’s criteria yet it is a clear failure and should be included

in the survival model.

[Please insert Figure 1.4 here]

Ng(2008) proposes more a extensive range of filters to identify failures among hedge

funds, including the change in AUM 24 months prior to dissolution and the average
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return in the last 12 months. As has already been mentioned, data in this study is

more limited than that used in previous survival analyses since BarclayHedge does not

provide reasons for exit for most funds. This study, therefore, separates the graveyard

into funds that are still alive but stopped reporting and liquidated funds. It then sorts

liquidated funds into those that failed and funds with various discretionary closures.

This study follows Agarwal, Daniel and Naik’s (2004) AUM flow analysis to make an

assessment of the liquidation. Fung et al. (2008), meanwhile, group liquidated funds

based on the relative AUM at the end of the fund’s life, compared to maximum AUM.

I used several filters as it is clear from looking at the previous studies that it is unlikely

that one filter can capture all the liquidated funds. In particular I filter for liquidated

funds using either of the following criteria:

• Funds with decreased AUM in the last 12 months

• Funds with decreased AUM in the last 24 months

• Funds with very low final AUM relative to the maximum AUM over the fund’s

lifetime - I use a 70% drop as well as a 60% drop for robustness check

• Funds with AUM equal to 0 in the last month

From the above I obtain two groups of funds; liquidated and not liquidated. Funds that

are classified as liquidated by the first set of filters are further sorted into failures or

discretionary closures. In particular I calculate the following statistics for all funds and

apply them to the “liquidated” set:

• CUM, Annualized cumulative rate of return

• Average return in the last 6, 8, 12 and 24 months
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• Annualized standard deviation over entire fund history

• Drawdown in the last 12 and 24 months

Funds that had either negative average returns in the last 6, 8, 12 or 24 months, or

negative annualized cumulative returns or a drawdown in the last 12 or 24 months that

was significantly higher than annualized standard deviation were classified as Liquidated

Failure. The rest of the funds were classified as Liquidated Discretionary Closures. These

are the funds that liquidated for other reasons than bad performance as described in

Liang and Park (2010). To test my filtering I contacted many of the funds either by

phone or email. The majority of the funds that liquidated but did not experience

bad returns were funds that were merging into another fund in the same management

company, funds that were going through restructuring or simply a name change, or

even retirement of the principal. Hence, these funds would affect the calculation of the

liquidation rate but they would not enter into the failure rate. I also checked funds

that did not pass the liquidation filters. In many cases these were the funds that had

too small an asset base to show a drop in assets but upon contacting them and looking

at their returns it was still apparent that they liquidated. There were also some funds

that showed no decline in assets nor passed any of the return filter criteria - these were

funds that were still active but stopped reporting to the database. Compared to the

hedge fund industry the proportion of such funds is not as large, possibly because CTAs

would not suffer from the same capacity issues as many hedge funds do: a topic that is

thoroughly discussed in the third chapter.
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1.2.3 Covariates & Basic Data Description

The covariates used in the survival model include average millions managed, perfor-

mance, fund age, size, lock-up provision, size volatility, and risk measures as proposed

by Liang and Park (2010). This study also adds drawdown to the risk measures. Table

1.1 presents the statistical summary of the data for 2446 funds. The average monthly

rate of return is 1.01% with a standard deviation of 6.09%. At the same time the average

skewness is positive at 0.33 and average kurtosis is 2.61. This is in contrast to the re-

ported statistics for hedge funds found in Liang and Park (2010) where the mean hedge

fund return was 0.62%, negative skewness (-0.04) and kurtosis 5.57. Consistent with

previous literature, Table 1.1 shows that live funds outperform defunct funds (“Grave-

yard funds”) with a higher standard deviation on average. The graveyard funds also

have slightly higher maximum and lower minimum returns than live funds, consistent

with higher volatility of the defunct funds. In addition, Table 1.1 shows the need to

separate the exit types. Graveyard funds are further broken into liquidated funds and

funds that are alive but stopped reporting: “Not reporting funds”. Liquidated funds

have significantly lower mean monthly returns than funds that simply stopped reporting

to the database. This underlines the fact that not all funds exit due to liquidation. The

not reporting funds are also more positively skewed with lower kurtosis than liquidated

funds. In turn, as underlined earlier, not all liquidations are indeed failures as reported

in the literature. In line with this, Table 1.1 also reports descriptive statistics for fail-

ures and discretionary closures. Real failures have the lowest mean monthly return of

0.50% with the largest standard deviation of 6.91% and lowest skewness of 0.25. The

discretionary failures have a mean return that is higher than that of the live funds of
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1.52% but lower than funds that simply stop reporting. I find that on average 41.9% of

CTAs reject the null hypothesis of normality at the 5% level. Malkiel and Saha (2005)

find that both managed futures funds and global macro hedge funds do not reject the

Jarque-Bera test of normality.8

1.3 Methodology

1.3.1 Risk Measures

Standard Deviation. For each month starting January 1994, I estimate standard devia-

tion using 60 month rolling windows of previous returns. Where 60-month data is not

available a minimum of 24 months is used.

In what follows the discussion here follows closely that in Liang and Park (2010).

SEM - Semi-deviation - this measure is similar to standard deviation except that it

considers deviation from the mean only when it is negative.

SEM ≡
√

E{min[(R− µ), 0]2}, (1.1)

where µ is the average return of the fund. SEM has been found to be a more accurate

measure for assets with non-symmetric distributions, Estrada (2001).

8See Jarque and Bera(1980).
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VaR - Value-at-Risk - is a risk measure widely used by portfolio managers which

provides a single number for the risk of loss on a portfolio. This measure allows one

to make a statement of the following form: We are (1-α) percent certain that we will

not lose more than VaR(α,τ) dollars in τ days. Thus VaR uses two parameters: the

horizon (τ), and the confidence level, (1-α). I use a 95% confidence level (α=0.05). The

frequency of the data dictates the time horizon, which is monthly in this case. In par-

ticular, the VaR statistic can be defined as a one-sided confidence interval on a portfolio

loss:

Prob[∆P̃ (∆t,∆x̃) > V aR] = 1− α, (1.2)

where ∆P̃ (∆t,∆x̃) is the change in the market value of the portfolio, as a function of the

time horizon ∆t and the vector of changes of random variables. This formulation shows

that the distribution of the portfolio returns is key. Calculation of the true distribution

is generally not feasible. VaR can be estimated using parametric techniques, however

most assume normally distributed returns. The VaR measure under this normality

assumption becomes:

VaR Normal(α) = −(µ+ z(α)× σ) (1.3)

VaR CF - The Cornish-Fisher (1973) expansion (V aR CF ) considers higher mo-

ments in the return distribution such as skewness and kurtosis. It is possible to obtain

an approximate representation of any distribution with known moments in terms of any

known distribution, for example normal distribution. Thus the Cornish-Fisher expan-

sion explicitly incorporates skewness and kurtosis, making it particularly suitable for use

with CTA data. The equations below explicitly show the terms in the Cornish-Fisher
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(1937) expansion.

Ω(α) = z(α) +
1

6
(z(α)2 − 1)S +

1

24
(z(α)3 − 3z(α))K − 1

36
(2z(α)3 − 5z(α))S2 (1.4)

V aR CF (α) = −(µ+ Ω(α)× σ) (1.5)

where µ is the average return, σ is the standard deviation, S is the skewness, K is the

excess kurtosis of the past 24 − 60 monthly returns of CTAs, (1 − α) is the confidence

level, and z(α) is the critical value from the standard normal distribution.

ES - Expected Shortfall - Another measure of risk that is included in the analy-

sis is the expected shortfall, ES. Artzner, Delbaen, Eber and Heath (1999) argue that

ES has superior mathematical properties to VaR. Liang and Park (2007) formally test

this for hedge funds and confirm that expected shortfall is better able to explain the

cross-section of hedge funds. Unlike VaR, ES tells us how big the expected loss could be

once VaR is breached. It is therefore more sensitive to the shape of the loss distribution

in the tail of the distribution. ES is the conditional expected loss greater or equal to

VaR, sometimes called conditional value at risk. It can be defined in terms of portfolio

return instead of notional amount and is defined as follows:

ESt(α, τ) = −Et [Rt+τ |Rt+τ ≤ −V aRt(α, τ)]

= −

−V aRt(α,t)∫
v=−∞

vfR,t(v)dv

FR,t[−V aRt(α, τ)]

= −

−V aRt(α,t)∫
v=−∞

vfR,t(v)dv

α
(1.6)
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where Rt+τ denotes portfolio return during periods t and t+τ , and fR,t is the condi-

tional probability density function (PDF) of Rt+τ . Here, FR,t denotes the conditional

CDF of Rt+τ conditional on the information available at time t, F−1R,t, and 1−α is the

confidence level. To compute 95% ES using the Cornish-Fisher expansion, one needs to

compute 95% VaR CF based on equation (1.4) and (1.5) and then search through the

60-month returns window to find all the returns that are below the calculated 95% VaR.

The average of the obtained returns is ES CF with a 95% confidence level. Alternative

way is to use the analytical solution due to Christoffersen and Goncalves (2005). How-

ever, Liang and Park (2010) show that due to extreme skewness of some of the hedge

funds the analytical solution is not very applicable.

TR - Tail Risk - Tail Risk is known as the possibility that an investment will move

more than three standard deviations from the mean and this probability is greater than

that shown by normal distribution. Tail risk arises for assets that do not follow normal

distribution. In this context, tail risk is the standard deviation of the losses greater than

VaR from the mean, or, more formally:

TRt(α, τ) =
√
Et[(Rt+τ − Et(Rt+τ ))2|Rt+τ ≤ −V aRt(α, τ)] (1.7)

Note that TR CF denotes Tail Risk estimated using VaR CF as a cut-off criteria.

Maximum Drawdown - Drawdown is any losing period during an investment record.

It is defined as the percent retrenchment from an equity peak to an equity valley. A

drawdown is in effect from the time an equity retrenchment begins until a new equity
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high is reached (i.e. In terms of time, a drawdown encompasses both the period from

equity peak to equity valley (Length) and the time from the equity valley to a new eq-

uity high (Recovery). Maximum Drawdown is simply the largest percentage drawdown

that has occurred in any investment data record. Diz (1999b) analyses the effect of var-

ious variables on the probability of survival of CTAs and includes maximum monthly

drawdown as one of the covariates. He finds that the maximum monthly drawdown

and the maximum time to recover from a drawdown as a percentage of a program’s life

is negatively related to survival. Baba and Goko (2009) explicitly model time varying

drawdown in their survival model of hedge funds only and come to the same conclusion.

Maximum Drawdown relative to Standard Deviation - I also calculate drawdown

relative to annualized standard deviation. Annualized standard deviation is given by:

St.Dev.Annualised =


√√√√(∑N

i=1(Ri − µR)
2

N − 1

)
× 12


1
2

(1.8)

The proportion is calculated as:

=
Max.Drawdown

Std.Dev.Annuliased
(1.9)

Once the drawdown reaches two times annualized standard deviation the fund is un-

likely to survive.



1.3. Methodology 51

1.3.2 Survival Analysis

Survival analysis is concerned with analyzing the probability and time until some event

occurs. Such events are typically referred to as failures. In this context, failures are

defined as financial distress of CTAs. In the literature the problem of hedge fund survival

and variables that affect it is addressed by the use of hazard models. The underlying

setting of these is as follows. If we denote T as a nonnegative continuous random

variable representing time to failure of a CTA. The cumulative probability distribution

is given by:

F (t) = Pr(T ≤ t) (1.10)

F(t) is also known in the literature as the failure function. An alternative formulation,

which is at the core of the survival analysis, is the survivor function: an elapsed time

since the entry to the state at time 0. This is given as:

S(t) = 1− F (t) = Pr(T > t) (1.11)

where t is time and the survival function represents the probability of a CTA surviving

beyond time t.

The pdf is the slope of the failure function, F(t):

f(t) = lim
∆t→0

P (t ≤ T ≤ t+∆t)

∆t
=

∂F (t)

∂t
= −∂S(t)

∂t
(1.12)

Both the survivor function and failure function are probabilities. In particular, the

survivor function, S(t) is a non-increasing continuous function of t with S(0)=1 and
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limt→∞F(t)=0. The survivor function increases toward zero as t goes to infinity. As

such, the density function, f(t) is strictly non-negative but may be greater than one.

f(t) ≥ 0 (1.13)

The hazard function h(t), known as the conditional failure rate, specifies the in-

stantaneous rate at which failures occur in a given interval, conditional upon the fund

surviving to the beginning of that interval. The hazard function is defined as:

h(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t

= lim
∆t→0

F (t+∆t)− F (t)

∆tS(t)
=

f(t)

S(t)
=

−dlnS(t)

dt
(1.14)

where P (•|•) denotes the conditional probability that an event will occur and f(t) de-

notes the probability density function associated with F(t). The hazard function, there-

fore, fully specifies the distribution of t and subsequently the density and survivor

functions. The only restriction on the hazard rate implied by the properties of these

functions is that:

h(t) ≥ 0 (1.15)

Thus λ(t) may be greater than one, in the similar way that f(t) may be greater than

one. In fact there is a key relationship between these functions that underpins much of

the survival analysis. Whatever the functional form for the hazard rate, λ(t), one can

derive the survivor function S(t), failure function F(t) and integrated hazard rate H(t)
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from it. In particular from (11) and (13) we obtain:

h(t) =
f(t)

S(t)

=
f(t)

1− F (t)

=
−∂[1− F (t)]/∂t

∂t

=
∂−ln[1− F (t)]

∂t
(1.16)

Integrating both sides with respect to t and using F(0) = 1,

∫ t

0

h(u)du = −ln[1− F (t)]|t0

= −ln[S(t)]

(1.17)

Hence, the survivor function can be expressed in terms of hazard rate and subsequently

the cumulative hazard:

S(t) = exp

(
−
∫ t

0

h(u)du

)
= exp[−H(t)] (1.18)

The term H(t) is called cumulative hazard function and measures the total amount

of risk that has accumulated up to time t whereas the hazard rate has units of 1/t.

Hazard functions have an advantage in that they have a convenient interpretation in

the regression models of survival data of the effect of the coefficients. Once hazard rate is
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estimated, it is possible to then derive the survivor function using (1.18). Fundamental

to this is an appropriate estimation of the hazard rate.

There are two types of model that can be used to analyze the survival data: duration

models and discrete-time models. This study employs duration type models as they are

better able to deal with the problem of right censoring. Right censoring is the term

used to describe funds in the sample that have not failed during the observation period.

These funds are the live funds of the database and funds that have been identified as

having stopped reporting. Excluding such funds would lead to a downward bias of the

survival time since live funds are also at risk during the sample and thus contribute

information about the survival experience, Rouah (2005). Censoring, therefore occurs

because there is no information on funds that do not experience failure during the

period. An underlying assumption is that censoring is independent of the failure rates,

and observations that have been censored do not have systematically higher or lower

hazard rates that could essentially lead to biased coefficient estimates, Kalbfleisch and

Prentice (2002). Also included in the censoring are the funds that have dropped out of

the sample during the examination period for reasons other than failure, e.g. funds that

have merged or restructured and thus ceased to report to the database, Ng (2008).

The survival function S(t) and the hazard function h(t) can be estimated with the

use of nonparametric univariate methods as well as parametric and semiparametric

multivariate methods. Semiparametric methods are still parametric since the covariates

are still assumed to take a certain form. The nonparametric methods, on the other hand,

make no distributional assumptions and can handle right censoring. The Kaplan-Meier

(1958) or the product limit estimate is an entirely nonparametric approach. Under the

assumption of right censoring, let t1 < t2 < t3 < ... < tj < ... < tk < ∞ represent
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observed sample survival times. Let dj denote the number of funds that exit at each tj

and let mj denote the number of censored funds at the same time interval. The risk set

is then defined as the set of the durations:

ni =
k∑

j≥i

(mj + dj) (1.19)

The proportion of funds that have survived to the first observed survival time, Ŝ(t1)

is simply one minus the number of failed funds divided by the total number at risk.

Multiplying survival over all intervals yields the Kaplan-Meier survival estimator:

S(t) =
∏
j|tj<t

(
1− dj

nj

)
(1.20)

The earlier discussion has shown how one can easily derive from S(t), the hazard rate

λ(t) and the cumulative hazard rate H(t). These estimates, however, can only be derived

at the dates at which failures occur and therefore the resulting survivor and integrated

hazard functions are step functions. Since these are not easily differentiable, a smoothing

kernel is used to derive the estimated hazard function. For the hazard curves, however,

the Nelson-Aalen estimator has better small sample properties and is used to derive

smoothed hazard curves.

Ĥtj =
∑
j|tj<t

(
dj
nj

)
(1.21)

The most commonly used semiparametric model is Cox’s (1972) model. This focuses

on estimating the hazard function, λ(t) and assumes that all the funds have a common

baseline hazard rate λ0(t), but the method also assumes that the covariates have multi-
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plicative effect and are able to shift the baseline hazard function. The method is widely

used due to its computational feasibility. In its basic form the Cox (1972) function is:

λi(t; zi) = λ0(t)e
zTi β, (1.22)

where zT is the vector of the covariates for the ith CTA, and β is a vector of regression

parameters. The model relates the effect of covariates on the hazard ratios. Cox (1972)

proposed the use of partial likelihood to estimate the model which also eliminates the

unknown baseline hazard rate and at the same time accounts for censored observations.9

The first to apply Cox’s (1972) model to hedge funds were Brown, Goetzman and

Park (2001). They found that funds with poor past performance and young funds

have an increased risk of failure. Gregoriou (2002) finds that, apart from past returns,

AUM and minimum investment also affect survival. For CTAs, the only study to apply

Cox’s (1972) model is that of Gregoriou, Hubner, Papageorgiou and Rouah (2005). In

addition to past performance, volatility and assets under management, the authors also

investigate the effect of minimum investment and management fees on survival. They

find that management fees, in particular, have a negative effect on survival. The effect

of risk, represented by standard deviation is particularly strong in their results and they

document that Cox (1972) provides a good fit for their CTA data. Rouah (2005) analyses

the survival of HFR hedge funds by using various exit types provided in the graveyard.

Extending the Brown, Goetzman and Park (2001) model to multiple exit types allows

the effect of the predictor variable to be assessed for each exit type separately. Rouah

9In this context censored observations are live funds in the database.
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(2005) makes another contribution by allowing the covariates to be time dependent:

λj(t; βj, Z(t)) = λj0(t)e
z(t)T βj (1.23)

Treating explanatory variables as time dependent allows one to evaluate their impact

on survival at each instant in the lifetime of funds, rather than just the last month.

Thus Rouah (2005) finds that when volatility is treated as time dependent it increases

the risk of liquidation and, furthermore, that persistent volatility is more important in

predicting failure than short-term volatility. Brown, Goetzman and Park (2001) find

that losing managers increases volatility in an attempt to bolster returns and this in

turn may hasten funds’ liquidation. Systematic funds are unlikely to increase volatility

as the trading algorithms have set parameters and no human emotion. They are likely

to be less volatile or have a more steady volatility. If systematic funds have controlled

volatility the inclusion of risk measures is of particular interest as it may shed some light

on the differences in survival between discretionary and systematic funds. Liang and

Park (2010) incorporate calendar time into the analysis by using the counting process

style input (CPSI) of Anderson and Gill (1982), which has a known importance for risk

measures.

The following is a list of variables used in this study:

• Risk measures

• Style effect - I use several investment styles to control for variation in liquidation

across various CTA styles. These are summarized in the appendix.

• Performance - The monthly average rate of return for the last year is used.
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• Size - The monthly average AUM during the previous year is used.

• Age - The number of months a fund has been in existence.

• Management fee

• Incentive fee

• HWM - A dummy variable is used for funds with high watermark.

I do not include a lock-up provision as most CTAs rarely use them due to the liquidity

of futures markets.

1.4 Empirical Results

1.4.1 CTA Attrition, Liquidation and Failure Rates

Earlier literature suggests that the survival of CTAs is lower than that of hedge funds.

For example, both Liang (2004) and Getmansky, Lo and Mei (2004) found CTAs to have

higher attrition rates than hedge funds (23.5% for CTAs versus 17% for hedge funds

in Liang (2004), and 14.4% and 8.7% respectively in Getmansky, Lo and Mei (2004)).

Brown, Goetzman and Park (2001) also found that CTAs had an average annual at-

trition of 20% for the 1990-2001 period, whereas hedge funds had a rate of only 15%.

Other studies on CTAs only also support these results: Capocci (2005) and Fung and

Hsieh (1997b) document attrition rates of 19.2% and 19% respectively. Although a lot

of the previous literature indicates that CTAs have high attrition, Gregoriou et al.(2005)

suggest that these studies do not take into account the extreme market events of August

1998 and September 2001 during which CTAs provided investors with downside protec-
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tion since CTAs are found to have low correlation to equity portfolios, see Schneeweis,

Spurgin and McCarthy (1996). A recent study by Xu et al. (2010) used a longer time

frame to study attrition of both hedge funds and CTAs and found CTAs to have lower

attrition than hedge funds. Looking at a longer time period that spans multiple crisis

appears to even out and lower the attrition of CTAs.

Tables 1.2, 1.3 and 1.4 report annual frequency counts for funds entering and exit-

ing the Live database and moving into the Graveyard. Table 1.2 shows attrition rate,

liquidation and failure rates for all CTAs together whilst Tables 1.3 and 1.4 report the

same information for systematic and discretionary funds respectively. Fung and Hsieh

(1997b) do not include funds that enter and exit in the same year but this creates a

downward bias in the estimated attrition rate. Truly liquidated funds are now separated

from funds that are alive but stopped reporting which allows to calculate liquidation

rate. Since investors are negatively affected by the failed funds rather than discretionary

closures failure rate is of more interest to investors.

The average annual attrition rate across all funds for the period 1994-2009 is found to

be 17.3%. There is evidence of variation across styles: systematic funds have an average

attrition rate of 16.0%, discretionary 20.0% and options 18.6%. The options category

should be treated with caution, however, as the sample is very small. Systematic funds

appear to have the lowest attrition. The table below provides a brief summary compar-

ing the results for attrition, liquidation and failure rates.

Attrition Rate (%) Liquidation Rate (%) Failure Rate (%)
All funds: 17.3% 14.6% 11.1%
Systematic: 16.0% 13.8% 10.4%
Discretionary: 21.0% 16.3% 12.6%
Options: 18.5% 14.7% 10.6%
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The attrition rate of all the funds is consistent with the previous literature Capocci

(2005), Fung and Hsieh (1997b). The lower liquidation rates are intuitive because liqui-

dation is a subset of attrition rate and excludes funds that are alive but have discontinued

reporting to the database. Failure rate is a further subset of liquidation. The failure

rates shown above are significantly lower than the attrition rates, but are not as low as

the 3.1% reported for hedge funds in Liang and Park (2010) and the 3-5% reported in

Rouah (2005). Interestingly, CTAs have a lower birth rate compared to hedge funds.

The birth rate in this dataset across all CTAs is 17.8%, whilst Getmansky, Lo and Mei

(2004) report a birth rate of 20.4% for hedge funds. On the other hand, discretionary

funds have a birth rate of 19.0% which is close to the one reported for hedge funds. This

is possibly because discretionary funds are similar to global macro hedge funds and are

quite different to systematic CTAs. To set up a proper systematic CTA requires a lot

of intensive research and model developing which serves as a significant barrier to entry

to systematic CTAs, a feature that contributes to their lower liquidation rate.

The year-to-year attrition rates exhibit different patters within each category of

funds. Across all CTAs the lowest attrition rate was 11.7% in 2003, with a failure rate

of 7.9% in the same year. There is considerable variation in the attrition across the

years, however. Attrition and failure rates start to decline at the beginning of 2000 until

they rise again to an unprecedented levels (24.3%) in 2009. Discretionary CTAs have

considerably larger attrition and failure rates, with levels climbing to 30.4% for attrition

and 12.2% failure in 2009. This is much higher than the rates across systematic funds

where both attrition and failure rates are fairly stable across the years with the highest

rates, in 2009, of 21.4% and 8.3% respectively. Of note is that, contrary to the findings

of Getmansky, Lo and Mei (2004) for hedge funds, the attrition and failure rates are
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lowest for systematic funds from 2000 to 2003. This period represents the bursting of the

technology bubble, when many hedge funds experienced bad performance. CTAs have

been documented by several studies to have performed particularly well during market

downturns, hence the decline in their failure rates Fung and Hsieh (1997b), Edwards

and Caglayan (2001).

Although the data shows relatively high attrition rates for CTAs, these estimates

are inflated by the number of very small funds in the database. As shown in Figure

1.1, whereas 80% of CTA funds have assets below US$20 million, most of the assets

of the CTA industry are managed by a very small number of funds. Table 1.5 shows

attrition, liquidation and failure rates after excluding all funds with assets below US$1

million, US$10 million, US$20 million. As smaller funds are excluded, attrition, liq-

uidation and failure rates drop, to the extent that, for systematic CTAs in particular,

the failure rate approaches the 3% figure reported in Liang and Park (2010) for hedge

funds. Yet this study used more extensive filters and included a larger number of fail-

ures than in Liang and Park’s (2010) study. Excluding funds with assets less than

US$20 million reduces the attrition rate to less than 10% with an even lower rate for

systematic CTAs. Given that most hedge fund studies exclude funds with less than two

years of data, which would exclude a lot of funds with small AUM, it is not surprising

that previous research on hedge funds documented low attrition rates. Capocci (2005)

included all the CTAs in his attrition analysis, hence a large attrition rate. It is likely

that funds with assets below US$1 million are traders trading their own capital and

do not constitute proper funds, yet the large number of these in the database tends to

inflate the attrition rate. The results of this analysis suggest that the attrition of CTAs

is not as high as previously thought: if small funds are excluded and, in particular, if
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funds with assets below US$1 million are excluded, the attrition rate drops to 11.7%.

Liquidation and failure rates are even lower, with a failure rate approaching 3.4% for

systematic CTAs, consistent with the practitioners’ view as presented in Derman (2006).

1.4.2 Non-parametric Approach: The Kaplan-Meier Analysis

of CTA Survival

This study begins its empirical analysis by measuring median survival times of CTAs

for the period 1994-2009 using the Kaplan-Meier non-parametric approach. Such anal-

ysis can help prospective investors to select funds that are more likely to survive a long

time and thus avoid liquidation. Panel A of Table 1.6 reports median survival times in

months for the unfiltered database across the three main CTA categories: systematic,

discretionary and options, as well as for three definitions of exit: all funds in the grave-

yard database, liquidated funds and failed funds only. Panel B shows the same results

but for data that has been filtered to exclude funds than never reached US$5 million

assets under management. This is a very basic filter that attempts to remove the large

number of very small CTAs, a problem that was discussed in section 4.1. The table

also shows the median survival times for large and small funds in each category and the

respective p-value of the Log Rank test of equality between the two groups.

The results of Table 1.6 highlight an important difference between exit type; com-

pared to the results for other exits, median survival is longest for failed funds. In fact,

median survival also increases for liquidated funds, compared to using the entire grave-

yard, and further increases for failed funds. All exits comprises liquidated funds, merged
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funds, fraud, not reporting funds and funds that self-selected. Self-selected funds are

defined as alive funds that no longer wish to report as they are closed to new investors.

Not reporting funds are funds that are also alive but had to stop reporting for other

reasons than capacity. For example, such funds may have stopped reporting because

they now manage their own assets only, have not achieved NFA registration, are exempt,

or other reasons not related to capacity. These funds, however, comprise only a tiny

fraction of the total funds, namely just 60. Similarly, unlike hedge fund databases, the

number of the self-selected funds is rather small, just 4% compared to 11% in Liang and

Park (2010) and 10.7% in Fung et al. (2008), possibly because CTAs are unlikely to

be as affected by capacity constraints as the other hedge fund strategies.10 This study

also finds a few fraudulent funds from various website filings. Table 1.6 Panel A shows

that funds in the group “All exits” have a median survival of 4.17 years (50 months),

a result similar to the 4.42 years found in Gregoriou et al. (2005), who used the entire

graveyard in their analysis without applying any filters. For liquidated funds, median

survival drops to 4.75 years across all funds and to 5.75 years for all failed funds. This

suggests that CTAs can experience other types of exit besides failure and liquidation.

Baba and Goko (2009) show different survival curves for different exit types of hedge

funds which underlines the importance of sorting graveyard into various exits. Panel C

gives an insight into these other types of exit and their effect on median survival times.

Fraudulent funds have the shortest median survival of 2.33 years. Also, funds that are

still alive but stop reporting due to capacity constraints or other reasons have a short

median survival of 3 years, which has a downward impact on the median survival of

all exits compared to liquidated funds only. This demonstrates that funds close fairly

1099 out of 2446 funds are self selected.
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quickly once they reach enough assets. The results are further confirmed in Figure 1.5

which shows survival curves by graveyard status together with corresponding smoothed

hazard curves. Although Figure 1.5 does not include failed funds, since they form part

of the liquidated funds, it clearly demonstrates that survival and hazard curves differ

substantially across different exit types, with fraudulent funds having the lowest survival

curve, a result that is consistent with Brown et al. (2009) who found that funds with

high operational risks at the extreme have a half-life of less than 3.5 years.

Table 1.6 also indicates that filtering the database for very small funds that comprise

a large share of the total number of funds has an effect on funds’ half-life. The median

survival across all exits is larger in Panel B than in Panel A: the median survival for

all funds and all exit types increases to 5.7 years, to 6.4 years for all liquidated funds

and to 8.9 years for all failed funds. Table 1.6 also reports on how survival time relates

to strategy variation. Systematic funds have the longest survival compared to discre-

tionary funds and options funds. This is invariant to the database used or exit type. In

particular, the median survival of failed systematic funds that are above US$5 million

is 9.5 years. For discretionary funds the median survival is 6.8 years. The superiority of

systematic funds is invariant to whether the entire or the filtered database is used and

persists across all exit types, liquidated and failed funds.

There are also significant differences between large and small funds. Large and small

CTAs are defined as those with mean assets in the period 1994-2009 that are above and

below the mean assets of all CTAs in the same strategy. Across all strategies, choosing

a larger fund increases the survival of a CTA. For example, the median survival of sys-

tematic liquidated funds above US$5 million is 221 months for large funds and only 72

months for small funds. The difference is statistically significant at the 1% significance
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level. The difference between large and small funds is statistically significant across all

strategies and all funds apart from options funds in the failed and liquidated category

(Panel B). This is consistent with the findings in Table 1.5 that shows the attrition of

larger funds dropping. Larger asset base is therefore associated with longevity.

Table 1.7 compares median survival across various strategies and two exit types, all

exits and failures only, for 892 CTAs that were filtered using a dynamic AUM filter as

proposed in Avramov, Barras and Kosowski (2010). The authors argue that few institu-

tional investors wish to represent more than 10% of a fund’s assets under management.

According to the practitioner side, reported in L’habitant (2006), a typical number of

funds held by a fund of funds is about 40. Therefore the dynamic AUM cutoff filter

is equal to the minimum fund size such that a “typical” fund of funds does not breach

the 10%-threshold.11 Applying this filter, the resulting cutoff rises from $13 million in

1994 to $54 million in 2009. In comparison to Table 1.6, with a dynamic AUM filter

applied, the median survival increases, reinforcing the contention that larger assets are

associated with longevity. The p-value for the Log-Rank test is still significant across

all funds and all exit types, indicating that there are still significant differences between

large and small funds, despite the fact that the funds have been filtered by asset size.

The median survival of all funds for all exits increased to 77 months (6.4 years) and

to 130 months (10.8 years) for failed funds. Systematic funds again have the longest

half-life across both exit types: 144 months for failed funds and 105 months for all exits,

indicating that this is the strategy with the longest longevity. This result is further

demonstrated in Figure 1.6 which shows a plot of survival and hazard curves for sys-

tematic and discretionary funds. The result also supports the earlier finding of Table 1.5

11The typical fund of funds is defined as a fund with an average AUM as measured by the fund of
funds AUM in the database which on average invests into 50 CTAs.
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where systematic CTAs were shown to have the lowest attrition and failure rates. This

points to differences within different types of CTAs and supports the earlier argument

that, contrary to previous studies that grouped all CTAs, it is better to analyze these

funds by separating systematic and discretionary funds.

There are some variations with sub-strategies. Systematic trend-followers, led by

short-term trend-followers have the highest median survival; a result further supported

in Figure 1.7 which shows survival and hazard curves across different sub-strategies of

CTAs for 892 failed funds. This result is consistent with Capocci (2005) and Gregriou

et al. (2005) who argue that there are significant difference across CTA styles. Panel B

demonstrates that an investor randomly selecting a newly launching systematic short-

term trend-following fund can expect the fund to survive 12.7 years before liquidation

and failure. Choosing a large fund in this category will further increase the survival to

14.3 years (172 months), whilst a small fund will survive 9.5 years. The difference is sta-

tistically and economically significant at 1%. On the other hand, an investor investing

into a newly launching discretionary fundamental fund can expect the fund to survive for

7.8 years (93 months) before failing. These results are in sharp contrast to the median

survival times reported in Gregoriou et al. (2005). There the authors report survival

times that are significantly lower than in this study, with overall survival times of just

4.42 years. This is because their study used the entire graveyard as their definition of

failure and therefore their results are only directly comparable to the results of Panel

A in Table 1.6. Neither does their study filter out small funds from the sample which

could further influence the results. Furthermore, unlike this study, the authors follow

the strategy classification of BarclayHedge and therefore obtain very different results

across CTA classifications. Accordingly, they find that systematic funds have the lowest
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median survival of only 3.33 years, whereas this study finds that systematic funds have

the highest survival of 4.42 years,12 even when using the unfiltered database and treating

all exits as failures. The median survival time changes significantly with dynamic AUM

filtering and using only failed funds, raising the median survival of systematic funds

to 12 years (144 months). In fact, on this approach the entire ranking is reversed. In

contrast to the approach of Gregoriou et al., Diz (1999b) uses Barclay Trading Group

for the period 1975 to 1995 and finds that systematic traders have a greater probability

of survival than discretionary. These results highlight the importance of different types

of exits that need to be carefully accounted for together with the need for clear strat-

egy definition that is yet to be conclusively established in the CTA space. Furthermore,

they show that using the entire graveyard as definition of failure can impart a significant

downward bias on medial survival. Standard deviation has no impact on media survival

of CTAs which resonates with the results of Liang and Park (2010) for hedge funds.

Finally, Table 1.8 reports results of several Log-Rank tests for equality of survival

functions for each sample stratified by the covariates of interest. This table is compa-

rable to the one in Gregoriou et al. (2005) but is applied to the sample with a dynamic

AUM filter and with failure only as the exit type. Similarly to Gregoriou et al. (2005)

the results indicate that CTAs with above average mean return (≥ 0.95%) survive longer

as well as those with above average assets under management (≥ $103 million). Gre-

goriou et al. (2005), however, report lower survival times of 5.33 years and 6.16 years

respectively in comparison to 14.67 years and 12.17 years for filtered failed funds in

this study. Table 1.8 also reports that while funds with higher management fees and

incentive fees survive longer, the difference in survival time is only statistically signifi-

1253 months, from Panel A in Table VII
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cant for performance fees. This is in contrast to Gregoriou et al. (2005) who find that

management fees positively impact survival times. Similarly to Gregoriou et al. (2005),

however, Table 1.8 reports no difference in survival when the sample is grouped by the

standard deviation. Minimum purchase also has a very weak effect on survival times.

The results indicate that the monthly return, average funds managed and performance

fees have an important implication on the survival.

1.4.3 Cox Proportional Hazards Model

A Survival Analysis to Predict Attrition

In the remainder of the analysis the sample consisted of funds that were selected with

a dynamic AUM filter - thus reducing the sample to 892 CTAs. Table 1.9 presents the

results of fitting the Cox proportional hazards model of Gregoriou et al. (2005) and fol-

lows a conventional classification that defines failure as all exits to the graveyard. The

first column is a parameter estimate and the second reports the associated hazard ratio,

which is eβ for the covariate. Hazard ratio provides an easier interpretation of the level

of a covariate’s influence. For binary variables with values of 1 or 0, the hazard ratio

can be interpreted as the ratio of hazard for those with a value of 1 to the estimated

hazard for those with a value of 0, after controlling for other covariates. For quantitative

variables, the hazard ratio estimate needs to subtract 1 and multiply by 100 which gives

a percentage change in the hazard for each unit increase in the covariate, controlling for

other variables. According to Allison (1995) a simple interpretation of the estimated
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hazard ratio is that a hazard ratio greater than one implies a negative effect of the co-

variate on survival, while a hazard ratio less than one indicates a protective effect of the

covariate. The corresponding p-value reports the p-value for the Wald test of the null

hypothesis that each coefficient is equal to zero. The results indicate that only three

variables have a significant effect on survival: mean monthly return over the entire life

of the fund, average millions managed and management fees. It is found that higher

average monthly returns as well as assets under management are protective whereas

higher management fees are not. The results closely mirror the findings of Gregoriou et

al. (2005) even though the sample in this study was filtered by asset size. Specifically,

the hazard ratio of the mean return is 0.838, indicating that an increase in the monthly

return of 1% leads to 16.2% reduction in the likelihood of failure. The protective effect

of the AUM is marginal. However, every percentage point increase in the management

fee increases the likelihood of failure by 15.2%. The goodness of fit provided by the

Likelihood ratio test and the Global Wald test, both are significant, and lends support

to the accuracy of the functional form of the model.

For comparison, Table 1.10 reports the results of the Liang and Park (2010) LP

model, with failure defined as exit to the graveyard. Compared to the LP model, where

all risk measures are significant when they are the only explanatory variables, Panel A

shows that only standard deviation and expected shortfall are significant risk measures.

When other explanatory variables are added to the model, Panel B, standard deviation

loses its significance but value at risk becomes significant at 10%. This supports the

earlier results of Table 1.9 that standard deviation is not a useful measure of CTA sur-

vival. The hazard ratios of the VAR and ES are below one, which is not intuitive since

it implies that higher risk funds have lower hazards. This strengthens the argument of
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Rouah (2005) that the effect of the covariates becomes blurred when all the graveyard

funds are regarded as failures. With regard to the impact of the other variables, Table

1.10 shows that only standard deviation of the AUM, leverage, HWM and a dummy

variable for discretionary style are significant at the 1% significance level. Interestingly,

the hazard ratio of leverage is protective. Baba and Goko (2009) conducted a Tobit

analysis with mean leverage as the dependent variable. They found that funds with

high mean leverage also tended to have a larger AUM, a high water mark and a longer

redemption period. These factors alone can lower the hazard ratios. The hazard ratio of

high water mark in Table 1.10 is above one, indicating that CTAs with high water mark

have increased risk of failure by as much as 60%, which is contrary to the results in Liang

and Park (2010) who find HWM to be protective. Rouah (2005) also finds that HWM

increases the risk of failure. The effect of high watermark on hedge fund survival remains

unclear with different authors presenting different results. Rouah (2005), Ng (2008) and

Lee (2010) all used the HFR database to study hedge fund survival and each found that

HWM tended to increase failure, whereas Liang and Park (2010) and Baba and Goko

(2010) analysed hedge fund survival using the TASS database and found that HWM is

protective. The authors argue that the HWM facilitates more stable fund management

as well as serves a signal quality for good managers. Liang and Park (2010) also cite

Aragon and Qian (2005) who argue that HWM lowers existing investors’ marginal cost

of staying in the fund following its poor performance and hence allows fund managers

to avoid liquidation by keeping its investors. Liang (2000), Brown, Goetzmann and Ib-

botson (1999) and Rouah (2005), on the other hand, suggest that once the fund incurs

large losses it is difficult for the manager to recuperate them and attain its high water

mark and that this increases the incentive to liquidate. Gregoriou et al. (2005) do not
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include HWM in their model therefore it is impossible to obtain a direct comparison

for this study. It is more likely, however, that the effect of HWM on CTA survival is

negative, given the significance and the size of the hazard ratio.

Table 1.10 also shows that there are some style effects: discretionary funds have a

higher hazard rate relative to systematic funds. Investing into a discretionary fund en-

tails a hazard rate 37% higher than in systematic CTAs. The explanatory power of the

mean return and mean AUM in the last year of a fund’s life is weak, indicating the need

for separating exit types. In addition to reporting the significance of the hazard ratios,

Table 1.10 also reports “Rho”, which is a slope estimate for each variable of the scaled

Schoenfeld (1982) residuals against time. Under the null hypothesis of proportional

hazards, the curve is expected to have a zero slope, thus rejection of the null hypothesis

indicates a deviation from the proportional-hazards assumption. The Global Ph Wald

test is a Wald statistic that tests whether all the covariates jointly satisfy the propor-

tional hazard assumption, i.e. model specification. Apart from the model with ES as

the risk measure, the global Wald test shows that the proportional hazards assumption

is rejected as a whole at the 1% significance level, whilst only one variable, standard

deviation of AUM, violates it.

A Survival Analysis to Predict Liquidation

The graveyard contains different types of exits, as reported in Table 1.6: liquidated

funds, funds that are alive but stopped reporting due to capacity constraints or simply

self-selected funds. Rouah (2005) argues that only liquidated funds should be used in

the survival analysis in order to avoid blurring the effect of predictor variables. Table
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1.11 reports the results of fitting the LP Cox proportional hazards model on liquidated

funds only, that is the number of failed funds reduces to 441 from 529 and other types

of exit are treated as censored. This model shows a marginal improvement in that

both mean return and mean AUM become significant at 1%, however neither satisfy

the proportional hazards assumption. The effect of risk measures in the univariate and

multivariate models remains unchanged. This is similar to the results of Liang and Park

(2010) who find that a model with liquidated funds produced misleading estimates. In

what follows, therefore, the analysis concentrates only on failed funds identified with

performance and AUM filters as discussed previously.

A Survival Analysis to Predict Failure

As discussed above, using liquidated funds is still not very informative in defining fail-

ure since many funds liquidate for reasons other than bad performance, e.g. merging

with another fund. The remainder of the analysis, therefore, concentrates on the failed

funds only. Table 1.12 shows several model specifications for failed funds with fixed

covariates only. For comparison purposes, specification (i) includes the same variables

as in the Gregoriou et al. (2005) model but applied to failed funds only. In contrast to

Table 1.6, where all exits were treated as failure, Table 1.12 shows that the standard

deviation over the entire life of the fund is now significant at 1% with a hazard ratio

above one. Management fee is still significant and increases the likelihood of failure.

The second specification adds skewness, kurtosis, winning ratio,13 standard deviation of

AUM over entire life of the fund, whether the fund has a hurdle rate, employs leverage,

13The number of months with a positive return to the total number months.
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HWM and dummy variables for investment style. Skewness and kurtosis are significant

at 5% and 10% respectively as well as the volatility of assets, leverage and the dummy

for discretionary style.14 The effect of skewness is protective: a unit increase in the

skewness decreases the hazard rate of the fund by 14%. One would expect the survival

to be positively related to the first and third moments and negatively to the second and

fourth moments. Contrary to this expectation, however, the coefficient on kurtosis is

negative indicating that it aids in survival. The effect is, however, marginal and the

covariate is not significant in specification (iii). The effect of the winning ratio is to

decrease the hazard rate of the fund whilst management fee increases the hazard rate.

Similar to previous results, leverage is protective and discretionary funds are 57% more

likely to fail than systematic ones. The hurdle rate is insignificant and is not included

in the remaining specifications due to its incomplete data.

Specification (iii) further adds maximum drawdown over the entire life of the fund.

Similar to the finding of Diz (1999b), this variable is highly significant and increases the

hazard rate by 5% for every percentage increase in the drawdown. The hazard ratio of

the winning ratio decreases to 0.08 at 1% significance level. The interpretation needs

care, however, as the win ratio is the number of positive returns over the total number

of returns and is therefore between 0 and 1, hence even a slight increase in this number

can dramatically increase the estimated survival. In the final specification in Table 1.12

maximum drawdown is replaced by maximum drawdown relative to standard deviation.

It shows that once maximum drawdown reaches three times annualized standard de-

viation the hazard rate increases by as much as 213%. If the drawdown is within two

14The dummy variable for systematic style was removed to avoid perfect multicollinearity in the
estimation process. The coefficient of the other two strategy dummies represents the incremental
change in hazard as compared to the default case.
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standard deviations, the effect is protective, but above two standard deviations the fund

is at risk of failure. The effect of HWM is significant in this model - funds with high

water mark provision have an increased risk of failure by as much as 51% relative to

funds without it. The effect of discretionary funds is unchanged, but the hazard ratio

of the options funds becomes significant at 5% and demonstrates an increased hazard

rate of the options funds relative to systematic ones.

Table 1.13 compares the five risk measures in terms of predicting the “real failure”

of CTAs by using Liang and Park’s (2010) model. Standard deviation remains an in-

significant risk measure but semideviation, ES and TR each become significant. In

particular, the effect of semideviation is to increase the hazard rate by 5%, whilst TR

increases the hazard rate by 2%. The effect of ES remains unclear, however, since the

hazard ratio is marginally below one. Mean return is found to be a highly significant

covariate at the 1% level with a hazard ratio of 0.84, implying that high return funds

have a lower hazard rate of failure. The fund size, as represented by the mean assets

under management over the entire life of the fund, is significant at 1%, however the

effect on survival is negligible. In addition this variable has a significant Rho, indicating

that it violates the proportionality assumption. In fact both mean AUM and standard

deviation of AUM violate the proportionality assumption. The previous studies of Ng

(2008) and Lee (2010) included fund size as the natural logarithm of the fund’s assets

under management at the last month. The authors argue that the effect of the fund size

on the duration is non-linear. One way to test this is to use the Martingale residuals

to test for the best functional form of the covariate. The goal is to determine the best

functional form that will result in an approximately straight curve of the martingale

residuals against the covariate. In unreported tests I plot mean AUM against martin-
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gale residuals and log AUM against martingale residuals. The log transformation of

the recent AUM yields a linear plot against martingale residuals, indicating a better fit.

Given this result, I use natural logarithm of fund’s assets under management at the last

month rather than just assets under management in the survival model.

Table 1.14 extends Liang and Park’s (2010) model by including a larger set of co-

variates than were previously tested in the base model as well as replacing mean AUM

with the log of the last month AUM. In addition, Drawdown/STD is added as another

risk measure. The most significant covariates, at 1% level, are mean return, fund size

represented by the log of last month AUM, standard deviation of the AUM, a dummy

for discretionary strategy and leverage. The protective effect of the mean return relative

to previous models increases with an increase in mean return over the entire life of the

fund resulting in a decrease in the hazard rate of 43%. The effect of fund size is also

much stronger now with one unit increase in size reducing the hazard rate by 15%. The

effect of standard deviation of AUM is negligible and both variables still show the rejec-

tion of the proportionality assumption with significant Rho. The way to circumvent this

issue is by introducing these variables as time varying. Table 1.15 introduces AUM as a

time-varying variable. I also introduce another variable, asset flow, Flow(t). Following

Agarwal, Daniel and Naik (2009) monthly flow is defined as:

DollarF lowi,m = AUMi,m − AUMi,m−1 (1 +Returni,m) (1.24)

which is then scaled by the previous month’s assets under management as in Sirri and

Tuffano (1998) to obtain:

Flowi,m =
DollarF lowi,m

AUMi,m−1

(1.25)
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Baba and Goko (2009) are the first to include a flow variable in the survival analysis

which they justify by the return-chasing behaviour of investors, where investors flock to

funds with good recent performance and withdraw funds from poorly performing funds

(Chan et al. 2006). Agarwal et al. (2009) also document that money flows chase good

recent performance and find that this relationship is in fact convex. However, they also

find that larger funds with greater inflows are associated with poorer future performance

underlining that hedge funds face diminishing returns to scale. Baba and Goko (2009)

find the effect of Flow to be protective, i.e. recent inflows contribute to lower liquidation

probabilities. Table 1.15 shows that whilst the effect of time-varying AUM is significant,

the effect on survival is marginal whereas the protective effect of Flow is significant at

1% and is indeed much stronger than documented in Baba and Goko (2009), with a

hazard ratio of 0.12. The effect of other variables seems to be unchanged: mean return,

skewness, winning ratio, management fee and leverage all remain significant. HWM

is no longer significant, whilst the incentive fee and minimum investment also remain

insignificant. With the inclusion of time-varying AUM and Flow, SEM, ES and TR

remain significant and VAR gains significance at 10%. The Likelihood ratio increases

to 289.10 compared to 199.02 in Table 1.14 indicating an overall improvement in the

model. Finally Table 1.16 adds ten dummy variables of which the eleven’s strategy,

Fundamental and Technical, was removed to avoid perfect multicollinearity in the esti-

mation process.15 The coefficient of the other ten strategies represent the incremental

change in the hazard as compared to the default case, the fundamental and technical

strategy. For example, the hazard ratio of short-term trend followers is 0.41, meaning it

is 59% less likely to fail than discretionary CTAs employing a fundamental and technical

15Table 1.16 presents only the results for standard deviation, TR and drawdown/STD. The results
of the model with the remaining risk measures are omitted to save space.
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approach. The results indicate that only a few strategies are significant at the 1% level:

short-term and medium-term trend followers. The coefficient on discretionary CTAs

with a fundamental approach is significant in the models with TR and Drawdown/STD

as risk measures, and systematic counter trend funds are 150% more likely fail than

the default strategy. This is easy to understand since it is a rather difficult strategy to

implement, as evidenced by the small number of counter trend funds.

Of particular interest in the above is the negative relationship between management

fee and survival. The results across all tables demonstrate that, on average, an increase

in management fee leads to an approximately 15% increase in the hazard rate. This

is similar to the result in Gregoriou et al. (2005) but the effect is stronger for failed

funds only. Baba and Goko (2009), however, find that the effect is reversed for hedge

funds where management fee is protective whilst incentive fee is not. HWM becomes

insignificant when time-varying AUM and Flow are added to the model.

1.4.4 Robustness Checks

In unreported results I test to see if my results are affected by changes in the confidence

level of the risk measures or the use of different estimation models.

Changing the confidence level of the risk measures

The results above are further examined to determine if they are affected by the confi-

dence level chosen to calculate VAR, ES and TR. Current results present a 95% confi-

dence level. The results at the 99% confidence level are not much different to the results

presented earlier. Standard deviation still appears to be insignificant in predicting real

failure whilst SEM, ES and TR are significant at the 5% level.



1.5. Conclusion 78

The Probit Model

Malkiel and Saha (2005) and Brown et al. (2001) use a probit model to estimate the

effect of variables on hedge fund survival. Using a probit model on the 817 funds for

failure and attrition shows that results are not dissimilar to the Cox (1972) model. Stan-

dard deviation is still less efficient at predicting survival than other risk measures.

1.5 Conclusion

This chapter has analyzed the factors affecting CTA survival. It included a wide range

of variables with particular emphasis on various downside risk measures as well as AUM

and capital flows. In addition, it has offered an improvement in methodology when com-

pared to previous studies on CTA survival. In contrast to previous survival analyses that

incorporated only fixed covariates, this study included time varying covariates which al-

lowed to evaluate their impact at each instant of a fund’s lifetime rather than during

the entire lifetime or the last 12 months. This study also adopted a novel CTA strategy

classification that allowed for interesting comparisons between discretionary and sys-

tematic CTAs. Finally, it has taken into account the different exit types that CTAs can

experience. It used a combination of various filters and hand-collected information to

determine exit types. Further, an updated filtering methodology was proposed to screen

for failed funds among CTAs. Based on this extensive data collection, the attrition rate

and factors affecting CTA survival are investigated.
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The main results demonstrate that the entire graveyard is a poor measure of CTA

failure and it is therefore important to account for different exit types. Whilst attrition

of CTAs is as high as 17.8%, similar to the rate for all hedge funds, the average per-

centage of liquidated funds is lower at 14.6%. However, once the real failures among

the liquidated funds are distinguished, the rate drops to 11.1% suggesting that there

are many discretionary liquidations that are not damaging to investors. As such this

study develops filters to discriminate between failed funds. It also finds that the CTA

database contains a large number of small funds with assets that are less than US$20

million. Institutional investors are unlikely to invest into such small funds and if they

are removed from the sample the real failure rate drops to 3.9%, which is comparable to

the failure rate reported for hedge funds. The failure rate for CTAs is therefore not as

high as previously thought. Systematic CTAs are also found to have a lower failure rate

than discretionary ones, 3.4% vs. 5.8%. This study also demonstrates that the attrition

rate during the 2008 financial crisis climbed to an unprecedented level.

Further, the median survival time of large failed funds is found to be 10.8 years,

which is higher than the previously reported median survival of 4.42 years in Gregoriou

et al. (2005) and of 2 years reported in Brown et al. (2001). Spurgin (1999) has used the

MAR CTA database over a shorter period and reports a survival time of approximately

5 years. My results show that an average systematic CTA has a median survival of 12

years compared to 8.33 years for a failed discretionary fund. Assets under management

have an effect on survival as well, with larger funds having significantly higher median

survival times when compared to smaller funds.

Using Cox’s (1972) model with time-varying covariates the results show that stan-

dard deviation is not a good risk measure in terms of predicting CTA failure. Measures
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such as SEM and TR as well as maximum drawdown are better able to account for

non-normality of CTA returns. Apart from variables such as performance and assets

under management, asset flows into the funds have a positive effect on CTA survival.

Funds that experience significant asset outflows have a higher chance of liquidation.

Contrary to the findings of Liang and Park (2010) for hedge funds, the presence of a

high water mark has a negative effect on CTA survival. Management fees increase the

probability of failure whilst leverage has a protective effect. The effect of leverage could

possibly be explained by the findings of Brown et al. (2009) as further discussed in

Brown, Goetzmann, Liang and Schwarz (forthcoming), who find that funds with higher

operational risks are less able to raise leverage since prime brokers and lenders are less

willing to lend to funds that they perceive as risky. Conversely, funds that are more

able to borrow may have less operational risk and thus lower liquidation probabilities.

The results also show that funds with lower skewness, lower winning ratio and higher

maximum drawdown have higher failure rates. Finally, there are important differences

across CTA styles, with systematic CTAs and in particular systematic trend-followers

experiencing lower hazard rates than any other strategy and these should therefore be

favoured by investors.
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1.6 Appendix

SYSTEMATIC - funds that employ purely systematic approach to trading, utiliz-

ing computer models that are mainly based on technical analysis of the market

data and fundamental economic data. Trading can be diversified across many

markets, including foreign exchange, interest rates, commodity, bond and equity

markets. Manager intervention is limited. The core of systematic trading lies in

strict management of volatility. “Diversified program is a diversified portfolio of

more than 120 international futures and forwards markets employing a computer

based system. The system has been developed based on the basis of a sophisticated

statistical analysis of past price movements and seeks to profit from the tendency

of the markets to trend.” Winton Capital Management, Ltd.

Trend-following - by far the most represented strategy among systematic funds.

This is a strategy that tries to take advantage of price movements in a systematic

way and aims to work on the market trend, taking benefit from both up markets

and down markets. “Bluetrend fund is a systematic, trend-following black box

fund, which trades on a 24 hour cycle and seeks to successfully identify trends.”

BlueCrest Capital Mgmt, LLP.

Trend-following - Short-term - Systematic trend-follower with a short-term

time frame of anything from intra-day trading up to one week.

Trend-following - Medium-term - Systematic trend-follower with a medium-

term time frame of anything from one week to 30 days. “Rotella Sirius Fund,

LLC utilizes a multi-model approach targeting medium-term and long-term trends
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in global commodity, interest rate, currency and equity index markets. Sirius’s

average holding period is 25-50 days.”

Trend-following - Long-term - Systematic trend-follower with a long-term

time frame from one month to several months.

Pattern Recognition - Systematic trading that bases its approach on statistical

pattern recognition in a variety of markets, utilizing a particular field of computer

science concerned with recognizing patterns. “The trader exploits non-random

price behaviour by quantitative analysis of price patterns. Its approach is en-

tirely systematic. The systems are applied to more than 100 different product-

market-combinations. Advanced correlation analysis safeguards portfolio balance.”

Transtrend.

Spread/Relative Value - a systematic approach to arbitrage and relative value

trading. Relative Value Arbitrage is a market neutral strategy that seeks to exploit

pricing inefficiencies between related securities and markets, including equities, op-

tions, debt and futures. Managers tend to use mathematical models and technical

analysis.

Counter Trend - systematic trading that takes advantage of price movements by

adopting a contrarian approach to the trends. “The Financials Program employs

a quantitative, primarily contrarian, short-term strategy. RGNCM’S method cap-

tures changes in the psychology of market participants and has been particularly

successful during volatile and declining equity and fixed income markets” R.G.

Niederhoffer Capital Management.
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DISCRETIONARY - whereas systematic trading uses a fixed set of rules to deter-

mine trade entries and direction, the discretionary trader is not bound by any

rules. In essence the trader uses his own judgement and evaluation of the market

indicators, fundamental information, etc. to determine the value of the indicator

and decides the point of entry, size of investment and level of risk taking.

Fundamental - discretionary trading that focuses on the analysis of fundamentals

to inform investment decisions. Programs may focus on one market only or di-

versified markets. “Albion utilizes a fundamental based discretionary approach to

trade the major currencies.” Albion Currency Advisors, Ltd

Technical - discretionary trading that uses technical analysis, such as charts and

price patterns, with most trading executed by the manager. Some funds may

utilize computer based systems to look for price patterns but ultimately all the

trading is executed by the manager.

Fundamental and Technical - a mixture of fundamental and technical analyses

with manager discretion.

Discretionary Spread/RV - exploiting arbitrage opportunities with manager dis-

cretion.

OPTIONS STRATEGIES

Options Writing - programs that rely on selling or writing options.

Options Other - programs that utilize options trading other than selling. “Re-

flects the performance of the Options Program - an intermediate term market neu-

tral anti-trend following approach combining 60% fundamental and 40% technical
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analysis to trade U.S. fixed income and equity options” Analytic TSA Global Asset

Mgmt, Inc.
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All CTAs 2446

Systematic 1511
Trend-Followers 1263

Short-Term 331
Medium-Term 780
Long-Term 152

Pattern Recognition 96
Spread/Relative Value 128
Counter Trend 24

Discretionary 747
Fundamental & Technical 253
Fundamental 136
Technical 284
Spread/Relative Value 74

Options 188
Options Writing 113
Options Other 75
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Table 1.2: Attrition, Liquidation and Failure Rate of CTAs

Table 1.2 compares attrition, liquidation and failure rates across all CTAs. The data is from
the BarclayHedge database for the sample period from January 1994 to December 2009.
Attrition means all funds that are moved from the Live database into the Graveyard database.
Liquidation rate includes all the funds that have liquidated as defined using several criteria.
Failure is the real failure of those liquidated funds that have not experienced liquidation for
discretionary reasons.

Year Year Entry Exit Stopped Liquidated Failure Year Birth Liquidation Failure Attrition
Start Reporting End Rate Rate Rate Rate

1993 663
1994 663 113 111 8 103 84 665 17.0% 15.5% 12.7% 16.7%
1995 665 113 131 14 117 92 647 17.0% 17.6% 13.8% 19.7%
1996 647 101 133 13 120 92 615 15.6% 18.5% 14.2% 20.6%
1997 615 89 120 12 107 78 584 14.5% 17.4% 12.7% 19.5%
1998 584 91 104 11 93 63 571 15.6% 15.9% 10.8% 17.8%
1999 571 116 102 9 93 72 585 20.3% 16.3% 12.6% 17.9%
2000 585 83 103 7 96 68 565 14.2% 16.4% 11.6% 17.6%
2001 565 85 84 11 72 56 566 15.0% 12.7% 9.9% 14.9%
2002 566 126 69 5 63 50 623 22.3% 11.1% 8.8% 12.2%
2003 623 135 73 10 63 49 685 21.7% 10.1% 7.9% 11.7%
2004 685 162 86 7 79 57 761 23.6% 11.5% 8.3% 12.6%
2005 761 187 119 13 106 87 829 24.6% 13.9% 11.4% 15.6%
2006 829 178 147 28 119 99 860 21.5% 14.4% 11.9% 17.7%
2007 860 161 147 27 120 97 874 18.7% 14.0% 11.3% 17.1%
2008 874 131 179 40 138 85 826 15.0% 15.8% 9.7% 20.5%
2009 826 64 201 46 107 83 689 7.7% 13.0% 10.0% 24.3%

Total 1935 1909 261 1596 1212 Average 17.8% 14.6% 11.1% 17.3%
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Table 1.3: Attrition, Liquidation and Failure Rate of Systematic CTAs

Table 1.3 compares attrition, liquidation and failure rates across Systematic CTAs. The data
is from the BarclayHedge database for the sample period from January 1994 to December
2009. Attrition means all funds that are moved from the Live database into the Graveyard
database. Liquidation rate includes all the funds that have liquidated as defined using several
criteria. Failure is the real failure of the liquidated funds that have not experienced liquidation
for discretionary reasons.

Year Year Entry Exit Stopped Liquidated Failure Year Birth Liquidation Failure Attrition
Start Reporting End Rate Rate Rate Rate

1993 410
1994 410 60 55 5 50 42 415 14.6% 12.2% 10.2% 13.4%
1995 415 74 81 8 73 58 408 17.8% 17.6% 14.0% 19.5%
1996 408 64 73 8 65 50 399 15.7% 15.9% 12.3% 17.9%
1997 399 65 62 6 56 42 402 16.3% 14.0% 10.5% 15.5%
1998 402 67 68 9 59 38 401 16.7% 14.7% 9.5% 16.9%
1999 401 84 73 7 66 52 412 20.9% 16.5% 13.0% 18.2%
2000 412 47 66 1 65 45 393 11.4% 15.8% 10.9% 16.0%
2001 393 69 50 3 47 34 412 17.6% 12.0% 8.7% 12.7%
2002 412 82 48 1 46 36 446 19.9% 11.2% 8.7% 11.7%
2003 446 88 55 8 47 37 479 19.7% 10.5% 8.3% 12.3%
2004 479 110 56 2 54 40 533 23.0% 11.3% 8.4% 11.7%
2005 533 124 87 8 79 65 570 23.3% 14.8% 12.2% 16.3%
2006 570 97 111 21 90 74 556 17.0% 15.8% 13.0% 19.5%
2007 556 83 85 12 73 57 554 14.9% 13.1% 10.3% 15.3%
2008 554 62 97 22 75 50 519 11.2% 13.5% 9.0% 17.5%
2009 519 26 111 19 60 43 434 5.0% 11.6% 8.3% 21.4%

Total 1202 1178 140 1005 763 Average 16.6% 13.8% 10.4% 16.0%
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Table 1.4: Attrition, Liquidation and Failure Rate of Discretionary CTAs

Table 1.4 compares attrition, liquidation and failure rates across Discretionary CTAs. The
data is from the BarclayHedge database for the sample period from January 1994 to December
2009. Attrition means all funds that are moved from the Live database into the Graveyard
database. Liquidation rate includes all the funds that have liquidated as defined using several
criteria. Failure is the real failure of the liquidated funds that have not experienced liquidation
for discretionary reasons.

Year Year Entry Exit Stopped Liquidated Failure Year Birth Liquidation Failure Attrition
Start Reporting End Rate Rate Rate Rate

1993 244
1994 244 49 54 3 51 40 239 20.1% 20.9% 16.4% 22.1%
1995 239 37 49 6 43 34 227 15.5% 18.0% 14.2% 20.5%
1996 227 31 55 4 51 38 203 13.7% 22.5% 16.7% 24.2%
1997 203 20 53 4 48 34 170 9.9% 23.6% 16.7% 26.1%
1998 170 20 33 2 31 24 157 11.8% 18.2% 14.1% 19.4%
1999 157 26 29 2 27 20 154 16.6% 17.2% 12.7% 18.5%
2000 154 25 34 5 29 21 145 16.2% 18.8% 13.6% 22.1%
2001 145 9 31 7 23 20 123 6.2% 15.9% 13.8% 21.4%
2002 123 39 19 4 15 12 143 31.7% 12.2% 9.8% 15.4%
2003 143 34 12 1 11 8 165 23.8% 7.7% 5.6% 8.4%
2004 165 40 25 4 21 16 180 24.2% 12.7% 9.7% 15.2%
2005 180 41 30 5 25 21 191 22.8% 13.9% 11.7% 16.7%
2006 191 66 27 5 22 21 230 34.6% 11.5% 11.0% 14.1%
2007 230 60 52 14 38 33 238 26.1% 16.5% 14.3% 22.6%
2008 238 49 50 11 38 20 237 20.6% 16.0% 8.4% 21.0%
2009 237 25 72 24 35 29 190 10.5% 14.8% 12.2% 30.4%

Total 571 625 101 508 391 Average 19.0% 16.3% 12.6% 21.0%
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Table 1.5: Attrition, Liquidation and Failure Rate Across Styles by AUM

Table 1.5 compares attrition, liquidation and failure rates across CTA styles. The data is
from the BarclayHedge database for the sample period from January 1994 to December 2009.
Attrition means all funds that are moved from the Live database into the Graveyard database.
Liquidation rate includes all the funds that have liquidated as defined using several criteria.
Failure is the real failure of the liquidated funds that have not experienced liquidation for
discretionary reasons.

CTA Style Birth Rate Attrition Rate Liquidation Rate Failure Rate

All funds
All CTAs 17.8% 17.3% 14.6% 11.1%
Discretionary 19.0% 19.9% 16.3% 12.6%
Systematic 17.8% 16.0% 13.8% 10.4%

Excluding funds with AUM less than US$1 million.
All CTAs 16.4% 14.1% 11.7% 8.6%
Discretionary 17.5% 16.6% 13.4% 10.3%
Systematic 15.4% 13.1% 11.0% 8.0%

Excluding funds with AUM less than US$10 million.
All CTAs 14.7% 8.5% 6.8% 4.6%
Discretionary 16.5% 10.8% 8.3% 5.9%
Systematic 13.4% 7.8% 6.3% 4.1%

Excluding funds with AUM less than US$20 million.
All CTAs 14.6% 8.2% 6.5% 3.9%
Discretionary 16.3% 10.3% 7.9% 5.8%
Systematic 13.3% 7.5% 6.0% 3.4%
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Table 1.7: Kaplan-Meier Estimated Median Survival Times (Half-Life) by
Strategy and Exit Type for 892 Funds Filtered by Dynamic AUM

Table 1.7 reports Kaplan-Meier median survival time in months along with the standard error
(S.E.) for 892 funds selected with a dynamic AUM filter. Large and small funds are those
CTAs that had mean assets for the period January 1994 to December 2009 that were above
or below the mean assets of all funds in the same strategy. The Log-Rank p-value is for the
Log-Rank test for equality of the survival functions of the large funds and small funds groups.
In Panel A survival time is defined as time until exit into the graveyard whilst Panel B shows
the survival times for the funds filtered for failure. Cells marked n/a denote strata with
insufficient liquidations to obtain estimates. Counter Trend and Vol. Arb. are not included
due to insufficient data.

Panel A: All Exits All Funds Large Funds Small Funds Log Rank
Median S.E. Median S.E. Median S.E. p-Value

Options 98 19.19 66 4.9 98 13.21 0.7633
Short-Term Trend 97 9.39 204 30.72 68 8.51 <0.0001
Medium-Term Trend 92 6.01 n/a n/a 83 5.67 <0.0001
Long-Term Trend 90 12.63 165 9.86 77 10.6 0.0719
Pattern Recognition 89 16.11 n/a n/a 84 15.87 0.1457
Fundamental 75 4.00 162 45.24 71 5.83 0.0752
Discretionary Spread/RV 67 11.19 83 13.15 52 10.01 0.7817
Systematic Spread/RV 63 10.43 106 18.06 60 3.07 0.0336
Fundamental and Technical 62 4.97 98 6.56 59 4.83 0.201
Technical 57 4.04 52 12.25 58 6.36 0.9045

Systematic 105 19.56 204 22.78 77 3.09 <0.0001
Discretionary 65 4.00 98 15.26 60 3.93 0.0238
Options 98 19.19 66 4.90 98 13.21 0.7633

All Funds 77 2.89 162 16.78 71 2.40 <0.0001

Panel B: Failed Funds All Funds Large Funds Small Funds Log Rank
Median S.E. Median S.E. Median S.E. p-Value

Short-Term Trend 152 16.98 160 20.5 128 16.07 <0.0001
Medium-Term Trend 145 11.18 n/a n/a 119 11.16 <0.0001
Long-Term Trend 141 12.57 n/a n/a 124 21.38 0.0307
Pattern Recognition 127 15.38 n/a n/a 109 14.51 0.1056
Discretionary Spread/RV 125 2.93 n/a n/a 125 2.94 0.6224
Systematic Spread/RV 106 18.58 130 24.73 76 16.24 0.1038
Options 105 n/a n/a n/a 105 n/a n/a
Technical 97 16.56 52 n/a 97 16.65 0.9698
Fundamental and Technical 96 34.39 176 6.73 81 23.37 0.4396
Fundamental 93 28.99 162 14.76 77 11.44 0.2979

Systematic 144 8.44 172 9.61 114 8.79 <0.0001
Discretionary 100 11.14 163 6.01 93 12.57 0.0714
Options 105 10.11 98 11.2 105 9.58 0.5873

All Funds 130 7.67 136 8.78 109 6.30 <0.0001
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Table 1.8: Log Rank Test for CTAs Above and Below the Median for 892
funds filtered by dynamic AUM

Table 1.8 reports median values of the covariates together with median survival times for
funds above and below median covariate values for the period January 1994 to December
2009. The Log-Rank p-value is for the Log-Rank test for equality of the survival functions of
the two groups.

50% Survival in Years
Variable Median Value Above Below Chi-Square p-Value

Mean Monthly Return 0.95% 14.67 8.25 37.87 <0.0001
Average Millions Managed $103.00 12.17 9.08 48.25 <0.0001
Standard Deviation 4.53% 10.33 12.00 0.64 0.4227
Performance Fees 20.06% 13.42 10.42 3.21 0.0732
Management Fees 2.00% 10.83 6.42 0.1 0.7535
Minimum Purchase $1,922,391 12.08 10.75 2.91 0.088

Table 1.9: Hazard ratios for the GHPR (2005) Cox PH Model for Attrition

Table 1.9 reports results for the Gregoriou, Hubner, Papageorgiou and Rouah (2005) Cox
proportional hazards model for the period January 1994 to December 2009. Included are
the coefficient estimates, β, hazard ratios, confidence intervals, Chi-square and corresponding
p-values for the two-tailed test of a regression coefficient equal to zero. Also included are the
Likelihood ratio test and the Wald test, both measuring the goodness of fit of the model.

Variable Coefficient Hazard Ratio Confidence Intervals Chi-square p-Value

Mean monthly return -0.177 0.838 (.709, .990) -2.07 0.038
Average millions -0.003 0.997 (.996, .998) -5.77 <0.0001
Standard deviation 0.001 1.001 (.999, 1.001) -0.43 0.669
Incentive fees -0.016 0.984 (.959, 1.010) -1.22 0.222
Management fees 0.142 1.152 (1.052, 1.263) 3.04 0.002
Minimum purchase -0.001 0.999 (.996, 1.001) -0.98 0.328
Likelihood ratio test (χ2

1) 91.53***
Global Wald test 55.22***
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Table 1.16: Survival Analysis for All Strategies

Table 1.16 reports coefficient estimates, β and hazard ratios from the Cox (1972) PH model
for the period January 1994 to December 2009. The table includes models with fixed and time
varying covariates and includes 12 strategies. Failure is defined based on the performance
and size criteria defined previously. ***, **, and * denote that the coefficient estimate and
the hazard ratios are statistically significant at the 1%, 5% and 10% levels, respectively. Also
included are tests measuring the goodness of fit of the model. The Global Ph test is a Wald
test that tests if all the variables jointly satisfy the proportional hazard assumption. Rho is
a slope coefficient estimate of Schoenfeld residuals of each variable against time and tests if
each variable satisfies the proportional hazard assumption.

Variable Hazard Rho Hazard Rho Hazard Rho
Ratio Ratio Ratio

Model STD TR Drawdown/
STD

Risk measure 1.03 -0.05 1.06*** -0.01
D1 (drawdown/STD >1) 0.51*** -0.06
D2 (drawdown/STD >2) 1.01** 0.10*
D3 (drawdown/STD >3) 1.00* 0.05

Mean return 0.50*** 0.10** 0.46*** 0.07* 0.52*** 0.12***
Skewness 0.84** 0.01 0.90 0.03 0.76*** 0.05
Kurtosis 0.98 0.07 0.97** 0.08 0.98 0.02
Winning ratio 0.20* -0.06 0.31 -0.04 0.05*** -0.03
AUM(t) 0.99*** 0.01 0.99*** 0.02 0.99*** 0.03
Flow(t) 0.12*** -0.08* 0.12*** -0.08 0.12*** -0.08
Management fee 1.16** -0.02 1.14** -0.03 1.17*** -0.03
Incentive fee 0.99 0.01 0.99 0.02 1.00 0.01
Leverage 0.22** -0.03 0.23** -0.03 0.22** -0.03
HWM 1.15 0.02 1.19 0.02 1.08 0.01
Min. investment 1.00 -0.01 1.00 -0.01 1.00 0.01

D1 (Fundamental) 0.65 0.11** 0.62* 0.11* 0.62* 0.07
D2 (Technical) 0.94 0.03 0.94 0.04 0.84 0.01
D3 (Disc Spread/RV) 0.80 0.08 0.84 0.08 0.86 0.04
D4 (Options) 0.84 0.02 0.95 0.02 0.85 0.02
D5 (Pattern Rec.) 0.66 0.06 0.66 0.06 0.59 0.06
D6 (Counter Trend) 2.50* 0.04 2.50* 0.05 2.40 0.04
D7 (Systematic Spread/RV) 1.03 0.09 0.99 0.10* 1.00 0.08
D8 (Short-term) 0.41*** -0.06 0.42*** -0.05 0.41*** -0.07
D9 (Medium-term) 0.48*** 0.07 0.48*** 0.08 0.48*** 0.05
D10 (Long-term) 0.67* 0.07 0.65 0.07 0.68 0.07

Likelihood ratio test (χ2
1) 308.74*** 311.86*** 323.37

Global Ph Wald test 26.39 26.49 37.78
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Figure 1.1: Assets Under Management for CTA Industry, 1994-2009.

Figure 1.1 shows the growth of the assets under management for the entire CTA industry
starting from January 1994 and ending in December 2009. Included are the onshore and
offshore vehicles of the funds and various share classes.
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Figure 1.2: Failed Fund with Small AUM

Figure 1.2 shows VAMI and AUM for a fund that failed in terms of downside risk measures
and had negative return in the last six months yet its assets remained stable. Such a fund
would not be caught by Liang and Park’s (2010) filter. Source: PerTrac Analytical Platform.
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Figure 1.3: Fund With Lost Assets More Than 12 Months Before End of
Data

Figure 1.3 shows VAMI and AUM for a fund whose assets dropped prior to 12 months before
the end of data. Such a fund would not be caught by Liang and Park’s (2010) filter. Source:
PerTrac Analytical Platform.
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Figure 1.4: Fund With Positive Average Return in the Last Six Months

Figure 1.4 shows VAMI and AUM for a fund which experienced a large drawdown of 78.24%
and a loss of assets yet in the last six months prior to termination its average return was
positive. Such a fund would not be caught by Liang and Park’s (2010) filter. Source: PerTrac
Analytical Platform.
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Figure 1.5: Non-Parametric Survival and Hazard Curves

Figure 1.5 shows survival and hazard curves for all 2446 funds in the sample by exit status.
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Figure 1.6: Non-Parametric Survival and Hazard Curves

Figure 1.6 shows survival and hazard curves for 892 funds filtered by dynamic AUM. The
graphs show survival and hazard curves of systematic and discretionary for failed funds.
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Figure 1.7: Non-Parametric Survival and Hazard Curves

Figure 1.7 shows survival and hazard curves for 892 funds filtered by dynamic AUM. The
graphs show survival and hazard curves for failed funds across sub-strategies.
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Chapter 2

Performance and Persistence of

Commodity Trading Advisors

2.1 Introduction

In the last few years we have witnessed a major downturn in the world economy and

financial markets. Many institutional investors have been hit by significant losses from

their investments across multiple asset classes including hedge funds. Whilst the hedge

fund industry had been growing at an impressive rate over the last decade, the financial

crisis led to a significant outflow of assets following disappointing returns. The financial

crisis is clearly not over with economies plunging into deep recessions across many parts

of the world. In such an uncertain economic environment institutional and private in-

vestors are faced with difficult asset allocation decisions since even hedge funds which

until recently were considered to be market neutral have been hit with significant losses.

With rising total debt levels across major economies such as the US, UK and EU, the

risks of deflation or hyperinflation are high. There is however an asset class that is bet-

ter suited to such an environment. Faced with such uncertainty investors may benefit

from investing in the most liquid of instruments such as futures.

Managed futures are also commonly referred to as CTAs and are a particular subset

of the hedge fund universe with many regulatory features and characteristics similar to
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that of hedge funds. Hedge funds and CTAs have been attracting increased interest from

academics and investors. Baquero et al. (2005) document that long/short equity and

managed futures were the most popular investment styles among hedge funds during

1990-2000 period. Although the number and assets under management of CTAs have

seen a dramatic growth in the past 20 years, there is little consensus in the empirical lit-

erature on the performance and persistence of managed futures. The earliest studies of

Elton, Gruber and Rentzler (1987, 1989 and 1990) on Commodity Pool Operators have

concluded that publicly traded commodity pools are unable to generate any superior

performance and most of the performance is retained by the managers through fees.1 A

recent study by Bhardwaj et al. (2008) mirrors the findings of Elton et al. (1990) and

concludes that net of fees returns of CTAs fail to significantly exceed those of T-bills.

Other authors, however, have argued that CTAs do outperform the market and that

numerous CTAs show persistence over a horizon of at least three months, Gregoriou

et al. (2010) and Capocci (2005). Edwards and Caglayan (2001), Liang (2003) and

Schneeweis and Georgiev (2002) have further demonstrated that unlike hedge funds,

CTAs offer significant protection in down markets and have higher returns with an

inverse correlation to equity markets during downturns. Consequently, they conclude

that institutional investors should use CTAs as a hedging instrument in their portfolio

construction.

These recent findings raise some interesting questions. In light of the negative pub-

licity of CTAs offered by Elton et al. (1990), what is the average performance of CTAs

and does an average CTA have any ability to deliver alpha? If not, are there any CTAs

in the cross section that are capable of delivering alpha and if so does that performance

persist? What are the factors that are driving this performance and persistence?

To answer these questions, this study employs data on a large-cross section of CTAs

with a novel strategy classification to shed light on the performance and persistence of

1Commodity Pool Operators are entities that accept funds for the purpose of trading commodity
futures contracts. A CPO can make its own trading decisions but will frequently contract CTAs. Both
CPOs and CTAs are regulated by the US federal government through the CFTC and an oversight from
NFA. (From http://richard-wilson.blogspot.com/2009/07/what-is-commodity-pool-operator.html).
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CTA managers between 1990 and 2010. This twenty year period is the longest studied in

the CTA literature and spans both bull (pre 2000 and 2007) and bear markets, including

several financial crises: the Russian default crises of 1998, the burst of the tech bubble

in Spring 2000 as well as the credit crisis of 2008-2009. In this study CTAs are classified

according to two major style groups: systematic or discretionary. Anecdotal evidence

suggests that this is indeed the industry practice within most CTAs. A recent article in

the Financial Times discusses the benefits of the two strategies2. Previous studies, Bil-

ligsley and Chance (1996), Brown et al. (2001), Diz (1999), etc., have all studied CTAs

as a single group. In contrast, more recent studies such as those of Capocci (2005)

and Gregoriou et al. (2010) have studied CTAs according to sub-categories reported in

BarclayHedge database. Apart from Kazemi and Li (2009), none of these studies have

separated CTAs into two main trading styles: systematic and discretionary. In fact, the

confusion arises as most CTAs are reportedly trend followers with many CTAs utilizing

proprietary trading models to capture trends in the markets using futures. Yet the fun-

damental difference in the types of funds lies in the way they trade. Systematic CTAs

base their trading on technical models and all the execution is automated via trading

algorithms. This has been facilitated by an incredible growth in computing power which

has had a profound impact on the world of trading; exchanges are becoming electronic,

the power of computers continues to improve and the data they generate is becoming

more accessible and easily stored. The traders at the frontier of this technological revo-

lution are the systematic or algorithmic CTAs that trade highly liquid, exchange traded

instruments. In contrast discretionary CTAs involve a certain amount of human judge-

ment and manager discretion.

The purpose of this chapter is to investigate the performance and persistence of sys-

tematic and discretionary CTAs in light of recent market conditions by employing new

robust methodologies that are current in the hedge fund literature. Before using CTA

data, one must address and minimize biases such as survivorship and instant history

biases. These biases are well documented in the literature and arise from the lack of

2See http://www.ft.com/cms/s/0/f37adf8e-aeeb-11e1-a4e0-00144feabdc0.htmlaxzz1xPRQ74tf
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uniform reporting standards3. I update earlier results on the effect of these biases on

performance and find that results are consistent with the earlier literature. The perfor-

mance of the average CTA is investigated on an equal and value-weighted basis after

adjusting for these biases.4 CTAs are found to add value, even after fees, with large

systematic CTAs having superior performance to their discretionary counterparts. The

value-weighted portfolio, which represents the performance of the overall industry of

systematic CTAs delivers higher cumulative returns than many of the market indices.

Next, this study examines the ability of CTAs to deliver alpha over the period 1990-

2010. By further looking at the performance of funds in the cross-section this study

aims to determine if systematic CTAs have more skill than discretionary CTAs. Anec-

dotal evidence suggests that the lack of emotion and the ability to diversify easily across

many markets may allow systematic CTAs to deliver better returns than discretionary

funds. Finally, this study aims to answer the question of performance persistence, an

issue that has received a lot of attention in the hedge fund and mutual fund literature

but has only been addressed with mixed results in the CTA literature5.

Evaluating the performance and persistence of CTAs is not only complicated by the

many biases present in the CTA data, but also by the non-normality of the many CTA

return series6 and the relatively short return histories. These issues have been success-

fully addressed in the hedge fund literature by employing robust bootstrap and Bayesian

methodologies, as proposed by Kosowski et al. (2007) and further used by Fung et al.

(2008), together with the GMM approach used by Jagannathan et al. (2010). None of

these methods have thus far been applied exclusively to CTAs. Furthermore, Fung et

al. (2008) and more recently Bollen and Whaley (2009) have argued that any perfor-

3See Fung and Hsieh (1997b), Fung and Hsieh (2000b), Fung and Hsieh (2009), Liang (2000), Malkiel
and Saha (2005), Brown, Goetzmann and Ibbotson (1999).

4Interestingly a comparative study for CTAs by Bhardwaj et al. (2008) uses equally-weighted index
only as the TASS database used in the same study has incomplete AUM information.

5For hedge funds see Brown, Goetzmann and Ibbotson (1999), Agarwal and Naik (2000a, 2000b),
Edwards and Caglayan (2001), Bares, Gibson and Gyger (2003), Baquero et al. (2005), Kosowski et
al. (2007) and Jagannathan et al (2010); for mutual funds see Hendricks, Patel and Zeckhauser (1993),
Carhart (1997), Cohen, Coval and Pastor (2005) and Busse and Irvine (2006).

6Recent studies by Agarwal and Naik (2004), Gupta and Liang (2005) and Lo (2001) showed that
hedge funds have frequently non gaussian return distributions with high skewness and kurtosis.
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mance appraisal needs to account for the significant changes in the risk factor exposures

of hedge funds since these funds employ dynamic trading strategies and therefore are

unlikely to have constant factor loadings. Fung et al.(2008) used a CUSUM test to iden-

tify structural breaks in the fund factor loadings at the aggregate level while Bollen and

Whaley (2009) argued that a more appropriate approach is to investigate risk dynamics

across individual hedge funds since the latter will be representative of managers shifts

in allocations across strategies.

The literature on risk dynamics in alternative investments has recently experienced

a resurgence of interest. For example, Patton and Ramadorai (2011) propose the use of

high frequency conditioning variables to model the dynamics of hedge fund risk expo-

sures. Clearly, estimates of alpha will be inaccurate if the risk exposures of funds change

over time and one does not account for it. This study, therefore, investigates the perfor-

mance of CTAs by first modeling the dynamics of CTA risk exposures. A further issue,

highlighted by Titman and Tiu (2010) and by Billio, Getmansky and Pelizzon (2011) is

the importance of considering the effect of the financial crisis when studying hedge fund

performance. The long data period employed in this study includes several crises, in

particular the recent credit crisis of 2008. Using scaled cumulative residuals structural

breaks are identified in the CTA factor loadings associated with various market events

such as the 1998 LTCM crisis. It is demonstrated that not all structural breaks are the

same for CTAs and hedge funds and also that factor loadings are different for systematic

and discretionary CTAs. Using these results, it is found that over the sample period of

1994-2010 some of the strategies of systematic CTAs delivered alpha almost consistently

in every subperiod whilst many discretionary CTAs had significant alpha only at the

end of the sample period.

Using a robust bootstrap methodology the ability of funds to deliver significant alpha

in the cross-section is investigated. In particular I find that although the proportion of

funds that deliver statistically significant alpha is similar across systematic and discre-

tionary CTAs, the actual alpha is higher for systematic CTAs and the number of funds

that subsequently fail are lower. Finally, the performance persistence of systematic and
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discretionary CTAs is investigated. Evidence of performance persistence for CTAs is

found, however this performance persistence differs across CTA strategies. If perfor-

mance persistence of discretionary CTAs is driven by small funds, the reverse is true for

systematic CTAs.

The rest of this chapter is organized as follows. Section 2.2 discusses relevant lit-

erature. Section 2.3 describes proposed methodology. Section 2.4 describes the data.

Section 2.5 provides empirical results. Finally Section 2.7 concludes.

2.2 Related Literature

According to an earlier study by Brown and Goetzmann (2003) hedge funds are defined

by their freedom from regulatory controls. Commodity Trading Advisors, CTAs, are a

subset of hedge funds normally listed with the style name “managed futures”. CTAs

have several features that distinguish them from hedge funds. Firstly they are required

to register with the US Commodity Futures Trading Commission, CFTC, and National

Futures Association, NFA. In addition, these managers trade in extremely liquid mar-

kets, namely in the global futures, forwards and options markets and are able to pass

some of the liquidity to their investors. As such, CTAs rarely have long lock ups or

redemption periods associated with hedge funds, see Bhardwaj et al. (2008). Assuming

that these markets should continue to function in both deflationary and inflationary en-

vironments, CTAs should allow investors to speculate in the futures markets in the most

dynamic way possible. Furthermore, futures markets are diversified across many asset

classes: interest rates, currencies, stock indices and commodities, a feature which pro-

vides investors with additional diversification in difficult trading environments. Hedge

funds, on the other hand, are free from regulatory controls of the Investment Company

Act of 1940, Brown and Goetzmann (2003) and therefore may engage in trading illiquid

securities whilst searching for arbitrage opportunities see Getmansky, Lo and Makarov
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(2004) thus making them less liquid to CTAs.

CTAs differ from hedge funds in many other important ways and have also been

studied for longer in the academic literature, see Elton et al. (1987, 1989 and 1990).

Firstly the legal framework of CTAs is slightly different as they are more regulated than

hedge funds yet less regulated than mutual funds. Even though they have to register

with the CFTC and NFA they are still able to pursue various trading strategies that are

unavailable to mutual funds. Since CTAs trade mainly in liquid futures markets they

do not have long lock-up and redemption periods frequently associated with hedge fund

investing, Getmansky et al. (2004). Fung and Hsieh (1997b) found that CTAs have

higher attrition rates than mutual funds. This is also documented by Liang (2003) and

Brown et al. (2001) who find the attrition of CTAs to be higher than that of mutual

and hedge funds. In the earlier part of this thesis, however, it was found that the attri-

tion rate of CTAs is not as high as previously estimated and, once real failure is taken

into account, it is in fact similar to that of hedge funds at only 3%. Getmansky et al.

(2004) and Bollen and Whaley (2009) find that the returns of managed futures are not

as serially autocorrelated as that of hedge funds, a result of their trading in liquid in-

struments. CTAs also differ from hedge funds in terms of their trading strategies. Fung

and Hsieh (1997) find that CTAs have option like payoffs and that they perform well

during market spikes. They propose to model the returns of trend-following funds with

a primitive trend-following strategy in various markets (PTFS) and show that these

factors are particularly relevant to CTAs7.

Several papers in the literature examine CTA performance and persistence. Using

risk adjusted returns, Bhardwaj et al. (2008) find that CTAs are inefficient, with poor

performance over the period 1994-2007, and thus lend support to the earlier study of

Elton et al. (1990) who also found that CTAs failed to deliver superior returns. Capocci

(2005) finds that some CTA strategies do in fact outperform the EDHEC CTA Global

Index. Liang (2004) on the other hand investigates the comparative performance of

hedge funds, fund of funds and CTAs and finds that over the 1994-2002 period CTAs

7See Fung and Hsieh (2001).
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under-performed hedge funds. He also finds that, depending on market conditions, CTAs

are negatively correlated to hedge funds and fund of funds because they follow very dif-

ferent trading strategies from those of hedge funds and argues that thus CTAs represent

good diversification tool to a portfolio of hedge funds. Using a number of alternative

factor models, Gregoriou et al. (2010) find that only a few of the CTA sub-strategies

outperform the market during the 1995-2008 period. With regard to the performance

persistence of CTAs, an early study by McCarthy, Schneeweis and Spurgin (1996) found

some performance persistence during the 1985-1991 time frame. In another study, how-

ever, Irwin (1994) found little or no evidence of predictability in average returns. A

further study by Brorsen (1998) employed regression analysis and statistical methods

and found no evidence of performance persistence. More recent studies by Brown et

al. (2001) and Edwards and Caglayan (2001) analysed the performance and persis-

tence of CTAs over the 1989-1998 time frame, reaching similar conclusions. The most

recent studies by Capocci (2005) and Gregoriou et al. (2010) used the BarclayHedge

database instead of the previously employed TASS database covering the 1994-2008 pe-

riod and found some performance persistence but noted that it was driven by some of

the sub-categories only. The authors pointed to the heterogenous styles across CTAs

and suggested that more needs to be done to identify CTA performance drivers and

their effect on the analysis of performance persistence. The conflicting results of these

previous studies underline the role that a database can play in performance studies.

This was recently discussed in Joenvaara et al. (2012).

Performance and persistence have been studied more extensively in the mutual fund

and hedge fund literature. Brown, Goetzmann and Ibbotson (1999) used raw and risk

adjusted annual returns for offshore funds to find that hedge funds can outperform the

market. Other studies include Fung and Hsieh (1997a) and Liang (2000, 2001) who used

raw returns to find that hedge fund returns compared favourably to market returns dur-

ing the bull market of the 1990s. Other authors such as Malkiel and Saha (2005) were

rather sceptical of the ability of hedge funds to deliver superior returns. Several authors

have also documented that a large part of the variation in hedge fund returns can be ex-



2.2. Related Literature 116

plained by market related factors. The relationship is usually non-linear, however, and

is best modeled with option based strategies, see Fung and Hsieh (1997a, 2001, 2002 and

2004b) and Agarwal and Naik (2004). Building on this pioneering work, Kosowski, Naik

and Teo (2007) and, later, Fung, Hsieh, Naik and Ramadorai (2008) used a bootstrap

methodology applied to a cross section of fund returns to identify funds with genuine

skill-based alpha from the cross section of fund returns.

The analysis in this chapter builds on this previous work and, in particular, on a

number of recent studies that suggest that certain types of funds realize systematically

better performance than others. While Titman and Tiu (2010) suggest that these better

performing funds are in fact those that load less on factor risk, Heuson and Hutchinson

(2011) find that the better performing funds are in fact those with positive skewness,

and suggest that investors should account for that in their fund selection. Cai and

Liang (2011), meanwhile, through conducting optimal changepoint regression, segregate

a cross section of hedge funds into those with dynamic risk exposures and those without,

and find that the dynamic funds are associated with better risk-adjusted performance

and lower volatilities. This study employs the most recent methodological advances

in the hedge fund literature to analyse CTA performance with a particular focus on

systematic and discretionary CTAs, employing dynamic factor exposures as suggested

in Patton and Ramadorai (2011) whilst allowing for skewness in returns, Heuson and

Hutchinson (2011), and controlling explicitly for luck, Kosowski et al. (2007).

The issue of performance persistence is particularly important for hedge funds and

CTAs due to the very high rate of attrition of these funds, see Brown et al. (1999),

Liang (2000) and Baquero et al. (2005). CTAs in particular have a high attrition rate,

as noted, for example, by Baquero et al. (2005): “A large proportion of about 37.4%

of the funds with the investment style managed futures have been liquidated by 2000.”

Much of the theoretical debate on performance persistence in the mutual fund and

hedge fund literature has been addressed in reference to the Efficient Market Hypothe-

sis. Economic models, such as that proposed by Berk and Green (2004), predict little

or no persistence because much of it is competed away by rational investors that shift
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capital in search of superior returns. On the other hand, whilst the Efficient Market

Hypothesis rules out consistently superior performance, it does not exclude the possi-

bility of persistent under-performance as performance information is not always readily

available and requires full liquidity in the investment funds. For hedge funds there are

frequently many hurdles to investing, such as longer lock-up periods and redemption

notice periods which, in effect, prevent any assets from being withdrawn. Baquero et

al. (2005) argue that these share restrictions may cause more performance persistence

in a series of hedge fund returns compared to that of mutual funds, and Agarwal and

Naik (2000) find that persistence is mostly driven by losers. Since CTAs fall somewhere

in between hedge funds and mutual funds in both regulatory framework and structural

organization, it is of interest to identify their effect on performance persistence across

CTAs. In particular, it is important to identify if systematic CTAs are better able to

generate persistently good returns than discretionary CTAs and, in so doing, whether

investors are able to identify such funds and rationally allocate capital to them.

In the hedge fund literature, evidence of performance persistence is rather mixed.

Brown et al. (1999) find virtually no persistence using annual returns. Agarwal and

Naik (2000a) and (2000b) show that the persistence of hedge funds is only short-term

in nature (1-3 months). Edwards and Caglayan (2001) find evidence of persistence

over a longer horizon 1-2 years. Capocci and Hubner (2004) follow Carhart (1997)

and find some persistence across average performing funds. More recent literature on

hedge fund performance persistence has addressed well-known biases and data issues

that hitherto caused estimation problems. Baquero et al. (2005) examine the persis-

tence of raw and style-adjusted returns of hedge funds in the TASS database for the

period 1994-2000 whilst correcting for the look-ahead bias at quarterly, annual and bi-

annual horizons. They find that positive persistence is strongest at the quarterly level

for both raw and style-adjusted returns whilst being statistically insignificant at the

annual level. Kosowski, Naik and Teo (2007) employed the Bayesian approach of Pástor

and Stambaugh (2002a), who had applied it to mutual funds. The seemingly unre-

lated assets (SURA) Bayesian approach is a robust way of modeling misspecification
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and overcomes the short sample problem of fund return series by using the information

from non-benchmark passive returns. Kosowski et al. (2007) show that this method-

ology is particularly relevant to the study of hedge fund performance and demonstrate

that, relative to sorting on OLS alphas, sorting on Bayesian alphas provides evidence of

long-term persistence. Boyson (2008) follows the methodology of Kosowski et al. (2007)

by sorting on alpha t-statistics and shows that, in addition to sorting on past perfor-

mance, selecting funds based on age and size improves the likelihood of superior future

performance. These results resonate with the Berk and Green (2004) equilibrium: that

younger and smaller funds outperform portfolios of older and larger funds, a finding

similar to that of Teo (2010), who finds that smaller funds outperform larger funds. Ev-

idence of long-term persistence is also confirmed by Jagannathan, Novikov and Malakov

(2010). Their study accounted for look-ahead bias and employed generalized methods

of moments, GMM. Using this new approach, they found persistence over a three-year

horizon. Most recently, Heuson and Hutchinson (2011) argue that the skewness of hedge

fund returns is an important factor for investors and should therefore be integrated into

any performance assessment. They demonstrate, using the residual augmented least

squares approach, RALS, of Im and Schmidt (2008), that portfolios sorted on RALS

alpha persist more than those sorted on OLS alpha. In particular, their study finds

that managed futures have a larger number of funds with positive skewness than any

other hedge fund strategy. Sorting on RALS alphas is thus particulary relevant to these

funds.

Although there is a significant quantity of literature on the performance persistence

of CTAs, all of these studies are based on the standard Frequentist performance mea-

sures. Gregoriou, Hubner and Kooli (2010) analyze the performance and persistence

of CTAs in the BarclayHedge database for the January 1995 to October 2008 period.

Using a nonparametric method, they find that certain categories of CTAs have a larger

percentage of funds performing above the median. They document evidence of quar-

terly persistence and find that funds with quarterly persistence are also more likely to

be persistent over a longer horizon. In contrast to Kosowski et al. (2007), Gregoriou
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et al. (2010) find that extreme performance is not an indication of skill and the perfor-

mance of the top funds tends to revert towards that of the median CTAs. Brorsen and

Townsend (2002) use regression analysis and find a small amount of persistence. None

of the above studies, however, have employed the more robust methodologies discussed

above. Bhardwaj et al. (2008) addressed the well-documented biases in the hedge fund

data, survivorship, instant history and self-selection bias and found that CTAs are in-

efficient performers relative to the market. However, they employed a standard OLS

methodology which was shown to be inappropriate to the study of hedge fund returns.

To address the dynamic risk exposures of hedge funds, Kosowski et al. (2007) and

Fung et al. (2008) identify aggregate structural breaks in hedge fund risk exposures.

Closely related to this study is dynamic performance measurement, which is particularly

relevant to the study of CTAs. Bollen and Whaley (2009) use optimal change-point re-

gression (à la Andrews, Lee and Plomberger (1996)) which allows risk exposures to shift

through time for each hedge fund leading to more accurate performance measurement.

Cai and Liang (2011) employ this methodology to identify funds with dynamic and non-

dynamic risk exposures and to study the qualities and performance differences across

these two categories. More recently Patton and Ramadorai (2011) follow Fernson and

Schadt (1996) and propose an alternative method to model hedge fund risk exposures

using high frequency conditioning variables and thereby document an increase in alpha

for funds with dynamic risk exposures.

This study aims to contribute to the above literature in several ways. First it em-

ploys a novel dataset by identifying separate styles across CTAs. This has the advantage

of identifying the various characteristics of these funds and helps to isolate performance

differences. Secondly, it allows for dynamic risk factors to measure performance, as

proposed by Patton and Ramadorai (2011), and explicitly controls for luck by using

a robust bootstrap method to identify alpha funds. Finally the study focuses on the

performance persistence of CTAs by employing the more robust methodologies used in

the most recent hedge fund literature.
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2.3 Methodology

A. Risk Adjusted Performance Evaluation

Some performance and persistence studies have used raw as well as risk-adjusted

returns, Baquero et al. (2005). Since most investors are risk averse it is unlikely that

investors will make investment decisions without considering the risk. Most academic

literature on both mutual and hedge funds, therefore, has tended to evaluate the perfor-

mance of these funds adjusted for risk.8 The original method used in empirical finance

to estimate the abnormal performance of a portfolio is due to Jensen (1968), who ap-

plied it to the study of mutual funds. Motivated by the CAPM, Jensen’s alpha in this

model is the alpha from a regression of a portfolio’s excess return on the excess returns

of the market:

Ri,t −Rf = αi + βi(RM,t −Rf ) + ϵi,t (2.1)

where Ri,t is the return of the fund, RM,t is the return on the market index, Rf is the

risk free rate and ϵi,t is the error term. This is usually used as a measure of out- or

under-performance. Further extensions of this basic model were developed by Fama and

French (1993) in the three-factor model:

Ri,t −Rf = αi + β1,i(RM,t −Rf ) + β2,iSMBt + β3,iHMLt + ϵi,t (2.2)

where SMBt is the factor mimicking portfolio for size (small minus big) and HMLt is

the factor mimicking portfolio for book-to-market equity (high minus low). The model

was further extended by Carhart (1997) by adding the momentum factor:

Ri,t −Rf = αi + β1,i(RM,t −Rf ) + β2,iSMBt + β3,iHMLt + β4,iUMDt + ϵi,t (2.3)

where UMDt is the factor mimicking portfolio for the momentum effect, which is defined

by Grinblatt et al. (1995) as the return from buying past winners and selling past

8See recommendation of report of Blake and Timmermann (2003) prepared for the FSA.
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losers. Whilst these models have been largely used in the mutual fund literature, none

of them seem to explain well the returns of the CTAs, see Gregoriou et al. (2010). Fung

and Hsieh (1997b, 2001), for example, have documented that the explanatory power

of these traditional asset index factors is particularly low for CTAs and have shown

that the returns of the CTAs feature option-like payoffs relative to the return of the

underlying assets. This finding motivated them to propose to model the returns of

CTAs relative to a dynamically traded portfolio of look-back straddles. Together with

equity and bond market factors, these trend-following factors can significantly increase

the model’s explanatory power for CTAs. As a result of this, a now widely used model

for performance evaluation in the hedge fund and CTA literature is the seven factor-

model developed by Fung and Hsieh (2004). The Fung and Hsieh (2004) model is as

follows:9

rit = α̂i + β̂i
1SNPMRFt + β̂i

2SCMLCt + β̂i
3BD10RETt + β̂i

4BAAMTSYt + · · ·

+β̂i
5PTFSBDt + β̂i

6PTFSFXt + β̂i
7PTFSCOMt + ϵ̂it (2.4)

where rit is the net-of-fees excess return (in excess of the risk-free rate) of fund i on

month t, α̂i is the abnormal excess return of fund i over the regression time period,

that is value added after fees that is not explained by common systematic risk factors.

β̂i
k is the factor loading of the hedge fund i on factor k, and ϵ̂it is the pricing error.

The set of factors comprises: the excess return on the S&P 500 total return index

(SNPMRF), a Wilshire small cap minus large cap return (SCMLC), the yield spread

of the U.S. 10-year Treasury bond over the 3-month T-bill, adjusted for the duration

of the 10-year bond (BD10RET), and the change in the spread of Moody’s Baa bond

minus the 10-year Treasury bond (BAAMTSY). PTFSBD, PTFSFX and PTFSCOM

are the excess returns on the portfolios of lookback straddle options on bonds, currencies

and commodities, respectively, which are constructed to replicate the maximum possible

9The time series of the seven factors can be downloaded from the authors’ website:
http://faculty.fuqua.duke.edu/dah7/HFData.html
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return to trend-following strategies on their respective underlying assets.10 Fung and

Hsieh (2004) show that these factors are able to explain a substantial part of the variation

of the hedge fund and CTA return series. Their benchmark model is now the standard

workhorse of hedge fund performance evaluation studies.11 Nevertheless, Gregoriou

et al. (2010) build their own option-based factors on eight financial indices to model

CTA returns. They further supplement these option-based factors by integrating factor

mimicking portfolios for variance, skewness and kurtosis with the addition of Carhart’s

(1997) momentum factor. Relative to the traditional asset pricing models, their model

is able to explain a significantly higher proportion of return variation. An interesting

finding however, is that the model is not well adapted to explaining the returns of the

discretionary funds. This finding resonates with the conclusion of Kazemi and Li (2009)

who augment Fung and Hsieh (2001) PTFS factors with futures return-based factors

in order to study the market timing of discretionary and systematic CTAs. Whilst

adding futures return based factors significantly increases the explanatory power for

systematic CTAs, the adjusted-R2 remains very low for discretionary CTAs. Bollen and

Whaley (2009) argue that although the Fung and Hsieh (2004) model has been widely

adopted in the hedge fund literature it is still open to the debate whether these factors

indeed represent trading strategies that can be mimicked in the spirit of Carhart (1997)

or Sharpe (1992). They, therefore, conduct their study using two models: the Fung

and Hsieh (2004) model and the returns of the long positions in the ten liquid futures

contracts. Their model also contains a squared term as with the size and value premia:

Ri,t −Rf = αi + β1,iFt + β2,iF
2
t + ϵi,t (2.5)

where vector F contains observations of the returns of a buy-and-hold investment in

futures contracts on different assets and rolling the positions as maturities near. They

find that, in contrast to the Fung and Hsieh (2004) model, the adjusted-R2 falls across

10Refer to Fung and Hsieh (2001) for the detailed description of the construction of these factors
11See Kosowski et al. (2007), Jagannathan et al. (2010), Boyson (2008), Eling (2010), Joenvaara et

al. (2012).
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all fund categories when the futures contract factors are used. For CTAs, however, the

difference in the explanatory power is the smallest but the authors note that the average

alpha of CTAs becomes negative when futures contracts are employed. This suggests

that performance ranking can be quite sensitive to the choice of factors.

In line with these arguments this study uses the Fung and Hsieh (2004) seven-factor

benchmark model, which is the standard workhorse of hedge fund performance studies.

Two additional trend-following factors are added, PTFS on interest rates, PTFSIR, and

on stock indices, PTFSSTK as well as GSCI index and Carhart (1997) momentum fac-

tor. I find that only the GSCI factor is significant and I therefore drop the momentum

factor from the model. The final model, therefore, consists of the Fung-Hsieh (2004)

seven-factor model augmented with two trend following factors on stocks and interest

rates together with the GSCI index.

B. Structural Breaks and Parameter Stability

Static analysis of CTA performance is not appropriate if the funds change their risk

exposures over time. Fung and Hsieh (2004, 2008) test the stability of the hedge fund

factors with cumulative recursive residuals. Accordingly, they find two structural breaks

that they identified with the market events: September 1998 (the LTCM debacle) and

March 2000 (the end of the internet bubble). Using these breaks, Fung et al. (2008)

apply their model to the fund of hedge funds data in order to estimate the average al-

pha of the fund-of-funds. In particular, to estimate their model, the authors use dummy

variables for the various subperiods. Following their method, I test for the presence of

structural breaks in the CTA data. When testing for structural breaks, Fung and Hsieh

(2004) argued that, due to the tremendous growth in the hedge fund industry, the older

data is less reliable and they therefore ran the regression backwards. CTA data has

been available for much longer than hedge fund data. I thus employ a standard method

of rolling forwards when testing for regime changes in the CTA data. Regressing an

equally-weighted index (with an AUM filter) of CTA returns and a value-weighted in-

dex of CTA returns against the F-H 9 factor model, I obtain a time series of scaled
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recursive residuals. Plotting scaled recursive residuals against time with an error band

of ±2 allows the identification of breakpoints by looking at where residuals stray out-

side these bands. Figure 2.1 plots scaled recursive residuals for the equally-weighted

index (with the AUM filter) of CTAs starting from January 1995 and working forwards

to December 2010.12 The two red broken lines represent the confidence bands. The

crossing of these bands is evidence of model instability. For the equally-weighted index

there are several crossings: June 1996, January 1998, July 1999, end of 2000, March and

December 2003 and June 2008. For the value-weighted index the crossing of the bands

by the residuals happens on September 1998, end of 2000, Mar 2003 and June 2008.

The dates are similar to the results from the equally-weighted index. As discussed in

Fung and Hsieh (2004) the actual sample breaks are unlikely to have happened at these

exact times since the effect of the sample break shows up gradually in the regression.

Instead the authors searched for market events around the time of the sample breaks

to pinpoint the actual dates for the breaks.13 The plots show possible breakpoints to

be September 1998 and March 2000, as in Fung and Hsieh’s (2008) fund of hedge fund

study. The data in this study covers a longer period than that of the Fung and Hsieh

(2008) study. I therefore identify another two possible break points: March 2003 and

June 2008. I test for the validity of these four breakpoints using Chow’s (1960) test,

replacing standard errors with Newey-West heteroskedasticity and autocorrelation con-

sistent standard errors. I find that all but one of the breaks (March 2000) are significant.

Using these three breakpoints (September 1998, March 2003 and June 2008) I estimate

the following regression:

Rt = α1D1+α2D2+α3D3+α4D4+(D1Xt)βD1+(D2Xt)βD2+(D3Xt)βD3+(D4Xt)βD4+ϵt

(2.6)

where Xt = [SNPMRFt SCMLCt BD10RETt BAAMTSYt PTFSBDt PTFSFXt

PTFSCOMt PTFSIRt PTFSSTKt]

12We lose the first 12 months of data for estimation.
13In their 2008 study the authors rigorously tested the breaks with the Chow test.
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Here, Rt denotes either an equally-weighted index with an AUM filter or a value-weighted

index of excess CTA returns across all funds with at least 24 months of data in month t.

D1 is a dummy variable set to one during the first period, January 1994 to September

1998, and zero elsewhere, D2 is set to one during the second period, September 1998

to March 2003, and zero elsewhere, D3 is a dummy set to one during the third period,

March 2003 to June 2008, and zero elsewhere and D4 is set to one during the final data

period, June 2008 to end of data December 2010, and zero elsewhere. The X matrix

comprises the augmented Fung and Hsieh (2004a) model, described above. This frame-

work allows to estimate the average CTA alpha in various subperiods.

2.3.1 Identifying the Factors

Since this study analyzes the cross-sectional differences in the performance of the CTAs,

there is another caveat that needs to be dealt with. With the extended model there is

a substantial set of possible factors and only a limited number of degrees of freedom.

Since the cross-sectional regressions are estimated using only 24 monthly observations,

which is the minimum return history required by this study, it is therefore not feasible

to include too many factors.14 My approach is first to select a subset of factors, K,

for each CTA so as to maximize the explanatory power of a regression while rewarding

parsimony. To achieve this, a few studies have employed a stepwise regression procedure,

Gregoriou et al. (2010), Kazemi and Li (2009) as well as Titman and Tiu (2010). This

study, however, follows the methodology of Bollen and Whaley (2009) and Patton and

Ramadorai (2010) in choosing a subset of factors that minimize the Bayesian Information

Criterion (BIC) which is equivalent to maximizing adjusted-R2.15 Formally the Bayesian

14A minimum 24 month return history is standard practice in the hedge fund literature, see Boyson
(2008), Joenvaara et al. (2012) and Kosowski et al. (2007).

15Other authors, such as Jagannathan et al. (2010), use SBC Schwarz’s (1978) criterion to decide
how many factors to include. Bekaert et al. (2008), meanwhile, employs the PCGets algorithm.
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Information Criterion can be stated as:16

BIC(K) = ln

(
e’e

n

)
+

Klnn

n
(2.7)

where n is the number of observations and K is the number of parameters to be es-

timated, including the intercept. Once the subset of factors is chosen, I estimate the

parameters of the model for each individual fund.

2.3.2 Cross-sectional Bootstrap

Instead of using an index of CTA returns this section seeks to identify cross-sectional

differences in CTA performance. To that end this study follows closely the methodology

of Fung et al. (2008). In particular I segregate CTAs into those that deliver signifi-

cantly positive alpha, called “Have-alpha” funds and those that do not and which only

take systematic risk, called “Beta-only” funds. To account for the time-varying risk

exposures, I implement the sorts on a yearly basis. In particular, each January I select

all funds which had a full return history in the preceding two years. For each fund I

identify the number of factors, K, from the extended Fung and Hsieh (2004) model by

maximizing the Bayesian Information Criterion, as described above. Using relevant fac-

tors for each CTA and a bootstrap procedure due to Kosowski et al. (2007), I segregate

the funds into those that have statistically significant alpha and those that do not. The

bootstrap procedure is particularly useful for CTAs due to the non-normality of their re-

turns. When using standard t-tests to determine the significance of alpha we rely on the

assumptions of homoscedastic, serially-uncorrelated and cross-sectionally independent

residuals, assumptions that are likely to be violated by the non-normality of the CTA

returns and to thus produce an unknown distribution of alpha. The bootstrap allows

to relax these assumptions of non-normality while at the same time controls explicitly

for luck.

16See Greene for further details.
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To begin the bootstrap procedure for each fund i, I measure performance relative to

the multifactor model. The risk factors are as described before from the extended Fung

and Hsieh (2004) model augmented with the GSCI factor. For each fund I estimate

the Bayesian Information Criterion that maximizes R2 to select the relevant number of

factors that maximized it. This procedure allowed the selection of different factors for

different funds, since many CTAs follow very concentrated strategies in various markets.

For example, some CTAs follow a trend-following strategy in currencies only and will

therefore have only one trend-following factor that is significant, the PTFSFX. With

relevant factors for each fund, I therefore performed the following regression where x′
t

represents the relevant risk factors for each fund:

ri,t = α̂i + β̂ix
′
t + ϵ̂i,t, t = 1, ..., T (2.8)

For each regression of each fund, I saved the coefficient estimates β̂i, ϵ̂i,t, t-statistics of

alpha, t̂(α̂i)
17 as well as the time series of estimated residuals, ϵ̂i,t. I then draw T periods

with replacement from the original time series of t = 1, ..., T and create a new time series

of residuals. The order of the time scale will thus change for each bootstrap iteration b.

The new time series of residuals can be written as ϵ̂bi,t = sb1, ...s
b
T where b stands for the

bootstrap iteration number. Using newly formed residuals, for each fund I create the

resampled monthly net return observations:

rbi,t = β̂ix
′

t + ϵ̂i,t, t = sb1, ..., s
b
T . (2.9)

This allows to impose the null of zero true performance, i.e. αi = 0 and where

sb1, s
b
2, ..., s

b
T is the time reordering imposed by the resampled residuals in the boot-

strap iteration b. This new sequence of returns has an artificial alpha that is equal to

17The t̂α̂ was estimated using the Newey-West (1987) heteroskedasticity and autocorrelation consis-
tent estimate of the standard error.
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zero. Using the newly estimated returns I then run the following regression:

rbi,t = α̂b
i + β̂ix

′

t + ϵ̂i,t, fort = sb1, ..., s
b
T . (2.10)

With the above regression of the bootstrapped returns on the multifactor model, a

positive estimated alpha may result since the bootstrap may have drawn an abnormally

high number of positive residuals or, equally likely a negative alpha, if the resampling

drew an abnormally large number of negative residuals. I save the t-statistics of α̂b
i , t̂

b(α̂b
i)

for each fund. I repeat the above procedure for each fund for b = 1, ..., B iterations,

each time saving the t-statistics of alpha. In all the resample tests I set B = 1, 000. For

each fund I therefore obtain the cross-sectional distribution of estimates of the alpha

t-statistics t̂b(α̂b
i), which result purely from sampling variation since I impose the null

of no abnormal performance. For each fund i, if t̂b(α̂b
i) is in the upper decile of the

distribution of the simulated t-statistics, then the fund is designated a have-alpha fund.

Otherwise, the fund is put into the beta-only group.

I repeat the same exercise each year, every time using the most recent two year

window of observations for each fund. The two year window for estimation is standard

in the literature, see Kosowski et al. (2007) and Jagannathan et al. (2010). Whilst

allowing sufficient return data to estimate factor loadings, the 24 months’ window also

allows to capture the propensity of the funds to change their risk loadings over time, an

issue discussed earlier. This methodology will undoubtedly result in the funds classified

as have-alpha to change from one period to another depending on their previous risk-

adjusted performance, fund liquidations and new entries.

2.4 Data

A few databases track CTA returns, TASS, CISDM and BarclayHedge. In this study,

the performance of CTAs is evaluated using monthly net-of-fee returns of live and dead
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CTAs reported in the BarclayHedge18 database between January 1993 and December

2010. This time period spans the bull periods, pre 2000 and 2003-2007, as well as the

bear market periods starting with the bursting of the technology bubble in the spring

of 2000 and the recent financial crisis of 2008. The BarclayHedge database has perhaps

the most comprehensive coverage of the total CTAs in existence. For each individual

fund, BarclayHedge provides information on monthly returns (net of management and

performance fees), assets under management (AUM), management and incentive fees,

lock-up period, strategy classification as well as a brief strategy description and various

other information specific to fund characteristics.

BarclayHedge reports two separate databases, consisting of both active “live” and

defunct funds, the “graveyard”. The graveyard keeps track of the funds that ceased to

report to the database because of liquidation or some other reason. To minimize the

survivorship bias (discussed further below) I include both the live and the dead funds.

As of December 2010 there were a total of 4,048 defunct and live CTAs. To avoid double

counting, I removed funds of funds, which left a total of 3916 CTAs with a total AUM of

just over US$480 billion under management. The industry coverage is shown in Figure

2.2. The assets under management have grown from just over US$20 billion in 1993 to

over US$480 billion at the end of 2010. One important item worth noting is the reversal

in the growth of the number of CTAs after 2008, the year of the financial crisis. The

recent fall in the number of funds, however, was accompanied by a rise in assets under

management. Some funds have clearly liquidated but the remaining funds have received

more capital, perhaps as investors began to reallocate to the CTAs in the knowledge of

their attractive performance during down markets.

In this dataset I control for a number of potential biases. First, I eliminate duplicate

share classes from the same fund family. For example, two funds can appear in the

database under the same name and be run by the same fund manager but one will be

denoted as “onshore” and the other as “offshore”. These are created for regulatory rea-

18As shown in Joenvaara et al. (2012) BarclayHedge has the highest number of defunct funds as well
as the most extensive AUM coverage.
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sons but are virtually identical to each other. Similarly, there can be one fund that is an

“LP” and another “Ltd”, or “Client” and “Proprietary”. There are also many instances

of funds that provide multiple share classes denominated in various currencies, such as

EUR or GBP, designed for clients who choose to invest in currencies other than US$.

These structures are common in the hedge fund and CTA industry where managers

set up a master-feeder fund structure, with multiple feeders feeding to the same fund.

Another example of duplicate funds is when the same fund appears with the same name

twice but one is an older version designed by “Old”. Such a fund will have an identical

but shorter return history and should therefore be removed. In order to deal with the

duplicates I used the following methodology: firstly I identified all the management

companies with multiple funds and searched for funds with the same name by string

comparison. Thereafter, if their return series had a correlation of 0.95 or more then

they were confirmed as duplicates. To decide which duplicates to remove I used either

the longest return series or, if the duplicates had an identical length of return series,

then I selected the fund with the larger assets under management base. This method is

similar to the one employed by Agarwal and Jorion (2010) and Avramov et al. (2011).

It is important to emphasize that this procedure would understate the aggregate assets

for the manager of the fund with the duplicates that exist side by side with their own

respective AUM. Although this is not crucial for the remainder of the analysis, for the

purposes of completeness, Figure 2.2 shows total assets in the industry including all the

duplicate funds.

Apart from removing duplicates, I also removed funds that report quarterly rather

than monthly returns, as well as funds that had missing information. After these ex-

tensive filters the total number of funds left was 2798, out of which 728 were live funds

and 2070 defunct.
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2.4.1 Biases

It is well know that hedge fund and CTA data are not as clean as the mutual fund

data and are subject to various biases. These biases are mainly driven by the lack of

regulation and the voluntary nature of hedge fund and CTA reporting to the databases.

These biases have been extensively studied in the hedge fund literature and to a lesser

extent in relation to CTAs. Below is a brief discussion of the potential biases.

Self-Selection Bias - Self-selection bias arises from the fact that reporting in the

hedge fund and CTA industry is voluntary and so a fund may choose not to report if

its performance is poor. Equally, some very successful funds may never report to the

database if they raised capital quickly enough and no longer needed to advertise. Fung

and Hsieh (1997b) suggest that these two effects offset each other and thus should limit

this bias. Nevertheless, whilst this bias may be an issue for the hedge fund industry, it

is less likely to apply to CTAs where capacity constraints are not reached as quickly as

for hedge funds.19 Hence it is possible that self-selection bias is less prominent in the

CTA data.

Survivorship Bias - Many databases have started collecting hedge fund and CTA

data only fairly recently, around 1994. As a result, many databases do not have any

information on funds that liquidated prior to 1994. If the database contains returns of

only the surviving funds it can lead to an upward bias in the performance estimates if

funds drop out of the database for reasons of poor performance. This bias is known as

survivorship bias. Many databases now contain information on defunct funds as part

of their database. Most funds that stop reporting are moved to the graveyard. Since

reporting in the hedge fund and CTA industry is voluntary, however, some funds may

choose not to report for reasons other than liquidation, for example if a fund is closed

to new investment. Thus the graveyard may not contain only liquidated/failed funds.

19The issue of capacity constraints in the CTA industry is formally addressed in chapter three.



2.4. Data 132

Fung and Hsieh (1997b) estimate the survivorship bias for CTAs at 3.48% per year for

the period 1989 to 1995 and 3.6% for the period 1989 to 1997 (Fung and Hsieh (2000)).

They measure this bias as the difference in performance between a portfolio of all the

surviving funds and a portfolio of all the funds taken together. Similar studies have

placed the survivorship bias in the hedge fund industry at 3% per year for 1994-1999,

Fung and Hsieh (2000). Similar results were also found by Liang (2000) of 2.24%, Barry

(2003) of 3.8% and Ibbotson and Chen (2005) of 2.71%. Malkiel and Saha (2005) how-

ever, have found a survivorship bias as high as 4.42%. Rouah (2005) finds a bias of

1.51% for the period 1994 to 2003 when using all exits to the graveyard. However, his

estimate of the bias increases to 3.35% when he adds funds no longer reporting to the

live funds. Ackermann, McEnally and Ravenscraft (1999) on the other hand, defined

the survivorship bias as the difference between a portfolio of surviving and liquidated

funds and found a low value of 0.16% per year. Their study, however, covered the 1988-

1995 period and therefore does not encompass the period when many funds disappeared

from the database. Their suspiciously low survivorship bias has been discussed by Liang

(2000). More recently, Bali et al. (2011) found a bias of 1.74% for the period 1994 to

2008 in the TASS database which is the longest period analyzed for the survivorship bias

in the hedge fund studies. The most recent update for CTAs has been done by Bhardwaj

et al. (2008) who found a survivorship bias for the CTAs in the TASS database of 3.2%

for the period 1994 to 2007. This is similar to the previous results of Fung and Hsieh

(1997b) and Capocci (2005). I update the results for the survivorship bias using the

BarclayHedge database for CTAs. Table 2.1 reports the monthly survivorship bias for

the period 1993 to 2009. This is the longest period yet analysed for CTA data. The

estimated bias for the entire period is 0.33% per month (3.92% per year). This is in line

with previous findings of Fung and Hsieh (1997b) and Bhardwaj et al. (2008) for CTAs

and is in line with industry consensus of 3%. A look at the subperiods however reveals

that the survivorship bias is much larger before 2000, 5.6%.

In a recent report, Fung and Hsieh (2009) stress the importance of differentiating be-

tween truly liquidated funds and missing funds when estimating the survivorship bias.
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Further, the authors note that, in light of the recent financial crisis, the liquidation

statistics from this period will be particularly important in estimating the survivorship

bias. Using the results from the previous chapter that allowed funds in the graveyard

to be separated into truly liquidated funds and those that are still alive or have simply

stopped reporting, Table 2.2 reports mean monthly returns for equally weighted port-

folios formed using funds broken down by exit type. Table 2.2 shows the returns of the

graveyard funds that were identified as either still alive or not reporting. The results

show that these funds do indeed have very good returns, with mean monthly returns

that are higher than for the surviving funds, 1.35% for the “Alive” group and 1.40% for

the “Not Reporting” group vs. 1.29% for the Surviving funds. Liquidated funds have a

mean monthly return of 0.63% which is lower than the return of all the graveyard funds.

This confirms that the filters employed to sort the graveyard are indeed able to separate

the truly failed funds from funds that are still alive or not reporting. Furthermore,

these results highlight the importance of separating the graveyard into true failures in

the survival studies.

Panel B shows that treating funds that are no longer reporting as live funds increases

the survivorship bias to 4.2%. This finding is higher than that found in existing studies.

To mitigate the effects of this bias, therefore, for the rest of the analysis this study

includes all the funds in the graveyard as well as the live database.

Backfill Bias - The second potential bias in the CTA data is the backfilling bias,

also known as “instant history” bias. Funds tend to start reporting to a database only

after a period of successful trading, possibly with private capital. Once they start to

report to a database, however, they are free to backfill their returns. Since funds are

more likely to report to a database following periods of good performance and less likely

to report if they had poor performance, this creates an upward bias in the reported

performance of both hedge funds and CTA databases. Several studies in the literature

have documented the size of this bias. In particular for CTAs, Fung and Hsieh (2000)

find a backfill bias of 3.6% for CTAs and Bhardwaj et al. (2008) find a bias of 1.6% if
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24 months are removed. Bhardwaj et al. (2008), however, argue that to remove backfill

bias entirely one needs to the use first day of reporting to the database as a screen

and remove all the data between the start of reporting and fund inception. Unlike the

BarclayHedge database, TASS provides both an inception date and the date of first re-

porting to the database. Using this information, the authors show that for some funds

even the most conservative screen, in which 36 months of data is removed, is not enough

to remove this bias entirely. Most of the hedge fund literature, however, uses a screen

of between 12 and 27 months. In particular, Kosowski et al. (2007) use a screen of

12 months, Gregoriou et al. (2010) use 24 months and Titman and Tiu (2010) use 27

months. Park (1995) estimated an incubation period of 27 months for the MAR CTA

database. Brown, Goetzman and Park (1997) also found an incubation period of 27

months in the TASS CTA database but 15 months for hedge funds. This could explain

the findings of Bhardwaj et al. (2008) who argue for a larger screen. Consequently,

I estimate the effect of backfill bias in the BarclayHedge CTA database using various

screens and report the results in Table 2.3. Following the methodology of Park (1995)

I estimate this bias as the difference between an average monthly return of a portfolio

that invests in all funds in the database and the average monthly return of a portfolio

that invests in all funds after deleting the first 12, 24, 36 and 48 months of data for each

fund. For the period 1993-2009 the observable portfolio averaged 10.98% per year while

the adjusted observable portfolio averaged 8.84% (after deleting the first 12 months of

data), 8.57% (after deleting 24 months of data), 7.83% (after deleting 36 months) and

7.91% after deleting 48 months. These results give an estimated bias of 2.14%, 2.41%,

3.15% and 3.07% respectively, which is slightly lower than the bias found by Fung and

Hsieh (2000) for TASS CTAs. The results also indicate that the longer the estimation

period the higher the bias, although this reverses after 36 months, indicating that it is

unnecessary to remove more than 36 months of data. Since a 12 months correction is

standard in the hedge fund and CTA literature, to avoid backfill bias, I delete the first

12 months of data in the remaining analysis. In the robustness checks, however, I repeat

the analysis deleting 24 months of data.
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Return Smoothing - Several studies have showed that the returns of hedge funds

exhibit positive serial correlation, see Getmansky et al. (2004). This arises due to hedge

funds investing in illiquid securities. Managers are therefore forced to use past prices to

estimate returns for their portfolios with illiquid securities. Alternatively, some authors

have argued that some funds may purposely smooth the return profile. Lo (2002) shows

that smoothed returns result in overstated Sharpe ratios and information ratios. Get-

mansky et al. (2004) and Loudon et al. (2006) propose models to correct for smoothing

in returns. As shown in the literature, however, this issue is not prevalent among CTAs,

see Bollen and Whaley (2009). Since CTAs trade in liquid securities only they are un-

likely to have smoothed returns. Both Getmansky, Lo and Makarov (2004) and Bollen

and Whaley (2009) find that, in comparison to hedge funds and fund of funds, CTAs

show very little evidence of serial correlation in returns.

2.4.2 Summary statistics

Table 2.4 Panel A reports for the period January 1994 to December 2010 the cross-

sectional mean, standard deviation, median, minimum and maximum statistics for CTA

characteristics. This table includes all the funds that were present in the sample without

any filters. In this database 27.2% of funds are alive while the rest are in the graveyard.

As expected, performance measures are higher for the live funds than for defunct funds:

annualized mean return is 12.1% for live funds vs. 8.9% for defunct ones (1.01% and

0.74% monthly). Live funds are also substantially larger than defunct funds with mean

assets under management of 155.94 million for live funds and 23.28 million for defunct

funds. The average age of the funds are 4.75 years (57 months) which is similar to the

results reported in Bali et al. (2011) and in Joenvaara, Kosowski and Tolonen (2012).

Since for the main analysis we will need to include the returns of funds with at least

24 months of data, Table 2.4 also shows the number of funds and the proportion with

less than 24 months of data. From the entire database, therefore, 567 or 21.2% of funds
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will have to be excluded. This is quite a substantial loss of information and points to a

large number of very young funds.

The payout structure appears to be similar across the funds, with a median man-

agement fee of 2% and an incentive fee of 20%. Nevertheless, across both live and

defunct funds there are funds that charge as much as a 50% incentive fee. Again this

is similar to the results reported in Bali et al. (2011). Another interesting result is the

indication for the large size disparity across funds. The mean of the average monthly

assets under management is US$59.31 million. Figure 2.3 shows that there are a lot of

CTAs in the database that never reached more than US$1 million under management,

approximately 19%. In addition 50% of the funds never reached more than US$10 mil-

lion under management and 62% of the funds never reached more than US$20 million

under management. Together with the age statistics this points to a large number of

entrants into the CTA industry: there are many funds with very short histories and a

very small asset base. Indeed, the barriers to entry into the CTA industry are much

lower than for hedge funds due to the large amount of leverage embedded in futures

trading. As a result many traders are able to set up on their own and run small trading

shops, frequently investing their own assets rather than managing clients’ money. It is

questionable if these small trading funds should be included in any research as it is un-

likely that many institutional investors are likely to invest in these one man operations.

To the extent that they represent a large proportion of the CTA database, this raises

serious questions for researchers who look at the performance of the CTA industry.

Table 2.4 Panel B displays summary statistics for the sample of CTAs including me-

dians, first and third quartiles of the annualized mean excess return, standard deviation,

skewness, kurtosis and maximum drawdown across CTA strategies. The average excess

return adjusted for instant history bias across all funds is 3.95% per year, 4.35% for

systematic CTAs and 2.58% for discretionary CTAs. Apart from options, all other CTA

strategies exhibit positive skewness and kurtosis, indicating a departure from normality

of CTA returns. The median maximum drawdown is fairly constant across most strate-

gies, at 20.27% and is much lower than that of the risk factors, indicating the ability of
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CTA managers to manage the downside. The last section contains summary statistics

for the benchmarks included in the Fung and Hsieh (2004) seven factor model extended

with an additional three factors.20 Table 2.5 shows the correlation across factors. The

correlations between factors are low on average, suggesting that multicollinearity is un-

likely to be an issue.

Regulation requires all CTAs to register with the NFA as well as the CFTC, after

which many funds choose to report to a database. Various studies have applied AUM

filters due to concerns that funds with less than a certain level of assets may be too

small for many institutional investors, for example Kosowski et al. (2007) remove all

funds with less than US$20 million and Boyson (2008) removes funds with less than

US$35 million under management. Titman and Tiu (2011) remove funds with less than

US$30 million. In the case of the CTA funds such filters will remove more than 50%

of the database, which is a large amount of data. Avramov et al. (2011) suggest a

dynamic AUM filter which reflects the growth of assets in the entire industry. In line

with this reasoning and to avoid removing too many funds, whilst at the same time

removing funds that are unlikely to be of serious interest to investors, I apply an AUM

filter of US$20 million for funds that existed before 2000 and thereafter an AUM filter

of US$35 million. This should preserve as much data as possible whilst removing many

small funds. The remainder of the analysis, therefore, will concentrate on those funds

that had at least 24 months of data. This yields a total of 2100 funds with a further

application of an AUM filter where appropriate.21

2.5 CTA Performance

In this section I investigate CTA performance with a particular focus on the differences

between systematic and discretionary CTAs. I investigate the average performance of

20I thank David Hsieh for making these factors available on his website.
21Following Kosowski et al. (2007) the AUM cutoff is implemented every month.
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systematic and discretionary CTAs by constructing equally-weighted (EW) as well as

value-weighted (VW) portfolios. An important question in portfolio management is

whether active fund managers add value on average after fees22, and this is measured

by estimating alpha in regression (2.4). For investors this is of particular interest when

deciding whether to allocate to a manager or not. The major interest is whether sys-

tematic CTAs deliver better returns than discretionary funds. Contrary to the findings

of Bhardwaj et al. (2008) on CTAs, but consistent with the literature on hedge funds

(e.g. Kosowski, Naik and Teo (2007)), I find that CTAs add value even after fees. In

addition, I find that systematic CTAs deliver superior performance on a risk adjusted

basis but this out-performance is driven by large funds. These results hold true even

after adjusting for well documented biases in the data.

In order to allow for a sufficient number of observations to calculate the average

return I only use funds that contain at least 24 non-missing monthly returns. Another

problem is that quite a few funds have a series of zeros at the end of their return stream.

These are possibly funds that are not performing well delaying reporting in expectation

of imminent liquidation whilst the database vendor fills the gap with temporary zeros.

Eventually these funds shut down but never provided the performance for that period.

After carefully removing all the zero values at the end of the fund returns and respec-

tive AUM numbers and applying the 24 months requirement, the total number of funds

reduced to 1942. A few funds also had missing AUM observations but these were very

few and, as discussed in Joenvaara et al. (2012), the BarclayHedge database is one of

the most complete databases for AUM series. In total there were only four funds that

had no AUM, which is a tiny proportion relative to the whole dataset. After removing

these funds, the final dataset consisted of 1938 funds. I used excess returns from these

1938 funds to construct an equally weighted as well as value-weighted portfolio with

monthly re-balancing. The return series for each portfolio was used to construct Figure

2.4 which shows cumulative excess returns of value-weighted and equally-weighted port-

22Previous studies on hedge funds shown that hedge funds add positive values for investors even after
fees, see Fung and Hsieh (2004), Kosowski, Naik and Teo (2007)
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folios of all CTAs against various benchmarks: S&P 500, MSCI World Index, GSCI,

HFRX Aggregate Absolute Return, Dow Jones Credit Suisse Managed Futures Index,

Dow Jones Credit Suisse Blue Chip Investable Index, Dow Jones Credit Suisse Hedge

Fund Index and Barclays Aggregate Bond Index. Firstly, Figure 2.4 shows that the

equally-weighted portfolio has a higher cumulative return than the value-weighted port-

folio. Joenvaara et al. (2012) document a similar result for hedge funds and explain

that this outperformance may be driven by the better performance of smaller funds, as

suggested in Teo (2010). The equally-weighted portfolio, however, marginally under-

performs the S&P 500. Both CTA portfolios outperform the other indices, apart from

the Dow Jones Credit Suisse Hedge Fund Index (although they outperform the HFRX

Absolute Return Index). The large difference in performance between the two hedge

fund indices is indicative of the database differences discussed in Joenvaara et al. (2012).

Table 2.6 shows summary statistics for the excess returns of the EW and VW portfolios

for the aggregate portfolio of CTAs as well as by strategies. Panel A shows the excess

returns of the equally-weighted portfolios whilst panel B shows the excess returns of

the value-weighted portfolios. The aggregate data indicates that CTAs add value on

average. The annualized average EW and VW excess returns are 7.82% and 7.31% per

year. These values are quite different to the findings of Bhardwaj et al. (2008) who

argue that relative to T-bills, the average value added by CTAs per annum was only

85 basis points. Of interest are the differences between CTA strategies. Whereas the

best performing strategy using the equally-weighted index is options23, which shows an

annualized return of 11.16%, systematic CTAs outperform on a value-weighted basis.

The excess returns of the value-weighted portfolio of systematic CTAs is 7.08% annual-

ized, versus 4.68% for discretionary CTAs. The highest Sharpe ratio is also achieved by

the short-term systematic traders when using the value-weighted portfolio. Figure 2.5

shows cumulative excess returns for equally-weighted as well as value-weighted portfo-

lios for systematic and discretionary CTAs. The value-weighted portfolio for systematic

23A result similar to Gregoriou et al. (2010) who also find Options strategy to be the best performing
among all CTAs using an equally-weighted index.
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CTAs outperforms significantly the value-weighted portfolio of discretionary CTAs but

the reverse is true for the equally-weighted portfolio. This underscores the importance

of the AUM filter when analyzing CTA performance, given the large number of tiny

funds in the CTA database. Contrary to the findings of Teo (2010) and Joenvaara et al.

(2012) for hedge funds, this study will demonstrate that for systematic CTAs large funds

outperform small funds, as size will serve as a proxy for the research and development

necessary to build successful models.

Although the performance of the CTAs found here is substantially higher than the

performance documented in Bhardwaj et al. (2008), my findings could be influenced by

the instant history bias. In fact Bhardwaj et al. (2008) argue that this is indeed one of

the reasons for their finding of negligible CTA out-performance relative to T-Bills. Using

information on the funds’ inception dates as well as the date of first reporting, they show

that even the most conservative screen of 36 months used in academic literature is not

enough completely to remove this bias. Park (1995) finds that for CTAs a 27 months’

screen is appropriate. However, the differences in the findings of Bhardwaj et al. (2008)

could in fact be driven by differences across databases as argued by Joenvaara et al.

(2012). Since BarclayHedge does not provide information on the date of first porting

to the database, I am unable to perform the same analysis, however I will apply the

12 months screen used in most academic studies.24 Table 2.7 shows the average excess

performance of equally and value-weighted portfolios of CTAs adjusted for instant his-

tory bias by using different screens for inclusion of funds in the portfolio. Even after

removing 43 months of data the average annualized excess return on an equally weighted

portfolio is 5.77%. There is not much difference, however, between a 24 months’ screen

and a 43 months’ screen. The BarclayHedge database on CTAs is substantially larger

than the Lipper TASS database used in the Bhardwaj et al. (2008) study. It is possible

that the average number of backfilled months is lower in the BarclayHedge database

24I also apply a 24 months screen and find that results are not substantially affected: an equally-
weighted portfolio of all CTAs delivers an annualized mean return of 6.35% whilst a value-weighted
portfolio delivers an annualized mean return of 7.98% which is an increase rather than a decrease in
performance.
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than in the TASS database. Joenvaara et al. (2012) show that substantially differ-

ent results can be found in hedge fund studies depending on the database used as the

database universes are rarely overlapping. For the remainder of the analysis, therefore,

to eliminate backfill bias I will use a 12 months screen. Of interest is that the perfor-

mance of the value weighted portfolio remains unchanged with a 12 months screen and

actually increases with an increase in the length of the screen. Table 2.6 Panel D also

shows the average excess performance of equally-weighted and value-weighted portfo-

lios by strategies. A systematic value-weighted portfolio still outperforms discretionary

funds, 7.88% vs. 4.26%: a difference that is economically and statistically significant.25

Although an equally weighted portfolio of discretionary CTAs outperforms systematic

CTAs, this difference has diminished and is not statistically significant. It seems that

instant history bias has less effect on larger CTAs. The AUM filter may also help to

alleviate the instant history bias.

Table 2.6 Panel E presents average performance for the equally weighted portfolio

across various size categories and strategies of CTAs. Similar to the findings of Teo

(2010) and Joenvaara et al. (2012), the table shows that for the aggregate CTA group

performance is related to the fund size. In particular, smaller funds deliver the highest

mean annualized return of 7.4% whilst the largest funds, those above US$250 million,

had an average performance of 5.47%, a difference of almost 2%. Panels B and C,

however, show that the difference in performance between small and large funds in the

aggregate sample of CTA funds is driven predominantly by the discretionary CTAs.

The difference in average performance between small funds and funds with AUM above

US$250 million for discretionary CTAs is 3.29% whereas there is a negligible difference

of 0.56% across systematic CTAs. This explains why the cumulative excess return of

the value-weighted portfolio of systematic CTAs had a significantly better performance

than the equivalent portfolio of discretionary CTAs. The results indicate that, whilst the

relationship between CTA size and performance is monotonic for discretionary CTAs,

the same does not apply to systematic CTAs. Since institutional investors, and even

25Significant at 10% with a p-value of 0.0851 and t-statistics of -1.70.
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many high-net-worth individuals, are unlikely to invest into small funds, these funds

should be excluded from the analysis and, indeed, such AUM filters have been used

in previous academic studies.26 Recently, Kosowski et al. (2011) propose the use of a

dynamic AUM filter instead of a static one to account for the growth of assets in the

industry over the years documented in the literature. In line with their argument, I use

a filter of US$20 million for those funds with returns prior to January 2000 and a US$35

million filter for those funds with returns from that point until the end of the data.27

Figure 2.6 shows an equally weighted portfolios of systematic and discretionary CTAs

adjusted for survivorship and instant history biases and after applying a dynamic AUM

filter. By the end of December 2010 systematic CTAs have gained almost 327% whilst

discretionary funds have gained 255%.

In conclusion, the results demonstrate that CTAs do deliver, on average, econom-

ically and statistically significant performance. After adjusting for survivorship and

instant history biases, between January 1994 and December 2010 the average CTA out-

performed T-Bills by 6.51%. This is significantly different to the results reported by

Bhardwaj et al. (2008) and may underline difference across databases as reported in

Joenvaara et al. (2012).

2.5.1 Risk-Adjusted Performance and Changing Exposures of

CTA Indices

Table 2.8 reports results from estimating equation (2.6). The rows list the explanatory

variables of the matrix Xt and the columns report the results over the entire period

and sub-periods. The bottom panel of the table contains estimates of the Chow struc-

tural break test, Chi-square statistics, for the significance of the three structural breaks:

September 1998, March 2003 and July 2007. Bali et al. (2011) follow the methodol-

ogy of Fung and Hsieh (2008) and also find a break in July 2007. Table 2.8 Panel A

reports the results using an equally-weighted (EW) index of excess CTA returns with

26See Kosowski et al. (2007), Boyson (2008) etc.
27I implement the AUM cutoff every month.
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a dynamic AUM filter of US$20 million and US$35 million. Table 2.8 Panel B reports

the parallel results for the value-weighted index (VW). I use the Chow test to test for

the structural breaks identified earlier. The χ2 statistics in both tables show that the

March 2000 break is not significant whereas those in September 1998, March 2003 and

in particular November 2007 are significant. For the value-weighted index March 2003

break is more significant than September 1998 or November 2007. In unreported tests,

the model without GSCIRF shows an even stronger rejection of the null of no breaks.

This result is in contrast to the hedge fund literature that identified two major breaks

in the hedge fund data: September 1998 and March 2000. CTAs are known to perform

particularly well when the rest of the asset classes are not, Liang (2004), therefore it is

likely that CTAs may have different breaks to hedge funds. March 2003, in particular,

marks the beginning of the Iraq war and of the policy of rate cuts by the US Federal

Reserve, as well as the end of the stock market decline following the bursting of the

technology bubble. This was perhaps a period of major trend reversals aided in part by

Federal Reserve’s quantitative easing. A similar break occurred later following the July

2007 housing bubble crush. The stock market began to decline sharply since its October

2007 highs, followed by a period of rate cuts by the Federal Reserve. CTAs appear to

be particularly influenced by the Federal Reserve’s monetary policies and unexpected

government interventions, since trends tend to reverse abruptly in such circumstances.

The results of both tables indicate that the average CTA has delivered a positive

and statistically significant alpha over the entire period from January 1994 to December

2010. For the equally-weighted and value-weighted indices monthly alphas are significant

at 1% with values of 0.61% and 0.88%, respectively, with adjusted-R2 of the regression

at 0.382 and 0.321. These low values of adjusted-R2 indicate that a lot of the variance

still remains unexplained by the current model. However, R2 increases to 0.518 and

0.489 for the regressions with structural breaks, underscoring the importance of iden-

tifying time variation in factor loadings when evaluating risk adjusted performance of

CTAs. Similar conclusions on the importance of dynamic modeling of the CTA risk fac-

tors were documented in Patton and Ramadorai (2011) and Bollen and Whaley (2009).
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Table 2.8 Panel A and Panel B show the variation in risk exposures during subperiods.

For example, the coefficient on SNPMRF is not significant for the entire period but is

highly significant for the period beginning April 2003 to November 2007. For the VW

index all the trend-following factor coefficients are significant in the full period but show

variation in significance in the subperiods.

Whilst the results for the entire period show that the average CTA delivered a sta-

tistically and economically significant alpha, the results with structural breaks for the

equally-weighted index show the exact period when this alpha was. The results show

that the average alpha was economically and statistically significant only in the first

and last periods: January 1994 to September 1998 and August 2007 to December 2010.

The results for the value-weighted index are similar. Both of these results, however,

are exactly opposite to the results reported in Fung et al. (2008) for the fund-of-funds

who find a statistically significant alpha only in the bull period of October 1998 to

March 2000. Nevertheless, the results reported here are still consistent with the current

literature on CTAs, that finds that CTAs tend to perform well when hedge funds and

other asset classes do not. Fung et al. (2008) argue that the hedge fund industry may

be heading towards zero alpha, as supported by the absence of any significant alpha in

their findings after March 2000. My results for CTAs, however, show that significant

alpha is found before September 1998 and after the recent financial crisis, despite the

recent growth in assets. This underscores the need to separate CTAs from hedge funds

in performance studies.

Before discussing the differences between systematic and discretionary CTAs, it is in-

teresting to note the differences in the above results between value-weighted and equally-

weighted indices. Alpha is statistically and economically significant in two subperiods

for the VW index whereas it is lower in magnitude and significant in only one sub-

period for the EW index. Since large funds will have a larger weighting in the value

weighed index this points to the cross-sectional variation in alpha generation between

funds of different size. It may also suggest that there are CTAs in the sample that are

consistently able to generate alpha. The next section on bootstrap and performance



2.5. CTA Performance 145

persistence will further explore this issue.

Finally, it is important to address differences between systematic and discretionary

CTAs. In unreported tests, using the Chow test for structural breaks, I find that sys-

tematic CTAs have the same breaks as for the full CTA sample. Discretionary CTAs,

on the other hand, appear to have fewer breaks. Using an EW index of discretionary

CTAs I find that the March 2000 and July 2007 breaks are significant, but with a

VW index of discretionary CTAs only the November 2007 break is significant - this is

also supported by Figure 2.1C. Table 2.9 reports the results of regression (2.6) of an

equally-weighted index with an AUM filter by investment objective. Panel A reports the

results for the entire period. On average, systematic CTAs deliver an economically and

statistically significant monthly alpha of 0.73%, whilst discretionary CTAs deliver an

alpha of 0.38%. Looking at sub-strategies further shows that the best performers among

systematic CTAs are medium-term trend followers with a monthly alpha of 0.83%, sig-

nificant at 1%. Fundamental discretionary funds appear to be the worst performers

among discretionary funds, monthly alpha of 0.23%. Of interest are the differences

in structural breaks between systematic funds. Panel B shows the results of regres-

sion (2.6) by investment objective with three structural breaks (September 1998, March

2003 and July 2007). Firstly, adjusted-R2 increases for systematic CTAs using this

model. The adjusted-R2 does not increase much for the discretionary CTAs, indicating

no improvement for the model with these breaks. Regarding monthly average alphas,

almost all systematic sub-strategies have positive and statistically significant alphas in

the three subperiods, with short-term trend-followers delivering significant alpha con-

sistently throughout the whole period. Discretionary CTAs show significant alpha only

in the last period and some in the third subperiod leading up to the financial crisis of

2007. Panel C also reports the results of regressing discretionary CTAs on a model with

two structural breaks identified earlier with the Chow test (1987), i.e. March 2000 and

November 2007. Using this model there is an improvement in adjusted-R2 from 0.24 to

0.28 for the entire discretionary CTAs index. The results show that discretionary CTAs

behave differently to systematic CTAs and have achieved economically and statistically
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significant alphas from April 2000 to end of December 2010.

In conclusion, the results above underscore differences between hedge funds and

CTAs and in particular differences between systematic and discretionary CTAs. Sys-

tematic CTAs have different structural breaks to hedge funds, March 2003 but not March

2000, and they also deliver statistically and economically significant alphas when hedge

funds do not. This result has been documented earlier for CTAs but not specifically for

systematic CTAs. Furthermore, the results suggest that there exist differences between

systematic and discretionary CTAs: not only do systematic CTAs deliver superior re-

turns but they also appear to deliver significant alpha consistently throughout the entire

period. The current model does not explain much of the variance of the discretionary

CTAs, adjusted-R2 are much lower than for systematic CTAs. Finally, contrary to the

conclusion of Fung and Hsieh (2008), the alpha of systematic CTAs does not seem to

be heading towards zero.

2.5.2 Cross-Sectional Differences in Funds

This section studies the cross-sectional difference in funds among systematic and discre-

tionary CTAs. Table 2.10 Panels A and B show the results of the bootstrap experiment

for each two year classification and holding periods together with the percentage of the

total number of funds that were classified as have-alpha or beta-only funds.28 Table

2.10 Panel A shows the results for systematic CTAs while Panel B shows the results

for discretionary CTAs. Similar to the findings of Fung et al. (2008), the number of

funds in both groups increases steadily over time. Fung et al. (2008) argue that this

is a reflection of the increased availability of data and the growth in the CTA industry.

Despite the negative publicity associated with CTAs, the number of funds has continued

to grow. My results are similar to the findings of Fung et al. (2008), in that a larger

share of funds is classified as beta-only funds than have-alpha funds. Whilst the average

proportion of have alpha funds for the period 1994-2003 is 0.22 in the Fung et al. (2008)

28Only funds with full two year return histories were included in the analysis.
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study, my results document a higher proportion for the systematic funds, 0.33%. This

proportion fluctuates from year to year, but the average appears to be driven by the

increase in the proportion of have alpha funds in the last three years, 2007-2010. The

results also show a decrease in the proportion of have alpha funds following the 1998

LTCM crisis and in 2003-2004 after possible trend reversal. These results are consistent

with the earlier findings of the structural breaks. For discretionary CTAs, the proportion

of have-alpha funds fluctuates less, indicating less sensitivity to the market conditions.

This is in line with the findings of Table 2.9 which shows no firm evidence of signif-

icant alpha until after 2007. Interestingly, the proportion of discretionary have-alpha

funds increases to 0.48% in the 2009-2010 period. I also document the average alpha

of have-alpha and beta-only funds. Whilst the proportion of have-alpha funds is not

that different between systematic and discretionary CTAs, my results highlight that the

values of alpha obtained by those have-alpha funds are significantly and economically

higher for systematic funds than discretionary.

The two year transition period results show that systematic have-alpha funds have

less probability than discretionary funds of subsequently being reclassified as liquidated

or failures. More of them are likely to be classified as funds that stopped reporting. The

results also show that more of the have-alpha funds from both groups are subsequently

reclassified as have-alpha funds: that is there is greater persistence among this group

of funds. What is of particular interest is that for those have-alpha funds that are sub-

sequently reclassified as have-alpha funds the average fund size is over US$1 billion for

systematic CTAs but only US$275 million for discretionary CTAs. That is, performance

persistence for these funds is driven by large funds. In summary, the results of this sec-

tion further confirm that in the cross-section of CTAs there exist funds among both

systematic and discretionary CTAs that are able to deliver significant alpha. Moreover

this proportion is larger than that documented for fund of hedge funds indicating more

skill among CTAs. In addition, whilst systematic and discretionary CTAs have similar

proportions of have-alpha funds, the systematic have-alpha funds deliver statistically

significant higher average alpha. These have-alpha funds have a propensity to deliver
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alpha in the future and for systematic CTAs it appears to be driven by larger funds.

2.6 Performance Persistence

In this section I study performance persistence among CTAs, both as an entire asset

class and by the CTA strategies identified earlier, while correcting for backfill, serial

correlation and survivorship biases in the data. When investors are seeking to invest

in a CTA, is the prior performance record useful in making investment decisions? If so

then past performance is indicative of future results and such information is valuable.

Predictability and persistence are slightly different concepts however. Persistence im-

plies that there is a positive correlation between past and future performance. When

the abnormal performance is due to skill then funds maintain their relative positions

in the rankings in the two periods. For investors, performance persistence is impor-

tant for several reasons. Investors investing into hedge funds face restrictions on capital

withdrawals in the form of long lock-up periods, redemption notice periods and advance

notification periods.29 All these restrictions make it impossible for investors to with-

draw their capital easily and in such circumstances long-term performance persistence

becomes important. Few CTAs, however, impose restrictions on capital withdrawals

since most engage in trading the most liquid instruments, futures. For investors invest-

ing into CTAs, taking advantage of the liquidity becomes especially interesting since

an investor can potentially increase the returns to his portfolio by buying past winners

with frequent re-balancing. Thus short-term persistence for CTAs potentially has some

value.

Research on performance persistence is quite extensive in the mutual fund and hedge

29Some hedge fund strategies such as Merger Arbitrage for example, impose long lock provisions
(sometimes up to a year). In such instances investors are not allowed to redeem or sell shares. The
lock-up period helps the manager avoid liquidity problems when his capital is allocated to illiquid
investments. At the end of the lock-up period investors are able to redeem their shares by giving advance
notice and then waiting for the redemption period to end before receiving their capital. According to
Joenvaara et al. (2012) up to 25% of hedge funds impose a one year lock-up period, although periods
of two years or more have become more common in recent years as well.
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fund literature. For mutual funds the literature documents very limited evidence of per-

formance persistence. Hendriscks et al. (1993) and Grinblatt and Titman (1992) show

only short-term persistence for mutual funds whilst Carhart (1997) attributes any short-

term persistence to momentum. Literature on hedge funds and CTAs, meanwhile, has

provided somewhat mixed evidence on performance persistence. For hedge funds, nearly

all authors have found short-term performance persistence but mixed results for long-

run performance persistence. Using the return on a hedge fund in excess of the average

return earned by all the hedge funds following the same strategy as a measure of perfor-

mance, and employing parametric and non-parametric tests for performance persistence,

Agarwal and Naik (2000a, 2000b) find evidence of significant quarterly persistence but

no semi-annual or annual persistence.30 Edwards and Caglayan (2001) test for annual

persistence and find that it holds for losers as well as winners. Brown, Goetzmann and

Ibbotson (1999), on the other hand, use annual data to study the performance of off-

shore hedge funds and find little persistence. Similarly Bares, Gibson and Gyger (2003)

use an eight-factor APT model and find persistence at monthly and quarterly horizons

only. Recently, however, using sophisticated econometric approaches, some authors have

found evidence of long-term persistence in hedge funds. Jagannathan et al. (2010) em-

ploy a parametric approach whilst correcting for look ahead and backfill biases and serial

correlation by utilizing GMM estimation, and find evidence of performance persistence

for a three year interval. Contrary to the findings of Edwards and Caglayan (2001),

Jagannathan et al. (2010) show that there is performance persistence among winners

but not among losers. Joenvaara et al. (2012) explain that the difference in the results

of different studies are a consequence of using commercial databases rather than the

aggregate of all databases. Following standard Carhart (1997) methodology and sorting

on t-statistics, the authors show that there is indeed annual performance persistence but

only for the aggregate of all databases rather than individual ones. Similarly to Boyson

(2008) they find that persistence is driven by small funds. Kosowski et al. (2007) follow

30The authors use a cross-product ratio (CPR) test as well as the Chi square test due to Carpenter
and Lynch (1999) as the non-parametric method and regression based method.
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the methodology of Carhart (1997) together with Bayesian techniques and find that the

performance of hedge funds persists at annual horizons.

Literature on CTA performance persistence is not as extensive as that on hedge

funds particularly with regard to methodologies applied. The earliest studies Irwin,

Krukemeyer and Zulauf (1992b) and Irwin (1994) find no evidence of performance per-

sistence. Schneeweis, Spurgin and McCarthy (1997) find small amount of persistence

but their sample was very small, 56 funds. Most of these studies used Elton, Gruber

and Rentzler (1990) method that ranked funds by their mean return or Sharpe ratio and

then determined whether funds that ranked high in the first period also ranked high in

the next. Brown, Goetzmann and Park (2001) used non-parametric approach and also

found no evidence of performance persistence for CTAs. Using regression analysis and

Spearman’s rank correlation test, Brorsen and Townsend (2002) were the first to docu-

ment performance persistence for CTAs. The most recent study by Gregoriou, Hubner

and Kooli (2010) used the largest period studied to date to analyze performance persis-

tence of CTAs. Although the study finds short-term persistence and limited long-term

persistence these results are shown to vary greatly from one CTA category to another.

When testing for performance persistence one can test for statistical predictability

or economically significant predictability or both, Cuthbertson et al. (2006). Statistical

measures of persistence will rank funds based on some risk adjusted performance mea-

sure over some past horizon and then measure the association between past performance

and future performance. Examples are regressions of pre and post-alphas as employed

in Jagannathan et al. (2010). Similarly, tests based on contingency tables, e.g. Cross-

product ratio (CPR) or Chi-square statistics as in Agarwal and Naik (2000a), involve

frequency counts of repeat winners and losers in two consecutive periods. Whilst these

methods measure the degree of persistence from a statistical point of view, one can-

not directly assess the economic significance of predictability. Another popular method

to test for persistence, which is employed in this study, is the frequentist approach of

recursive portfolios due to Carhart (1997). This method allows to test both for statis-

tical predicability whilst at the same time providing a way to measure the economic
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significance of the results. This methodology was used in the studies by Kosowski et

al. (2007), Boyson (2008), Hendricks, Patel and Zeckhauser (1993) and Joenvaara et al.

(2012). First, a sorting rule is established. Whilst in theory sorting may involve any

rule that separates the funds into future “winners” and “losers”, the most commonly

used metric is the risk adjusted performance. Kosowski et al.(2007) advocate the use

of alpha t-statistics, which is equivalent to sorting on information ratio. Sorting on the

t-statistics of alpha reduces the sensitivity of estimates to outliers as well as serving to

correct for errors in alpha measurement that are due to the short time series of CTA

data. Specifically, each January I sorted the portfolios into decile portfolios based on

their t-statistics of alpha obtained from the extended Fung and Hsieh (2004) model.31

To obtain estimates of alpha, however, for each fund I first identified K number of factors

from the extended Fung and Hsieh (2004) model that maximized the adjusted-R2 using

the Bayesian Information Criterion. Using K number of factors for each fund I then

estimated alpha t-statistics. This process was repeated each January for the January

1994-December 2010 period. I used funds that had at least 24 months of returns in the

last two years prior to the formation period. Once formed, portfolios were held for a

period of either 3 months, 6 months or one year. The post-ranking portfolio returns

were re-balanced monthly so that the weights were adjusted whenever a fund disap-

peared. CTAs with the highest t-statistics of alpha comprised Decile 1 and those with

the lowest t-statistics of alpha comprised the bottom decile. I also calculated the spread

return of the top and bottom portfolios defined as Decile 1 - Decile 10. A significant

difference in the spread return is evidence of performance persistence during the selected

evaluation period. To understand the drivers of performance persistence better, which

is particularly important for systematic CTAs, I constructed value-weighted as well as

equally-weighted post-ranking portfolios.

The overall results of this study show that CTA performance persists for both sys-

tematic and discretionary CTAs, but there are important differences between the two.

31For some strategies, due to the small amount of data, I used quintiles or terciles. Where appropriate
I marked in the results which strategies used which method.
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Table 2.11 shows the results of sorting funds into decile portfolios on the basis of OLS

alpha and t-statistics for the aggregate CTA database. Table 2.12 shows the results

for the quintile portfolios for systematic and discretionary CTAs. Both tables show

that ranking on t-statistics of alpha produces a higher spread than when ranking on

OLS alpha - perhaps a result of the improvement in precision obtained from sorting

on the t-statistics. Results are broadly consistent with Kosowski et al. (2007) and

Joenvaara et al. (2012). For the annual evaluation period, the results show evidence of

statistically significant persistence for all CTAs.32. Overall, the results show evidence of

performance persistence for the aggregate database of all CTA funds. Using t-statistics

of alpha to sort portfolios into deciles produces a spread of 5.26% with a t-statistic of

2.26. According to this result an investor can increase alpha by buying the top decile

funds and avoiding the bottom decile funds by using alpha t-statistics. Results for

the discretionary and systematic CTAs show a different picture. Whereas discretionary

CTAs show evidence of performance persistence with a spread of 8.12%, when sorting

on alpha t-statistics the spread of systematic CTAs is only 2.38% and is not statistically

significant. These results do not hold for the value-weighted portfolios, however.

Table 2.13 shows the results of the equally-weighted and value-weighted CTA perfor-

mance persistence test. The table reports annualized Fung and Hsieh (2004) ten factor

alpha and the t-statistics of alpha below for the top portfolio, bottom portfolio and the

spread. The results are shown for portfolios that were held quarterly, semi-annually

and annually. There are striking differences in the estimates between systematic and

discretionary CTAs. Discretionary funds show evidence of performance persistence for

both the equally-weighted and the value-weighted portfolios, however their performance

persistence is driven by small funds as the spread is higher for the equally-weighted

portfolio than for the value-weighted one. This is similar to the findings of Joenvaara et

al. (2012) and Boyson (2008) for hedge funds. For example, for a three month evalua-

tion period the spread for the equally-weighted portfolio is 9.74% significant at 1%. For

32Due to the lower number of funds for the sub-strategies I sort the funds into quintile portfolios
instead of decile portfolios.
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the same evaluation period, however, using the value-weighted portfolio the spread de-

creases to 6.28% and for the 12 months’ evaluation period it decreases further to 5.07%

and is not significant. Thus performance persistence of discretionary CTAs is driven by

small funds. This is similar to the results in the literature on hedge funds. Teo (2010)

shows that small hedge funds outperform large funds and Joenvaara et al. (2012) show

that hedge funds persist but this persistence is driven by small funds only. For system-

atic CTAs results are strikingly different. As a group systematic CTAs show significant

performance persistence only for the value-weighted index with a spread of 10.52% with

a t-statistic of alpha of 2.87. Most interestingly this spread is driven mainly by short-

term and medium-term trend followers. Short-term trend-followers have a spread of

12.74% significant at 1% for the annual formation period. These funds also have signifi-

cant persistence for the equally-weighted index but the results are lower. Medium-term

trend-followers also show significant spread for the annual horizon but not for quarterly

or semi-annual. None of the other systematic strategies show evidence of performance

persistence. In the mutual fund literature Hendricks et al. (1993) also document more

evidence of long-term rather than short-term persistence with persistence being highest

at two year horizon. Finally, Options funds show negative spread indicating no per-

sistence for any period. Discretionary funds that use relative value strategies have a

significant spread of 11.88% with quarterly rebalancing, but this spread diminishes and

becomes insignificant at semi-annual and annual horizons.

To confirm that performance persistence is driven by the assets under management

of CTAs I perform separate sorts on fund size, with results reported in Table 2.14.

Funds were sorted into terciles based on their prior period mean assets under manage-

ment and held for one year or six months. An important aspect of this method is that

it is cross-sectional. Therefore if a fund has attracted more capital and grew larger in

one period it would be moved into another tercile in the next period and replaced by

another smaller fund. This test follows closely the methodology of Boyson (2008) which

was designed intentionally to test the predictions of the Berk and Green (2004) model.

In their model Berk and Green (2004) argue that investors rationally allocate capital
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to funds that perform well, which in turn increases their size and subsequently leads

to lower performance as managers face capacity constraints. If this model holds then

performance persistence should decrease as fund size increases, argues Boyson (2008),

because as funds grow they face fewer investment opportunities and higher transaction

costs. The Berk and Green (2004) model was written to describe the mutual funds

industry but literature on hedge funds shows that the implications of the model may

also hold for hedge funds. Fung et al. (2008) show evidence of capacity constraints for

funds of funds and Boyson (2008) documents that size matters for performance per-

sistence. My results for discretionary CTAs are in line with those found in the hedge

fund literature: large funds underperformed small funds in the 1994-2010 period by 2.91

per annum for the one-year evaluation period and by 3.45% for the six months holding

period. The results are similar to those found in Boyson (2008). For systematic CTAs

however, large funds significantly outperformed smaller funds by 3.46% for the one-year

holding period and 2.75% for the six month holding period. This finding indicates that

systematic CTAs face lower capacity constraints than discretionary funds. This has

important implications. First of all, from a theoretical point of view, these results for

systematic CTAs challenge the general conclusions in the hedge fund literature that

suggest that the industry is experiencing diminishing alpha due to capacity constraints.

My results show that this is not the case for systematic CTAs. Secondly I show that

the performance of CTAs persists but this persistence varies significantly across strate-

gies: the persistence of discretionary CTAs is driven by small funds, whereas that of

systematic CTAs is driven by large funds. CTAs pursuing options strategies show no

persistence at any horizon. These results have important implications for institutional

investors. Institutional investors face minimum capital constraints and therefore, for

many, investing into small funds may be unrealistic. My results demonstrate that, un-

like for hedge funds, institutional investors can increase the returns to their portfolios

by investing into large systematic CTAs from a top decile and that capacity constraints

among systematic CTAs are not as severe as for the rest of the hedge fund industry.
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2.7 Conclusion

In this study, I employ a novel dataset on CTAs to investigate performance, risk and

performance persistence of CTAs over the longest period studied in the CTA literature,

1993-2010. Firstly I update and extend the results on the effect on performance of data

biases. In contrast to previous findings, however, I find that even after correcting for

these biases, the average CTA is able to add value after fees. These results are strongest

in particular for large systematic CTAs.

Furthermore, I find that the returns of CTAs are driven by the nine risk factors which

are found by extending the seven-factor Fung and Hsieh (2004a) model. This model ap-

pears to be better suited to systematic rather than to discretionary CTAs, however, as

a large proportion of the variance of the discretionary CTAs remains unexplained by

the model. Using these factors I find several structural breaks in the data including

one break, March 2003, that is particular only to CTAs. Using these breaks I find that

some of the systematic funds were able to deliver statistically significant alpha in every

subperiod, whilst discretionary CTAs had statistically significant alpha only at the end

of the sample. These averages conceal cross-sectional variations, however. Using robust

bootstrap methodology I find that on average 30% of CTAs deliver positive and sta-

tistically significant alpha. Although these proportions are similar between systematic

and discretionary CTAs, the level of alpha of these alpha funds is higher for systematic

CTAs. Furthermore, these alpha funds are less likely to fail in the future with lower

failure probabilities for systematic CTAs.

I also investigate performance persistence among systematic and discretionary CTAs.

I find evidence of significant performance persistence for the aggregate CTA database at

an annual horizon. For the sub-strategies there are important differences however. I find

greater performance persistence for discretionary CTAs when using an equally-weighted

rather than a value-weighted index, implying that smaller funds drive performance per-
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sistence. For systematic CTAs, I find little performance persistence using an equally-

weighted index and the largest performance persistence when using a value-weighted

index. These results have important implications for institutional investors. Previous

findings in the hedge fund literature have found that smaller hedge funds deliver higher

performance than larger funds and greater performance persistence. These results are

in line with Berk and Green’s (2004) equilibrium but will be difficult for institutional

investors to exploit due to the capital allocation constraints that they face. My findings,

however, show that for CTAs, institutional investors will be able to improve the return

to their portfolios by investing into the top decile of large systematic CTAs. These

findings challenge the view that CTAs are not able to add value after fees. They also

suggest that contrary to the conclusions in the hedge fund literature, systematic CTAs

do not appear to be heading towards zero alpha, at least not just yet.
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2.8 Appendix
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Table 2.1: Survivorship Bias in CTA Returns

Table 2.1 reports the survivorship bias calculated from the filtered database containing 2798
funds, including 728 live funds and 2070 dead funds for the period January 1993 to December
2010. In this table survivorship bias is calculated as the difference between an equally
weighted portfolio of all the live funds and an equally weighted portfolio of all the funds. All
returns are net of all fees. Return is a mean return for the year and the numbers are monthly
percentages. Obs. indicates the number of monthly returns used to calculate the mean return
for the year.

Year End All funds Surviving funds Dissolved funds

Return Obs. Return Obs. Return Obs.

1993 1.37 8038 2.32 671 1.29 7367

1994 0.74 8113 0.91 807 0.72 7306

1995 1.41 8046 2.15 988 1.30 7058

1996 1.19 7697 1.90 1127 1.07 6570

1997 1.24 7283 1.43 1215 1.21 6068

1998 1.07 7149 1.63 1432 0.93 5717

1999 0.42 7268 0.59 1736 0.37 5532

2000 1.17 7022 1.42 1989 1.07 5033

2001 0.57 6903 0.75 2211 0.49 4692

2002 1.41 7331 1.61 2547 1.29 4784

2003 1.11 7994 1.46 2849 0.91 5145

2004 0.61 8818 0.81 3425 0.49 5393

2005 0.66 9768 0.82 4340 0.53 5428

2006 0.81 10347 0.96 5299 0.65 5048

2007 1.10 10619 1.25 6392 0.87 4227

2008 1.26 10505 1.60 7530 0.36 2975

2009 0.20 9369 0.27 8445 -0.85 924

Mean 1993-2000 1.08 1.55 0.99

Mean 2001-2009 0.86 1.06 0.53

Mean 1993-2009 0.96 1.29 0.75

Panel B: Surviving funds - All funds

Bias 1993-2000 0.47 per month

5.61 per year

Bias 2001-2009 0.20 per month

2.42 per year

Bias 1993-2009 0.33 per month

3.92 per year
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Table 2.2: Table II: Mean Monthly Returns of Live and Dead Funds with
Various Exit Types and Survivorship Bias

Table 2.2 reports mean monthly returns calculated for equally weighted portfolios of funds
with various exit types for the period January 1993 to December 2010. In particular, the
graveyard funds are separated into liquidated funds, funds that are alive but are closed to new
investors, called “Alive” and funds that simply stopped reporting to the database for various
reasons, “Not Reporting”. The database is filtered to exclude duplicates and contains 728
live funds and 2070 dead funds. Difference in means is the difference between live funds and
funds in the graveyard with various exit types. Ann. is the annualized difference in means.

Panel A: Surviving Funds = All Surviving Funds as of Dec 2010

Live Return Dead Return Difference Ann.

Defunct funds in Means

Liquidated + Alive

+ Not Reporting 1.29 0.75 0.54 6.50

Liquidated + Alive 1.29 0.66 0.63 7.56

Liquidated + Not Reporting 1.29 0.62 0.67 8.04

Alive + Not Reporting 1.29 1.36 -0.07 -0.84

Liquidated 1.29 0.63 0.66 7.92

Alive 1.29 1.35 -0.06 -0.72

Not Reporting 1.29 1.40 -0.11 -1.32

Panel B: Live funds = All Surviving Funds + Alive Funds + Not Reporting Funds

Live Return Other Return Difference Ann.

in Means

All funds 1.31 0.96 0.35 4.20

Liquidated funds 1.31 0.63 0.68 8.16
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Table 2.3: Instant History Bias for CTAs

Table 2.3 reports the instant history bias calculated for CTAs in the BarclayHedge database
for the period January 1993 to December 2010. The database contains 728 live and 2070
dead funds. Instant history bias is calculated as the performance difference between average
monthly returns of the observable portfolio, which naively invests in all of the existing funds
each month, and of the adjusted portfolio which invests in all the CTAs after deleting the
first 12, 24, 36 and 48 months of returns. All returns are net of all fees.

Mean Annual Return Difference Average no.

of funds

All 10.98% 710

Without 12M 8.84% 2.14% 563

Without 24M 8.57% 2.41% 436

Without 36M 7.83% 3.15% 335

Without 48M 7.91% 3.07% 288
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Table 2.4: Descriptive Statistics

Table 2.4 reports descriptive cross sectional statistics for the entire database of CTA returns

prior to application of instant history bias filter. This table shows the descriptive statistics for

the 728 live, 2070 dead funds as well as for the entire group as of December 2010. The table

reports the number of funds, the cross-sectional mean, standard deviation, median, minimum

and maximum for CTA characteristics including return, size, age, management and incentive

fees.

Panel A:

Live and Dead No. of funds Mean Stdv Median Min Max

Average monthly return 2677 0.81 1.65 0.63 -16.27 21.16
Average monthly AUM in millions 2672 59.31 458.48 4.2 0.004 13230.38
Age of the fund 2677 57 46 43 2 216
Management fee 2677 1.96 1.08 2 0 6
Incentive fee 2677 20.39 4.52 20 0 50
Funds with less than 24 months data 567 0.53 2.62 0.44 -20.89 19.57

Live No. of funds Mean Stdv Median Min Max

Average monthly return 728 1.01 1.23 0.84 -5.02 9.77
Average monthly AUM in millions 726 155.94 862.02 11.63 0.01 13230.38
Age of the fund 728 83 60 64 3 216
Management fee 725 1.72 0.74 2 0 5
Incentive fee 725 20.64 4.76 20 0 50

Dead No. of funds Mean Stdv Median Min Max

Average monthly return 1949 0.74 1.78 0.54 -16.27 21.16
Average monthly AUM in millions 1947 23.28 83 2.98 0.004 1423.28
Age of the fund 1949 48 35 37 2 199
Management fee 1950 2.06 1.28 2 0 6
Incentive fee 1950 20.31 4.43 20 0 50
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Table 2.7: Instant History Bias Effect on Value and Equally-Weighted
Portfolios

Table 2.7 shows the effect of various screens for instant history bias on value and equally-
weighted portfolios.

Backfill Bias and CTA Performance

Summary of the effect of bias on returns
Mean Stdv Mean Ann. Stdv Ann.

Aggregate EW no backfill removed 0.65 1.97 7.82 6.81
Aggregate VW no bias removed 0.63 2.68 7.31 9.29

Aggregate EW 12 month bias removed 0.55 2.09 6.51 7.25
Aggregate VW 12 months bias removed 0.62 2.71 7.30 9.38

Aggregate EW 24 month bias removed 0.54 2.22 6.35 7.69
Aggregate VW 24 months bias removed 0.68 2.79 7.98 9.65

Aggregate EW with 43 months bias removed 0.50 2.33 5.77 8.08
Aggregate VW with 43 months bias removed 0.72 2.87 8.51 9.94
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Table 2.8: Return Decomposition of EW CTA Index (with AUM filter)

Table 2.8 Panel A reports the results of regressing an equally-weighted index of excess CTA

returns (with AUM filter) on the Fung and Hsieh (2004) seven-factor model extended with

PTFSIR (the excess return of the portfolio of lookback straddle options on interest rate),

PTFSSTK (the excess return of the portfolio of lookback straddle options on stock) and

GSCIRF (the excess return on the GSCI index). Column two shows the results of the

regression for the entire period, January 1994 to December 2010. Columns three to six

report the results of the regression (4.6) for each subperiod. D1 is set to one during the first

period (January 1994 to September 1998) and zero elsewhere, D2 is set to one during the

second period (October 1998 to March 2003) and zero elsewhere, D3 is set to one during

the third period (April 2003 to July 2007) and zero elsewhere and D4 is set to one during

the final period (August 2007 to end of data, December 2010) and zero elsewhere. Values of

the t-statistics, calculated using Newey-West (1987) heteroskedasticity and autocorrelation

consistent estimates of the standard errors, are reported in italics below each coefficient.

Statistical significance at the 1%, 5% and 10% levels is denoted by ***, ** and *, respectively.

The bottom panel reports the Chi-squared statistics for the Chow test for structural breaks.

Panel A:

Factors Jan 1994-Dec 2010 Period I Period II Period III Period IV

Constant 0.006*** 0.005** 0.002 0.001 0.015***
4.345 1.907 0.720 0.381 6.940

SNPMRF 0.001 0.047 -0.060 0.474*** 0.005
0.031 0.625 -1.131 7.169 0.112

SCMLC 0.013 -0.140** 0.051 0.069 -0.132
0.322 -1.857 0.777 1.044 -1.559

BD10RET 0.168** 0.102 0.383*** 0.256*** -0.187***
2.651 0.698 2.635 3.175 -2.623

BAAMTSY 0.045 0.026 0.182 -0.190 -0.084***
0.660 0.076 0.858 -0.993 -2.157

PTFSBD 0.027*** 0.038*** 0.033*** 0.031 0.056***
3.330 2.457 2.047 1.526 4.162

PTFSFX 0.042*** 0.034*** 0.085*** 0.030*** -0.017
5.546 3.871 6.282 3.534 -1.595

PTFSCOM 0.037** 0.092*** -0.026** 0.017** 0.089***
2.796 5.396 -1.719 1.739 5.270

PTFSIR -0.008* -0.012 0.025*** 0.010 -0.022***
-1.833 -1.028 3.345 0.908 -6.320

PTFSSTK 0.030*** 0.015 0.020 0.021 0.068***
2.952 0.743 1.124 1.729 5.047

GSCIRF 0.0742*** 0.081** 0.088*** 0.074*** 0.055**
3.600 1.698 2.116 2.918 1.754

Adjusted R2 0.3822 0.5224
No of months 204 204

Chow Test for Structural Breaks
Sep-98 χ2 (10) 49.78***
Mar-00 χ2 (10) 27.86
Mar-03 χ2 (10) 47.81***
Nov-07 χ2 (10) 77.26***
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Table 2.8 Continued: Return Decomposition of Value-Weighted CTA Index
(with AUM filter)

Table 2.8 Panel B reports the results of regressing a value-weighted index of excess CTA

returns on the Fung and Hsieh (2004) seven-factor model extended with PTFSIR (the excess

return of the portfolio of lookback straddle options on interest rate), PTFSSTK (the excess

return of the portfolio of lookback straddle options on stock) and GSCIRF (the excess return

on the GSCI index). Column two shows the results of the regression for the entire period,

January 1994 to December 2010. Columns three to six report the results of the regression

(4.6) for each subperiod. D1 is set to one during the first period (January 1994 to September

1998) and zero elsewhere, D2 is set to one during the second period (October 1998 to March

2003) and zero elsewhere, D3 is set to one during the third period (April 2003 to July 2007)

and zero elsewhere and D4 is set to one during the final period (August 2007 to end of data,

December 2010) and zero elsewhere. Values of the t-statistics, calculated using Newey-West

(1987) heteroskedasticity and autocorrelation consistent estimates of the standard errors,

are reported in italics below each coefficient. Statistical significance at the 1%, 5% and 10%

levels is denoted by ***, ** and *, respectively. The bottom panel reports the Chi-squared

statistics for the Chow test for structural breaks.

Panel B:

Jan 1994-Dec 2010 Period I Period II Period III Period IV

Constant 0.0088*** 0.0054** 0.0064* 0.0041 0.0179***
-5.2163 2.2991 1.9117 1.3047 5.5078

SNPMRF -0.0132 0.0197 -0.1139* 0.6163*** 0.0270
-0.2968 0.2502 1.9117 7.0329 0.4251

SCMLC -0.0005 -0.1735** 0.0417 0.0505 -0.2089
-0.0092 -2.2899 0.5770 0.5720 -1.5391

BD10RET 0.2389*** 0.1987 0.3787** 0.3088*** -0.0756
3.1257 1.3620 2.3670 3.3045 -0.6409

BAAMTSY 0.0263 -0.0561 0.1569 -0.0268 -0.1398**
0.3069 -0.1707 0.6554 -0.1201 -1.7416

PTFSBD 0.0294*** 0.0398** 0.0321 0.0422** 0.060***
3.091 2.4657 1.8155 1.7054 2.7590

PTFSFX 0.0397*** 0.0289*** 0.0793*** 0.0330*** -0.033**
4.4581 3.3939 5.5056 2.6583 -1.7781

PTFSCOM 0.0363** 0.0966*** -0.0305* 0.0056 0.1030***
2.5534 6.5198 -1.7886 0.4475 4.0371

PTFSIR -0.0129** -0.0182 0.0412*** 0.0353*** -0.0306***
-2.0199 -1.5235 4.2641 2.2095 -4.3351

PTFSSTK 0.0427*** 0.0212 0.0262 0.0412*** 0.0786***
3.2056 1.0028 1.2536 2.5563 4.0091

GSCIRF 0.0659** 0.0830 0.0969* 0.0487** 0.0414
2.4503 1.6640 1.7934 1.6818 0.8578

Adjusted R2 0.3209 0.4987
No. of months 204 204

Chow Test for Structural Breaks
Sep-98 χ2 (10) 49.15***
Mar-00 χ2 (10) 20.57*
Mar-03 χ2 (10) 60.17***
Nov-07 χ2 (10) 68.10***
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Table 2.14: Performance of Portfolios of CTAs Formed on Size

Table 2.14 reports the results of equally-weighted portfolios of CTAs formed on fund size for
the period January 1994 to December 2010. Funds are sorted each year in terciles based on
their mean assets under management in the previous 24 month period. The ten factor model
was used to assess the out-of-sample performance of CTAs. t-statistics for the significance of
alpha are reported in parentheses.

One Year Evaluation Period

Systematic
Tercile 1 Tercile 2 Tercile 3 Tercile 3 - Tercile 1

5.58 8.02 9.03 3.46
(2.74) (3.73) (3.89) (2.95)

Adj R2 37.33 43.14 33.37

Discretionary Tercile 1 Tercile 2 Tercile 3 Tercile 3 - Tercile 1
7.62 3.12 4.7 -2.91
(2.71) (2.17) (4.23) (-1.02)

Adj R2 15.21 11.62 22.03

Six Months Evaluation Period

Systematic
Tercile 1 Tercile 2 Tercile 3 Tercile 3 - Tercile 1

6.05 7.86 8.8 2.75
(3.12) (3.64) (3.96) (2.59)

Adj R2 39.06 42.43 33.03

Discretionary
Tercile 1 Tercile 2 Tercile 3 Tercile 3 - Tercile 1

8.41 3.62 4.97 -3.45
(2.95) (2.46) (4.48) (-1.19)

Adj R2 14.32 0.02 23.58
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Figure 2.1: Scaled Recursive Residuals for the CTAs

Figure 2.1A. shows a plot scaled recursive residuals for the equally-weighted index of CTA
returns. Figure 2.1B. shows a plot of scaled recursive residuals for the value-weighted index
of CTA returns. Figure 2.1C. shows a plot of scaled recursive residuals for the value-weighted
index of discretionary CTA returns.
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Figure 2.1B
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Figure 2.1C
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Figure 2.2: Total AUM for the CTA Industry

Figure 2.2 shows a plot of total assets under management and growth in the number of funds
for the managed futures industry, 1993-2010. Data from the BarclayHedge database.
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Figure 2.3: CTA Mean Assets Under Management

Figure 2.3 shows a plot of mean assets under management for the managed futures industry,
1993-2010. Data from the BarclayHedge database.
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Figure 2.6: Cumulative Excess Returns: Equally-Weighted Portfolios
adjusted for biases and with AUM filter for Systematic and Discretionary

Funds

Figure 2.6 shows a plot of Equally-Weighted Portfolios of Excess Returns of Systematic and
Discretionary CTAs adjusted for instant history and survivorship biases and with AUM filter.
Data from the BarclayHedge database for the January 1994 to December 2010 period.
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3.1 Introduction

Much of the literature on Commodity Trading Advisors has focused on performance

attribution and its persistence (see Irwin and Brorsen (1998), Brown et al. (2001) and

Gregoriou et al. (2010)). According to recent media reports, however, CTAs were one

of the few profitable trading strategies during the financial crisis of 2008.1 Figure 3.1

shows that as a result of this good performance, CTAs received a large inflow of assets

thereafter despite a simultaneous decrease in the number of funds. Little attention has

been paid to CTA fund flows and the factors relating to them in the academic literature.

Brown et al. (2001) and Do et al. (2011) are the only studies that have considered the

fund flow-performance relationship. CTAs appear to have regained investors’ interest

in the last few years. It is, therefore, of interest to study the behaviour of investor flows

to individual CTAs and the factors that investors consider before placing their money

into these funds.

In the mutual fund literature the fund flow-performance relationship has been exten-

sively analyzed. For example, Ippolito (1992), Chevalier and Ellison (1997) and Sirri and

Tufano (1998) have analyzed the driving factors of flows into the mutual fund industry

and found that these are positively related to past relative performance. However, this

relationship is found to be nonlinear and different across different performance regions.

For example the authors find that for the top performers - funds in the top performance

quintile - performance is associated with economically and statistically significant in-

flows i.e. a positive and statistically significant coefficient. That is top performing funds

that experience good performance will further increase in size. In the lowest quintile

however, the association is weak and insignificant. This is seen graphically in Figure

3.122. The relationship between flows and performance is only significant for funds

in the top performance region and insignificant in the low performance region (note

absence of slope in the leftmost portion of flow/performance graph) producing a con-

1The Financial Times, March 2011. “CTAs: “True diversifiers” with returns to boot”.
2Reproduced from Sirri and Tufano (1998).
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vex flow-performance relationship. The authors attribute this to investors chasing past

performance by disproportionately selecting high performing funds while failing to flee

from lesser performing funds at the same rate (i.e. absence of significant slope). Other

significant factors are the volatility of returns and fees which negatively impact flows.

In the hedge fund literature the flow-performance relationship has also been extensively

analysed albeit with mixed results. For example using annual hedge fund data Agarwal,

Daniel and Naik (2003) also found a positive and convex flow performance relationship

for hedge funds: well performing funds in the top quintile attract significantly greater

inflows than their poorly performing counterparts. On the other hand, using a single

linear response equation, Goetzmann, Ingersoll and Ross (2003) found the relationship

between flows and past performance to be negative: managers refuse new money af-

ter a good year and seek additional funding after a bad year. The authors propose

that in a stylized framework in a which hedge fund manager exploits limited arbitrage

opportunities, capital can be put to a profitable use only up to the point after which

any additional capital inflows will lead to an increase in systematic risk. Therefore the

authors argue that since hedge fund technology is non-linear, managers may refuse new

money when they do well. However, when the authors examine the differential response

of new money to past performance by allowing coefficients to differ for different per-

formance quintiles of lagged returns as in the mutual fund framework, they find that

the coefficient is negative only in the high performance region and positive in the low

performance region. That is, new money flows out of the good performers producing

a concave flow-performance relationship. This, the authors argue, provides support for

the hypothesis that good performers may not readily accept new money due to limited

arbitrage opportunities. This highlights the need to account for the nonlinearity of the

relationship between flows and past performance. Getmansky (2005) also finds a con-

cave fund flow-performance relationship for hedge funds, although the response of flows

to the top performers is insignificant rather than negative as in Goetzmann et al. (2003):

top performing funds do not grow proportionately as much as the average fund in the

market. On the other hand, Baquero and Verbeek (2009) find that the response of flows
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to past performance is invariant to the performance region to which a fund belongs to,

that is they find a strictly linear response. Finally, Ding, Getmansky, Liang and Werm-

ers (2009) attempt to reconcile these differences in results in the response of flows to past

hedge fund performance. The authors argue that differences in the liquidity restrictions

of hedge funds, such as fund lockups, affect the shape of the flow-performance relation-

ship: funds with tighter share restrictions have a concave flow-performance relationship

and funds without any restrictions have a convex flow-performance relationship.

Studies of CTA fund flows are rather limited as most of the literature has focused

on performance attribution. Lajbcygier (2008) and Do et al. (2011) are the only stud-

ies that have looked at the factors determining CTA flows and have found a positive

relationship between fund flows and past performance. However, the authors have not

examined if this response is differential across different performance regions as was found

in the mutual fund, hedge fund and private equity (See Kaplan and Schoar (2003)) in-

dustries. CTAs however are different to both hedge funds and mutual funds. From

a regulatory point of view, CTAs are less transparent and less regulated than mutual

funds. That said, momentum, the main trading style of many CTAs has been well an-

alyzed by researchers, yet their trading activities are still somewhat of a black box for

many unsophisticated investors and are far less transparent than those of the mutual

funds. The convex flow-performance relationship found in the mutual fund industry has

been attributed to the transparency of the trading styles and the liquidity of the indus-

try. On the other hand, the concave flow-performance relationship found by academic

research for hedge funds has been attributed to extensive investor search costs, limits to

the investment strategies and tighter share restrictions. Commodity Trading Advisors,

however, trade in the most liquid instruments, futures and forwards, the markets for

which are very deep and liquid. As a result, the subscription and redemption notices

tend to be much shorter for many CTAs than for hedge funds. Academic studies have

also found managed futures to have less illiquidity than hedge funds, Getmansky, Lo and

Makarov (2004) and Bollen and Whaley (2009). From a structural and functional point

of view this places CTAs somewhere between hedge funds and mutual funds. These
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differences may have implications for how investors will allocate their portfolios across

different funds. Hence this leads to a question: What are the determinants of money-

flows in CTAs and in particular how are they related to fund’s past performance?

In this chapter I analyze the response of quarterly and yearly money flows to the

past relative performance of CTAs. In particular, following earlier literature on hedge

funds and mutual funds, I look at whether this relationship is differential in different

performance regions. Whilst Ding, Getmansky, Liang and Wermers (2009) focus on

annual data for hedge funds, I use both quarterly and yearly data to study the flow-

performance relationship of CTAs. Baquero and Verbeek (2009) also use quarterly and

annual data for hedge funds and show that the shape of the flow-performance relation-

ship differs depending on the time horizon employed in the study. Accordingly, I use

piecewise linear regression to model the non-linearity of the flow-performance relation-

ship and apply it to quarterly as well as yearly data. I also look at the possible effect

of the share restrictions in the CTA industry on the flow-performance relationship. As

argued by Ding et al. (2009), in the presence of share restrictions, the flow-performance

relationship of hedge funds becomes concave, whilst in the absence of share restrictions

it remains convex, as previously documented in the literature. Since the BarclayHedge

database has incomplete information on CTA share restrictions, I model the restrictions

using Getmansky et al.’s (2004) asset illiquidity parameter, θ0 and show that there

are a few CTA strategies, such as systematic spread/relative value and discretionary

spread/relative value strategies, that do indeed have tighter share restrictions than the

other CTA strategies. These share restrictions, however, have a limited effect on the

shape of the flow-performance relationship in the CTA industry. Instead I argue that,

in the CTA industry, the strategy of the CTA and the size of the fund have a more

significant impact on the shape of the flow-performance relationship. For the quarterly

data, I find that the relationship is concave and largely driven by large CTAs. However,

these fund flows are influenced by the strategy that the CTAs belong to. By extending

the analysis of fund flow-performance relationship to individual CTA strategies, I find

that systematic CTAs have a linear quarterly flow-performance relationship whilst dis-
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cretionary CTAs have a concave quarterly relationship and that this is mainly driven

by small discretionary CTAs.

In the last section I also address the effect of flows on performance persistence and,

to this end, I look at the smart money effect in the CTA industry. Smart money is

defined as the ability of investors to infer the skill of the fund managers and therefore to

allocate assets more smartly between those fund managers, thereby receiving a greater

return in the next period than other “naive” investors. The smart money effect has been

extensively documented in the mutual fund and hedge fund industry. Gruber (1996) and

Zheng (1999) studied the smart money effect on the mutual fund industry and found

that flows predicted future returns. Sapp and Tiwari (2004), however, attribute this

effect to the momentum of the strategies of mutual funds, whilst Frazzini and Lamont

(2008), who have more recently looked at the long-term performance of smart money,

find that it quickly reverses. In the hedge fund industry, the findings have been rather

mixed. Baquero and Verbeek (2009) find no smart money effect in the TASS hedge fund

database, whilst Ding et al. (2009) find some smart money effect but only in the absence

of share restrictions. Ozik and Sadka (2010) find a smart money effect for hedge funds

in the TASS database for the period 1999-2008 but show that the smart money strategy

predominantly stems from funds that have a higher flow-impact coefficient. Moreover,

the effect is more apparent for outflows than inflows. Ahoniemi and Jylha (2011) also

find evidence of smart money in the TASS hedge fund data, although their focus is on

the contemporaneous direction of causality and thus no smart money effect is found past

the months of the flows. In the CTA literature only one study has thus far addressed

the effect of smart money. Do, Faff, Lajbcygier and Veeraraghavan (2010) analysed the

CTA flow data in the BarclayHedge database for the period 1975 to April 2006, finding

no evidence of smart money.

Turning to the issue of the effect of hedge fund flows on performance persistence,

according to Berk and Green’s (2004) model for mutual funds, persistence in the mutual

fund industry is rather indicative of the lack of competition in the supply of capital.

Thus, Baquero and Verbeek (2009) find that, at the quarterly horizon, where response
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of money flows to hedge funds is weaker, there is evidence of performance persistence for

better performing funds but this persistence disappears at the annual horizon as investor

flows catch up. Fung, Hsieh, Naik and Ramadorai (2008) also find that the alpha of

fund of hedge funds tends to zero with an increase in the supply of capital. In the second

part of this thesis, I found that there is performance persistence for CTAs at the annual

horizon and that performance persistence is driven by large systematic funds, whereas

for discretionary funds it is driven by small funds. In this chapter I analyze the effect

of flows on the performance persistence of large funds at quarterly and annual horizons

and find opposite results to those of Baquero and Verbeek (2009). Systematic CTAs

with large inflows show no performance persistence at a quarterly horizon but evidence

of performance persistence at an annual horizon. For discretionary CTAs the pattern

is somewhat similar to hedge funds. I find no evidence, however, of any smart money

effect in the CTA industry, despite using two different methodologies and applying them

to various CTA strategies. My results indicate that investors do not always appear to

be able fully to exploit the liquidity that CTAs provide.

Although fund flow-performance relationship and the smart money effect have been

well addressed in the hedge fund industry, to the best of my knowledge the effect of

flows on performance and persistence has not been rigorously examined in the CTA

literature. So far, Do, Faff, Lajbcygier and Veeraraghavan (2010) is the only study that

exclusively addresses this issue. In this study, I therefore provide several contributions

to the CTA literature. Whilst Do et al. (2010) also use the BarclayHedge database

strategy classifications to study CTAs, as I have shown previously in this thesis, most

of the funds in the BarclayHedge database require manual reclassification. To that end

I hand-collected a substantial amount of missing information by direct contact with the

industry professionals to ascertain the exact strategy classification of each fund. This

thesis, therefore, uses the most thoroughly constructed CTA strategy classifications that

allows a more robust study of the differences between two important strategies among

CTAs: systematic and discretionary. Furthermore, unlike previous studies in the CTA

literature I apply the flow-performance relationship using quarterly as well as annual
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data and find that the relationship at the quarterly horizon is different for some strate-

gies than for others. To the best of my knowledge, I am also the first to test for the effect

of flows on performance persistence in the CTA industry. My results show that CTAs

have long term performance persistence rather than short-term performance persistence

with large inflows of capital and that this is mainly driven by large systematic CTAs.

Finally, this chapter is related to the literature on capacity constraints. To the best

of my knowledge this is the first paper to look at capacity constraints within various

CTA strategies. In the hedge fund literature, capacity constraints have been studied

by Fung, Naik and Ramadorai (2008) who find evidence of diminishing alpha with an

increase in asset flows for fund of hedge funds. Naik, Ramadorai and Stromquist (2007)

further examine capacity constraint at the level of hedge fund strategies and find four

hedge fund strategies that are capacity constrained: Relative Value, Directional Traders,

Emerging Markets and Fixed Income. Managed futures, they document, do not appear

to suffer from capacity constraints. This chapter explicitly addresses the question of

capacity constraints between systematic and discretionary CTAs. Could the differences

between these two types of funds affect the response of their returns to capital inflows? I

hypothesize that, if at all, and despite the fact that futures markets are relatively liquid

and deep, discretionary funds are more likely than systematic funds to experience capac-

ity constraints. This is due to the fact that systematic CTAs are more likely to benefit

from diversification across multiple markets whilst discretionary CTAs are limited by

the number of markets a human is able to follow. Baltas and Kosowski (2012) recently

find a lack of capacity constraints in momentum strategies. They do not, however, use

the same data classification as in this study and thus do not examine differences be-

tween systematic and discretionary CTAs. Furthermore, if capacity constraints are not

the cause of the lack of short-term performance persistence for systematic CTAs this

poses an interesting avenue for future research.
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3.2 Data

In this study, CTA performance and flows are evaluated using monthly net-of-fee returns

and assets-under-management (AUM) of live and dead CTAs reported in the Barclay-

Hedge database between January 1994 and December 2010. This time period spans the

bull periods, pre 2000 and 2003-2007, as well as the bear market periods starting with

the burst of the technology bubble in the spring of 2000 and the recent financial crisis of

2008. The BarclayHedge database has perhaps the most comprehensive coverage of the

total CTAs in existence including the largest percentage of defunct funds (Joenvaara et

al. (2012)), thus making it potentially less affected by survivorship bias. Joenvaara et

al. (2012) further observe that AUM coverage in the BarclayHedge database is superior

to other databases. Since AUM series is especially important for calculating the flow

rates, this makes this database particularly attractive.

BarclayHedge reports two separate databases, consisting of both active live and de-

funct funds, the “graveyard”. The graveyard keeps track of the funds that ceased to

report to the database because of liquidation or some other reason. To minimize the sur-

vivorship bias this study includes both live and defunct CTA funds. For each individual

fund, BarclayHedge provides information on monthly returns (net of management and

performance fees), assets under management (AUM), management and incentive fees,

lockup period, strategy classification as well as brief strategy description and various

other information specific to fund characteristics. As of December 2010 there were a

total of 4,048 defunct and live CTAs. To avoid double counting, all fund of funds were

removed, leaving a total of 3916 unique CTAs with a total AUM at the end of 2010 of

about US$480 billion. The industry coverage is shown in Figure 3.1. The assets under

management have grown from just over US$20 billion in 1993 to over US$480 billion by

the end of 2010. One important item worth noting is the reversal in the growth of the

number of CTAs after 2008, the year of the financial crisis. However, this fall in the

number of funds was accompanied by a rise in assets under management. Some funds
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have clearly liquidated but the remaining funds have received more capital, perhaps as

investors began to reallocate to the CTAs in the knowledge of their attractive perfor-

mance during down markets.

In this dataset I control for a number of potential biases. Firstly, I eliminate du-

plicate share classes from the same fund family. For example two funds can appear in

the database under the same name and be run by the same fund manager but one will

be denoted as “onshore” and the other as “offshore”. These are created for regulatory

reasons but are virtually identical to one another. Similarly there can be one fund that

is an “LP” and another “Ltd”, or “Client” and “Proprietary”. There are also many in-

stances of funds that provide multiple share classes denominated in various currencies,

EUR or GBP, designed for clients who choose to invest in currencies other than US$.

These structures are common in the hedge fund and CTA industries, where managers

set up a master-feeder fund structure, with multiple feeders feeding to the same fund.

Another example of duplicate funds is when a fund appears with the same name twice

but one is an older version designated as “Old”. Such a fund will have an identical

but shorter return history and should therefore be removed. In order to deal with the

duplicates I used the following methodology: firstly I identified all the management

companies with multiple funds and searched for funds with the same name by string

comparison. Thereafter, if their return series had a correlation of 0.95 or more then

they were confirmed as duplicates. To decide which duplicates to remove I used either

the longest return series or, if the duplicates had an identical length of return series, I

selected the fund with the larger assets under management base. This method is similar

to the one employed by Aggarwal and Jorion (2010) and Avramov et al. (2011). It

is important to emphasize that this procedure would understate the aggregate assets

for the manager of the fund with the duplicates that exist side by side with their own

respective AUM. However, this is not crucial for the remainder of the analysis but for

the purposes of accuracy, Figure 3.1 shows total assets in the industry by including all

the duplicate funds.

Apart from removing duplicates I also removed funds that reported gross-of-fee re-
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turns and funds that reported quarterly returns instead of monthly returns. As a result,

the remaining dataset of CTAs contained 2677 funds, of which 728 funds were in the

Live database and 1949 funds in the Defunct database. Furthermore, I removed funds

that had no AUM series but only a return series and applied the dynamic AUM filter

used throughout this study. This left a total of 908 funds. There were further concerns

on the accuracy of the information on total assets-under-management (AUM), since for

some funds reported values ended in substantial number of zeros. Because money flows

will be derived from the reported AUM values, these zeros had to be removed. If a fund

had one month of missing assets under management, I linearly interpolated the missing

observations using adjacent assets under management. If assets under management were

reported as 0 in the middle of an AUM series, those observations were eliminated and

the longest resulting AUM time-interval was reported. Because this study uses quarterly

data as well as yearly data, all the funds with less than four quarters of return history

were also removed. Although this may impose a survival condition, it also insures that

a sufficient number of lagged returns would be available for model estimation. Further-

more, it removes the extreme cash inflow rates that are commonly associated with the

incubation stage (Baquero and Verbeek, 2009). Finally, after these extensive filters,

there were 854 funds left in my sample.

3.2.1 Share Restrictions

In contrast to the study of Ding et al. (2009), who report various parameters for

share restrictions obtained from the TASS database, this study is unable to collect

this data due to incomplete information in the BarclayHedge database. Out of 2677

funds, this information is frequently missing or simply written as “Not Provided”. For

example, for advance notice period, out of 2677 funds 1231 funds have this field empty.

Ding et al. (2009) show that asset illiquidity and the smoothing parameter, θ0, can

be used as a proxy for share restrictions. Although there is a distinction at the fund

level and asset illiquidity at the underlying security the authors demonstrate that all
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the restrictions such as subscription, redemption, advance notice and lock-up periods

increase monotomically with an increase in asset illiquidity. This study will therefore

use the asset illiquidity parameter, θ0 to model share restrictions.

3.3 Methodology

3.3.1 Capital Flow Analysis

An important characteristic of this study is the use of quarterly data as well as annual

data. Since CTAs are reported to be more liquid than hedge funds the use of quarterly

data is particularly important as it enables an exploration of the short-term dynamics

of the inflows and outflows. Previous studies have mainly used either annual data, e.g.

Agarwal, Daniel and Naik (2009), Ding et al. (2009). Others have employed quarterly

time horizon, Getmansky (2005), Fung et al. (2008) and Baquero and Verbeek (2009).

Following Sirri and Tufano (1998) and others, flows are measured as the growth rate

of a fund’s total assets-under-management (AUM) between the beginning and end of

the quarter t, net of investment returns, assuming all the dividends are reinvested. The

definition assumes that flows occur at the end of the period t.

Flowi,t =
AUM +i,t −AUMi,t−1(1 +Ri,t)

AUMi,t−1

(3.1)

Baquero and Verbeek (2009) also use an alternative measure, DollarFlow:

DollarF lowi,t = AUM +i,t −AUMi,t−1(1 +Ri,t) (3.2)

This definition has a drawback in the event that inflows or outflows are proportional

to the size of the fund, irrespective of its performance. On the other hand, the other

measure of flow can be magnified by the inflow rates of small funds. Since this study has

removed small funds this is unlikely to be a problem and therefore the first definition is

used throughout this study. The flows are winsorized at the 1st and 99th percentiles to
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prevent outliers from affecting the analysis.

3.3.2 Performance Measures and Flow-Performance Relation-

ship

The flow-performance relationship requires the use of the right performance measure.

From a theoretical perspective I use the information that would be available to prospec-

tive investors: i.e. simple performance measures that are available in most databases,

raw returns. Baquero and Verbeek (2009) show that relative performance is also a good

predictor of flows as well as absolute performance. Following previous literature, I use

relative performance.

In order to study the differential response of flows to past performance I use the

methodology of Sirri and Tufano (1998), also used in the hedge fund literature, by using

a piecewise linear regression. To that end, each year, I separate fund returns in the

cross section into performance terciles. To do this as in Sirri and Tufano (1998) I first

assign to each fund i a fractional rank, Franki,t−1, from 0 to 1 which is based on returns

during previous year/quarter. This fractional rank represents the fund’s percentile per-

formance relative to other funds with the same investment objective in the same period.

For example if a fund has a Franki,t−1 of 0.20 this means that the fund was better than

20% of its peer group. In this study, fractional ranks are defined on the basis of funds’

raw returns. I then estimate the coefficients on fractional ranks using piecewise linear

regression over three terciles that allows one to estimate a possible differential response

of money flows to past performance. Sirri and Tufano (1998) and Agarwal et al. (2003)

use quintiles instead of terciles but then group the middle three quintiles together as

they find that the coefficients on the middle three quintiles are not significantly different

from each other. Therefore, following Getmansky (2005) and Ding et al. (2009) I use
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terciles to estimate piecewise linear regression. Towards that end I define Tranki,t as:

Trank1
i,t = MIN(

1

3
, F ranki,t) Bottom tercile rank

Trank2
i,t = MIN(

1

3
, F ranki,t − Trank1

i,t) Middle tercile rank

Trank3
i,t = MIN(

1

3
, F ranki,t − Trank1

i,t − Trank2
i,t) Top tercile rank (3.3)

For example if a fund’s fractional rank in the previous year/quarter was 0.4 then it would

have bottom tercile rank, Trank1
i,t = Min(1

3
, 0.4) = 1

3
, middle tercile rank, Trank2

i,t =

Min(1
3
, 0.4− 1

3
) = 0.07 and top tercile rank equal to Trank3

i,t = Min(1
3
, 0.4− 1

3
−0.07) =

0. The coefficients on these piecewise decompositions of fractional ranks i.e. Tranks, rep-

resent the slope of the flow-performance relationship over different performance regions

and thus capture incremental slope coefficient with respect to the previous performance

region. In such specification therefore, concavity in the flow-performance relationship is

represented by the slope coefficient of the bottom Trank being significantly higher than

the next Trank whilst the convexity is represented by the slope coefficient of a higher

tercile being higher than the previous lower tercile.

In order to compare my findings for CTAs with those of Ding et al. (2009), Agarwal

et al. (2004), Baquero and Verbeek (2009) for hedge funds and Sirri and Tufano (1998)

for mutual funds, I follow a similar methodology and use the following multivariate

regression to examine the determinants of money flows into CTAs.

Flowi,t = αi +
3∑

j=1

βj
1Trank

j
i,t−1 + β2σi,t−1 + β3ln(AUMi,t−1) + β4ln(AGEi,t−1) +

+β5Flowi,t−1 + β6Livei + β7HWMi + β8ManagementFeei +

+β9IncentiveFeei + β10StyleEffect+ ϵi,t (3.4)

where Trankj
i,t−1 is as defined before, σi,t−1 is the standard deviation of monthly returns

of fund i during quarter/year t-1. Included are also the natural logarithm of size and

age of fund i in the previous period. Unlike Ding et al. (2009), I include the logarithm
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of age and size to account for the possible nonlinearity. Flowi,t−1 is the money-flow in

fund i in the previous quarter/year, Livei equals 1 if the fund is in the Live database,

and 0 if it is in the Defunct database, HWMi equals 1 if a fund has a high water mark

provision and 0 otherwise, ManagementFeei is the management fee charged by the

fund and measured as a percentage of assets under management, IncentiveFeei is the

incentive fee charged by fund i, also measured as a percentage of a fund’s upside. Style

Effect captures the influence of average flow into the same style as the fund i, and ϵi,t is

the error term.

Hypothesis 1: Positive fund flow-performance relationship: Funds with better past

performance will attract higher inflows than funds with lower performance

As discussed before, it is likely that good past performance will serve as a signal to in-

vestors and will attract new inflows. As CTAs are restricted from advertising, investors

will infer manager’s ability from past performance. That is the relationship will be

positive. However, given the results of the mutual fund and hedge fund literature, this

relationship may not be linear - that is the response of investors to past performance

may be differential depending on the fund’s past relative performance.

Hypothesis 2: Funds with higher past inflows are likely to attract higher current flows

In addition to past performance, investors may also use past flows as a signal of man-

ager’s ability, that is higher past inflows into a fund will signal a manager’s quality.

Previous studies in the hedge fund literature have found a positive and significant re-

lationship between past and current flows, Agarwal, Daniel and Naik (2004) and Get-

mansky (2005).

Hypothesis 3: Size of the fund is likely to negatively influence future inflows

Previous literature on hedge funds has found that larger funds are less likely to receive

future inflows, Getmansky (2005), Agarwal et al. (2004) and Ding et al. (2009). Ding et

al. (2009) show that percentage flows are less sensitive to performance for larger funds

indicating that these funds are too large to efficiently exploit market inefficiencies. A

priori it is unclear as to the direction of this relationship for CTAs as the main trading

style of many CTAs is trend-following.
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In analyzing the above relationship, I estimate each quarter or year a piecewise lin-

ear regression using Fama and Macbeth’s (1973) technique. Cross-sectional regressions

are run each quarter/year. Thereafter, the time-series of the estimated coefficients are

averaged and their t-statistics are computed. Following Petersen (2009), t-statistics are

scaled to adjust for the possible correlation in coefficients across time. As argued by

Sirri and Tufano (1998) this multivariate regression can be estimated using a pooled re-

gression method as well as Fama and MacBeth (1973) procedure. However, the authors

highlight the potential problems in using a pooled regression technique, which implic-

itly assumes each fund-quarter/year observation to be an independent observation. If

this assumption is violated, it will lead to an underestimation of the standard errors

and hence the statistical tests will be inaccurate. Therefore, Sirri and Tufano (1998)

recommend the use of the Fama and MacBeth (1973) technique which produces more

conservative estimates of the standard errors. For this reason, this technique has also

been adopted in the previously mentioned studies of the flow-performance relationship

e.g. Ding et al. (2009), Getmansky (2005) and Agarwal et al. (2004).

3.3.3 Asset Illiquidity Parameter, θ0

Getmansky, Lo and Makarov (2004) propose a general model of the illiquidity and

smoothing of hedge fund returns. Denoting the true economic return of a hedge fund

in period t by Rt, Rt is then assumed to satisfy the following linear single-factor model:

Rt = µ+ βΛt + ϵt, E[Λt] = E[ϵt] = 0, ϵt,Λt ∼ IID (3.5)

and

V ar[Rt] ≡ σ2 (3.6)

This true return represents the return that would determine the equilibrium value of the

fund’s securities in a frictionless market. This true return is rarely observed, however,

and instead we observe R0
t which represents the reported return in period t. The authors



3.3. Methodology 203

model this return as:

R0
t = θ0Rt + θ1Rt−1 + θ2Rt−2

θj ∈ [0, 1], j = 0, 1, 2

θ0 + θ1 + θK = 1 (3.7)

R0
t is a weighted average of the fund’s true monthly returns, Rt, over the most recent

k+1 months including the current months. Getmansky, Lo and Makarov (2004) set k to

2 and estimate θ0, θ1, θ2 using a maximum likelihood procedure. As such, θ0 measures

asset illiquidity or return smoothing. If θ0 is close to 1 for a specific fund then most of

the real contemporaneous return is currently reflected in the observed return, therefore

such a fund exhibits lack of smoothing and more liquidity. If θ0 is small, however, then

a fund is rather illiquid and is more likely to exhibit smoothing of returns. Getmansky,

Lo and Makarov (2004) also impose a five-year filter on the funds’ return history in

order to obtain more accurate estimates of θ0, θ1 and θ2.

3.3.4 Performance Persistence and Flows

To explore the link between performance persistence and flows, I follow the methodology

proposed in Baquero and Verbeek (2009) and sort CTAs each quarter/year into quintile

portfolios based on past quarter/year t-statistics of alphas and independently on past

quarter/year flows. When estimating alphas I extend the Fung and Hsieh factors with

the addition of GSCI in excess of the risk free rate and apply the Bayesian Information

Criterion (BIC) to identify the optimal number of factors for each fund. This procedure

amounts to picking the right combination/number of factors by essentially maximising

the adjusted-R2. The actual formula is given by:

BIC(K) = ln

(
e’e

n

)
+

Klnn

n
(3.8)
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I then construct portfolios at the intersection of flows and t-statistic of alphas. Three

middle quintiles are grouped into one portfolio and therefore nine portfolios are formed.

These portfolios are formed equally-weighted as well as flow-weighted and their returns

in the subsequent quarter/year are analyzed.

3.3.5 Smart Money Effect

To measure the performance of flows I use a portfolio sorts approach rather than a

regressional approach. In particular, two methodologies proposed in the literature are

employed. Firstly, I follow Zheng (1999) and apply a measure of portfolio performance

first introduced by Grinblatt and Titman (1999), the GT measure, defined as:

GTt+1 =
N∑
t=1

(wi,t − wi,t−1)Ri,t+1 (3.9)

where wi,t and wi,t−1 are the weights of CTA i at the end of quarters t and t-1 as mea-

sured by assets relative to the total assets of the CTA industry. Ri,t+1 is the raw return

of fund i between time t and t+1. N denotes the total number of CTAs used in the sam-

ple. This expression represents the return to the dollar invested in a zero-cost portfolio.

As shown in Zheng (1999), under the null hypothesis that investors have no selection

ability the expression above would converge to zero in large samples3. Alternatively, if

the investors are smart in allocating their capital to future well-performing funds then

the average GT measure over the sample period used should be significantly positive

and converge to the covariance, under the assumption that the weights are uncorrelated

to the raw return, Ri,t+1.
4 The advantage of this measure is that it exclusively measures

the selection ability of investors and does not require a knowledge of the benchmark,

which is particularly useful to the study of CTAs and hedge funds. The authors who

have applied this measure are Zheng (1999) and Ding et al. (2009).

As well as applying the GT measure, Ding et al. (2009) create two zero cost portfo-

3See Grinblatt and Titman (1993) for a full discussion of the measure.
4See Zheng (1999).
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lios, equally and flow weighted, to measure the existence of smart money. Specifically,

at the beginning of each quarter, each fund is put into either a positive-flow or negative-

flow portfolio depending upon whether the flows in the previous quarter were positive

or negative. The portfolios are formed by going long on the positive flow funds and

going short on the negative-flow funds and are created either equally-weighted or flow-

weighted. Portfolios are re-balanced quarterly and held for a quarter. Although this

is not an implementable trading strategy as currently there is no secondary market for

tradable CTAs and hence one can not short a CTA, nevertheless, the strategy serves to

show the relationship between flows and performance. The above measures only show

the effect of flows on the next period return. If the smart money effect holds, how-

ever, one should be able to see the difference in performance between the high and low

flow portfolios persist for the months following the formation. In this spirit, I follow

the methodology of Baquero and Verbeek (2009) and form positive-flows portfolios and

negative-flows portfolios by creating two investment and divestment portfolios. Follow-

ing Zheng (1999), the performance of these portfolios is examined over several holding

periods, from one to eight quarters, by compounding their returns. In addition both

equally-weighted and flow-weighed portfolios are formed. The procedure is repeated

each quarter with portfolios re-balanced assuming investors adopt the follow-the-money

approach. Time average of the time series are reported for the holding periods as well

as the ranking period.

3.4 Results

3.4.1 Descriptive Statistics

Table 3.1 shows summary statistics for equally-weighted CTA quarterly flows across

each category for the period January 1994 to December 2010. Panel A shows quarterly

flows for the entire dataset of all funds, Panel B shows the same statistics for Live funds

only and Panel C for Defunct funds. Flows are defined as the percentage change in
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assets between the end of the previous quarter and the end of the next quarter, net of

quarterly returns. Initially, flows are calculated for each CTA for each quarter. Then

they are aggregated for each category using equal weights. For each category flows are

also winsorized at the top 1% to prevent the influence of outliers. Table 3.3 also shows

the quarterly flow rate, return and aggregate AUM for the CTA industry for each quar-

ter over the period January 1994 to December 2010.

Panel A of Table 3.1 shows that the average growth rate of the entire sample was

10.75%. This is slightly lower than the 15.93% rate reported for hedge funds in Ding

et al. (2009) but slightly higher than the rate reported there for managed futures. The

flow rate is highest for systematic short-term trend-following funds (23.57%) and dis-

cretionary technical funds (19.05%). Categories with the lowest flow rates are system-

atic long-term trend-following funds (4.32%) and medium-term trend-following funds

(7.82%). Nevertheless, all these rates are still higher than comparative equally-weighted

returns from Table 3.2, which are less than 3%, demonstrating that CTAs grow mainly

externally from an increase in client capital inflows. Of interest is the standard devi-

ation of 6.54% which is significantly lower than the standard deviation of hedge funds

reported in Ding et al. (2009). For some strategies, however, the volatility of flows is

much higher: systematic short-term trend-following funds and discretionary technical

and spread/RV funds exhibit volatility of flows of 23.53%, 23.43% and 30.25% respec-

tively. Flows of discretionary funds are overall more volatile than flows of systematic

funds. For all CTAs, average flows fluctuate from a minimum of -3.38% to a maximum

of 25.68% although these rates are much higher for other strategies e.g. systematic

short-term funds with a maximum of 120.94%. All CTAs exhibit positive skewness of

flows, with the discretionary spread/RV funds having the most positive skewness of 2.59.

Similar to the findings of Ding et al. (2009), flows also appear to be sticky with a serial

correlation of 11.43. The Jarque-Bera test of normality is rejected for all funds apart

for two substrategies, options and systematic pattern recognition.

Panels B and C show the same statistics for Live and Defunct funds separately.

Flows are higher for Live funds, with an average flow rate for all CTAs of 11.06% and
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8.71% for Defunct funds. The standard deviation of flows of defunct funds is also higher

at 10.22% compared to live funds at 6.25%. Minimum flows are also lower (more neg-

ative) for Defunct funds than Live funds (-20.03% compared to -1.07%). Nevertheless,

maximum flows are similar between Live and Defunct funds. Flows of Live funds are

also more sticky with higher serial correlation, 14.66%, compared to 9.41% for Defunct

funds.

Table 3.2 shows descriptive statistics for quarterly returns of CTAs. The most rep-

resented style is systematic with 589 funds out of 894 funds. Panel A shows descriptive

statistics for all funds together, Live and Defunct, whilst Panels B and C show the

same statistics for each group separately. In each panel, statistics are calculated for

an equally-weighted portfolio of funds within each category. On average all CTAs ex-

hibit a quarterly return of 2.87% with systematic long-term trend-following funds and

discretionary fundamental & technical funds achieving the highest quarterly returns of

3.35% and 3.51% respectively. Options funds and systematic funds have higher stan-

dard deviations than other funds, whilst the highest maximum return is achieved by

the systematic long-term trend-following funds. The Jarque-Bera normality is rejected

for funds engaging in options strategies, which is consistent with these funds engaging

in highly leveraged strategies with option like features, Agarwal and Naik (2004). In

terms of higher moments, only options funds have negative skewness (-0.39%) whilst the

remaining funds have positively skewed returns. Kurtosis appears to be normal for most

funds apart from discretionary fundamental and technical funds that have a kurtosis of

7.07.

The average serial autocorrelation is negative at -3.41% but some funds, such as

discretionary spread/RV and systematic short-term funds, exhibit high and positive au-

tocorrelation of 10.7% and 10.92% respectively. Consistent with Getmansky, Lo and

Makarov (2004), funds that hold and trade illiquid securities tend to have highest first

order serial correlation. Discretionary spread/RV funds are similar to Fixed Income

Arbitrage funds that have been shown to have high autocorrelation coefficients5. The

5See Getmansky, Lo and Makarov (2004).
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reason for the high autocorrelation coefficient of systematic short-term funds is unclear.

Panels B and C show that an equally-weighted portfolio of Live funds has a higher mean

quarterly return (3.54%) than Defunct funds (2.43%) consistent with poor performance

being the reason for the funds’ liquidation. The maximum return is higher for Live

funds than for defunct ones (17.16% compared to 12.55%). The autocorrelation coef-

ficient is also less negative for Live funds and more of the Live funds’ categories reject

the Jarque-Bera normality of returns, indicating that some of the Defunct funds engage

in more levered and speculative strategies.

Table 3.3 shows the evolution of returns and flows for each quarter over the entire

period. Aggregate Assets-under-Management grew from around US$20000 million to

almost US$280000 million. The periods of the highest quarterly returns occurred in

the third quarter of 1998, fourth quarter of 2000, second and third quarters of 2002

and around 2008. These coincide with the periods of structural breaks identified in the

second chapter and coincide with the major crises in the financial markets: the LTCM

debacle of 1998, the 2000 technology bubble crush and the 2008 financial crisis. It is also

clear that investors are responsive to returns, as the largest inflows are observed straight

after the above mentioned crises and periods of high return. In particular, following two

quarters of 10.23% and 7.56% returns in 2002 quarters two and three, the average flows

to CTAs increased to 17.35%, 22.61% and continued at a higher than average rate until

well into 2004. Similarly, inflows were larger after the 1998 crisis. The first quarter

of 2008 saw an increase in quarterly inflows indicating investors reallocating to CTAs

during the crisis.

3.4.2 Smoothing Parameter, θ0

Table 3.4 shows results for asset illiquidity and the smoothing parameter, θ0, calculated

by strategy as well as pulling all CTAs together. Panel B of Table 3.4 shows results by

strategy while separating funds into Live and Defunct groups. θ0 is an asset illiquidity

measure as well as the degree of smoothing, as defined in Getmansky et al. (2004). Ding
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et al. (2009), however, show that it could also be useful in capturing share restrictions

employed by hedge funds. Whilst Ding et al. (2009) employ both share restrictions as

well as θ0 to measure how restrictive the funds are, I am unable to use share restrictions

due to incomplete information on these parameters in the BarclayHedge database.

To measure the degree of restrictions imposed, θ0, I follow the methodology of Get-

mansky et al. (2004) and include only funds with a 5-year return history in the cal-

culation of θ0. This reduces the sample size to 536 funds compared to 894 previously.

Table 3.4 shows that when taking all 536 funds together, the median asset illiquidity

proxy, θ0, is 1.01, which is higher than the 0.86 reported for hedge funds in Ding et al.

(2009). If θ0 for a particular fund is close to 1 then that fund exhibits more liquidity

and less return smoothing as most of the contemporaneous return is reflected in the

observed data. Getmansky, Lo and Makarov (2004) estimate θ0 for managed futures for

the period 1994 to 2002 at 1.13, which is similar to my results. Of particular interest

are the differences in results for systematic and discretionary funds. The median θ0 for

most systematic funds, apart from spread/relative value, is above one at 1.05, which is

in line with the high liquidity of the CTA strategies. Discretionary funds on the other

hand, have a lower median θ0 of 0.92 and closer to the 0.86 median θ0 reported for the

entire universe of hedge funds in Ding et al. (2009). This highlights the differences in

the trading style between systematic and discretionary funds where discretionary funds

are able to engage in any trade that the manager may deem profitable at the time, per-

haps at times at the expense of liquidity. Discretionary spread/RV funds in particular,

have a median θ0 of 0.68 which is consistent with these funds being more restrictive and

is similar to the figure of 0.76 in Getmansky et al. (2004) for Nondirectional/Relative

Value funds, which the authors show to be the ones with the largest serial correlations.

Again, systematic spread/RV funds, although more liquid than their discretionary coun-

terparts, still have the lowest median θ0 out of all systematic funds, 0.93. Nevertheless,

it is still makes them more liquid than the average hedge fund.

Panel B of Table 3.4 reports the same statistics across all CTA categories separated

by funds having a status of being live or defunct. The last column reports difference in
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the means of θ0 between live and defunct funds. Apart from the discretionary technical

funds, systematic and discretionary funds have higher θ0 for defunct funds, indicating

that Live funds are perhaps more restrictive, a finding similar to Ding et al. (2009).

Apart from systematic pattern recognition, however, none of these differences are sta-

tistically significant. In addition, defunct options funds have lower θ0 than live funds.

Table 3.5 shows whether share restrictions may have an impact on fund return volatil-

ity. For each CTA category, funds are separated into those with below median θ0, called

Low θ0 Funds, and those with above median θ0, denoted as High θ0 Funds. For each

category, each CTA’s observed returns are unsmoothed using Getmansky et al. (2004)

econometric model and the volatility of the real returns is calculated. Table 3.5 then

reports the average and the median standard deviation of returns and the difference

between these averages. High θ0 funds, or funds with low restrictions, appear always to

have higher volatility of returns than funds with greater restrictions. These differences,

interestingly, are statistically significant for the entire group of CTAs together. However,

once one looks at the sub-strategies it is apparent that the difference is mainly driven

by systematic funds and, in particular, by the systematic trend-following funds. The

results indicate that investors understand the impact of share restrictions, in particular

when funds are more volatile, as the option to redeem becomes more valuable.

3.4.3 The Flow-Performance Relationship of CTAs

This section discusses the dynamics of the relationship between flow rate and past per-

formance in the CTA industry. Table 3.6 shows the results for Fama-MacBeth OLS

estimates of the piecewise linear regression as defined in equation (3.4). Current quar-

terly fund flows are defined as a percentage change between this period and past period

assets, adjusted for investment returns. Table 3.6 shows results for quarterly flows in

Panel A and yearly data in panel B. Baquero and Verbeek (2009) point out that it

is important to model fund flow-performance relationship using quarterly data rather

than annual data as in Ding, Germansky, Liang and Wermers (2009) and Goetzmann
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et al. (2003) which allows to investigate short-term dynamics of flows. In the case of

CTAs, most subscription and redemption frequencies are either monthly or at the most

quarterly. None are on an annual basis. Therefore, using annual data is less likely to be

relevant for CTAs.

Table 3.6 Panel A shows estimates for all CTAs together for low performance (0.201***),

middle performance (0.093***) and high performance (0.120**) terciles. Therefore, if a

fund was in the top tercile in the last quarter an increase in return by 10% would lead

to an increase of 1.2% in flows, while if the fund was in a bottom tercile an increase in

return in the last quarter of 10% would lean to an increase of 2.01% in flows in the next

quarter. Although the top performing funds appear to be growing not proportionately

as much as the average fund in the market, the relationship still appears to be linear.

All three estimates are significant and, although they are not identical, the Chow (1960)

test does not reject the equality of these coefficients and therefore linearity is not re-

jected. The relationship for quarterly flows and performance appears to be linear when

all funds are taken together. This relationship remains linear for the yearly fund flow re-

lationship, as shown in column two of Panel B, although the high performance estimate

is not significantly different from zero. Other significant variables are size, defined as

the natural logarithm of the last quarter’s assets under management, last quarter’s flow,

live/defunct variable and the style effect. Past flows have a positive effect on current

flows with a significant coefficient of 0.143 for quarterly data but are not significant for

the yearly data. Hence, flows persistent only in the short-term and not in the long-run.

Ding et al. (2009) also document that standard deviation is a significant variable, but

for my CTA data it is only significant for Live funds, as shown in column four of Panel

A. Standard deviation is significant for yearly flow-performance relationship, which is

similar to the Ding et al. (2009) model. Getmansky (2005), however, uses quarterly

data and also finds that standard deviation is not significant at this frequency. The

relationship between past size and flow, holding other variables constant, is negative,

with a coefficient of -0.023. Investors are less likely, or are less able, to invest if the

fund is already very large. In addition Live funds receive on average higher inflows
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that Defunct funds. Unlike, Ding et al. (2009) I do not find HWM, nor management

nor incentive fees to be significant. The coefficient estimate for Style Effect variable is

positive and significant at 1%. Same style flows positively impact flows to an individual

fund, perhaps mimicking the current investors’ preferred style.

Quarterly vs. Yearly CTA Flow-Performance Relationship

Panels A and B of Table 3.6 also show the quarterly and yearly performance flow re-

lationship for Live and Defunct funds after controlling for other fund characteristics.

For quarterly data, the relationship between flow and performance for funds in the Live

database is concave. The low performance estimate is significant, with a coefficient of

0.201, the middle performance coefficient is 0.036 and not significant and the high per-

formance coefficient is 0.138 and significant. The Chow (1960) test rejects the equality

of these coefficients. The low-performance estimate is higher than the high-performance

estimate, indicating a concave relationship: that is, low performing funds command

a disproportionately higher amount of flows than high performing funds. For Defunct

funds, the coefficients for the three performance ranks are 0.149, 0.451 and -0.345 respec-

tively. The coefficients for the middle and high performance are significant at 5%. The

low-performance estimate is significantly higher than the high performance estimate,

again indicating a concave flow performance relationship, although the Chow (1960) test

only weakly rejects linearity. Getmansky (2005) also finds a concave flow-performance

relationship using quarterly data, even for most hedge fund strategies including man-

aged futures. Ding et al. (2009) use yearly data and find the relationship to be convex

for Defunct funds, concave for funds in the Live database and linear for the entire hedge

fund database. Baquero and Verbeek (2009) use quarterly data and test rigorously for

non linearities in the data to find that the relationship is strictly linear. For the yearly

data, Panel B, the Chow (1960) test does not reject the equality of any of the coef-

ficients indicating that the yearly flow-performance relationship is linear for all CTAs

irrespective of whether they are in the Live or Defunct database.
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Separating Large and Small Funds

I further look at the potential influence of large funds on the flow-performance rela-

tionship. To this end, Table 3.7 shows results of Fama-MacBeth OLS estimates for a

group of large funds only, i.e. funds that have reached at least US$250 million under

management during their reported return series. Again for all CTAs together the rela-

tionship is linear. All the variables that were previously significant remain significant

for large funds as well. Table 3.7 also shows the flow-performance relationship for large

funds from the Live and Defunct databases. For Live funds, the relationship is concave,

funds in the low performance tercile receive larger inflows than funds in the highest

performance terciles. The coefficient on low performance is 0.222 and significant at 1%

whereas it is insignificant for the high performance tercile. The coefficients for defunct

funds are very close to each other, 0.196 for the low performance tercile and 0.136 for

the high performance tercile, indicating the linearity of the relationship. Interestingly,

management fee is significant and negative for large funds in the live group whereas it is

insignificant for all the other groups. This indicates that large funds that charge higher

management fees receive less inflows than funds that do not. Management fee appears

to be an issue for larger funds in attracting funds, less than the rest of the CTA universe.

In unreported tests, I estimate the flow-performance relationship for small funds only

and find that the relationship is linear across all three databases, all funds together,

Live funds and Defunct databases. Thus the concave quarterly relationship of the Live

funds reported in Panel A of table 3.6 is driven primarily by the large CTAs rather than

share restrictions as shown in Ding et al. (2009) for hedge funds. It is unlikely that

share restrictions will have an effect on the flow-performance relationship of CTAs given

the highly liquid nature of these funds.



3.4. Results 214

CTA Flow-Performance Relationship by Strategy

In order to ascertain if there are any strategy effects that could affect the flow-performance

relationship Table 3.8 reports the flow-performance relationship for each CTA strategy.

Panel A shows Fama-MacBeth OLS estimates for the flow-performance relationship for

each CTA strategy by taking Live and Defunct funds together. Unlike the results of

Getmansky (2005), who shows that the flow-performance relationship is consistent and

concave for all hedge fund strategies, CTA strategies exhibit variations in the flow-

performance relationship. Firstly, all three terciles are significant for systematic CTAs

and most of its sub-strategies, whilst the explanatory power of the regression is weaker

for discretionary CTAs and most of its performance terciles are not significant. I apply

the Chow (1960) test to test for equality of coefficients of performance terciles to each

strategy. Systematic funds and their subcategory, trend following funds, have a linear

relationship, whilst systematic spread/relative value funds have a convex relationship

with estimates for low performance, middle performance and high performance terciles

at (-0.329***), (0.845**) and (0.119) respectively; that is, well performing funds receive

disproportionately larger inflows than poorly performing funds. The situation reverses

for the discretionary funds that appear to have a concave flow-performance relationship

with coefficients of (0.549***), (0.093) and (-0.113) for low, middle and high perfor-

mance terciles respectively. Furthermore, whilst the flow-performance relationship is

concave for most discretionary funds, it is convex for discretionary spread/relative value

funds, similar to systematic spread/relative value funds; that is, funds that exploit ar-

bitrage opportunities receive more inflows from investors if past performance was good:

there is more return chasing by investors among these funds. Regarding other control

variables the situation is different for each strategy. Whilst last quarter’s assets under

management are significant for all strategies, past flow and live dummy variables are only

significant for systematic CTAs. The economically and statistically significant last quar-

ter’s flow estimates indicate persistence in money flows for systematic trend-following

CTAs. In particular for systematic trend-following funds, an increase in last quarter’s
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flow by 10% increases next quarter’s flow by 1.64%, while for systematic short-term

trend-following funds a 10% increase in flows induces an increase of 3.51% in flows next

quarter. Interestingly, management fee, which was insignificant in a regression with all

CTAs becomes significant for systematic spread/relative value funds and discretionary

technical funds. This underscores the heterogeneity of CTA strategies.

Panels B and C show by strategy results by separating the funds into large and

small funds. Comparing Panels B and C it becomes apparent that the previously found

relationship between performance and flows is driven mainly by large funds. The coef-

ficients on low, middle and high performance terciles remain significant for large funds

for systematic CTAs, but become insignificant for small systematic CTAs. Nevertheless,

the flow-performance relationship for systematic CTAs remains linear for small funds.

For discretionary funds, however, the relationship becomes concave, with performance

tercile estimates at (0.723*), (0.100) and (-0.641*) for low, middle and high performance

terciles respectively. Thus, the concavity in the flow-performance relationship of discre-

tionary CTAs is largely driven by small funds. Regarding other control variables, it

appears that the results of Panel A are mainly driven by the large funds: coefficients on

the log of assets under management, last quarter flow and live dummy remain significant

for large funds but become insignificant for small funds, even though the sample size

of the funds in the small group is significantly larger. The results, therefore, confirm

that CTA flows respond to historical relative performance and that this relationship

depends on the strategy that the fund pursues: systematic CTAs appear to have a lin-

ear quarterly relationship, irrespective of whether the funds are large or small, whereas

discretionary CTAs have a concave quarterly flow-performance relationship and this is

mainly driven by small funds.

Effect of Restrictions on the Flow-Performance Relationship

Table 3.9 shows the effect of possible share restrictions on the flow-performance rela-

tionship as discussed in Ding et al. (2009). I hypothesize that given the deep liquidity
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of the futures markets in which CTAs trade, not many CTAs are likely to have share

restrictions. In fact Table 3.4 showed that CTAs have a much higher median restriction

parameter, θ0, compared to the reported median for hedge funds in Ding et al. (2009)

and Getmansky et al. (2004). Therefore it is unlikely that share restrictions will have

an impact on the flow-performance relationship of CTAs. Table 3.9 shows the effect of

the share restriction parameter by running the model in equation (3.4) with additional

interaction terms as in Ding et al.(2009): Low Performance*Low θ0, Middle Perfor-

mance*Low θ0 and High Performance*Low θ0 where Low θ0 is a dummy variable that

equals 1 if θ0 is below the median level and 0 otherwise. Panel A shows the results for

quarterly data and Panel B for yearly data. In Table 3.9 Panels A and B the coefficients

on interaction terms are rarely significant. In particular for yearly data, the coefficient

on interaction terms is only weakly significant for systematic funds for the High Per-

formance*Low θ0, making the relationship possibly concave. This is only significant at

10%, however. For quarterly data, the relationship for systematic funds is convex with

the addition of interaction terms, even though the coefficients on interaction terms are

not significant. The coefficient on the high performance tercile is positive and significant

at (0.205***) while for the low performance tercile it is (0.168***). Thus, in the ab-

sence of any share restrictions well-performing funds command larger inflows than worse

performing funds. This relationship appears to be driven by systematic trend-following

funds. Discretionary funds appear to have a linear relationship with none of the inter-

action terms being significant. Of interest is the significance of interaction terms for all

funds in Panel A. Thus, in the presence of share restrictions for all CTAs, the relation-

ship becomes more linear, with coefficients for low performance, middle performance

and high performance becoming (0.164), (0.149) and (0.129). In the absence of share

restrictions, the relationship still remains linear. Hence, in conclusion, share restrictions

have a limited effect on the flow-performance relationship of CTAs.
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3.4.4 Performance Persistence and Flows

Berk and Green’s (2004) model predicts that as money flows into well-performing funds

from investors chasing good performance, the inflow of new assets will compete away

any future performance persistence. While this theoretical model fits well with the

empirical findings in the mutual fund industry it has not been well sustained by the

empirical findings in the hedge fund industry. Baquero and Verbeek (2009) test for

performance persistence and find that in the short-term, at quarterly horizons, money

inflows do not hurt performance persistence, due to the slow responsiveness of investors

to past performance. This could be due to share restrictions and search costs impeding

investors from fast allocation of funds, as is indeed possible in the mutual fund industry.

On the other hand, with time, at yearly horizons, money inflows compete away any

performance persistence. For poorly performing funds, investors’ withdrawals act as a

disciplining mechanism on the poorly performing funds and thus there is no persistence

of poor performance in the short term but only at yearly horizons.

In the previous section of this thesis, I found that systematic CTAs have more per-

sistence at the annual horizon and less at the quarterly one. I also found that whilst

performance persistence of discretionary funds is driven by small funds, result similar to

the hedge fund industry, performance persistence of systematic CTAs is mainly driven

by large funds. Given this finding, this section studies performance persistence of CTAs

together with money flows. Figure 3.2 shows cumulative quarterly flows for systematic

and discretionary CTAs. The broken red line shows cumulative flows of systematic CTAs

and the solid blue line the cumulative flows of the discretionary funds. Over the Jan-

uary 1994 to December 2010 period the cumulative flows of systematic CTAs have slowly

surpassed those of the discretionary funds. There is evidence that investors are aware

of the difference in the two types of funds and have directed increasingly more capital

towards systematic CTAs. This may also point to a lack of capacity constraints among

systematic CTAs as they are more able to accept more capital than the discretionary

funds. To study the effect of capital flows on the performance persistence of systematic
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and discretionary CTAs I sort funds each quarter/year into quintiles based on their

past quarter t-statistic of Fung-Hsieh alphas and at the same time independently on

past quarterly/yearly flows. I then construct portfolios at the intersection of both sorts.

Three middle quintiles are then grouped into one portfolio and hence nine final portfo-

lios are formed. Portfolio returns in the next quarter are created by equally-weighting

fund returns. This process is repeated each quarter/year with portfolios re-balanced at

each time. The results of this method are summarized in Tables 3.10 for quarterly data

and 3.11 for yearly data. Looking at the quarterly results for top performers across

strategies shows that they are similar across all strategies apart from options. Top per-

forming funds that receive large inflows subsequently underperform funds that receive

the lowest flows or which experience outflows. This is consistent with Berk and Green

(2004) model whereby large inflows compete away the performance persistence of the

best performing funds. Taking all CTAs together, this difference in under-performance

amounts to -3.98% per quarter, which is economically but not statistically significant.

Results for all systematic funds and systematic trend-following funds are remarkably

similar with an economically significant difference between top performing funds with

large inflows and outflows of -3.58%. However, this difference in only significant for sys-

tematic trend-following funds. Top performing funds in the systematic trend-following

group that receive more inflows, on average, perform worse in the subsequent quarter

than funds with outflows (average return is 5.04% and is statistically significant). The

options strategy is the only strategy where there is performance persistence among top

performing funds at the quarterly horizon although the difference between top perform-

ing funds with inflows and outflows is not statistically significant. These results are in

stark contrast to those reported in Baquero and Verbeek (2009) for hedge funds, who

report the continued performance persistence of top performing funds with large inflows

at quarterly horizons. Baquero and Verbeek (2005) attribute this to slow responsiveness

of money flows, possibly due to share restrictions or search costs. CTAs, however are

much more liquid and it appears that investors quickly deploy capital to well-performing

funds: the average flow growth rate for top performing CTAs is 66.54% in Table 3.10



3.4. Results 219

whereas it is 39.51% for hedge funds reported in Baquero and Verbeek (2009). Interest-

ingly, the growth rate of options funds is much lower at 26.57%, perhaps explaining the

continued persistence of top performing options funds.

Panel C in Table 3.10 shows the performance of the worst performing funds. Here,

results are similar to those of Baquero and Verbeek (2009): funds that receive large

positive inflows underperform funds that experience outflows. For all CTAs together

this difference amounts to -0.91%, similar in magnitude to the -0.98% reported in Ba-

quero and Verbeek (2009) for hedge funds. As investors rush to withdraw capital, they

argue, this action acts as a disciplining mechanism on fund managers who sell the worst

performing securities fast. Hence, there is no performance persistence either for the top

or the worst performing CTAs at the quarterly horizons. The situation reverses dra-

matically when one looks at Table 3.11, which depicts yearly performance persistence.

Looking at all top performing CTAs together we see that these top performing funds

that receive large inflows continue to outperform funds that experience outflows, aver-

age return of 31.49% per year, statistically significant). This is contrary to the results

of Baquero and Verbeek (2009) that is there is evidence of performance persistence at

the yearly level. Looking at the results at the strategy level, we see that this remark-

able result is driven by systematic trend-following CTAs that show an economically and

statistically significant difference in return of top performing funds with inflows and

outflows of 3.19% per year. This is also suggestive of smart money in this category. For

discretionary CTAs however, the difference in performance between funds with inflows

and outflows is negative and statistically significant at -2.47% per year: that is, yearly

performance is also competed away by large inflows into discretionary CTAs, a similar

result to the one found in hedge funds. These striking results are possibly indicative of

a smart money effect or the lack of capacity constraints for systematic CTAs as well as

possible capacity constraints or lack of smart money for discretionary CTAs. Looking at

Panel C for the worst performing funds at a yearly horizon, systematic CTAs show per-

formance persistence for these worst performing funds with large inflows, although this

difference is not economically or statistically significant and systematic trend-followers



3.4. Results 220

further show the under-performance of large inflow funds. Overall, at a yearly horizon,

funds in the worst performing quintile that experience outflows outperform those that

receive inflows. These results are further summarised in Figures 3.3, which shows quar-

terly and yearly results for systematic CTAs, and Figure 3.4, which shows the same

results for discretionary CTAs. The bars represent the time series of portfolio returns

that are reported in Tables 3.10 and 3.11. At yearly horizons top performing CTAs with

large inflows significantly outperform those with large outflows for discretionary CTAs,

with the largest outperformance reported for top performing funds with the lowest in-

flows (outflows) at the quarterly horizon.

In the second part of this thesis, I documented that size has an effect on performance

persistence. In this section I look at the effect of fund flows in large funds on perfor-

mance persistence. Table 3.12 shows a summary of the results of quarterly and yearly

persistence for each CTA strategy for funds in the largest AUM quintile. For compar-

ison purposes the same results are shown for the smallest AUM quintile in Table 3.13.

The results found above remain largely unaffected for the funds in the top quintile. We

continue to see the performance persistence at annual horizons for top performing funds

with the largest inflows outperforming funds with outflows and, this time, the result

holds even for discretionary CTAs. The annual results for top performing funds are

also economically larger than those documented for the entire sample, with the largest

increase documented for systematic CTAs, 7.95% for systematic funds versus 3.84% per

year for systematic funds when we look at large and small funds together. We also

see a lack of performance persistence for top performing funds with the largest inflows

at quarterly horizons and outperformance of the worst performing funds with inflows

by funds with outflows. Looking at results for the smallest funds, we see that there

is no performance persistence of top performing funds with large inflows at quarterly

horizons but there is performance persistence at annual horizon, but this time this is

only evident for systematic CTAs and not discretionary CTAs. These results are also

depicted in Figures 3.5 to 3.8. Looking at Figure 3.6, which shows results for yearly

data for the largest funds, it can be seen that systematic funds in the top performance
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quintile with large inflows have significantly and economically outperformed funds with

the lowest flows. For discretionary CTAs this difference is not very significant. Thus,

large top performing systematic funds continue to benefit from inflows. Size and in-

flows possibly help in research and development of further systematic models. Figure

3.8 shows results for yearly data for the smallest funds. Again inflows do not appear

to hinder performance persistence of the top performing funds but at a yearly horizon

there is no performance persistence for well-performing discretionary CTAs with large

inflows.

3.4.5 Smart Money

This section addresses the smart money effect in the CTA industry. If some funds have

superior performance, as measured by both their raw as well as risk-adjusted returns,

and investors are able to infer this superiority, then rational investors are likely to al-

locate more capital towards funds with higher expected alpha. The high flow funds

would then have higher returns even though the actual return may not necessarily be

affected by flows. Existing literature on smart money is rather mixed. In the mutual

fund industry, Zheng (1999) and Gruber (1996) show the existence of smart money:

investors are able to select funds by moving away from badly performing funds towards

well-performing funds. In fact, the authors find that both raw returns and risk-adjusted

returns are significantly higher for funds that experience high inflows. In the hedge

fund industry, however, the evidence on smart money is rather mixed and for CTAs it

is almost non-existent. Baquero and Verbeek (2009) examine the relationship between

flows and returns for hedge funds and find no differences in performance between funds

with positive and negative money flows. Ding, Getmansky, Liang and Wermers (2009),

on the other hand, find evidence of smart money but only for funds that are not affected

by share restrictions. Do, Faff, Lajbcygier and Veeraraghavan (2010) find no evidence

of smart money in the CTA industry; they show that chasing past performance does

not work, especially in the short-run. This section reports results for the smart money
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effect for CTA funds and various sub-strategies thereof.

Table 3.14 reports time-series averages across all quarters for the Grinblatt and

Titman measure, GT, as well as for the equally-weighted and flow-weighted zero-cost

portfolios. The zero-cost portfolios are formed by going long on funds with positive

last quarter inflows and shorting funds with previous quarter outflows. These portfolios

are then either equally-weighted or flow-weighted across the funds and re-balanced each

quarter. If investors have fund picking ability, then the returns of the GT measure and

zero-cost portfolios should be positive and significant. Table 3.14 shows that, in fact,

none of the measures are positive and significant. For all CTAs together, the GT measure

is negative and insignificantly different from 0 at -0.01% per quarter. The only significant

GT measure is for systematic spread/relative value funds but it is negative rather than

positive: -0.13% for GT measure and -0.89% per quarter for the equally-weighted zero-

cost portfolio. Although a few of the returns for the flow-weighted zero-cost portfolio

are positive, e.g. long-term trend-following systematic funds have an average quarterly

return of 1.01% and discretionary funds 0.08%, none of them are statistically significant.

Moreover, the returns to the flow-weighted zero-cost portfolio are not statistically signif-

icant for any of the strategies and, for many systematic funds, they are in fact negative.

Equally, none of the returns for an equally-weighted zero-cost portfolio are significant,

in particular, for all the trend-following systematic funds (i.e. short-term, medium-term

and long-term trend-followers) they are negative and insignificant, indicating that funds

with inflows subsequently perform less well than funds with outflows and that investors

are not able to allocate to future high performers or withdraw money from future losers.

The results of this table for CTAs are in stark contrast to the results of Ding, Getman-

sky, Liang and Wermers (2009) for hedge funds, who find a positive GT measure for all

hedge fund strategies other than managed futures. In regard to managed futures, Ding

et al. (2009) find that all three measures are negative for managed futures funds, albeit

none are significantly negative. Their results thus support the results found here. Do,

Faff, Lajbcygier and Veeraraghavan (2010) also find no evidence for smart money in the

CTA industry using a regression approach, and show that investors are not successful
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when chasing past performance among CTAs. By breaking CTAs into sub-strategies

my results show that the lack of smart money is driven by the systematic CTAs as the

GT measure for discretionary funds tends to be positive rather than negative.

Whilst the results of Ding et al. (2009) show the existence of smart money in the

hedge fund industry, they demonstrate that this is only prevalent among more liquid

funds as proxied by above median θ0. By separating funds into those with above median

θ0 and those with below median θ0, they are able to show that the smart money effect

exists only for the most liquid funds. This result, however, contradicts the lack of smart

money found both in this study in respect to CTAs and in their study, in that CTAs

are among the most liquid funds among hedge funds. In order to see if perhaps smart

money effect exists among funds with the highest flows rather than positive flows only,

I follow the methodology of Ozik and Sadka (2010). Each quarter, all the CTAs are

sorted into three equal-size portfolios based on their prior flow. The portfolios are then

re-balanced quarterly and held for one quarter. Thus portfolio one would contain funds

with the lowest flows in the last quarter whilst portfolio three would contain funds with

the highest flows in the last quarter. If smart money effect is present then portfolio

returns should increase with prior flow. For hedge funds, Ozik and Sadka (2010) are

able to show that the portfolio return spread of the high-minus-low flow earns 21 basis

point per month (2.53% annually) and is statistically significant, thus demonstrating

the existence of smart money in the hedge fund industry. Even the Fung-Hsieh alpha of

the spread is statistically significant. Table 3.15 Panel A shows excess return, in excess

of three-month treasury bills, for CTA portfolios sorted on flows and Panel B shows

Fung-Hsieh alphas. For all CTAs together the spread between the highest flow funds

and the lowest flow funds is negative and significant, -0.34%. Interestingly, this negative

spread is more driven by discretionary funds than systematic funds. Medium-term and

long-term trend-followers, in fact, have small positive spreads, albeit non-significant.

The spread of the systematic spread/relative value funds is negative and significant sug-

gesting that funds with the highest flows are subsequently less able to earn high returns

and in fact under-perform funds with the lowest flow. This effect is most pronounced
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for spread/relative value funds, since the strategy of these funds requires availability of

arbitrage opportunities which may be quickly exhausted with large inflows. The spread

for discretionary spread/relative values funds is also negative although weakly signifi-

cant.

Panel B reports the risk adjusted-returns for (alphas) using the Fung and Hsieh

factors augmented with the additional GSCI factor and using the BIC criterion to es-

timate the alphas.6 The results from Panel B are similar to Panel A, indicating that

the results are robust to risk-adjustment. Again the only strategy to have a significant

spread return, albeit negative, is systematic spread/RV.

Long-Run Performance of Flows

Although there is no smart money effect for CTAs in the short-run, it is also interesting

to study the long-run performance of the flow strategies. Frazzini and Lamont (2008)

look at the long-run performance of the flow strategies of mutual funds and show that

the smart money effect disappears in the long-run. Ozik and Sadka (2010) also look

at the long-run effect of smart money on hedge funds and find the effect to be per-

manent, with reversals in performance only occurring for inflows. Ahoniemi and Jylha

(2011) find that the out-performance of the high flow is mainly contemporaneous and

exists predominantly during the month that the flow occurs and for one month after.

Subsequently it completely reverses, indicating a lack of persistence, and thus there is

no evidence of a long-term smart money effect. Baquero and Verbeek (2009), on the

other hand, find no evidence of flow related out-performance, even in the short-run, thus

indicating a complete absence of smart money for hedge funds at the aggregate level.

Table 3.16 shows results that test for the long-run effect of smart money in the

CTA universe. It shows the returns of the investment and divestment portfolios in the

ranking and post formation periods. Following Zheng (1996), the returns of positive

flow portfolios and negative flow portfolios are examined by compounding the returns

6The BIC is the Bayesian Information Criterion measure that allows us to choose a subset of factors
that achieve the highest adjusted-R2. It was also employed in the second part of this thesis and was
shown to produce superior results.
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over different holding periods, from one to eight quarters after ranking. These time

series are then averaged. Both equally and cash-flow weighted returns are reported for

the investment, divestment and the difference between the investment and divestment

portfolios. Table 3.16 reports the results by grouping all the CTAs together, whilst

Table 3.17 reports the results of the difference in return between investment and divest-

ment portfolios for each sub-strategy of CTAs. Panel A shows results for investment

portfolio for all funds. In the ranking period, the cash-flow weighted portfolio return is

significantly higher than the return of the equally-weighted portfolio, with a difference

of 1.29% per quarter. This portfolio, however, then underperforms the equally-weighted

portfolio in the evaluation periods by -0.06% in the next quarter and -0.1% thereafter,

indicating that investors fail to allocate appropriately to the funds that perform best

in the following period. The returns for the equally-weighted portfolio increase each

quarter but for cash-flow weighted portfolio they decrease with time. These results are

similar to those reported by Baquero and Verbeek (2009) for hedge funds. The returns

of the divestment portfolio, shown in Panel B, show that investors are able to exploit the

liquidity of CTAs by removing money from the funds that subsequently become worse

performers, with the returns of the cash flow-weighted portfolio being lower than the

returns of the equally-weighted portfolio. Figure 3.9 shows the time-series returns of

the investment and divestment strategies for all CTAs. The cash flow-weighted portfolio

consistently underperforms the equally-weighted portfolio subsequent to the formation

period, a result similar to that of Baquero and Verbeek (2009), although the differences

between the two portfolios are substantially larger.

Finally, Panel C compares the investment and divestment portfolio for all CTAs.

In the ranking period only the cash flow-weighted portfolio has a sorting capacity.

The return to the cash-flow weighted return for the investment portfolio significantly

outperforms that of the divestment portfolio. Ozik and Sadka (2011) also find some

significant out-performance of the investment portfolio in the ranking period. This

out-performance, however, temporarily reverses in the next two quarters and becomes

negative, -0.23% for the first quarter and -0.03% for the second, but improves there-
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after to return to positive out-performance, although this positive out-performance is

not significant. These results confirm the earlier findings on performance persistence

in that there is no short-term persistence when sorting on past flows and performance.

The results do offer some suggestion of long-term persistence, however, in that there is

some evidence in Panel C of the out-performance of the investment portfolio over the

divestment portfolio after two quarters. A possible explanation is that the huge inflows

attracted by previous high-returns end up being temporarily allocated among less prof-

itable trading strategies resulting in only a temporary reduction in fund returns. Thus,

flows appear to have good sorting capacity in the long-term only.

For the equally-weighted portfolio, however, there is no evidence of the investment

portfolio outperforming the divestment portfolio. In fact, for equally-weighted return

the divestment portfolio marginally outperforms the investment portfolio in both rank-

ing and evaluation periods. Overall, therefore, the results confirm the earlier conclusion

that there is no smart money effect at the aggregate level in the CTA industry. Looking

at returns of the investment-divestment portfolios for the sub-strategies in Table 3.17

and Figures 3.10 and 3.11 shows that systematic CTAs continue to exhibit temporary

underperformance of the investment portfolio relative to the divestment portfolio in the

two quarters subsequent to the ranking, with a reversal to a weak smart money effect

from the third quarter onwards. This carries across all sub-strategies of systematic

funds: short-term trend-followers, medium-term trend-followers, etc. For discretionary

CTAs, however, the pattern is reversed: cash flow-weighted returns of the investment

portfolio outperform, albeit insignificantly, the returns of the divestment portfolio in the

first few quarters subsequent to ranking with a reverse of this outperformance occurring

by the 5th quarter. Zheng (1996) also finds the reversal in outperformance for mutual

funds and Baquero and Verbeerk (2009) find the same effect for hedge funds. Even

though CTAs have reportedly less share restrictions than most hedge funds, however,

investors do not always appear to be able to fully exploit that liquidity.
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3.4.6 Capacity Constraints

Recent studies in the mutual fund literature have shed light on capacity constraints,

Chen et al. (2004) and Yan (2008). Their results provide support for the Berk and Green

(2004) equilibrium model that states that in a competitive provision of capital alpha

will tend to zero and there should be no performance persistence. In the second part

of this thesis I found that, contrary to the earlier findings in the hedge fund literature,

alpha has not decreased for systematic CTAs and in particular I found positive and

statistically significant alpha in the last period, August 2007 to December 2010. Fung

et al. (2008) and Naik, Ramadorai and Stromquist (2007) find that, in the hedge

fund industry, fund alpha has declined substantially in the recent period of their study,

March 2000 to December 2004. They attribute this decline to the increased capital flows

also recorded during this period. Whilst Fung et al. (2008) find capacity constraints

for fund of hedge funds, Naik, Ramadorai and Stromquist (2007) look at the capacity

constraints at hedge fund strategy level and detect only four out of eight strategies as

capacity constrained: Relative Value, Directional Traders, Emerging Markets and Fixed

Income. These results indicate that the Berk and Green (2004) model may also hold

for hedge funds. Naik, Ramadorai and Stromquist (2007) do not, however, find any

capacity constraints for managed futures. In this section, and given the results of this

thesis, I directly address the question of capacity constraints at the various levels of CTA

sub-strategies with a particular focus on systematic CTAs given the scalability issues of

these funds discussed previously. As shown in Figure 3.1, the CTA industry has grown

substantially, especially from 2004. This raises the question of whether CTAs may start

facing hitherto undetected capacity constraints and, if this is the case, whether this is

likely to occur for some CTA strategies more than others.

To the best of my knowledge, this study is the first to examine capacity constraints

for various CTA sub-strategies. Would one expect differences in results for various CTA

strategies? The fundamental difference between systematic and discretionary CTAs is

not the actual strategy, as both are trend-followers, but the way they implement their
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trading. There is inherently greater potential for scalability for systematic CTAs: once

programmed, computers can trade many more markets than a single manager. They

may need to be reprogrammed, however, to adjust for inflow of capital. Previously I

found yearly but not quarterly performance persistence for systematic CTAs and the

reverse for discretionary CTAs. Based on these observations, it is possible to find some

capacity constraints for discretionary CTAs as opposed to systematic CTAs.

I analyze the effect of fund flows on CTA performance for each strategy by first

computing the returns for each sub-strategy using an AUM-weighted index (henceforth

AUMW-index). I further aggregate the flows at the end of each month for each strategy

of CTAs, as the AUM-weighted average of individual fund flows.

Fs =

∑Nt

i=1AUMi,tFlowi,t∑Nt

i=1AUMi,t

(3.10)

where Flowi,t denotes individual monthly fund flows, AUMi,t denotes individual monthly

fund assets under management and N stands for number of funds in each month in each

CTA strategy. Following Naik et al. (2007), I then regress the AUM-weighted return

index for each strategy on lagged capital flows and a set of control variables:

Rs = const.+ϕ
t−1∑

τ=t−12

Fs(τ)+νAUMs(t−12)+λAUM2
s (t−12)+χNo.offundss(t−12)+ξs(t)

(3.11)

where Rs denotes AUM-weighted strategy return. Also following Naik et al. (2007),

I control for size in the CTA industry by including the log of total assets under man-

agement in each strategy. To control for potential non-linearity in the relationship, the

square of the log of AUM is also included. Naik et al. (2004) also include the number

of funds within a strategy in a prior year to control for competition, see Getmansky

(2004). A negative and significant value of ϕ is evidence of capacity constraints within

a strategy.

Table 3.18 presents the results from estimating the regression given in equation

(3.11). The coefficient on lagged flows, ϕ is on average negative but in most cases
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insignificant. The coefficient is weakly significant for all CTAs taken together and sig-

nificant at 1% for discretionary and discretionary CTAs that employ technical analysis.

This negative and statistically significant coefficient suggests the presence of capacity

constraints. That is an increase in 10% in annual flows into these strategies would result

in a decrease in subsequent monthly return of 11 basis points for discretionary funds

and 15 basis points for discretionary technical funds. Naik et al. (2007) find evidence of

capacity constraints for four out of eight hedge fund styles, one of which is Directional

Traders. Directional traders are somewhat similar to managed futures in that both can

focus on directional trends. Naik et al. (2007) explain the presence of capacity con-

straints in this strategy if too many directional funds focus on the same sector. Although

systematic trend-followers pursue the same type of strategy they do not appear to suffer

from capacity constraints. The ability of machines to trade multiple markets simultane-

ously allows systematic trend-followers to avoid overcrowded trades. A recent Financial

Times article observes “Systematic allows the CTA to trade multiple markets simultane-

ously.”7 Thus it appears that discretionary CTAs may suffer from overcrowded trades

more than systematic ones. Interestingly, I find that for discretionary and systematic

spread/relative value and options strategies the coefficient is positive, although it is not

statistically significant. Nevertheless, despite the fact that some of the CTA strategies

exhibit a statistically significant ϕ coefficient, it is not economically important just yet.

If assets continue to increase at the same rate as in the past few years, however, the

effect of flows on returns could become important for discretionary CTAs.8

In Table 3.18 the coefficient on size and size squared is only significant for system-

atic and discretionary spread/relative value funds with reverse signs for the two types

of funds. For discretionary spread/relative value funds the sign is consistent with the

presence of diminishing returns to scale whereas, for systematic funds spread/RV funds

size seems to enhance performance. Competition seems to have no effect on perfor-

mance in the CTA industry, the coefficient on the number of funds in the strategy is

7The Financial Times, June 9, 2012, “A true CTA will stick to chosen path.”
8An article in the Financial Times on June 11, 2011, states that assets have continued to increase

into CTAs despite market downturn.
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mostly insignificant. Whilst Do et al. (2010) show that performance has an effect on

the timing of funds entering the industry and the overall number of funds, the increase

in the number of funds in a strategy does not hinder future performance. This result is

contrary to the results of Getmansky (2004) and Naik et al. (2007) who find the effect

of competition in the hedge fund industry to be significant. Once again the results are

consistent with the evidence that futures markets are relatively deep and liquid.

For robustness, I rerun regression (3.11) using the additional control variables em-

ployed in Baltas and Kosowski (2012), S&P 500, Fama-French SMB and HML, Gold-

man Sachs Commodities Index and Carhart (1997) momentum factor, UMD. Table 3.19

shows the results of this regression. Irrespective of the setup, I find that the results do

not qualitatively change: there is no evidence of capacity constraints among systematic

CTAs whereas discretionary funds, driven by discretionary technical funds, some show

evidence of capacity constraints, confirming previous results.

3.5 Conclusion

In this chapter I analyze the drivers of flows into the CTA industry and their effect

on the future performance of CTAs. The nonlinearity of the relationship is modeled

with a piecewise linear regression and applied to various CTA categories, fund size and

time horizons. I find that at the yearly horizon money flows are linearly related to the

past relative performance of the CTAs. At the quarterly horizon, however, this rela-

tionship is linear for systematic funds, concave for discretionary funds and convex for

spread/relative value strategies across both discretionary and systematic CTAs. This

resonates with the earlier results in the literature on hedge funds. Furthermore, unlike

the results of Ding et al. (2009), I find no evidence that share restrictions affect the

shape of the flow-performance relationship in the CTA industry. Instead, I argue that

differences in the relationship can be observed for different fund strategies and fund
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size. Specifically, the concavity of the relationship is driven by large CTAs, indicating

that large better performing funds attract less inflows. Despite the deep liquidity of the

futures markets, many large CTAs still choose to close their funds to new investors in

order not to hinder future performance. This explains the concavity of the relationship

found in this research.

I also examine the effect of flows on the performance persistence of CTAs using quar-

terly and yearly data. I find no evidence of performance persistence at the quarterly

horizon for any of the CTA strategies. However, I find evidence of persistence at the an-

nual horizon. This effect is particularly driven by systematic rather than discretionary

CTAs. This resonates with the earlier findings of this thesis that there is yearly but

not quarterly performance persistence among systematic CTAs. It appears that this

long-term performance persistence is not hindered by the additional inflows of capital

and this points to the lack of capacity constraints amongst Systematic CTAs. On the

other hand, consistent with the conclusions of Berk and Green (2004), large inflows seem

to compete away the performance persistence of Discretionary funds.

This chapter also addresses the issue of smart money in the CTA industry. Despite

some evidence of smart money in the hedge fund industry, I find no significant differ-

ences in performance between funds with inflows and funds with outflows. Although, in

the long-run post formation, there is some reversal in performance of funds with inflows,

this out-performance is rather weak. These results are similar to the conclusions of Do,

Faff, Lajbcygier and Veeraraghavan (2010). It appears that, despite evidence that CTA

investors chase past performance, they are not able fully to exploit it in the short-term.

There appears to be no smart money effect in the CTA industry.

Motivated by the above results, I look at the issue of capacity constraints among

CTA strategies. My results imply that there are no statistically significant capacity con-

straints among systematic CTAs but there is statistical evidence of capacity constraints

for discretionary CTAs, although it is not yet economically significant. The findings of

this study, therefore, have interesting implications for investors. CTAs provide greater

liquidity to their investors than hedge funds, thus investors can access many funds rela-
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tively quickly, yet it appears that they need to be more patient as to when they choose to

exit the funds since performance persistence particularly for systematic CTAs appears

to exist only in the long-term after a temporary reversal. The dataset used in this study

ends in December 2010, yet assets have continued to flow into the CTA industry. In

light of the findings of capacity constraints, investors should consider overall industry

flows when investing into discretionary CTAs.
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3.6 Appendix



3.6. Appendix 234

T
ab

le
3.
1:

S
u
m
m
a
ry

S
ta
ti
st
ic
s
o
f
Q
u
a
rt
e
rl
y
F
lo
w
s
b
y
C
a
te
g
o
ry

T
ab

le
3
.1

ta
b
le

sh
ow

s
d
es
cr
ip
ti
v
e
st
at
is
ti
cs

o
f
q
u
ar
te
rl
y
fl
ow

s
fo
r
ea
ch

ca
te
g
o
ry

o
f
C
T
A
s
fo
r
th
e
p
er
io
d
J
an

u
a
ry

19
94

to
D
ec
em

b
er

20
10

w
it
h

a
m
in
im

u
m

of
fo
u
r
q
u
a
rt
er
s
of

q
u
a
rt
er
ly

re
tu
rn

h
is
to
ry
.
F
u
n
d
o
f
fu
n
d
s
a
re

n
o
t
in
cl
u
d
ed
.
P
an

el
A

sh
ow

s
fl
ow

st
at
is
ti
cs

fo
r
al
l
fu
n
d
s,

P
an

el
B

sh
ow

s
st
a
ti
st
ic
s
fo
r
L
iv
e
fu
n
d
s
o
n
ly

a
n
d
P
a
n
el

C
re
p
or
ts

th
e
sa
m
e
st
a
ti
st
ic
s
fo
r
D
ef
u
n
ct

fu
n
d
s.

F
lo
w
s
a
re

co
m
p
u
te
d
as

th
e
ch
an

ge
in

to
ta
l
n
et

as
se
ts

b
et
w
ee
n
tw

o
co
n
se
cu
ti
v
e
q
u
a
rt
er
s
co
rr
ec
te
d
fo
r
re
in
ve
st
m
en
ts

a
n
d
re
la
ti
v
e
to

th
e
a
ss
et
s
a
t
th
e
b
eg
in
n
in
g
o
f
th
e
p
er
io
d
.
F
or

ea
ch

q
u
ar
te
r,

p
er
ce
n
ta
ge

fl
ow

s
ar
e
ca
lc
u
la
te
d
fo
r
ea
ch

fu
n
d
w
h
ic
h
a
re

th
en

eq
u
a
ll
y
-w

ei
g
h
te
d
a
cr
o
ss

a
ll
fu
n
d
s
w
it
h
in

th
e
re
sp
ec
ti
v
e
ca
te
go
ry
.
W

h
en

ag
gr
eg
at
in
g

th
e
fl
ow

s,
th
e
to
p
1%

a
re

w
in
so
ri
ze
d
to

p
re
v
en
t
th
e
in
fl
u
en
ce

o
f
o
u
tl
ie
rs
.
T
h
e
ta
b
le

re
p
o
rt
s
eq
u
a
ll
y
-w

ei
g
h
te
d
m
ea
n
,
m
ed
ia
n
,
st
an

d
ar
d
d
ev
ia
ti
on

,
m
ax

im
u
m
,
m
in
im

u
m
,
sk
ew

n
es
s,

k
u
rt
o
si
s
a
n
d
th
e
fi
rs
t
o
rd
er

a
u
to
co
rr
el
a
ti
o
n
co
effi

ci
en
t
o
f
fl
ow

s.
N

is
th
e
n
u
m
b
er

of
fu
n
d
s
fo
r
ea
ch

ca
te
go
ry
.

T
h
e
la
st

co
lu
m
n
re
p
or
ts

m
ed
ia
n
J
ar
q
u
e-
B
er
a
n
or
m
a
li
ty

st
a
ti
st
ic
s.

*
is

si
g
n
ifi
ca
n
t
a
t
1
0
%
,
*
*
is

si
g
n
ifi
ca
n
t
at

5
%

an
d
**
*
is

si
gn

ifi
ca
n
t
at

1%
.

P
a
n
e
l
A
:
A
ll

F
u
n
d
s

S
u
m
m
a
ry

S
ta

ti
st
ic
s
o
f
C
T
A

Q
u
a
rt
e
rl
y
F
lo
w
s
b
y
C
a
te
g
o
ry

N
M

e
a
n

M
e
d
ia
n

S
.D

.
M

in
M

a
x

S
k
e
w

K
u
rt

ρ
1
(%

)
J
B
-S

ta
t

(%
)

(%
)

(%
)

(%
)

(%
)

A
L
L

F
U
N
D
S

89
4

10
.7
5

1
0
.1
1

6
.5
4

-3
.3
8

2
5
.6
8

0
.1
3

2.
3
9

11
.4
3

23
.1
6*
**

S
Y
S
T
E
M

A
T
IC

58
9

9.
6
2

8
.9
9

6
.9
2

-7
.3
2

2
6
.7
8

0
.2
7

2
.7
7

11
.8
8

26
.6
9*
**

T
re

n
d

49
7

9.
2
6

7
.9
4

6
.5
7

-8
.2
3

2
4
.4
8

0
.2
2

2
.9
3

12
.5
5

28
.0
7*
**

S
h
o
rt
-t
er
m

10
5

23
.5
7

1
9
.0
5

2
3
.5
3

-7
.9
1

1
2
0
.9
4

1
.4
3

5
.8
7

14
.9
7

29
.4
6*
**

M
ed
iu
m
-t
er
m

30
9

7.
8
2

7
.0
7

6
.5
9

-8
.5
5

2
5
.2
0

0
.3
3

3
.0
6

11
.1
5

29
.4
5*
**

L
o
n
g-
te
rm

8
3

4.
3
2

3
.0
0

7
.0
8

-1
0
.3
6

2
2
.0
3

0
.4
6

2
.8
3

1
3.
0
9

26
.8
7*
**

S
p
re
a
d
/R

V
57

12
.9
4

8
.5
7

1
8
.0
4
-1
6
.1
7

8
3
.2
2

1
.0
8

4.
9
6

9.
8
7

16
.7
0*
**

P
at
te
rn

R
ec

28
10

.0
8

9
.4
8

1
8
.3
6
-3
0
.4
5

6
7
.9
0

0
.9
2

4.
4
5

6.
1
5

16
.9
2

D
IS

C
R
E
T
IO

N
A
R
Y

2
67

1
3.
8
1

1
3
.1
0

9
.4
0

-5
.9
8

3
9
.2
5

0
.0
9

2
.6
7

9
.0
5

17
.8
7*
**

F
u
n
d
am

en
ta
l

7
3

9.
6
1

8
.7
4

1
0
.7
4
-1
1
.6
2

4
8
.1
2

0
.8
2

4.
7
2

3
.9
8

13
.4
4*
**

T
ec
h
n
ic
al

8
5

1
9.
0
5

1
3
.4
4

2
3
.4
3
-1
5
.7
7

8
4
.8
9

1
.0
1

3
.6
8

1
0.
9
6

22
.3
0*
**

F
u
n
d
a
m
en
ta
l
&

T
ec
h

8
2

14
.6
4

1
3
.2
5

1
3
.7
3

-7
.7
6

6
7
.4
0

1
.2
7

5.
7
5

9
.4
3

18
.1
7*
*

S
p
re
ad

/
R
V

2
7

1
2.
5
8

3
.5
9

3
0
.2
5
-2
3
.3
1
1
4
7
.1
2

2
.5
9

1
1.
2
4

1
5.
7
9

10
.8
0*
**

O
P
T
IO

N
S

3
8

1
4.
7
7

1
2
.2
9

2
3
.5
9
-3
7
.3
9
1
2
4
.5
1

1
.4
8

8
.4
1

2
0.
6
1

34
.9
3



3.6. Appendix 235

P
a
n
e
l
B
:
L
iv
e
F
u
n
d
s

S
u
m

m
a
r
y

S
ta

ti
st
ic
s
o
f
C
T
A

Q
u
a
r
te

r
ly

F
lo
w
s
b
y

C
a
te

g
o
r
y

N
M

e
a
n

M
e
d
ia
n

S
.D

.
M

in
M

a
x

S
k
e
w

K
u
r
t

ρ
1
(%

)
J
B
-S

ta
t

(%
)

(%
)

(%
)

(%
)

(%
)

A
L
L

F
U
N
D
S

3
5
8

1
1
.0
6

1
2
.1
2

6
.2
5

-1
.0
7

2
4
.6
6

0
.1
0

2
.5
6

1
4
.6
6

5
3
.3
2
*
*
*

S
Y
S
T
E
M

A
T
IC

2
5
6

9
.7
4

9
.3
6

6
.3
1

-4
.5
7

2
5
.4
4

0
.2
6

2
.8
9

1
5
.0
5

5
3
.8
6

T
r
e
n
d

2
2
1

9
.3
1

9
.2
2

6
.2
4

-5
.6
4

2
6
.0
2

0
.3
7

3
.1
4

1
5
.2
8

5
4
.3
4
*
*
*

S
h
o
rt
-t
er
m

5
9

2
3
.2
5

1
5
.7
0

2
5
.8
5

-1
3
.4
9

1
0
8
.8
2

1
.5
2

5
.2
8

1
5
.8
3

2
9
.4
2
*
*
*

M
ed

iu
m
-t
er
m

1
3
3

7
.4
9

6
.4
6

6
.2
0

-6
.7
1

2
6
.2
4

0
.4
8

3
.4
2

1
3
.4
9

6
4
.3
2
*
*
*

L
o
n
g
-t
er
m

2
9

4
.7
6

3
.4
9

6
.8
4

-1
0
.4
6

2
3
.2
0

0
.7
3

3
.2
5

2
0
.6
2

8
2
.2
5
*
*
*

S
p
re
a
d
/
R
V

2
1

2
1
.2
3

1
1
.2
3

3
9
.9
8

-3
1
.8
6

2
4
1
.4
9

3
.2
1

1
5
.9
7

1
2
.3
6

3
7
.1
6
*
*
*

P
a
tt
er
n
R
ec

1
2

1
3
.2
1

4
.9
9

2
8
.2
6

-3
6
.4
6

1
2
1
.3
8

1
.6
6

6
.1
6

1
8
.1
3

4
1
.4
8
*
*
*

D
IS

C
R
E
T
IO

N
A
R
Y

8
3

1
7
.6
4

1
3
.6
2

1
9
.9
5

-1
4
.6
2

1
0
5
.4
4

1
.6
6

7
.4
7

8
.7
7

5
0
.2
3
*
*
*

F
u
n
d
a
m
en

ta
l

3
0

8
.2
1

6
.8
9

1
3
.7
0

-1
4
.9
2

7
1
.2
5

1
.6
6

8
.2
6

8
.2
8

5
3
.6
8
*
*
*

T
ec
h
n
ic
a
l

2
3

3
2
.3
6

1
1
.5
7

8
1
.5
5

-2
9
.7
3

5
9
8
.7
0

5
.1
4

3
4
.4
5

0
.8
9

2
4
6
.7
5
*
*
*

F
u
n
d
a
m
en

ta
l
&

T
ec
h

2
6

1
7
.4
0

1
1
.0
8

2
7
.7
6

-3
6
.4
9

1
2
3
.8
9

1
.4
9

6
.4
2

1
5
.7
7

2
0
.9
7

S
p
re
a
d
/
R
V

4
7
0
.2
4

1
.8
9

2
1
5
.1
4

-2
0
.1
6

7
5
8
.6
0

2
.9
1

9
.5
0

2
5
.9
9

1
7
.8
0

O
P
T
IO

N
S

1
9

2
3
.8
8

1
3
.9
0

3
9
.4
5

-5
.6
2

2
7
3
.2
1

4
.3
5

2
6
.9
7

2
7
.8
0

1
1
3
.4
2
*
*
*

P
a
n
e
l
C
:
D
e
fu

n
c
t
F
u
n
d
s

S
u
m

m
a
r
y

S
ta

ti
st
ic
s
o
f
C
T
A

Q
u
a
r
te

r
ly

F
lo
w
s
b
y

C
a
te

g
o
r
y

N
M

e
a
n

M
e
d
ia
n

S
.D

.
M

in
M

a
x

S
k
e
w

K
u
r
t

ρ
1
(%

)
J
B
-S

ta
t

(%
)

(%
)

(%
)

(%
)

(%
)

A
L
L

F
U
N
D
S

5
3
6

8
.7
1

8
.3
9

1
0
.2
2

-2
0
.0
3

2
7
.1
8

-0
.3
4

3
.2
3

9
.4
1

1
3
.6
8
*
*
*

S
Y
S
T
E
M

A
T
IC

3
3
3

7
.3
9

7
.4
7

1
1
.7
9

-2
4
.4
9

3
1
.7
6

-0
.1
7

2
.9
3

9
.4
2

1
4
.2
0
*
*
*

T
r
e
n
d

2
7
6

7
.3
8

7
.2
0

1
1
.7
7

-2
7
.5
0

3
2
.1
0

-0
.3
9

3
.4
9

1
0
.2
6

1
8
.8
2
*
*
*

S
h
o
rt
-t
er
m

4
6

2
0
.3
7

1
3
.8
7

3
1
.5
8

-3
1
.7
6

1
2
6
.1
3

1
.2
2

4
.5
2

1
3
.7
4

3
3
.7
7
*
*
*

M
ed

iu
m
-t
er
m

1
7
6

7
.3
6

8
.5
4

1
0
.6
2

-2
6
.0
9

3
1
.1
5

-0
.4
7

3
.4
9

9
.2
6

1
6
.1
7
*
*
*

L
o
n
g
-t
er
m

5
4

5
.7
2

2
.3
4

1
3
.2
5

-2
0
.0
7

5
1
.6
6

1
.0
2

4
.8
0

9
.3
9

1
7
.6
5
*
*

S
p
re
a
d
/
R
V

3
6

7
.1
6

2
.0
5

2
0
.1
5

-2
5
.3
0

8
2
.5
6

1
.0
5

4
.4
0

8
.4
8

4
.4
9

P
a
tt
er
n
R
ec

1
6

8
.3
0

4
.8
8

2
5
.5
3

-4
5
.0
8

8
5
.9
0

0
.6
7

4
.0
9

-3
.4
1

4
.6
7
*

D
IS

C
R
E
T
IO

N
A
R
Y

1
8
4

1
1
.1
1

1
1
.5
0

1
1
.5
5

-1
5
.7
9

3
6
.5
3

-0
.0
7

2
.9
5

9
.2
6

9
.8
0
*
*
*

F
u
n
d
a
m
en

ta
l

4
3

8
.5
2

5
.9
3

1
4
.2
6

-1
5
.7
9

5
4
.7
7

1
.0
4

4
.5
0

0
.9
7

7
.3
9
*
*
*

T
ec
h
n
ic
a
l

6
2

2
1
.1
9

8
.0
9

5
2
.9
8

-2
3
.5
0

3
8
4
.0
8

5
.0
8

3
4
.7
0

1
4
.7
7

8
.7
0

F
u
n
d
a
m
en

ta
l
&

T
ec
h

5
6

1
2
.4
3

1
0
.3
5

1
6
.1
0

-1
9
.8
3

6
1
.8
0

0
.8
5

3
.9
5

6
.1
7

1
3
.4
3
*

S
p
re
a
d
/
R
V

2
3

1
1
.3
2

3
.5
9

3
0
.0
4

-5
1
.0
2

1
3
9
.4
1

1
.8
1

8
.1
2

1
4
.5
4

8
.5
2
*
*

O
P
T
IO

N
S

1
9

8
.3
2

8
.6
6

2
4
.3
3

-6
1
.9
9

7
8
.8
5

-0
.1
3

4
.1
5

1
2
.2
6

7
.2
4
*
*



3.6. Appendix 236

T
ab

le
3.
2:

S
u
m
m
a
ry

S
ta
ti
st
ic
s
o
f
Q
u
a
rt
e
rl
y
R
e
tu

rn
s
b
y
C
a
te
g
o
ry

T
ab

le
3.
2
sh
ow

s
d
es
cr
ip
ti
v
e
st
a
ti
st
ic
s
o
f
q
u
ar
te
rl
y
re
tu
rn
s
fo
r
ea
ch

ca
te
g
o
ry

o
f
C
T
A
s
fo
r
th
e
p
er
io
d
J
a
n
u
ar
y
1
99
4
to

D
ec
em

b
er

20
10

w
it
h
a

m
in
im

u
m

of
fo
u
r
q
u
ar
te
rs

of
q
u
ar
te
rl
y
re
tu
rn

h
is
to
ry
.
F
u
n
d
o
f
fu
n
d
s
a
re

n
o
t
in
cl
u
d
ed
.
P
a
n
el

A
sh
ow

s
fl
ow

st
at
is
ti
cs

fo
r
al
l
fu
n
d
s,
P
an

el
B

sh
ow

s
st
at
is
ti
cs

fo
r
L
iv
e
fu
n
d
s
on

ly
a
n
d
P
an

el
C

re
p
or
ts

th
e
sa
m
e
st
a
ti
st
ic
s
fo
r
D
ef
u
n
ct

fu
n
d
s.

R
et
u
rn
s
a
re

eq
u
al
ly

w
ei
gh

te
d
fo
r
ea
ch

ca
te
go
ry
.
T
h
e

ta
b
le

re
p
o
rt
s
eq
u
a
ll
y
-w

ei
g
h
te
d
m
ea
n
,
m
ed
ia
n
,
st
a
n
d
ar
d
d
ev
ia
ti
o
n
,
m
a
x
im

u
m
,
m
in
im

u
m
,
sk
ew

n
es
s,

k
u
rt
o
si
s
an

d
th
e
fi
rs
t
or
d
er

au
to
co
rr
el
at
io
n

co
effi

ci
en
t
o
f
re
tu
rn
s.

N
is

th
e
n
u
m
b
er

o
f
fu
n
d
s
fo
r
ea
ch

ca
te
g
o
ry
.

T
h
e
la
st

co
lu
m
n
re
p
o
rt
s
m
ed

ia
n
J
a
rq
u
e-
B
er
a
n
or
m
al
it
y
st
at
is
ti
cs
.

*
is

si
gn

ifi
ca
n
t
a
t
1
0%

,
**

is
si
gn

ifi
ca
n
t
at

5%
an

d
*
**

is
si
g
n
ifi
ca
n
t
a
t
1
%
.

P
a
n
e
l
A
:
A
ll

F
u
n
d
s

S
u
m
m
a
ry

S
ta

ti
st
ic
s
o
f
C
T
A

Q
u
a
rt
e
rl
y
R
e
tu

rn
s
b
y
C
a
te
g
o
ry

N
M

e
a
n

M
e
d
ia
n

S
.D

.
M

in
M

a
x
S
k
e
w

K
u
rt

ρ
1
(%

)
J
B
-S

ta
t

(%
)

(%
)

(%
)

(%
)

(%
)

A
L
L

F
U
N
D
S

89
4

2
.8
7

2
.5
2

3
.5
9

-5
.6
4

1
3
.7
7

0
.5
5

3
.4
8

-3
.4
1

1.
57
**

S
Y
S
T
E
M

A
T
IC

58
9

2
.7
7

2
.3
5

4
.5
9

-7
.8
0

1
6
.5
5

0
.6
2

3
.4
5

-5
.8
4

1.
55

T
re

n
d

4
97

2.
8
2

2
.2
7

4
.9
2

-8
.4
1

1
7
.7
1

0
.6
5

3
.5
2

-7
.0
9

1.
74

S
h
or
t-
te
rm

1
05

2.
6
4

2
.0
7

2
.6
3

-2
.2
1

1
1
.6
4

0
.7
0

3
.8
0

1
0.
9
2

1.
52

M
ed
iu
m
-t
er
m

3
09

2.
7
9

2
.3
3

5
.2
0

-9
.3
4

1
7
.4
8

0
.5
9

3
.4
3

-1
1.
5
0

1.
87

L
on

g
-t
er
m

83
3.
3
5

2
.3
9

7
.6
0

-1
4
.7
3
2
5
.6
0

0
.6
3

3
.2
5

-1
3
.4
6

1.
49

S
p
re
a
d
/R

V
57

2.
0
6

1
.6
7

2
.6
8

-4
.0
7

1
0
.4
9

0
.5
6

3
.4
8

1
.4
8

1.
11

P
a
tt
er
n
R
ec

28
3
.1
5

2
.5
8

5
.5
3

-8
.4
4

1
9
.1
2

0
.5
4

3
.1
4

-1
.6
2

0.
96

D
IS

C
R
E
T
IO

N
A
R
Y

2
67

3.
0
7

2
.8
4

2
.3
1

-1
.7
9

9
.4
4

0
.5
6

3
.0
3

1
.8
1

1.
41
*

F
u
n
d
a
m
en
ta
l

7
3

2
.8
8

2
.3
1

3
.5
0

-3
.7
1

1
6
.6
3

1
.1
2

5
.1
8

3
.2
5

1.
03

T
ec
h
n
ic
al

85
3
.1
6

2
.8
8

2
.8
4

-3
.9
4

1
1
.3
1

0
.4
5

3
.3
8

1
.2
4

1.
46

F
u
n
d
am

en
ta
l
&

T
ec
h

82
3.
5
1

2
.5
2

3
.7
0

-1
.8
8

1
8
.3
3

1
.8
0

7
.0
7

-1
.8
0

1.
64

S
p
re
a
d
/R

V
27

2
.7
0

2
.5
5

3
.4
9

-6
.2
1

1
6
.4
6

0
.8
9

5
.8
0

1
0.
7
0

1.
91

O
P
T
IO

N
S

38
2
.9
9

3
.0
8

4
.7
4

-9
.2
0

1
4
.9
4

-0
.3
9

3
.5
3

-2
.4
9

6.
32
*



3.6. Appendix 237

P
a
n
e
l
B
:
L
iv
e
F
u
n
d
s

S
u
m

m
a
r
y

S
ta

ti
st
ic
s
o
f
C
T
A

Q
u
a
r
te

r
ly

R
e
tu

r
n
s
b
y

C
a
te

g
o
r
y

N
M

e
a
n

M
e
d
ia
n

S
.D

.
M

in
M

a
x

S
k
e
w

K
u
r
t

ρ
1
(%

)
J
B
-S

ta
t

(%
)

(%
)

(%
)

(%
)

(%
)

A
L
L

F
U
N
D
S

3
5
8

3
.5
4

2
.9
5

4
.4
1

-5
.6
4

1
7
.1
6

0
.7
5

3
.6
0
4

-1
.4
3

2
.3
5
*
*

S
Y
S
T
E
M

A
T
IC

2
5
6

3
.5
1

3
.1
6

5
.3
6

-7
.9
9

2
1
.0
0

0
.8
1

3
.8
9

-4
.8
1

2
.0
0

T
r
e
n
d

2
2
1

3
.5
5

3
.1
3

5
.6
2

-8
.4
4

2
1
.8
5

0
.8
0

3
.8
4

-6
.1
5

2
.5
2
*

S
h
o
rt
-t
er
m

5
9

3
.2
2

3
.2
4

3
.0
1

-3
.5
3

1
1
.3
5

0
.3
6

2
.9
2

1
2
.5
3

1
.7
9

M
ed

iu
m
-t
er
m

1
3
3

3
.5
0

3
.0
5

5
.9
8

-9
.0
0

2
2
.8
2

0
.7
6

3
.7
3

-1
3
.6
8

2
.7
0

L
o
n
g
-t
er
m

2
9

4
.1
1

3
.8
0

8
.2
7

-1
5
.7
0

2
6
.4
4

0
.5
5

3
.0
3

-9
.6
0

4
.8
4
*

S
p
re
a
d
/
R
V

2
1

2
.8
3

2
.1
6

4
.1
9

-5
.4
7

1
5
.2
4

0
.5
4

3
.3
7

-4
.3
9

1
.4
1

P
a
tt
er
n
R
ec

1
2

4
.0
8

3
.4
5

8
.3
9

-1
7
.9
0

2
7
.5
5

0
.3
2

3
.7
1

1
8
.2
0

1
.9
7
*
*
*

D
IS

C
R
E
T
IO

N
A
R
Y

8
3

3
.4
8

2
.7
5

3
.6
5

-2
.4
6

1
9
.0
1

1
.5
6

6
.8
2

6
.4
7

2
.4
5
*

F
u
n
d
a
m
en

ta
l

3
0

3
.3
2

2
.4
2

5
.6
3

-4
.8
8

2
3
.7
4

1
.4
1

5
.7
4

3
.7
8

2
.0
9

T
ec
h
n
ic
a
l

2
3

3
.6
9

2
.5
2

3
.9
2

-1
.6
1

1
8
.6
8

1
.6
8

6
.4
5

6
.9
5

4
.4
1
*
*

F
u
n
d
a
m
en

ta
l
&

T
ec
h

2
6

2
.7
5

1
.9
7

4
.4
9

-1
6
.4
4

1
3
.4
0

-0
.5
8

6
.7
9

8
.1
9

2
.1
8

S
p
re
a
d
/
R
V

4
4
.8
7

6
.0
4

6
.6
3

-5
.9
5

2
3
.6
6

0
.6
7

4
.0
9

1
2
.8
2

1
.7
7

O
P
T
IO

N
S

1
9

4
.5
4

4
.2
2

6
.3
1

-1
0
.0
0

1
7
.7
5

-0
.1
0

3
.0
2

9
.5
9

1
8
.1
7
*
*
*

P
a
n
e
l
C
:
D
e
fu

n
c
t
F
u
n
d
s

S
u
m

m
a
r
y

S
ta

ti
st
ic
s
o
f
C
T
A

Q
u
a
r
te

r
ly

R
e
tu

r
n
s
b
y

C
a
te

g
o
r
y

N
M

e
a
n

M
e
d
ia
n

S
.D

.
M

in
M

a
x

S
k
e
w

K
u
r
t

ρ
1
(%

)
J
B
-S

ta
t

(%
)

(%
)

(%
)

(%
)

(%
)

A
L
L

F
U
N
D
S

5
3
6

2
.4
3

2
.4
1

3
.4
1

-5
.7
1

1
2
.5
5

0
.3
1

3
.7
0

-4
.7
4

1
.2
3

S
Y
S
T
E
M

A
T
IC

3
3
3

2
.0
4

1
.9
5

4
.3
2

-7
.5
6

1
4
.9
7

0
.4
8

3
.5
0

-6
.6
3

1
.2
6

T
r
e
n
d

2
7
6

2
.0
5

2
.0
1

4
.7
7

-8
.3
7

1
6
.5
3

0
.4
9

3
.6
1

-7
.8
5

1
.3
8

S
h
o
rt
-t
er
m

4
6

2
.3
3

2
.6
0

3
.4
9

-7
.9
1

1
1
.9
1

0
.2
1

3
.9
8

8
.8
6

1
.0
4

M
ed

iu
m
-t
er
m

1
7
6

2
.0
0

1
.9
1

4
.9
6

-9
.8
1

1
5
.4
6

0
.4
0

3
.3
3

-9
.8
6

1
.4
3
*
*
*

L
o
n
g
-t
er
m

5
4

2
.4
7

1
.3
9

7
.0
4

-1
2
.7
9

2
6
.6
6

0
.9
4

4
.3
8

-1
5
.5
4

1
.3
6

S
p
re
a
d
/
R
V

3
6

1
.6
6

1
.5
0

2
.9
1

-4
.1
8

1
1
.9
0

0
.7
6

3
.9
2

4
.9
1

0
.8
8

P
a
tt
er
n
R
ec

1
6

3
.1
3

3
.0
7

7
.6
8

-1
6
.9
6

2
4
.4
8

0
.3
3

3
.6
2

-1
6
.4
8

0
.7
5

D
IS

C
R
E
T
IO

N
A
R
Y

1
8
4

2
.9
9

2
.9
7

2
.8
7

-3
.7
8

1
1
.4
0

0
.5
7

3
.9
8

-0
.2
9

1
.1
7
*
*

F
u
n
d
a
m
en

ta
l

4
3

2
.6
9

2
.1
8

3
.8
0

-3
.7
8

1
9
.7
4

1
.5
0

7
.4
4

2
.8
8

0
.7
2

T
ec
h
n
ic
a
l

6
2

3
.1
0

3
.0
2

3
.3
7

-5
.7
5

1
2
.0
6

0
.2
9

3
.5
5

-0
.8
8

1
.0
9

F
u
n
d
a
m
en

ta
l
&

T
ec
h

5
6

3
.4
6

2
.7
2

4
.4
2

-5
.3
0

1
8
.8
0

1
.4
1

6
.1
7

-6
.4
4

1
.3
8

S
p
re
a
d
/
R
V

2
3

2
.6
2

2
.1
9

4
.1
5

-7
.1
3

2
0
.6
3

1
.6
8

9
.3
1

1
0
.3
4

1
.9
1

O
P
T
IO

N
S

1
9

2
.9
7

2
.8
6

5
.7
6

-1
7
.4
4

2
3
.7
5

0
.2
2

7
.0
2

-1
4
.5
8

1
.2
6



3.6. Appendix 238

Table 3.3: Average Flows, Returns and Aggregate AUM

Table 3.3 presents shows for each quarter average flow rates, aggregate AUM and average return for the period January
1994 to December 2010. Cash flows are computed as before.

Date Number of Cash flows Aggregate AUM Average
funds (Growth rates %) (in US$ millions) returns %

1994Q1 271 21.84 19046.45 -0.28
1994Q2 278 16.91 20202.25 6.57
1994Q3 285 9.57 18806.80 -2.50
1994Q4 293 8.07 18892.71 3.56
1995Q1 291 9.65 19830.09 8.61
1995Q2 304 9.38 19192.82 3.23
1995Q3 306 4.89 18069.99 1.90
1995Q4 300 6.14 19370.33 5.78
1996Q1 302 6.87 18407.61 0.05
1996Q2 312 7.55 18372.20 4.60
1996Q3 307 9.81 18930.65 2.48
1996Q4 306 11.12 20688.31 9.64
1997Q1 302 17.12 21932.03 7.63
1997Q2 309 15.09 23822.50 0.68
1997Q3 308 15.58 26349.25 4.24
1997Q4 312 9.25 26875.68 3.37
1998Q1 315 14.69 28178.16 2.46
1998Q2 328 13.91 28620.90 1.02
1998Q3 333 7.09 33748.79 11.66
1998Q4 328 13.72 33750.41 2.09
1999Q1 326 16.38 35266.35 1.09
1999Q2 338 11.11 37343.23 3.08
1999Q3 343 6.35 37999.67 -0.21
1999Q4 341 4.87 37450.60 -0.95
2000Q1 330 1.59 35275.18 0.67
2000Q2 328 0.05 34193.00 0.49
2000Q3 331 1.79 32210.17 0.24
2000Q4 337 1.58 34818.22 13.77
2001Q1 331 12.63 39443.14 5.15
2001Q2 336 13.60 38929.60 -2.41
2001Q3 335 4.40 43365.25 3.72
2001Q4 338 10.11 44333.67 -0.10
2002Q1 335 12.17 44383.45 -1.83
2002Q2 346 11.19 48211.28 10.23
2002Q3 351 12.87 54320.86 7.56
2002Q4 350 17.35 56187.28 1.06
2003Q1 359 22.61 64344.08 2.52
2003Q2 362 18.79 70549.55 4.96
2003Q3 365 20.87 79867.83 1.49
2003Q4 367 21.77 94078.45 4.45
2004Q1 375 22.37 112102.72 5.82
2004Q2 378 21.04 123782.93 -5.64
2004Q3 393 14.04 127081.28 0.64
2004Q4 410 11.31 140395.86 5.84
2005Q1 410 4.20 125683.37 -1.95
2005Q2 413 3.57 130277.98 2.84
2005Q3 420 11.09 135757.71 2.05
2005Q4 423 13.75 138176.03 3.01
2006Q1 417 15.01 159280.23 2.69
2006Q2 417 19.65 172673.96 2.29
2006Q3 418 10.41 180877.98 -1.02
2006Q4 423 9.87 192134.39 3.87
2007Q1 433 9.37 192705.54 -1.32
2007Q2 433 9.42 207789.78 5.68
2007Q3 428 9.97 214379.30 2.01
2007Q4 424 7.30 225162.41 4.76
2008Q1 420 15.74 258862.63 7.56
2008Q2 421 13.35 280715.79 3.54
2008Q3 418 6.19 263991.17 -1.65
2008Q4 407 -3.38 240124.17 7.91
2009Q1 398 4.90 222745.30 -1.87
2009Q2 384 7.44 224173.48 1.25
2009Q3 373 4.57 238207.31 1.47
2009Q4 361 4.37 242144.48 -0.86
2010Q1 354 0.49 241145.18 -0.22
2010Q2 336 -0.82 244184.11 -0.34
2010Q3 321 1.91 262611.13 4.26
2010Q4 313 1.35 277446.24 4.56
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Table 3.5: Restriction Parameter, θ0, and Return Volatility

Table 3.5 presents results for unsmoothed/real return volatility for both restricted and
unrestricted funds for each of the CTA categories. Unsmoothed returns are obtained following
Getmansky, Lo and Makarov (2004) procedure. Following their methodology only funds with
5-year return history are included in the calculation of θ0 and therefore sample size in the
table below is smaller than previous. Restricted funds are defined as those with θ0 below
median level and unrestricted funds are funds with above median θ0. The difference in means
between the two categories is computed. *** is significant at the 1% level, ** is significant at
the 5% level and * is significant at 10% level. These significance levels are calculated using a
two tailed unequal variance (heteroskedastic) test.

Restriction Parameter and Return Volatility

High Theta Funds Low Theta Funds
N Mean Median N Mean Median Diff

ALL FUNDS 268 4.96 4.02 268 4.38 3.77 0.58*

SYSTEMATIC 189 5.11 4.34 189 4.25 3.69 0.86**
Trend 165 5.32 4.52 166 4.27 3.77 1.05***
Short-term 30 4.22 3.58 31 2.84 2.83 1.38**
Medium-term 105 5.18 4.53 106 4.48 3.68 0.70*
Long-term 29 7.27 6.66 30 4.74 4.67 2.52***
Spread/RV 13 3.86 3.45 14 3.37 3.43 0.49
Pattern Rec 8 4.60 4.47 9 4.65 4.93 -0.05

DISCRETIONARY 67 4.52 2.93 67 4.80 3.99 -0.29
Fundamental 20 4.16 3.19 20 4.79 4.23 -0.63
Technical 19 4.53 2.85 20 4.46 2.89 0.07
Fundamental & Tech 19 5.86 2.93 19 5.74 3.52 0.13
Spread/RV 8 2.54 2.14 9 3.28 3.04 -0.74

OPTIONS 12 5.54 3.75 12 3.53 3.03 2.01
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Table 3.6: Fund Flow-Performance Relationship for All CTAs

Table 3.6 presents results for Fama-MacBeth OLS estimates with net flow rate as the dependent
variable for all CTA funds in the database, as well as by separating all CTAs into those that are live
and defunct for the period January 1994 to December 2010. Panel A presents the results for quarterly
flow and panel B for yearly flow as the dependent variable. Flows are measured as a growth rate
relative to the fund’s total net assets in the previous quarter. The independent variables include three
terciles of performance in the last quarter/year (Low Performance, Middle Performance and High
Performance) as defined in Getmansky (2005). Independent variables accounting for fund specific
characteristics include a fund’s monthly standard deviation of returns, size (defined as the natural
logarithm of a fund’s total net assets in the prior quarter or year), the log of a fund’s age in months
since inception, past quarter/year flow. Live is a dummy variable defined as 1 if the fund is in the Live
database and 0 otherwise. HWM is a High Water Mark dummy which is equal to 1 if a high water
mark provision is present and 0 otherwise. Management Fee is the fixed fee charged by the fund as a
percentage of funds under management and incentive fee is the percentage fee charged by the fund if a
fund’s upside is above a certain threshold level. Style Effect measures the average flow at time t for a
particular category. All standard errors are computed using Newey-West’s (1987) method with 2 lags.
* is significant at 10%, ** is significant at 5% and *** is significant at 1%.

Panel A: Quarterly Fund Flow-Performance Relationship - All CTAs

All Funds Live Funds Dead Funds
Variable Estimate t-Stat. Estimate t-Stat. Estimate t-Stat.
Intercept 0.296*** 4.78 0.237*** 4.01 -0.429 1.39
Low Performance 0.201*** 6.58 0.201*** 5.22 0.149 0.83
Middle Performance 0.093*** 2.99 0.036 1.18 0.451** 2.63
High Performance 0.120** 2.51 0.138*** 2.68 -0.345** -1.89
Standard Deviation -0.134 -1.48 -0.243** -2.45 0.506 0.69
Log (AUM) -0.023*** -7.09 -0.016*** -5.87 -0.033*** -3.46
Flow 0.143*** 8.44 0.143*** 8.73 0.133** 2.06
Live 0.039*** 5.07
High Water Mark 0.004 0.59 0.006 1.00 0.026 0.89
Management Fee -0.115 -0.40 -0.062 -0.15 -1.015* -1.75
Incentive Fee -0.014 -0.17 -0.052 -0.6 -0.016 -0.03
Style Effect 0.296*** 4.78 0.366*** 8.53 0.482*** 4.45

Average no. of obs. 894 358 536
Adjusted-R2 10.08% 11.45% 8.60%

Panel B: Yearly Fund Flow-Performance Relationship - All CTAs

All Funds Live Funds Dead Funds
Variable Estimate t-Stat. Estimate t-Stat. Estimate t-Stat.
Intercept 4.041*** 4.03 3.122*** 3.39 1.329 0.26
Low Performance 1.506*** 3.83 1.441*** 3.63 1.383 1.37
Middle Performance 0.951** 2.13 0.678 1.56 1.164** 2.31
High Performance 0.336 0.50 0.509 0.78 0.244 0.28
Standard Deviation -2.855*** -3.14 -2.904*** -2.87 -1.037 -0.39
Log (AUM) -0.249*** -4.27 -0.187*** -3.64 -0.160 -0.64
Flow 0.084 1.48 0.101 1.48 -1.338 -1.00
Live 0.133* 2.03
High Water Mark 0.018 0.29 0.056 1.01 0.113 0.75
Management Fee -1.129 -0.44 -1.134 -0.22 -1.178 -0.33
Incentive Fee -0.097 -0.14 0.132 0.14 0.511 0.50
Style Effect 1.207** 2.76 0.782* 1.87 2.687*** 3.75

Average no. of obs. 894 358 536
Adjusted-R2 11.70% 8.73% 5.63%
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Table 3.7: Quarterly Fund Flow-Performance Relationship for All CTAs
above US$250 million

Table 3.7 presents results for Fama-MacBeth OLS estimates with net flow rate as the
dependent variable for all CTA funds that had reached at least US$250 million in assets under
management for the period January 1994 to December 2010. This table presents results for
quarterly data only. Flows are measured as a growth rate relative to the fund’s total net assets
in the previous quarter. The independent variables include three terciles of performance in
the last quarter (Low Performance, Middle Performance and High Performance) as defined in
Getmansky (2005). Independent variables accounting for fund specific characteristics include
a fund’s monthly standard deviation of returns, size (defined as the natural logarithm of a
fund’s total net assets in the prior quarter), the log of a fund’s age in months since inception,
past quarter flow. Live is a dummy variable defined as 1 if the fund is in the Live database
and 0 otherwise. HWM is a High Water Mark dummy which is equal to 1 if a high water
mark provision is present and 0 otherwise. Management Fee is the fixed fee charged by the
fund as a percentage of funds under management and incentive fee is the percentage fee
charged by the fund if a fund’s upside is above a certain threshold level. Style Effect measures
the average flow at time t for a particular category. All standard errors are computed using
Newey-West’s (1987) method with 2 lags. * is significant at 10%, ** is significant at 5% and
*** is significant at 1%.

Quarterly Fund Flow-Performance Relationship - All CTAs above US$ 250 million

All Funds Live Funds Dead Funds
Variable Estimate t-Stat. Estimate t-Stat. Estimate t-Stat.
Intercept 0.296*** 4.78 0.219*** 2.85 0.596*** 6.06
Low Performance 0.201*** 6.58 0.222*** 4.93 0.196*** 3.08
Middle Performance 0.093*** 2.99 0.087** 2.51 0.077* 1.74
High Performance 0.120** 2.51 0.085 1.29 0.136* 1.72
Standard Deviation -0.134 -1.48 -0.242 -1.40 0.068 0.46
Log (AUM) -0.023*** -7.09 -0.018*** -5.17 -0.043*** -7.49
Flow 0.143*** 8.44 0.176*** 4.95 0.128*** 6.40
Live 0.039*** 5.07
High Water Mark 0.004 0.59 0.001 0.15 -0.002 -0.26
Management Fee -0.115 -0.40 -0.659* -1.67 0.333 0.79
Incentive Fee -0.014 -0.17 0.151 1.03 0.085 0.93
Style Effect 0.296*** 4.78 0.355*** 6.23 0.376*** 6.39

Average no. of obs 894 224 670
Adjusted R2 10.08% 13.25% 10.21%
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Table 3.10: Quarterly Persistence and Money Flows by Strategy

Table 3.10 presents results for quarterly performance persistence and investor flows for the period
January 1994 to December 2010. Each quarter funds are sorted into quintiles based on the preceding
quarter’s Fung-Hsieh alpha as well as past flows. The middle three quintiles are grouped into one
portfolio resulting in three portfolios. Nine portfolios are then constructed at the intersection of both
performance and flow sorts. The performance of these portfolios is then evaluated in the next quarter
by equally weighting fund raw returns. Reported below are the time-series averages of the portfolio
returns over the sample period January 1994 to December 2010. Reported are also average flow
growth for each portfolio as well as the average number of funds in each quarter for each portfolio.
Standard errors of the time series averages are reported in parentheses.

QUARTERLY PERSISTENCE AND MONEY FLOWS - BY STRATEGY

All CTAs SYSTEMATIC

Panel A: Top Performers Panel A: Top Performers

Raw Return Average Growth Average no. Raw Return Average Growth Average no.
(%) Rate (%) of funds (%) Rate (%) of funds

High Flows 5.64 (5.27) 66.54 13.3 High Flows 4.93 (6.55) 59.68 9.3
Middle Flows 5.35 (5.92) 1.86 36.3 Middle Flows 4.87 (7.12) 1.56 26.0
Bottom Flows 9.62 (8.29) -24.58 9.3 Bottom Flows 8.51 (8.55) -22.47 7.2
High minus Low -3.98 (5.90) High minus Low -3.58 (5.52)

Panel B: Middle Performers Panel B: Middle Performers

Raw Return Average Growth Average no. Raw Return Average Growth Average no.
(%) Rate (%) of funds (%) Rate (%) of funds

High Flows 2.36 (2.45) 63.46 31.3 High Flows 2.47 (3.33) 57.41 22.1
Middle Flows 1.99 (3.48) 1.60 111.9 Middle Flows 2.10 (4.48) 1.52 80.1
Bottom Flows 3.04 (4.14) -26.81 36.3 Bottom Flows 3.56 (5.52) -26.41 26.2
High minus Low -0.68 (2.71) High minus Low -1.09 (3.38)

Panel C: Bottom Performers Panel C: Bottom Performers

Raw Return Average Growth Average no. Raw Return Average Growth Average no.
(%) Rate (%) of funds (%) Rate (%) of funds

High Flows -0.67 (8.15) 60.97 5.95 High Flows -0.37 (1.95) 62.88 4.7
Middle Flows -0.63 (4.23) 0.78 36.5 Middle Flows -0.52 (5.02) 0.60 26.3
Bottom Flows 0.24 (4.62) -29.42 17.8 Bottom Flows 0.46 (6.04) -26.71 12.2
High minus Low -0.91 (6.78) High minus Low -0.83 (9.78)

DISCRETIONARY SYSTEMATIC TREND-FOLLOWERS

Panel A: Top Performers Panel A: Top Performers

Raw Return Average Growth Average no. Raw Return Average Growth Average no.
(%) Rate (%) of funds (%) Rate (%) of funds

High Flows 5.76 (8.83) 82.46 3.13 High Flows 5.04 (3.09) 60.26 8.3
Middle Flows 7.26 (6.43) 2.49 8.73 Middle Flows 4.93 (7.43) 1.45 23.1
Bottom Flows 9.90 (12.54) -26.43 2.30 Bottom Flows 8.62 (8.81) -21.61 6.4
High minus Low -4.14 (15.88) High minus Low -3.58 (2.03)

Panel B: Middle Performers Panel B: Middle Performers

Raw Return Average Growth Average no. Raw Return Average Growth Average no.
(%) Rate (%) of funds (%) Rate (%) of funds

High Flows 2.05 (2.17) 79.20 7.90 High Flows 2.44 (3.64) 54.62 19.6
Middle Flows 1.54 (1.75) 1.84 26.95 Middle Flows 2.17 (4.79) 1.30 71.0
Bottom Flows 2.21 (3.55) -27.61 8.97 Bottom Flows 3.64 (5.60) -25.75 23.6
High minus Low -0.16 (3.67) High minus Low -1.20 (3.60)

Panel C: Bottom Performers Panel C: Bottom Performers

Raw Return Average Growth Average no. Raw Return Average Growth Average no.
(%) Rate (%) of funds (%) Rate (%) of funds

High Flows 0.74 (5.57) 47.35 1.38 High Flows -1.35 (13.26) 61.66 4.5
Middle Flows -0.85 (4.21) 1.07 8.98 Middle Flows -0.50 (5.39) 0.64 23.8
Bottom Flows 0.48 (6.72) -35.84 4.66 Bottom Flows 0.96 (6.77) -26.41 10.3
High minus Low 0.26 (7.39) High minus Low -2.31 (9.43)

OPTIONS

Panel A: Top Performers

Raw Return Average Growth Average no.
(%) Rate (%) of funds

High Flows 2.85 (5.73) 26.57 37.7
Middle Flows 4.18 (7.45) 8.06 1.33
Bottom Flows 2.78 (8.37) -8.20 32.79
High minus Low 0.07 (10.37)

Panel B: Middle Performers

Raw Return Average Growth Average no.
(%) Rate (%) of funds

High Flows 1.09 (5.81) 47.33 1.07
Middle Flows 1.48 (7.45) 6.90 4.90
Bottom Flows 1.50 (4.88) -14.79 1.39
High minus Low -0.41 (6.42)

Panel C: Bottom Performers

Raw Return Average Growth Average no.
(%) Rate (%) of funds

High Flows -0.54 (6.93) 8.68 1.90
Middle Flows 0.48 (8.71) 3.05 1.48
Bottom Flows 0.85 (10.79) -16.59 1.20
High minus Low -1.39 (12.88)
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Table 3.11: Yearly Persistence and Money Flows by Strategy

Table 3.11 presents results for yearly performance persistence and investor flows for the period Jan-
uary 1994 to December 2010. Each year funds are sorted into quintiles based on the preceding year’s
Fung-Hsieh alpha as well as past year flows. The middle three quintiles are grouped into one port-
folio resulting in three portfolios. Nine portfolios are then constructed at the intersection of both
performance and flow sorts. The performance of these portfolios is then evaluated in the next year
by equally weighting fund raw returns. Reported below are the time-series averages of the portfolio
returns over the sample period January 1994 to December 2010. Reported are also average flow
growth for each portfolio as well as the average number of funds in each year for each portfolio.
Standard errors of the time series averages are reported in parentheses.

YEARLY PERSISTENCE AND MONEY FLOWS - BY STRATEGY

All CTAs SYSTEMATIC

Panel A: Top Performers Panel A: Top Performers

Raw Return Average Growth Average no. Raw Return Average Growth Average no.
(%) Rate (%) of funds (%) Rate (%) of funds

High Flows 31.49 (10.57) 451.3 13.6 High Flows 27.65 (13.15) 387.6 8.9
Middle Flows 22.67 (9.97) 16.7 35.4 Middle Flows 19.56 (11.90) 13.9 26.1
Bottom Flows 29.10 (17.99) -57.9 10.2 Bottom Flows 23.81 (16.87) -54.7 7.3
High minus Low 2.39 (8.06) High minus Low 3.84 (2.05)

Panel B: Middle Performers Panel B: Middle Performers

Raw Return Average Growth Average no. Raw Return Average Growth Average no.
(%) Rate (%) of funds (%) Rate (%) of funds

High Flows 11.5 (5.34) 379.2 31.9 High Flows 12.10 (6.01) 355.32 22.7
Middle Flows 9.69 (6.24) 13.6 112.1 Middle Flows 10.22 (8.27) 11.50 79.9
Bottom Flows 9.48 (6.27) -57.6 35.2 Bottom Flows 9.82 (8.34) -57.2 25.8
High minus Low 2.02 (4.55) High minus Low 2.28 (5.04)

Panel C: Bottom Performers Panel C: Bottom Performers

Raw Return Average Growth Average no. Raw Return Average Growth Average no.
(%) Rate (%) of funds (%) Rate (%) of funds

High Flows 9.31 (13.17) 300.5 5.4 High Flows 4.43 (11.30) 268.7 4.6
Middle Flows -0.65 (5.33) 5.01 36.6 Middle Flows 1.07 (6.47) 7.02 26.1
Bottom Flows 11.85 (5.42) -58.4 18.1 Bottom Flows 3.50 (7.89) -55.9 12.5
High minus Low -2.54 (9.31) High minus Low 0.93 (3.78)

DISCRETIONARY SYSTEMATIC TREND-FOLLOWERS

Panel A: Top Performers Panel A: Top Performers

Raw Return Average Growth Average no. Raw Return Average Growth Average no.
(%) Rate (%) of funds (%) Rate (%) of funds

High Flows 9.53 (21.78) 300.2 1.3 High Flows 27.83 (13.38) 397.7 7.9
Middle Flows 6.06 (6.81) 50.8 2.1 Middle Flows 19.68 (12.96) 13.4 23.4
Bottom Flows 10.95 (17.79) -23.0 0.9 Bottom Flows 24.64 (17.41) -53.8 6.4
High minus Low -2.47 (24.34) High minus Low 3.19 (1.89)

Panel B: Middle Performers Panel B: Middle Performers

Raw Return Average Growth Average no. Raw Return Average Growth Average no.
(%) Rate (%) of funds (%) Rate (%) of funds

High Flows 7.25 (20.23) 621.2 1.2 High Flows 12.35 (6.51) 350.6 19.9
Middle Flows 5.32 (6.81) 90.9 5.3 Middle Flows 10.31 (8.81) 11.03 70.3
Bottom Flows 27.05 (37.08) -53.9 2.2 Bottom Flows 9.28 (7.73) 56.7 23.7
High minus Low -17.83 (41.03) High minus Low 3.07 (5.01)

Panel C: Bottom Performers Panel C: Bottom Performers

Raw Return Average Growth Average no. Raw Return Average Growth Average no.
(%) Rate (%) of funds (%) Rate (%) of funds

High Flows 2.79 (8.20) 437.7 3.2 High Flows 3.88 (10.79) 266.2 4.3
Middle Flows 0.37 (13.15) 64.6 1.8 Middle Flows 1.72 (7.04) 6.03 24.0
Bottom Flows 17.62 (37.27) -42.3 4.5 Bottom Flows 4.03 (9.87 -55.5 10.3
High minus Low -14.83 (37.82) High minus Low -0.15 (3.56)

OPTIONS

Panel A: Top Performers

Raw Return Average Growth Average no.
(%) Rate (%) of funds

High Flows 2.17 (8.70) 10.6 6.3
Middle Flows 0.01 (11.70) -1.2 1.9
Bottom Flows 2.49 (18.37) -6.2 1.3
High minus Low -0.32 (20.61)

Panel B: Middle Performers

Raw Return Average Growth Average no.
(%) Rate (%) of funds

High Flows 7.61 (17.60) 1633.2 0.4
Middle Flows 6.99 (16.85) 184.3 1.6
Bottom Flows 4.80 (9.77) 1.50 0.5
High minus Low 2.81 (9.99)

Panel C: Bottom Performers

Raw Return Average Growth Average no.
(%) Rate (%) of funds

High Flows 0 (0) 0 0.00
Middle Flows 4.95 (12.94) 27.4 0.6
Bottom Flows 5.62 (9.18) -17.8 1.6
High minus Low -5.62 (9.18)
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Table 3.12: Quarterly & Yearly Persistence and Money Flows by Strategy
for Top AUM Funds

Table 3.12 presents results for quarterly and yearly performance persistence and investor flows
for funds with top assets under management for the period January 1994 to December 2010.
Each quarter/year funds are sorted into quintiles based on the previous year’s Fung-Hsieh alpha
as well as past year flows and past assets under management. The middle three quintiles are
grouped into one portfolio resulting in three portfolios. Each quarter/year the funds in the top
AUM quintile are used to construct nine portfolios of both performance and flow sorts. The
performance of these portfolios is then evaluated in the next quarter/year by equally weighting
fund raw returns. Reported below are the time-series averages of the portfolio returns over
the sample period, January 1994 to December 2010.

QUARTERLY PERSISTENCE AND MONEY FLOWS - TOP AUM

Panel A: Top Performers
High Flows Middle Flows Bottom Flows High Minus Low

All funds 5.21 4.55 9.58 -4.37
Systematic 5.42 4.27 7.98 -2.56
Trend 5.41 4.23 8.06 -2.65
Discretionary 3.51 5.88 5.70 -2.19
Options 0.58 2.68 0.33 0.25

Panel B: Middle Performers
High Flows Middle Flows Bottom Flows High Minus Low

All funds 2.06 1.93 2.96 -0.90
Systematic 2.08 2.18 3.57 -1.49
Trend 2.22 2.19 3.86 -1.64
Discretionary 1.55 1.52 2.07 -0.52
Options 1.21 1.69 1.08 0.13

Panel C: Bottom Performers
High Flows Middle Flows Bottom Flows High Minus Low

All funds -0.53 -0.65 0.40 -0.93
Systematic -1.16 -0.75 0.55 -1.71
Trend -0.85 -0.68 1.04 -1.89
Discretionary 0.45 -0.68 0.99 -0.54
Options -0.35 0.73 1.34 -1.69

YEARLY PERSISTENCE AND MONEY FLOWS - TOP AUM

Panel A: Top Performers
High Flows Middle Flows Bottom Flows High Minus Low

All funds 28.39 19.42 23.48 4.91
Systematic 27.67 17.03 19.72 7.95
Trend 27.61 17.07 21.48 6.13
Discretionary 7.38 5.35 2.05 5.33
Options 2.17 -0.92 -1.68 3.85

Panel B: Middle Performers
High Flows Middle Flows Bottom Flows High Minus Low

All funds 11.38 9.42 10.58 0.80
Systematic 11.82 10.23 11.11 0.71
Trend 12.42 10.27 9.77 2.65
Discretionary -0.71 5.45 22.63 -23.34
Options 1.11 3.39 0.50 0.61

Panel C: Bottom Performers
High Flows Middle Flows Bottom Flows High Minus Low

All funds 7.98 0.54 2.87 5.11
Systematic 0.13 1.15 2.90 -2.77
Trend 0.01 2.14 3.46 -3.45
Discretionary 2.00 3.85 20.16 -18.16
Options 0 5.59 2.93 -2.93
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Table 3.13: Quarterly & Yearly Persistence and Money Flows by Strategy
for Bottom AUM Funds

Table 3.13 presents results for quarterly and yearly performance persistence and investor flows
for funds with the lowest (20%) assets under management for the period January 1994 to
December 2010. Each quarter/year funds are sorted into quintiles based on the previous year’s
Fung-Hsieh alpha as well as past year flows and past assets under management. The middle
three quintiles are grouped into one portfolio resulting in three portfolios. Each quarter/year
the funds in the lowest AUM quintile are used to construct nine portfolios of both performance
and flow sorts. The performance of these portfolios is then evaluated in the next quarter/year
by equally weighting fund raw returns. Reported below are the time-series averages of the
portfolio returns over the sample period January 1994 to December 2010.

QUARTERLY PERSISTENCE AND MONEY FLOWS-BOTTOM AUM

Panel A: Top Performers
High Flows Middle Flows Bottom Flows High Minus Low

All funds 6.26 6.39 9.66 -3.40
Systematic 5.01 5.56 8.55 -3.54
Trend 4.76 5.58 8.46 -3.70
Discretionary 4.47 7.92 9.12 -4.65
Options 2.65 5.50 2.45 0.20

Panel B: Middle Performers
High Flows Middle Flows Bottom Flows High Minus Low

All funds 2.75 2.08 3.13 -0.38
Systematic 2.84 1.99 3.50 -0.66
Trend 2.62 2.15 3.43 -0.81
Discretionary 2.98 1.65 2.42 0.56
Options 0.10 1.81 1.04 -0.94

Panel C: Bottom Performers
High Flows Middle Flows Bottom Flows High Minus Low

All funds -0.67 -0.80 0.00 -0.67
Systematic -1.13 -0.51 0.16 -1.29
Trend -2.49 -0.67 0.81 -3.30
Discretionary 0.61 -1.02 0.00 0.61
Options -0.19 -0.24 -0.41 0.22

YEARLY PERSISTENCE AND MONEY FLOWS -BOTTOM AUM

Panel A: Top Performers
High Flows Middle Flows Bottom Flows High Minus Low

All funds 34.78 27.05 31.56 3.22
Systematic 28.17 22.34 23.08 5.09
Trend 26.97 22.24 24.01 2.96
Discretionary 2.15 4.20 8.91 -6.76
Options 0.00 1.02 4.17 -4.17

Panel B: Middle Performers
High Flows Middle Flows Bottom Flows High Minus Low

All funds 11.52 10.17 8.77 2.75
Systematic 12.54 10.19 8.54 4.00
Trend 11.43 10.28 8.34 3.09
Discretionary 9.40 4.77 16.63 -7.23
Options 6.49 6.22 4.30 2.19

Panel C: Bottom Performers
High Flows Middle Flows Bottom Flows High Minus Low

All funds 11.09 -2.32 1.44 9.65
Systematic 7.05 1.11 4.02 3.03
Trend 7.40 1.25 4.56 2.84
Discretionary 1.39 -3.53 7.76 -6.37
Options 0.00 -0.61 4.51 -4.51
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Table 3.15: Portfolios Sorted on Flows

Table 3.15 reports portfolio sorts by quarterly flow for the period January 1994 to December
2010. Funds are sorted into three equal-size portfolios based on their flow in the prior quarter.
Portfolios are then equally-weighted and re-balanced monthly. Panel A reports the average
portfolio returns in excess of the three-month Treasury Bills. Columns two to four report the
average portfolio returns for low, middle and high flows, whilst the last column reports the
average return of the difference portfolio between tercile 3 and tercile 1. Panel B presents
the same results but for risk-adjusted returns using BIC regression and Fung-Hsieh factors
augmented with the GSCI index. t-statistics are reported below each return in italics.

Panel A: Excess Returns

Lowest Flow Middle Flow Highest Flow High-Low Flow
ALL CTAs 1.90 2.04 1.57 -0.34

4.05 4.21 4.05 -1.65
SYSTEMATIC 1.83 1.91 1.61 -0.21

3.06 3.10 3.12 -0.85
TREND 1.81 2.00 1.72 -0.09

2.86 3.00 3.12 -0.36
Short-Term 1.97 1.50 1.16 -0.81

4.25 4.67 2.71 -1.51
Medium-Term 1.66 1.93 1.88 0.22

2.48 2.80 3.13 0.78
Long-Term 2.45 2.22 2.60 0.15

2.52 2.22 2.59 0.26
Pattern Rec 2.76 1.35 2.50 -0.33

2.64 1.66 2.76 -0.35
Spread/RV 1.43 1.48 0.31 -1.12**

2.66 3.44 0.89 -2.12
DISCRETIONARY 1.82 2.41 1.50 -0.32

6.21 5.76 5.49 -1.04
Fundamental 1.33 2.56 1.39 0.06

2.53 3.87 3.19 0.11
Technical 2.05 2.57 1.41 -0.64

4.89 5.16 3.12 -1.27
Fundamental &Technical 2.32 2.67 1.50 -0.82

3.78 3.62 3.40 -1.12
Spread/RV 2.30 1.60 0.61 -1.56

2.34 2.56 1.01 -1.30
OPTIONS 1.29 2.19 2.57 1.06

1.31 2.67 3.07 0.85
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Panel B: Fung-Hsieh Alphas

Lowest Flow Middle Flow Highest Flow High-Low Flow
ALL CTAs 0.02 0.02 0.01 -0.01

5.85 5.64 4.89 -1.72
SYSTEMATIC 0.02 0.02 0.02 0.00

4.50 4.75 5.73 -0.61
TREND 0.02 0.03 0.02 0.00

4.17 4.63 5.74 -1.10
Short-Term 0.02 0.02 0.02 -0.01

6.13 6.22 4.62 -1.60
Medium-Term 0.01 0.03 0.03 0.00

3.38 4.65 5.71 1.25
Long-Term 0.02 0.02 0.02 0.00

3.27 2.61 2.83 -0.75
Pattern Rec 0.04 0.02 0.03 -0.01

4.12 2.92 3.32 -0.50
Spread/RV 0.01 0.01 0.00 -0.01**

2.13 2.48 0.40 -2.64
DISCRETIONARY 0.02 0.03 0.02 0.00

5.78 6.75 6.04 -0.76
Fundamental 0.01 0.03 0.01 0.00

1.95 4.22 3.24 0.44
Technical 0.02 0.02 0.02 0.00

4.44 5.62 2.75 -0.78
Fundamental &Technical 0.02 0.02 0.02 -0.01

3.19 3.86 4.01 -0.91
Spread/RV 0.03 0.02 0.01 -0.01

2.67 3.05 2.02 -1.24
OPTIONS 0.00 0.03 0.03 0.01

-0.37 3.86 3.63 0.48
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Table 3.18: CTA Four-Factor Model Conditional on CTA Flows by Strategy

Table 3.18 presents regression coefficients from regressing monthly returns of asset-weighted
strategy indices on the standardized sum of the past year’s strategy flows, lagged aggregate
strategy log(AUM), the square of lagged aggregate strategy log(AUM) and lagged monthly
number of funds in the strategy. Strategies are shown in rows and respective coefficients in
columns. The last column reports R2. I use Newey-West heteroskedasticity and autocorrela-
tion consistent standard errors with 11 lags. * is significant at 10%, ** is significant at 5%
and *** is significant at 1%.

Constant ϕ AUM AUM2 No. of funds R2

All funds -1.412 -0.017* 0.116 -0.002 0.000 0.012

Systematic -1.293 -0.017 0.107 -0.002 0.000 0.012

Trend-followers -0.895 -0.022 0.078 -0.002 0.000 0.013

Short-Term Trend-Followers 0.716 -0.004 -0.058 0.001 0.000 0.149

Medium-Term Trend-Followers -0.118 -0.011 0.014 0.000 0.000 0.005

Long-Term Trend-Followers 2.086 -0.017 -0.176 0.004 0.000 0.010

Systematic Spread/RV 1.028*** 0.000 -0.093*** 0.002*** -0.001*** 0.044

Pattern Recognition -0.470 -0.006 0.051 -0.001 0.001 0.017

Discretionary -0.089 -0.011*** 0.009 0.000 0.000 0.014

Fundamental -0.825 -0.002 0.074 -0.002 0.000 0.016

Technical -2.015 -0.015*** 0.200 -0.005 0.001*** 0.030

Fundamental & Technical -1.349 -0.003 0.126 -0.003 0.000 0.003

Discretionary Spread/RV -0.473* 0.005 0.0490* -0.001* 0.000 0.036

Options 0.099 0.002 -0.007 0.000 0.000 0.024
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Table 3.19: CTA Six-Factor Model Conditional on CTA Flows by Strategy

Table 3.19 presents regression coefficients from regressing monthly returns of asset-weighted
strategy indices on the standardised sum of the past year’s strategy flows, S&P 500, the
Fama-French size factor SMB, HML value factor, Goldman Sachs Commodities Index and
Carhart Momentum factor (UMD). Strategies are shown in rows and respective coefficients
in columns. The last column reports R2. I use Newey-West heteroskedasticity and autocorre-
lation consistent standard errors with 11 lags. * is significant at 10%, ** is significant at 5%
and *** is significant at 1%.

Constant ϕ S&P 500 SMB HML GSCI UMD R2

All funds 0.012*** -0.010 -0.058 0.000 0.000 0.065* 0.001* 0.059

Systematic 0.012*** -0.010 -0.068 0.000 0.000 0.068* 0.001 0.052

Trend-followers 0.013*** -0.013 -0.079 0.000 0.000 0.070 0.001 0.053

Short-Term Trend-followers 0.002*** 0.007 -0.058 -0.001*** 0.000 0.062*** 0.000* 0.078

Medium-Term Trend-followers 0.011*** -0.003 -0.113 0.000 0.001 0.053 0.001 0.049

Long-Term Trend-followers 0.010*** -0.015 -0.030 0.001 0.001 0.207*** 0.001** 0.117

Systematic Spread/RV 0.007*** 0.001 0.069 0.000 0.000 0.012 0.000 0.031

Pattern Recognition 0.010*** -0.005 -0.113*** 0.000 0.000 0.039 0.001*** 0.079

Discretionary 0.010*** -0.010*** 0.032 0.000 0.000 0.065*** 0.000 0.133

Fundamental 0.007*** -0.003 -0.047 0.000 0.000 0.038 0.000 0.037

Technical 0.009*** -0.006** -0.008 0.001 0.000 0.048* 0.000 0.066

Fundamental & Technical 0.008*** -0.004 0.118*** 0.000 0.000 0.093*** 0.000 0.114

Discretionary Spread/RV 0.004* 0.005 -0.083** 0.000 0.000 -0.057** 0.000 0.095

Options 0.002 0.008** 0.110*** 0.001* 0.000 0.048* 0.001*** 0.133
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Figure 3.1: Number of CTA Funds vs. CTA AUM

Figure 1 shows the evolution of the number of CTAs (blue dashed line) as well as the total
Assets-Under-Management (AUM) in billions US$ (green solid line) for the entire CTA
industry.
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Figure 3.2: Cumulative Quarterly Flows for Systematic and Discretionary
CTAs

The X axis shows the dates for which cumulative flow index is plotted on a logarithmic Y
scale. The index begins in December 1993 at value 100 and successive values are each given
by multiplying by the next period compounded growth in equally-weighted quarterly flows.
Data are for December 1993 to December 2010 period.
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Figure 3.3: Persistence and Money Flows for Systematic CTAs

Each quarter/year CTAs are sorted into quintiles based on past Fung-Hsieh alpha and fund
flows. Portfolios are constructed at the intersection of both sorts and nine portfolios are
formed. The middle three quintiles are grouped into one portfolio. Portfolio returns are
computed each quarter subsequent to ranking. Each bar represent a time-series average of
portfolio returns. Data are for January 1994 to December 2010 period.

Panel A: Quarterly Persistence and Flows

Panel B: Yearly Persistence and Flows
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Figure 3.4: Persistence and Money Flows for Discretionary CTAs

Each quarter/year CTAs are sorted into quintiles based on past Fung-Hsieh alpha and fund
flows. Portfolios are constructed at the intersection of both sorts and nine portfolios are
formed. the middle three quintiles are grouped into one portfolio. Portfolio returns are
computed each quarter subsequent to ranking. Each bar represents a time-series average of
portfolio returns. Data are for January 1994 to December 2010 period.

Panel A: Quarterly Persistence and Flows

Panel B: Yearly Persistence and Flows
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Figure 3.5: Quarterly Persistence and Money Flows for Top AUM
Systematic and Discretionary CTAs

Each quarter CTAs are sorted into quintiles based on past Fung-Hsieh alpha and fund flows
and assets under management. For the top quintile of assets under management portfolios are
constructed at the intersection of performance and flow sorts and nine portfolios are formed.
The middle three quintiles are grouped into one portfolio. Portfolio returns are computed
each quarter subsequent to ranking. Each bar represent a time-series average of portfolio
returns. Data are for January 1994 to December 2010 period.

Panel A: Systematic CTAs

Panel B: Discretionary CTAs
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Figure 3.6: Yearly Persistence and Money Flows for Top AUM Systematic
and Discretionary CTAs

Each year CTAs are sorted into quintiles based on past Fung-Hsieh alpha and fund flows and
assets under management. For the top quintile of assets under management portfolios are
constructed at the intersection of performance and flow sorts and nine portfolios are formed.
The middle three quintiles are grouped into one portfolio. Portfolio returns are computed
each quarter subsequent to ranking. Each bar represent a time-series average of portfolio
returns. Data are for January 1994 to December 2010 period.

Panel A: Systematic CTAs

Panel B: Discretionary CTAs
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Figure 3.7: Quarterly Persistence and Money Flows for Bottom AUM
Systematic and Discretionary CTAs

Each quarter CTAs are sorted into quintiles based on past Fung-Hsieh alpha and fund
flows and assets under management. For the bottom quintile of assets under manage-
ment portfolios are constructed at the intersection of performance and flow sorts and
nine portfolios are formed. The middle three quintiles are grouped into one portfolio.
Portfolio returns are computed each quarter subsequent to ranking. Each bar represent
a time-series average of portfolio returns. Data are for January 1994 to December 2010 period.

Panel A: Systematic CTAs

Panel B: Discretionary CTAs
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Figure 3.8: Yearly Persistence and Money Flows for Bottom AUM
Systematic and Discretionary CTAs

Each year CTAs are sorted into quintiles based on past Fung-Hsieh alpha and fund flows and
assets under management. For the bottom quintile of assets under management portfolios are
constructed at the intersection of performance and flow sorts and nine portfolios are formed.
The middle three quintiles are grouped into one portfolio. Portfolio returns are computed
each quarter subsequent to ranking. Each bar represent a time-series average of portfolio
returns. Data are for January 1994 to December 2010 period.

Panel A: Systematic CTAs

Panel B: Discretionary CTAs
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Figure 3.9: Time-Series Averages for Flow-Weighted and Equally-Weighted
Investment Portfolios of CTA returns for Different Holding Periods for All

CTAs

Panel A shows time-series averages for the portfolio of CTAs that invests each quarter
into funds that have received inflows in the prior quarter. The Y axis shows quarterly
compounded returns evaluated over different holding periods up to eight quarters shown
on the X axis. The figure shows both equally-weighted as well as cash-flow weighted
portfolio returns. Panel B shows returns for the divestment portfolio which is the portfolio
formed of funds with negative cash flows. Data are for January 1994 to December 2010 period.
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Figure 3.10: Time-Series Averages for Flow-Weighted and Equally-Weighted
Investment Portfolios for Systematic CTAs for Different Holding Periods

Panel A shows time-series averages of the portfolio of CTAs that invests each quarter
into funds that have received inflows in the prior quarter. The Y axis shows quarterly
compounded returns evaluated over different holding periods up to eight quarters shown
on the X axis. The figure shows both equally-weighted as well as cash-flow weighted
portfolio returns. Panel B shows returns for the divestment portfolio which is the portfolio
formed of funds with negative cash flows. Data are for January 1994 to December 2010 period.
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Figure 3.11: Time-Series Averages for Flow-Weighted and Equally-Weighted
Investment Portfolios for Discretionary CTAs for Different Holding Periods

Panel A shows time-series averages of the portfolio of CTAs that invests each quarter
into funds that have received inflows in the prior quarter. The Y axis shows quarterly
compounded returns evaluated over different holding periods up to eight quarters shown
on the X axis. The figure shows both equally-weighted as well as cash-flow weighted
portfolio returns. Panel B shows returns for the divestment portfolio which is the portfolio
formed of funds with negative cash flows. Data are for January 1994 to December 2010 period.
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Figure 3.12: Relative Performance and Asset Growth in the Mutual Fund
Industry - Convex Relationship - reproduced from Sirri and Tufano (1998)



Conclusion

In this thesis I use a novel CTA strategy classification to highlight the effects of pre-

viously documented ‘stylized facts’ on CTA survival, performance, performance persis-

tence and the fund-flow performance relationship. I use the longest period studied in

the CTA literature and show that the ‘stylized facts’ are sensitive to the particular CTA

strategy. I provide the first comprehensive empirical evidence that there are indeed

many differences between systematic and discretionary CTAs.

In the first part of the thesis, I implement a survival analysis to examine the factors

determining CTA failure. By collecting missing information on the reasons for exit from

the database, I show that the attrition rate is not the same as the failure rate of CTAs.

In particular, I separate funds in the CTA graveyard database into those that are still

operating but stopped reporting, those that have liquidated for other reasons such as

fund merging and those that have truly failed. I show that the filters proposed in the

hedge fund literature to identify real failures are not always adequate and thus further

extend them. I re-examine the attrition rate in the CTA literature and show that the

real failure rate is not as high as previously documented, even when taking the recent

2008 crisis into account. I further find that the failure rate of systematic CTAs is lower

than that of discretionary CTAs.

Following earlier literature on CTA survival, I progress the methodology by separat-

ing exit types in the survival analysis as well as incorporating time-varying covariates

into the Cox (1972) proportional hazards model. I thus clarify the roles of performance,

size, past asset inflows, age, HWM and various risk measures in predicting CTA failure.

I find that downside risk measures such as tail risk are superior to standard deviation

in predicting CTA failure. I also find that past performance is always significant after
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controlling for other variables such as risk, past flow, size, management and incentive

fees with a HWM provision. I find that age has no effect on predicting CTA survival.

Moreover, these effects are strongest when exit is defined as real failure rather than exit

from the database. This underscores the need to separate the graveyard into different

exit types to avoid blurring the effect of predictor variables.

These results provide interesting implications for investors, database providers and

future academic studies. I show that it is important to determine the reasons CTA funds

exit from the database. Since I find limited evidence of capacity constraints among CTAs

and I show that few funds choose to stop reporting to the database whilst continuing

to operate, this leaves then it is important to really identify reasons for exit. Database

providers should put more effort into collecting this information in the future. Although

CTAs are not legally required to provide any information, one way to circumvent this

problem is by an agreement whereby a fund can report to a database only on a condition

that it provides reason for exit once it chooses to no longer report. Secondly, investors

should be aware that not all funds in the graveyard are real failures. By separating the

graveyard into various exit types, it will allow investors to better estimate the expected

lifetimes of CTAs thereby improving investor outcomes. Thirdly, the proposed filters

will help future research on CTA survival.

In the second part of this thesis I study the performance, risk and performance

persistence of CTA strategies over the 1994 to 2010 period, the longest period studied

in the CTA literature. I find that the returns of systematic CTAs are largely driven

by their exposure to the seven risk factors of Fung and Hsieh (2004a) model extended

with additional trend-following factors on interest rates and stocks and including excess

return on the GSCI index. I find that this model leaves a large amount of unexplained

variance for discretionary funds indicating that it is systematic funds that indeed follow

futures-based trend-following strategies, a result that resonates with the conclusions of

Kazemi and Li (2009). I further find that systematic CTAs have different structural

breaks than those identified previously in the hedge fund literature. In particular some

of these breaks are associated with changes in Federal Reserve’s interest rate policy. I
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further find that contrary to the previous arguments in the CTA literature, the average

CTA is able to deliver statistically significant as well as economically significant alpha.

These results are particularly contingent on the strategy of the CTA fund, with system-

atic trend-following CTAs delivering statistically significant alpha in every sub-period

whilst the alpha of discretionary CTAs is only significant in the last three years of data.

I further analyse the performance persistence across CTA strategies and find results

to be contingent on the strategy of the CTA, time horizon employed and fund size. The

model proposed by Berk and Green (2004) suggests that performance persistence among

fund managers may be contingent on fund size. As investors chase good past perfor-

mance, thereby increasing flows to those funds and as funds face capacity constraints,

funds with above average past performance quickly reach optimal size, which results in

reduced performance persistence. In the hedge fund literature Boyson (2008) and Teo

(2010) find empirical evidence to support the Berk and Green (2004) model: perfor-

mance persistence is driven by small funds. These results however are not relevant for

fund of hedge funds. Fung et al. (2008) find a subset of fund of hedge funds that deliver

superior performance which persists. However, this performance persistence quickly dis-

appears with increased asset inflows. In this study, I show that contrary to the findings

in the hedge fund literature, performance persistence of systematic CTAs is driven by

large funds. However, results for discretionary CTAs are in line with the hedge fund

literature, in that performance persistence is driven by small funds. Furthermore, I find

performance persistence for systematic CTAs at annual horizons but not quarterly. In

contrast, for discretionary CTAs, I find no long-term performance persistence but only

evidence of short-term performance persistence. These results have important implica-

tions for investors: investors may improve their future performance by selecting large

systematic CTAs with strong past performance. For discretionary CTAs, they should

select small funds with good past performance. The fact that performance persistence

for systematic CTAs is driven by large funds is an interesting result, particularly as it

is contrary to previous conclusions in the hedge fund literature. Size may serve as a

proxy for research and development that is required for a successful systematic CTA.
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Developing and backtesting models requires substantive research which in turn requires

that a fund has adequate capital to hire suitable researchers and purchase data. Thus

large funds will have more resources dedicated to successful R&D.

There are several extensions for future research. Firstly it would be interesting to

improve the factor model for discretionary CTAs since using the F-H (2004) model for

these funds left a large proportion of variance unexplained. Secondly, it would be inter-

esting to see if fund age as well as size has an effect on the performance persistence of

systematic CTAs. In the survival model, fund age was not a significant variable, only

fund size and fund flows. Boyson (2008), however, finds age influencing the performance

persistence of hedge funds. Thirdly, I found some of the structural breaks to be related

to interest rate policy. It would be interesting to examine the effect of macroeconomic

variables on the performance of CTAs and this probably would relate to the wider issue

of why do CTAs perform particularly well during market downturns and why have CTAs

delivered disappointing performance in the last two years.

In the last part of this thesis, I examine the fund flow-performance relationship in

the CTA industry. In doing so, I use both quarterly as well as annual data, although

quarterly data is more suitable to the study of CTAs. I found that in the period 1994

to 2010, systematic CTAs received more inflows than discretionary funds, indicating

that investors are able to discriminate between the two styles. Regarding the flow-

performance relationship, I find that at a yearly horizon, past relative performance is

linearly related to flows, however, at the quarterly horizon, this relationship becomes

concave for discretionary funds and remains linear for systematic CTAs. Contrary, to

the conclusions of Ding et al. (2009) in the hedge fund literature, this relationship is

neither driven by Live or Dead funds nor by share restrictions. I further examine the

effect of past fund flows on future performance persistence. Sorting on size and inflows

in addition to past performance, I find evidence of long-term performance persistence

for systematic CTAs but no evidence of short-term performance persistence. This is an

interesting result for institutional investors that may be concerned with capacity con-

straints in the hedge fund and CTA industry. This suggests that the future long-term
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performance of systematic CTAs is unlikely to be hindered by large inflows from insti-

tutional investors.

In the final part of the thesis, I also address the issue of capacity constraints and

smart money in the CTA literature. To the best of my knowledge, the hypothesis of

either has not been extensively examined in the CTA literature. I test for the presence

of capacity constraints in the CTA literature using two methodologies. My results imply

that there are no statistically significant capacity constraints for systematic CTAs, but

there may be some capacity constraints across discretionary funds: the lagged flows

for discretionary CTAs have a negative and statistically significant coefficient, although

it is not as large as for some hedge fund strategies reported in Naik, Ramadorai and

Stromquist (2007). Similar to the conclusions of Baquero and Verbeek (2009) in the

hedge fund literature, I find no evidence of smart money in the industry. Thus despite

the fact that CTAs offer greater liquidity to investors than hedge funds, investors are

not able to fully exploit this advantage: I find no significant difference in performance

between funds with inflows and funds with outflows using several methodologies. There

appears to be no smart money effect in the CTA industry. One caveat is that this study

covers the period up to December 2010. A possible extension to this study would be to

include the last two years of data over which time CTAs have continued to attract asset

inflows.
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