
1

Robust Filtering and Smoothing with Gaussian Processes

Marc Peter Deisenroth, Ryan Turner Member, IEEE,
Marco F. Huber Member, IEEE,

Uwe D. Hanebeck Member, IEEE, Carl Edward Rasmussen

Abstract—We propose a principled algorithm for robust Bayesian filter-
ing and smoothing in nonlinear stochastic dynamic systems when both the
transition function and the measurement function are described by non-
parametric Gaussian process (GP) models. GPs are gaining increasing
importance in signal processing, machine learning, robotics, and control
for representing unknown system functions by posterior probability
distributions. This modern way of “system identification” is more robust
than finding point estimates of a parametric function representation. Our
principled filtering/smoothing approach for GP dynamic systems is based
on analytic moment matching in the context of the forward-backward
algorithm. Our numerical evaluations demonstrate the robustness of the
proposed approach in situations where other state-of-the-art Gaussian
filters and smoothers can fail.

Index Terms—Nonlinear systems, Bayesian inference, smoothing, fil-
tering, Gaussian processes, machine learning

I. INTRODUCTION

Filtering and smoothing in the context of dynamic systems refers
to a Bayesian methodology for computing posterior distributions of
the latent state based on a history of noisy measurements. This kind
of methodology can be found, e.g., in navigation, control engineering,
robotics, and machine learning [1]–[4]. Solutions to filtering [1]–[5]
and smoothing [6]–[9] in linear dynamic systems are well known, and
numerous approximations for nonlinear systems have been proposed,
for both filtering [10]–[15] and smoothing [16]–[19].

In this note, we focus on Gaussian filtering and smoothing in
Gaussian process (GP) dynamic systems. GPs are a robust non-
parametric method for approximating unknown functions by a poste-
rior distribution over them [20], [21]. Although GPs have been around
for decades, they only recently became computationally interesting
for applications in robotics, control, and machine learning [22]–[26].

The contribution of this note is the derivation of a novel, principled,
and robust Rauch-Tung-Striebel (RTS) smoother for GP dynamic
systems, which we call the GP-RTSS. The GP-RTSS computes
a Gaussian approximation to the smoothing distribution in closed
form. The posterior filtering and smoothing distributions can be
computed without linearization [10] or sampling approximations of
densities [11].

We provide numerical evidence that the GP-RTSS is more robust
than state-of-the-art nonlinear Gaussian filtering and smoothing algo-
rithms including the extended Kalman filter (EKF) [10], the unscented
Kalman filter (UKF) [11], the cubature Kalman filter (CKF) [15], the
GP-UKF [12], and their corresponding RTS smoothers. Robustness
refers to the ability of an inferred distribution to explain the “true”
state/measurement.

The paper is structured as follows: In Sections I-A, I-B, we
introduce the problem setup and necessary background on Gaussian

This work was supported in part by ONR MURI under Grant N00014-09-
1-1052, by Intel Labs, and by DataPath, Inc.

M. P. Deisenroth is with the TU Darmstadt, Germany, and also with the
University of Washington, Seattle, USA. (email: marc@ias.tu-darmstadt.de)

R. D. Turner is with Winton Capital, London, UK, and the University of
Cambridge, UK. (email: r.turner@wintoncapital.com)

M. F. Huber is with the AGT Group (R&D) GmbH, Darmstadt, Germany.
(email: marco.huber@ieee.org)

U. D. Hanebeck is with the Karlsruhe Institute of Technology (KIT),
Germany. (email: Uwe.Hanebeck@ieee.org)

C. E. Rasmussen is with the University of Cambridge, UK, and also with the
Max Planck Institute for Biological Cybernetics, Tübingen, Germany. (email:
cer54@cam.ac.uk)

smoothing and GP dynamic systems. In Section II, we briefly intro-
duce Gaussian process regression, discuss the expressiveness of a GP,
and explain how to train GPs. Section III details our proposed method
(GP-RTSS) for smoothing in GP dynamic systems. In Section IV, we
provide experimental evidence of the robustness of the GP-RTSS.
Section V concludes the paper with a discussion.

A. Problem Formulation and Notation

In this note, we consider discrete-time stochastic systems

xt = f(xt−1) + wt (1)

zt = g(xt) + vt (2)

where xt ∈ RD is the state, zt ∈ RE is the measurement at time
step t, wt ∼ N (0,Σw) is Gaussian system noise, vt ∼ N (0,Σv) is
Gaussian measurement noise, f is the transition function (or system
function) and g is the measurement function. The discrete time steps
t run from 0 to T . The initial state x0 of the time series is distributed
according to a Gaussian prior distribution p(x0) = N (µx0 ,Σ

x
0).

The purpose of filtering and smoothing is to find approximations
to the posterior distributions p(xt|z1:τ), where 1 :τ in a subindex
abbreviates 1, . . . , τ with τ = t during filtering and τ = T
during smoothing. In this note, we consider Gaussian approxima-
tions p(xt|z1:τ) ≈ N (xt |µxt|τ ,Σx

t|τ) of the latent state posterior
distributions p(xt|z1:τ). We use the short-hand notation adb|c where
a = µ denotes the mean µ and a = Σ denotes the covariance, b
denotes the time step under consideration, c denotes the time step up
to which we consider measurements, and d ∈ {x, z} denotes either
the latent space (x) or the observed space (z).

B. Gaussian RTS Smoothing

Given the filtering distributions p(xt|z1:t) = N (xt |µxt|t,Σx
t|t),

t = 1, . . . , T , a sufficient condition for Gaussian smoothing is the
computation of Gaussian approximations of the joint distributions
p(xt−1,xt|z1:t−1), t = 1, . . . , T [19].

In Gaussian smoothers, the standard smoothing distribution for the
dynamic system in (1)–(2) is always

p(xt−1|z1:T) = N (xt−1 |µxt−1|T ,Σ
x
t−1|T) , where (3)

µxt−1|T = µxt−1|t−1 + Jt−1(µxt|T − µ
x
t|t) (4)

Σx
t−1|T = Σx

t−1|t−1 + Jt−1(Σx
t|T −Σx

t|t)J
>
t−1 (5)

Jt−1 := Σx
t−1,t|t−1(Σx

t|t−1)−1 t = T, . . . , 1 . (6)

Depending on the methodology of computing this joint distribution,
we can directly derive arbitrary RTS smoothing algorithms, including
the URTSS [16], the EKS [1], [10], the CKS [19], a smoothing
extension to the CKF [15], or the GP-URTSS, a smoothing extension
to the GP-UKF [12]. The individual smoothers (URTSS, EKS, CKS,
GP-based smoothers etc.) simply differ in the way of computing/
estimating the means and covariances required in (4)–(6) [19].

To derive the GP-URTSS, we closely follow the derivation of the
URTSS [16]. The GP-URTSS is a novel smoother, but its derivation
is relatively straightforward and therefore not detailed in this note.
Instead, we detail the derivation of the GP-RTSS, a robust Rauch-
Tung-Striebel smoother for GP dynamic systems, which is based on
analytic computation of the means and (cross-)covariances in (4)–(6).

In GP dynamic systems, the transition function f and the mea-
surement function g in (1)–(2) are modeled by Gaussian processes.
This setup is getting more relevant in practical applications such as
robotics and control, where it can be difficult to find an accurate
parametric form of f and g, respectively [25], [27]. Given the
increasing use of GP models in robotics and control, the robustness
of Bayesian state estimation is important.

2

II. GAUSSIAN PROCESSES

In the standard GP regression model, we assume that the data
D := {X := [x1, . . . ,xn]>, y := [y1, . . . , yn]>} have been
generated according to yi = h(xi) + εi, where h : RD → R and
εi ∼ N (0, σ2

ε) is independent (measurement) noise. GPs consider
h a random function and infer a posterior distribution over h from
data. The posterior is used to make predictions about function values
h(x∗) for arbitrary inputs x∗ ∈ RD .

Similar to a Gaussian distribution, which is fully specified by a
mean vector and a covariance matrix, a GP is fully specified by a
mean function mh(·) and a covariance function

kh(x,x′) := Eh[(h(x)−mh(x))(h(x′)−mh(x′))] (7)

= covh[h(x), h(x′)] ∈ R , x, x′ ∈ RD (8)

which specifies the covariance between any two function values.
Here, Eh denotes the expectation with respect to the function h.
The covariance function kh(· , ·) is also called a kernel.

Unless stated otherwise, we consider a prior mean function mh ≡
0 and use the squared exponential (SE) covariance function with
automatic relevance determination

kSE(xp,xq) := α2 exp
(
−1

2
(xp − xq)

>Λ−1(xp − xq)
)

(9)

for xp, xq ∈ RD , plus a noise covariance function knoise := δpqσ
2
ε ,

such that kh = kSE + knoise. The δ denotes the Kronecker symbol
that is unity when p = q and zero otherwise, resulting in i.i.d.
measurement noise. In (9), Λ = diag([`21, . . . , `

2
D]) is a diagonal

matrix of squared characteristic length-scales `i, i = 1, . . . , D, and
α2 is the signal variance of the latent function h. By using the SE
covariance function from (9) we assume that the latent function h
is smooth and stationary. Smoothness and stationarity are easier to
justify than fixed parametric form of the underlying function.

A. Expressiveness of the Model

Although the SE covariance function kSE and the prior mean
function mh ≡ 0 are common defaults, they retain a great deal of
expressiveness. Inspired by [20], [28], we demonstrate this expres-
siveness and show the correspondence of our GP model to a universal
function approximator: Consider a function

h(x) =
∑

i∈Z
lim
N→∞

1

N

∑N

n=1
γn exp

(
−

(x− (i+ n
N

))2

λ2

)
(10)

where γn ∼ N (0, 1) , n = 1, . . . , N . Note that in the limit, h(x) is
represented by infinitely many Gaussian-shaped basis functions along
the real axis with width λ/

√
2 and prior (Gaussian) random weights

γn, for x ∈ R, and for all i ∈ Z. The model in (10) is considered
a universal function approximator. Writing the sums in (10) as an
integral over the real axis R, we obtain

h(x) =
∑

i∈Z

∫ i+1

i

γ(s) exp

(
− (x− s)2

λ2

)
ds

=

∫ ∞
−∞

γ(s) exp

(
− (x− s)2

λ2

)
ds = (γ ∗ K)(x) (11)

where γ(s) ∼ N (0, 1) is a white-noise process and K is a Gaussian
convolution kernel. The function values of h are jointly normal, which
follows from the convolution γ ∗ K. We now analyze the mean
function and the covariance function of h, which fully specify the
distribution of h. The only random variables are the weights γ(s).
Computing the expected function of this model (prior mean function)

requires averaging over γ(s) and yields

Eγ [h(x)] =

∫
h(x)p(γ(s)) dγ(s) (12)

(11)
=

∫
exp

(
− (x− s)2

λ2

)∫
γ(s)p(γ(s)) dγ(s) ds = 0 (13)

since Eγ [γ(s)] = 0. Hence, the mean function of h equals zero
everywhere. Let us now find the covariance function. Since the mean
function equals zero, for any x, x′ ∈ R we obtain

covγ [h(x), h(x′)] =

∫
h(x)h(x′)p(γ(s)) dγ(s)

=

∫
exp

(
− (x− s)2

λ2

)
exp

(
− (x′ − s)2

λ2

)
×
∫
γ(s)2p(γ(s)) dγ(s) ds (14)

where we used the definition of h in (11). Using varγ [γ(s)] = 1 and
completing the squares yields

covγ [h(x), h(x′)] =

∫
exp

−2
(
s− x+x′

2

)2

+ (x−x′)2
2

λ2

ds

= α2 exp

(
− (x− x′)2

2λ2

)
(15)

for suitable α2.
From (13) and (15), we see that the mean function and the

covariance function of the universal function approximator in (10)
correspond to the GP model assumptions we made earlier: a prior
mean function mh ≡ 0 and the SE covariance function in (9)
for a one-dimensional input space. Hence, the considered GP prior
implicitly assumes latent functions h that can be described by the
universal function approximator in (11). Examples of covariance
functions that encode different model assumptions are given in [21].

B. Training via Evidence Maximization

For E target dimensions, we train E GPs assuming that the target
dimensions are independent at a deterministically given test input
(if the test input is uncertain, the target dimensions covary): After
observing a data set D, for each (training) target dimension, we
learn the D+ 1 hyper-parameters of the covariance function and the
noise variance of the data using evidence maximization [20], [21]:
Collecting all (D + 2)E hyper-parameters in the vector θ, evidence
maximization yields a point estimate θ̂ ∈ argmaxθ log p(y|X,θ).
Evidence maximization automatically trades off data fit with function
complexity and avoids overfitting [21].

From here onward, we consider the GP dynamic system setup,
where two GP models have been trained using evidence maximiza-
tion: GPf , which models the mapping xt−1 7→ xt, R

D → RD ,
see (1), and GPg , which models the mapping xt 7→ zt, R

D → RE ,
see (2). To keep the notation uncluttered, we do not explicitly
condition on the hyper-parameters θ̂ and the training data D in the
following.

III. ROBUST SMOOTHING IN GAUSSIAN PROCESS DYNAMIC

SYSTEMS

Analytic moment-based filtering in GP dynamic systems has been
proposed in [13], where the filter distribution is given by

p(xt|z1:t) = N (xt |µxt|t,Σ
x
t|t) (16)

µxt|t = µxt|t−1 + Σxz
t|t−1

(
Σz
t|t−1

)−1
(zt − µzt|t−1) (17)

Σx
t|t = Σx

t|t−1 −Σxz
t|t−1

(
Σz
t|t−1

)−1
Σzx
t|t−1 (18)

3

for t = 1, . . . , T . Here, we extend these filtering results to analytic
moment-based smoothing, where we explicitly take nonlinearities into
account (no linearization required) while propagating full Gaussian
densities (no sigma/cubature-point representation required) through
nonlinear GP models.

In the following, we detail our novel RTS smoothing approach
for GP dynamic systems. We fit our smoother in the standard frame
of (4)–(6). For this, we compute the means and covariances of the
Gaussian approximation

N
([

xt−1

xt

] ∣∣∣∣[µxt−1|t−1

µxt|t−1

]
,

[
Σx
t−1|t−1 Σx

t−1,t|t−1

Σx
t,t−1|t−1 Σx

t|t−1

])
(19)

to the joint p(xt−1,xt|z1:t−1), after which the smoother is fully
determined [19]. Our approximation does not involve sampling,
linearization, or numerical integration. Instead, we present closed-
form expressions of a deterministic Gaussian approximation of the
joint distribution in (19).

In our case, the mapping xt−1 7→ xt is not known, but in-
stead it is distributed according to GPf , a distribution over system
functions. For robust filtering and smoothing, we therefore need
to take the GP (model) uncertainty into account by Bayesian av-
eraging according to the GP distribution [13], [29]. The marginal
p(xt−1|z1:t−1) = N (µxt−1|t−1,Σ

x
t−1|t−1) is known from filter-

ing [13]. In Section III-A, we compute the mean and covariance
of second marginal p(xt|z1:t−1) and then in Section III-B the cross-
covariance terms Σx

t−1,t|t−1 = cov[xt−1,xt|z1:t−1].

A. Marginal Distribution

1) Marginal Mean: Using the system equation (1) and integrating
over all three sources of uncertainties (the system noise, the state
xt−1, and the system function itself), we apply the law of total
expectation and obtain the marginal mean

µxt|t−1 = Ext−1

[
Ef [f(xt−1)|xt−1]|z1:t−1

]
. (20)

The expectations in (20) are taken with respect to the posterior
GP distribution p(f) and the filter distribution p(xt−1|z1:t−1) =
N (µxt−1|t−1,Σ

x
t−1|t−1) at time step t − 1. Equation (20) can be

rewritten as µxt|t−1 = Ext−1 [mf (xt−1)|z1:t−1] where mf (xt−1) :=
Ef [f(xt−1)|xt−1] is the posterior mean function of GPf . Writing
mf as a finite sum over the SE kernels centered at all n training in-
puts [21], the predicted mean for each target dimension a = 1, . . . , D
is(
µxt|t−1

)
a

=

∫
mfa(xt−1)p(xt−1|z1:t−1) dxt−1 (21)

=
∑n

i=1
βxai

∫
kfa(xt−1,xi)p(xt−1|z1:t−1) dxt−1

where p(xt−1|z1:t−1) = N (xt−1 |µxt−1|t−1,Σ
x
t−1|t−1) is the filter

distribution at time t−1. Moreover, xi, i = 1, . . . , n, are the training
set of GPf , kfa is the covariance function of GPf for the ath target
dimension (GP hyper-parameters are not shared across dimensions),
and βxa := (Kfa +σ2

wa
I)−1ya ∈ Rn. For dimension a, Kfa denotes

the kernel matrix (Gram matrix), where Kfa(i, j) = kfa(xi,xj),
i, j = 1, . . . , n. Moreover, ya are the training targets, and σ2

wa
is

the learned system noise variance. The vector βxa has been pulled
out of the integration since it is independent of xt−1. Note that xt−1

serves as a test input from the perspective of the GP regression model.
For the SE covariance function in (9), the integral in (21) can be

computed analytically (other tractable choices are covariance func-
tions containing combinations of squared exponentials, trigonometric
functions, and polynomials). The marginal mean is given as(

µxt|t−1

)
a

= (βxa)>qxa (22)

where we defined

qxai := α2
fa |Σ

x
t−1|t−1Λ

−1
a + I|−

1
2

× exp
(
− 1

2
(xi − µxt−1|t−1)>

× S−1(xi − µxt−1|t−1)
)

(23)

S := Σx
t−1|t−1 + Λa (24)

i = 1, . . . , n, being the solution to the integral in (21). Here, α2
fa

is the signal variance of the ath target dimension of GPf , a learned
hyper-parameter of the SE covariance function, see (9).

2) Marginal Covariance Matrix: We now explicitly compute the
entries of the corresponding covariance Σx

t|t−1. Using the law of total
covariance, we obtain for a, b = 1, . . . , D

(Σxt|t−1)(ab) = covxt−1,f,w

[
x

(a)
t , x

(b)
t |z1:t−1

]
= Ext−1

[
covf,w[fa(xt−1) + wa, fb(xt−1)

+ wb|xt−1]|z1:t−1

]
+ covxt−1

[
Efa [fa(xt−1)|xt−1] ,

Efb [fb(xt−1)|xt−1]|z1:t−1

]
(25)

where we exploited in the last term that the system noise w has mean
zero. Note that (25) is the sum of the covariance of (conditional)
expected values and the expectation of a (conditional) covariance.
We analyze these terms in the following.

The covariance of the expectations in (25) is∫
mfa(xt−1)mfb(xt−1)p(xt−1) dxt−1 − (µxt|t−1)a(µxt|t−1)b

(26)

where we used that Ef [f(xt−1)|xt−1] = mf (xt−1). With βxa =
(Ka+σ2

wa
I)−1ya and mfa(xt−1) = kfa(X,xt−1)>βxa, we obtain

covxt−1 [mfa(xt−1) ,mfb(xt−1)|z1:t−1]

= (βxa)>Qβxb − (µxt|t−1)a(µxt|t−1)b . (27)

Following [30], the entries of Q ∈ Rn×n are given as

Qij = kfa(xi,µ
x
t−1|t−1)kfb(xj ,µ

x
t−1|t−1)/

√
|R|

× exp
(

1

2
z>ijR

−1Σx
t−1|t−1zij

)
= exp(n2

ij)/
√
|R| (28)

n2
ij = log(α2

fa) + log(α2
fb)

− 1

2

(
ζ>i Λ−1

a ζi + ζ>j Λ−1
b ζj − z>ijR

−1Σx
t−1|t−1zij

)
where we defined R := Σx

t−1|t−1(Λ−1
a + Λ−1

b) + I, ζi := xi −
µxt−1|t−1, and zij := Λ−1

a ζi + Λ−1
b ζj .

The expected covariance in (25) is given as

Ext−1

[
covf [fa(xt−1), fb(xt−1)|xt−1]|z1:t−1

]
+ δabσ

2
wa

(29)

since the noise covariance matrix Σw is diagonal. Following our GP
training assumption that different target dimensions do not covary if
the input is deterministically given, (29) is only non-zero if a = b,
i.e., (29) plays a role only for diagonal entries of Σx

t|t−1. For these
diagonal entries (a = b), the expected covariance in (29) is

α2
fa − tr

(
(Kfa + σ2

wa
I)−1Q

)
+ σ2

wa
. (30)

Hence, the desired marginal covariance matrix in (25) is

(Σxt|t−1)ab =

{
Eq. (27) + Eq. (30) , if a = b

Eq. (27) , otherwise
(31)

We have now solved for the marginal distribution p(xt|z1:t−1)
in (19). Since the approximate Gaussian filter distribution

4

p(xt−1|z1:t−1) = N (µxt−1|t−1,Σ
x
t−1|t−1) is also known, it remains

to compute the cross-covariance Σx
t−1,t|t−1 to fully determine the

Gaussian approximation in (19).

B. Cross-Covariance

By the definition of a covariance and the system equation (1), the
missing cross-covariance matrix Σx

t−1,t|t−1 in (19) is

Σx
t−1,t|t−1 = Ext−1,f,wt

[
xt−1 (f(xt−1) + wt)

> |z1:t−1

]
− µxt−1|t−1(µxt|t−1)> (32)

where µxt−1|t−1 is the mean of the filter update at time step t − 1
and µxt|t−1 is the mean of the time update, see (20). Note that we
explicitly average out the model uncertainty about f . Using the law
of total expectations, we obtain

Σx
t−1,t|t−1 = Ext−1

[
xt−1Ef,wt [f(xt−1) + wt|xt−1]> |z1:t−1

]
− µxt−1|t−1(µxt|t−1)> (33)

= Ext−1

[
xt−1mf (xt−1)>|z1:t−1

]
− µxt−1|t−1(µxt|t−1)> (34)

where we used the fact that Ef,wt [f(xt−1)+wt|xt−1] = mf (xt−1)
is the mean function of GPf , which models the mapping xt−1 7→ xt,
evaluated at xt−1. We thus obtain

Σx
t−1,t|t−1 =

∫
xt−1mf (xt−1)>p(xt−1|z1:t−1) dxt−1

− µxt−1|t−1(µxt|t−1)> . (35)

Writing mf (xt−1) as a finite sum over kernels [21] and moving the
integration into this sum, the integration in (35) turns into∫

xt−1mfa(xt−1)p(xt−1|z1:t−1) dxt−1

=

n∑
i=1

βxai

∫
xt−1kfa(xt−1,xi)p(xt−1|z1:t−1) dxt−1

for each state dimension a = 1, . . . , D. With the SE covariance
function kSE defined in (9), we compute the integral analytically and
obtain∫

xt−1mfa(xt−1)p(xt−1|z1:t−1) dxt−1 (36)

=

n∑
i=1

βxai

∫
xt−1c3N (xi,Λa)N (µxt−1|t−1,Σ

x
t−1|t−1) dxt−1

where we defined c−1
3 = (α2

fa(2π)
D
2
√
|Λa|)−1, such that

kfa(xt−1,xi) = c3N (xt−1 |xi,Λa). In the definition of c3, α2
fa is

a hyper-parameter of GPf responsible for the variance of the latent
function in dimension a. Using the definition of S in (24), the product
of the two Gaussians in (36) results in a new (unnormalized) Gaussian
c−1
4 N (xt−1 |ψi,Ψ) with

c−1
4 = (2π)−

D
2 |Λa + Σx

t−1|t−1|−
1
2

× exp
(
−1

2
(xi − µxt−1|t−1)>S−1(xi − µxt−1|t−1)

)
Ψ =

(
Λ−1
a + (Σx

t−1|t−1)−1
)−1

ψi = Ψ
(
Λ−1
a xi + (Σx

t−1|t−1)−1µxt−1|t−1

)
.

Pulling all constants outside the integral in (36), the integral deter-
mines the expected value of the product of the two Gaussians, ψi.
For a = 1, . . . , D, we obtain

E[xt−1 xta |z1:t−1] =
∑n

i=1
c3c
−1
4 βxaiψi .

Using c3c−1
4 = qxai , see (23), and some matrix identities, we finally

obtain∑n

i=1
βxaiq

x
aiΣ

x
t−1|t−1(Σx

t−1|t−1 + Λa)−1(xi − µxt−1|t−1) (37)

for covxt−1,f,wt [xt−1, xta |z1:t−1] and the joint covariance matrix
of p(xt−1,xt|z1:t−1) and, hence, the full Gaussian approximation
in (19) is completely determined.

With the mean and the covariance of the joint distribution
p(xt−1,xt|z1:t−1) given by (22), (31), (37), and the filter step,
all necessary components are provided to compute the smoothing
distribution p(xt|z1:T) analytically [19].

IV. SIMULATIONS

In the following, we present results analyzing the robustness of
state-of-the art nonlinear filters (Section IV-A) and the performance
of the corresponding smoothers (Section IV-B).

A. Filter Robustness

We considered the nonlinear stochastic dynamic system

xt =
xt−1

2
+

25xt−1

1 + x2
t−1

+ wt , wt ∼ N (0, σ2
w = 0.22) (38)

zt = 5 sin(xt) + vt , vt ∼ N (0, σ2
v = 0.22) (39)

which is a modified version of the model used in [18], [31]. The
system was modified in two ways: First, (38) does not contain a
purely time-dependent term in the system, which would not allow
for learning stationary transition dynamics. Second, we substituted
a sinusoidal measurement function for the originally quadratic mea-
surement function used by [18] and [31]. The sinusoidal measurement
function increases the difficulty in computing the marginal distri-
bution p(zt|z1:t−1) if the time update distribution p(xt|z1:t−1) is
fairly uncertain: While the quadratic measurement function can only
lead to bimodal distributions (assuming a Gaussian input distribution),
the sinusoidal measurement function in (39) can lead to an arbitrary
number of modes—for a broad input distribution.

The prior variance was set to σ2
0 = 0.52, i.e., the initial uncertainty

was fairly high. The system and measurement noises (see (38)–
(39)) were relatively small considering the amplitudes of the system
function and the measurement function. For the numerical analysis,
a linear grid in the interval [−3, 3] of mean values (µx0)i, i =

1, . . . , 100, was defined. Then, a single latent (initial) state x(i)
0 was

sampled from p(x
(i)
0) = N ((µx0)i, σ

2
0), i = 1, . . . , 100.

For the dynamic system in (38)–(39), we analyzed the robustness
in a single filter step of the EKF, the UKF, the CKF, and a SIR PF
(sequential importance resampling particle filter) with 200 particles,
the GP-UKF, and the GP-ADF against the ground truth, closely
approximated by the Gibbs-filter [19]. Compared to the evaluation
of longer trajectories, evaluating a single filter step makes it easier
to analyze the robustness of individual filtering algorithms.

Table I summarizes the expected performances (RMSE: root-
mean-square error, MAE: mean-absolute error, NLL: negative log-
likelihood) of the EKF, the UKF, the CKF, the GP-UKF, the GP-
ADF, the Gibbs-filter, and the SIR PF for estimating the latent
state x. The results in the table are based on averages over 1,000
test runs and 100 randomly sampled start states per test run (see
experimental setup). The table also reports the 95% standard error of
the expected performances. Table I indicates that the GP-ADF was
the most robust filter and statistically significantly outperformed all
filters but the sampling-based Gibbs-filter and the SIR PF. The green
color highlights a near-optimal Gaussian filter (Gibbs-filter) and the
near-optimal particle filter. Amongst all other filters the GP-ADF was

5

TABLE I
AVERAGE FILTER PERFORMANCES (RMSE, MAE, NLL) WITH STANDARD ERRORS (95% CONFIDENCE INTERVAL) AND P-VALUES TESTING THE

HYPOTHESIS THAT THE OTHER FILTERS ARE BETTER THAN THE GP-ADF USING A ONE-SIDED T-TEST.

RMSEx (p-value) MAEx (p-value) NLLx (p-value)

EKF [10] 3.62± 0.212 (p = 4.1× 10−2) 2.36± 0.176 (p = 0.38) 3.05× 103 ± 3.02× 102 (p < 10−4)
UKF [11] 10.5± 1.08 (p < 10−4) 8.58± 0.915 (p < 10−4) 25.6± 3.39 (p < 10−4)
CKF [15] 9.24± 1.13 (p = 2.8× 10−4) 7.31± 0.941 (p = 4.2× 10−4) 2.22× 102 ± 17.5 (p < 10−4)
GP-UKF [12] 5.36± 0.461 (p = 7.9× 10−4) 3.84± 0.352 (p = 3.3× 10−3) 6.02± 0.497 (p < 10−4)
GP-ADF [13] 2.85± 0.174 2.17± 0.151 1.97± 6.55× 10−2

Gibbs-filter [19] 2.82± 0.171 (p = 0.54) 2.12± 0.148 (p = 0.56) 1.96± 6.62× 10−2 (p = 0.55)
SIR PF 1.57± 7.66× 10−2 (p = 1.0) 0.36± 2.28× 10−2 (p = 1.0) 1.03± 7.30× 10−2 (p = 1.0)

the closest Gaussian filter to the computationally expensive Gibbs-
filter [19]. Note that the SIR PF is not a Gaussian filter and is able
to express multi-modality in distributions. Therefore, its performance
is typically better than the one of Gaussian filters. The difference
between the SIR PF and a near-optimal Gaussian filter, the Gibbs-
filter, is expressed in Table I. The performance difference essentially
depicts how much we lost by using a Gaussian filter instead of a
particle filter. The NLL values for the SIR PF were obtained by
moment-matching the particles.

The poor performance of the EKF was due to linearization errors.
The filters based on small sample approximations of densities (UKF,
GP-UKF, CKF) suffered from the degeneracy of these approxima-
tions, which is illustrated in Figure 1. Note that the CKF uses a
smaller set of cubature points than the UKF to determine predictive
distributions, which makes the CKF statistically even less robust than
the UKF.

B. Smoother Robustness

We considered a pendulum tracking example taken from [13]. We
evaluated the performances of four filters and smoothers, the EKF/
EKS, the UKF/URTSS, the GP-UKF/GP-URTSS, the CKF/CKS, the
Gibbs-filter, and the GP-ADF/GP-RTSS. The pendulum had mass
m = 1 kg and length l = 1 m. The state x = [ϕ̇, ϕ]> of the
pendulum was given by the angle ϕ (measured anti-clockwise from
hanging down) and the angular velocity ϕ̇. The pendulum could exert
a constrained torque u ∈ [−5, 5] Nm. We assumed a frictionless
system such that the transition function f was

f(xt, ut) =

∫ t+∆t

t

[
u(τ)− 0.5mlg sinϕ(τ)

0.25ml2 + I
ϕ̇(τ)

]
dτ (40)

where I is the moment of inertia and g the acceleration of gravity.
Then, the successor state

xt+1 = xt+∆t = f(xt, ut) + wt (41)

was computed using an ODE solver for (40) with a zero-order hold
control signal u(τ). In (41), we set Σw = diag([0.52, 0.12]). In
our experiment, the torque was sampled randomly according to u ∼
U [−5, 5] Nm and implemented using a zero-order-hold controller.
Every time increment ∆t = 0.2 s, the state was measured according
to

zt = arctan

(
−1− l sin(ϕt)

0.5− l cos(ϕt)

)
+ vt , σ2

v = 0.052 . (42)

Note that the scalar measurement equation (42) solely depends on
the angle. Thus, the full distribution of the latent state x had to be
inferred using the cross-correlation information between the angle
and the angular velocity.

Trajectories of length T = 6 s = 30 time steps were started from a
state sampled from the prior p(x0) = N (µx0 ,Σ

x
0) with µx0 = [0, 0]>

and Σx
0 = diag([0.012, (π

16
)2]). For each trajectory, GP models GPf

and GPg are learned based on randomly generated data using either
250 or 20 data points.

Table II reports the expected values of the NLLx-measure for the
EKF/EKS, the UKF/URTSS, the GP-UKF/GP-URTSS, the GP-ADF/
GP-RTSS, and the CKF/CKS when tracking the pendulum over a
horizon of 6 s, averaged over 1,000 runs. The ? indicates a method de-
veloped in this paper. As in the example in Section IV-A, the NLLx-
measure emphasizes the robustness of our proposed method: The GP-
RTSS is the only method that consistently reduced the negative log-
likelihood value compared to the corresponding filtering algorithm.
Increasing the NLLx-values (red color in Table II) occurred when
the filter distribution could not explain the latent state/measurement,
an example of which is given in Figure 1(b). Even with only 20
training points, the GP-ADF/GP-RTSS outperformed the commonly
used EKF/EKS, UKF/URTSS, CKF/CKS.

We experimented with even smaller signal-to-noise ratios. The GP-
RTSS remained robust, while the other smoothers remained unstable.

V. DISCUSSION AND CONCLUSION

In this paper, we presented the GP-RTSS, an analytic Rauch-Tung-
Striebel smoother for GP dynamic systems, where the GPs with
SE covariance functions are practical implementations of universal
function approximators. We showed that the GP-RTSS is more robust
to nonlinearities than state-of-the-art smoothers. There are two main
reasons for this: First, the GP-RTSS relies neither on linearization
(EKS) nor on density approximations (URTSS/CKS) to compute an
optimal Gaussian approximation of the predictive distribution when
mapping a Gaussian distribution through a nonlinear function. This
property avoids incoherent estimates of the filtering and smoothing
distributions as discussed in Sec IV-A. Second, GPs allow for more
robust “system identification” than standard methods since they
coherently represent uncertainties about the system and measurement
functions at locations that have not been encountered in the data
collection phase. The GP-RTSS is a robust smoother since it accounts
for model uncertainties in a principled Bayesian way.

After training the GPs, which can be performed offline, the
computational complexity of the GP-RTSS (including filtering) is
O(T (E3 + n2(D3 + E3))) for a time series of length T . Here, n
is the size of the GP training sets, and D and E are the dimensions
of the state and the measurements, respectively. The computational
complexity is due to the inversion of the D and E-dimensional
covariance matrices, and the computation of the matrix Q ∈ Rn×n
in (28), required for each entry of a D and E-dimensional covariance
matrix. The computational complexity scales linearly with the number
of time steps. The computational demand of classical Gaussian
smoothers, such as the URTSS and the EKS is O(T (D3 + E3)).
Although not reported here, we verified the computational complexity
experimentally. Approximating the online computations of the GP-
RTSS by numerical integration or grids scales poorly with increasing
dimension. These problems already appear in the histogram filter [3].
By explicitly providing equations for the solution of the involved

6

−3 −2 −1 0 1

−10

0

10

x
0

x 1

−3 −2 −1 0 1
0

0.5
p(

x 0)

−10

0

10

00.050.1
p(x

1
)

(a)

−25 −20 −15 −10 −5 0

−5

0

5

10

x
1

z 1

−25 −20 −15 −10 −5 0
0

0.05

0.1

p(
x 1)

−5

0

5

10

00.511.5
p(z

1
)

(b)

Fig. 1. Degeneracy of the unscented transformation (UT) underlying the UKF. Input distributions to the UT are the Gaussians in the subfigures at the bottom
in each panel. The functions the UT is applied to are shown in the top right subfigures, i.e, the transition mapping (38), in Panel (a), and the measurement
mapping (39), in Panel (b). Sigma points are marked by red dots. The predictive distributions are shown in the left subfigures of each panel. The true predictive
distributions are the shaded areas; the UT predictive distributions are the solid Gaussians. The predictive distribution of the time update in Panel (a) equals the
input distribution at the bottom of Panel (b). (a) UKF time update p(x1|∅), which misses out substantial probability mass of the true predictive distribution;
UKF determines p(z1|∅), which is too sensitive and cannot explain the actual measurement z1 (black dot, left subfigure).

TABLE II
EXPECTED FILTERING AND SMOOTHING PERFORMANCES (PENDULUM TRACKING) WITH 95% CONFIDENCE INTERVALS.

Filters EKF [10] UKF [11] CKF [15] GP-UKF250 [12] GP-ADF250 [13] GP-ADF20 [13]
E[NLLx] 1.6× 102 ± 29.1 6.0± 3.02 28.5± 9.83 4.4± 1.32 1.44± 0.117 6.63± 0.149

Smoothers EKS [10] URTSS [16] CKS [19] GP-URTSS?250 GP-RTSS?250 GP-RTSS?20
E[NLLx] 3.3× 102 ± 60.5 17.2± 10.0 72.0± 25.1 10.3± 3.85 1.04± 0.204 6.57± 0.148

integrals, we show that numerical integration is not necessary and the
GP-RTSS is a practical approach to filtering in GP dynamic systems.

Although the GP-RTSS is computationally more involved than the
URTSS, the EKS, and the CKS, this does not necessarily imply
that smoothing with the GP-RTSS is slower: function evaluations,
which are heavily used by the EKS/CKS/URTSS, are not necessary
in the GP-RTSS (after training). In the pendulum example, repeatedly
calling the ODE solver caused the EKS/CKS/URTSS to be slower
than the GP-RTSS (with 250 training points) by a factor of two.

The increasing use of GPs for model learning in robotics and
control will eventually require principled smoothing methods for GP
dynamic systems. To our best knowledge, the proposed GP-RTSS is
the most principled GP-smoother since all computations can be per-
formed analytically without function linearization or sigma/cubature
point representation of densities, while exactly integrating out the
model uncertainty induced by the GP distribution.

Matlab code is publicly available at http://mloss.org.

REFERENCES

[1] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Dover
Publications, 2005.

[2] K. J. Åström, Introduction to Stochastic Control Theory. Dover
Publications, Inc., 2006.

[3] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, 2005.

[4] S. T. Roweis and Z. Ghahramani, Kalman Filtering and Neural Net-
works. Wiley, 2001, ch. Learning Nonlinear Dynamical Systems using
the EM Algorithm, pp. 175–220.

[5] R. E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Transactions of the ASME—Journal of Basic Engineering,
vol. 82, pp. 35–45, 1960.

[6] H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum Likelihood
Estimates of Linear Dynamical Systems,” AIAA Journal, vol. 3, pp.
1445–1450, 1965.

[7] S. Roweis and Z. Ghahramani, “A Unifying Review of Linear Gaussian
Models,” Neural Computation, vol. 11, no. 2, pp. 305–345, 1999.

[8] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor Graphs and
the Sum-Product Algorithm,” IEEE Transactions on Information Theory,
vol. 47, pp. 498–519, 2001.

[9] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[10] P. S. Maybeck, Stochastic Models, Estimation, and Control. Academic
Press, Inc., 1979, vol. 141.

[11] S. J. Julier and J. K. Uhlmann, “Unscented Filtering and Nonlinear
Estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[12] J. Ko and D. Fox, “GP-BayesFilters: Bayesian Filtering using Gaus-
sian Process Prediction and Observation Models,” Autonomous Robots,
vol. 27, no. 1, pp. 75–90, 2009.

[13] M. P. Deisenroth, M. F. Huber, and U. D. Hanebeck, “Analytic Moment-
based Gaussian Process Filtering,” in International Conference on Ma-
chine Learning, 2009, pp. 225–232.

[14] U. D. Hanebeck, “Optimal Filtering of Nonlinear Systems Based on
Pseudo Gaussian Densities,” in Symposium on System Identification,
2003, pp. 331–336.

[15] I. Arasaratnam and S. Haykin, “Cubature Kalman Filters,” IEEE Trans-
actions on Automatic Control, vol. 54, no. 6, pp. 1254–1269, 2009.

[16] S. Särkkä, “Unscented Rauch-Tung-Striebel Smoother,” IEEE Transac-
tions on Automatic Control, vol. 53, no. 3, pp. 845–849, 2008.

[17] S. J. Godsill, A. Doucet, and M. West, “Monte Carlo Smoothing for
Nonlinear Time Series,” Journal of the American Statistical Association,
vol. 99, no. 465, pp. 438–449, 2004.

[18] G. Kitagawa, “Monte Carlo Filter and Smoother for Non-Gaussian Non-
linear State Space Models,” Journal of Computational and Graphical
Statistics, vol. 5, no. 1, pp. 1–25, 1996.

[19] M. P. Deisenroth and H. Ohlsson, “A General Perspective on Gaussian
Filtering and Smoothing: Explaining Current and Deriving New Algo-
rithms,” in American Control Conference, 2011.

[20] D. J. C. MacKay, “Introduction to Gaussian Processes,” in Neural
Networks and Machine Learning. Springer, 1998, vol. 168, pp. 133–
165.

[21] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. The MIT Press, 2006.

[22] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Local Gaussian Process
Regression for Real Time Online Model Learning,” in Advances in
Neural Information Processing Systems, 2009, pp. 1193–1200.

[23] R. Murray-Smith, D. Sbarbaro, C. E. Rasmussen, and A. Girard,
“Adaptive, Cautious, Predictive Control with Gaussian Process Priors,”
in Symposium on System Identification, 2003.

[24] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and B. Likar, “Predictive
Control with Gaussian Process Models,” in IEEE Region 8 Eurocon
2003: Computer as a Tool, 2003, pp. 352–356.

[25] M. P. Deisenroth, C. E. Rasmussen, and D. Fox, “Learning to Control
a Low-Cost Manipulator using Data-Efficient Reinforcement Learning,”
in Robotics: Science & Systems, 2011.

[26] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A Model-Based and

7

Data-Efficient Approach to Policy Search,” in International Conference
on Machine Learning, 2011.

[27] C. G. Atkeson and J. C. Santamarı́a, “A Comparison of Direct and
Model-Based Reinforcement Learning,” in International Conference on
Robotics and Automation, 1997.

[28] J. Kern, “Bayesian Process-Convolution Approaches to Specifying Spa-
tial Dependence Structure,” Ph.D. dissertation, Institue of Statistics and
Decision Sciences, Duke University, 2000.

[29] J. Quiñonero-Candela, A. Girard, J. Larsen, and C. E. Rasmussen,

“Propagation of Uncertainty in Bayesian Kernel Models—Application
to Multiple-Step Ahead Forecasting,” in International Conference on
Acoustics, Speech and Signal Processing, 2003, pp. 701–704.

[30] M. P. Deisenroth, Efficient Reinforcement Learning using Gaussian
Processes. KIT Scientific Publishing, 2010, vol. 9.

[31] A. Doucet, S. J. Godsill, and C. Andrieu, “On Sequential Monte Carlo
Sampling Methods for Bayesian Filtering,” Statistics and Computing,
vol. 10, pp. 197–208, 2000.

