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In smart city applications, huge numbers of devices need to be connected in an autonomous manner. 3rd Generation Partnership
Project (3GPP) specifies that Machine Type Communication (MTC) should be used to handle data transmission among a large
number of devices. However, the data transmission rates are highly variable, and this brings about a congestion problem. To tackle
this problem, the use of Access Class Barring (ACB) is recommended to restrict the number of access attempts allowed in data
transmission by utilizing strategic parameters. In this paper, we model the problem of determining the strategic parameters with a
reinforcement learning algorithm. In our model, the system evolves to minimize both the collision rate and the access delay. The
experimental results show that our scheme improves system performance in terms of the access success rate, the failure rate, the
collision rate, and the access delay.

1. Introduction

In smart city applications, many smart and mobile devices
connect with one another and operate in an adaptivemanner.
The devices generate relevant city data in bursts and in
unexpected manners on a massive scale. Because Long Term
Evolution-Advanced (LTE-A) cellular networks provide wide
coverage and low latency, LTE-A is considered to be one of
themost promising communication infrastructures for smart
city applications. However, radio resources in this communi-
cation infrastructure are too limited to serve a large amount
of data. 3rd Generation Partnership Project (3GPP) specifies
that Machine Type Communication (MTC) should be used
to handle the congestion problem caused by small amounts
of data being transmitted from a large number of devices
within a short period of time [1–3]. MTC traffic includes
periodic-update traffic and event-driven traffic. Event-driven
triggering brings about bursts and unpredictable traffic flows,
and these add to the congestion problem [4].

When a device has data to send, it needs to synchronize
with a base station, that is, Evolved Node B (eNB), and to

reserve a Random Access Channel (RACH). The RACH is
a sequence of physical radio resources (RA slots). To do
this, a device follows a four-step random access procedure
[5, 6]. First, a device with data to send selects a random
access preamble randomly as a digital signature from a
predefined set of preambles and sends the preamble to eNB.
Then, eNB responds with a Random Access Response (RAR)
message to synchronize subsequent uplink transmission.
However, if multiple devices send the same preamble in
the same RA slot at the first step, a collision occurs, and
they will receive the same RAR message. After receiving the
RAR message, a device sends a connection request message
along with a scheduling request. Finally, eNB acknowledges
the connection request message. If a device receives the
acknowledgement message successfully, it proceeds to data
transmission. If a device encounters a preamble collision,
it does not receive the message from eNB and will initiate
a new RA procedure after a fixed backoff time. When the
number of unsuccessful attempts of a device reaches the
predefined maximum value (Maximum Number of Preamble
Transmission [1]), the device finally fails the RA process.
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As the number of devices attempting random access
in the same RA slot increases, the numbers of preamble
collisions and access delays increase as well. The access delay
is the time between the generation of access request and the
completion of the random access procedure. As a result of
such a delay, the congestion becomes heavy. 3GPP specifies
the use of the Access Class Barring (ACB) scheme to tackle
the congestion problem [7]. ACB is a well-known scheme
that restricts RA attempts. ACB operates on two strategic
parameters: the barring factor and the barring duration.
Based on the current congestion status, eNB regulates the
RA attempts of MTC devices using these two parameters.
Thus, the control of the parameters is vital in protecting the
system from the excessive connectivity of a large number of
devices. However, 3GPP does not specify how to control the
parameters dynamically.

In this paper, we model the problem of determining ACB
parameter values by using a reinforcement learning algo-
rithm. This algorithm is able to follow unexpected changes
and traffic bursts rapidly. Through the learning algorithm,
we propose a scheme for dynamically and autonomously
controlling the parameters. The experimental results show
that the use of our scheme is sufficient to resolve the
congestion problem in terms of access success rate, failure
rate, collision rate, and access delay.

The rest of the paper is organized as follows. In Section 2,
we discuss related studies. In Section 3, we propose an access
management scheme that uses a reinforcement learning
algorithm. In Sections 4 and 5, we evaluate the performance
of our scheme and conclude the paper with our plans for
future research.

2. Related Work

Several proposals for tackling the RA congestion problem
are discussed. In ACB [7], eNB broadcasts the barring factor
(0 ≤ 𝑝 ≤ 1) and barring duration to its cell based on the
current congestion level. A device with data to send generates
a random number (0 ≤ 𝑞 ≤ 1). If 𝑞 ≤ 𝑝, the device gets
permission to access RACH. Otherwise, the RA attempt is
barred for the barring duration. However, there is tradeoff
with respect to barring factor𝑝. If severe congestion occurs in
a cell, eNB sets 𝑝 to an extremely low value and most devices
are barred. This results in an unacceptable access delay. On
the other hand, if eNB sets 𝑝 to an extremely high value, most
of the preambles encounter collisions. This results in unac-
ceptable data transmission failure. Thus, the barring factor is
an important factor in determining system performance.

3GPP specifies the use of Extended ACB (EAB) as well
as ACB. In EAB [8], devices are grouped into a set of ACs
(Access Classes). eNB broadcasts a barring bitmap for the
ACs periodically. A device with data to send compares its AC
with the bitmap. If the bit that corresponds to the AC of the
device is set, the device is barred from transmitting data until
the bit changes. In this case, the scheduling policy among the
ACs is a factor determining system performance. In current
cellular networks, eNB alone determines the ACB barring
factor to stabilize each cell. In [9], a cooperative mechanism
is proposed to control congestion globally over multiple cells.

The barring factor of each eNB is decided cooperatively
among all eNBs. This is done for global stabilization and for
access load sharing.

In order to maintain a high service quality for HTC
(Human Type Communication), 3GPP specifies the use of
two different schemes: the MTC specific backoff scheme and
the separate RA resources scheme [10]. In the MTC specific
backoff scheme, a dedicated backoff parameter is set for the
MTC devices. The backoff scheme discourages the devices to
attempt randomaccess for certain duration of time.The back-
off value forHTCdevices is shorter than it is forMTCdevices.
In the separate RA resources scheme, RA slots are allocated
to HTC and MTC devices separately. Both of the schemes
focus on reducing the impact of RACH congestion on HTC
devices. Thus, MTC devices may experience serious conges-
tion because the amount of resources available is reduced.

In addition to the solutions specified by 3GPP, various
other congestion solutions are proposed. In [11], a congestion-
aware admission control scheme is proposed. It rejects RA
requests from MTC devices selectively according to the
congestion level, which is directly induced from the incoming
packet processing delay at the application layer. In [12],
RACH resources are preallocated to different MTC classes
using class-dependent backoff procedures to prevent a large
number of simultaneous RACH access attempts. Dynamic
access barring according to the traffic load level is pro-
posed for collision avoidance. Under this barring, the access
attempts of devices transmitting for the first time are delayed.

3. Proposed Scheme

To tackle the congestion problem, we adopt Q-learning (QL)
algorithm. The algorithm utilizes a form of reinforcement
learning to solve Markovian decision problems without
possessing complete information [13, 14]. Because QL finds
solutions through the experience of interacting with an
environment, we use it to model the ACB barring factor [15].
In other words, we control the ACB barring factor adaptively
with QL.

Let 𝑆 denote a finite set of possible environment states
and let𝐴 denote a finite set of admissible actions to be taken.
At RA slot 𝑡, eNB perceives the current state 𝑠𝑡 = 𝑠 ∈ 𝑆 of
the environment and takes an action 𝑎𝑡 = 𝑎 ∈ 𝐴 based on
both the perceived state and its past experience. The action
𝑎𝑡 changes the environmental state from 𝑠𝑡 to 𝑠𝑡+1 = 𝑠󸀠 ∈ 𝑆.
When that happens, the system receives the reward 𝑟𝑡.

The goal of the QL algorithm is to find an optimal policy
for state 𝑠 that optimizes the rewards over the long run. The
algorithm estimates the 𝑄-value 𝑄(𝑠, 𝑎) as the cumulative
discounted reward. Using the 𝑄-values, the algorithm finds
the optimal𝑄-value𝑄∗(𝑠, 𝑎) in a greedymanner.The𝑄-value
is updated as

𝑄 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛼 ⋅ Δ𝑄 (𝑠, 𝑎) , (1)
where 𝛼 (0 ≤ 𝛼 ≤ 1) is the learning rate. When 𝛼 is 0, the 𝑄-
value is not updated. When 𝛼 is a high value, learning occurs
quickly, as in

Δ𝑄 (𝑠, 𝑎) = {𝑟 + 𝛾 ⋅ max
𝑎󸀠∈𝐴

𝑄(𝑠󸀠, 𝑎󸀠)} − 𝑄 (𝑠, 𝑎) , (2)
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Figure 1: A performance comparison for various number of admissible actions.

where 𝛾 (0 ≤ 𝛾 ≤ 1) is the discount factor that weighs
immediate rewards more heavily than future rewards.

In this paper, we model a QL algorithm to control the
barring factor in order to minimize both the number of
RACH collisions and the access delay. A collision occurs
when two or more devices transmit the same preamble in
the same time slot. We define a set of possible states, a set
of admissible actions, and the rewards. First, we define the
access success rate 𝑅succ

𝑡 (0 ≤ 𝑅succ
𝑡 ≤ 1) as a set with

states 𝑆. The access success rate is defined as the number of
devices that successfully access RACHdivided by the number
of devices contending in a given RA slot. 𝑅succ

𝑡 is divided
evenly into |𝑆| states. Each state 𝑠 has three possible actions:
increasing or decreasing the 𝑝 value by 𝛿𝑖 ∈ Δ or maintaining
the current 𝑝 value. The Δ indicates a finite set of unit values
for𝑝. To balance the exploration and exploitation of learning,
an 𝜖-greedy method [16] is applied to our QL algorithm. In
other words, we can select a random action with probability 𝜖
or we can select an action with probability 1 − 𝜖 that gives an
optimal 𝑄(𝑠, 𝑎) in the state 𝑠. We define the reward in order

to minimize the collision rate (𝑅col
𝑡 , 0 < 𝑅col

𝑡 < 1) and the
access delay (delay𝑡, 0 < delay𝑡 < delaymax). 𝑅col

𝑡 represents
the number of colliding devices divided by the number of
contending devices. The reward given when action 𝑎 is taken
at state 𝑠 in RA slot 𝑡 is

𝑟𝑡 (𝑠, 𝑎) = 𝜔 ⋅ 1
𝑅col
𝑡

+ (1 − 𝜔) delaymax
delay𝑡

, (3)

where delaymax is the maximum access delay that the system
allows and 𝜔 is a smoothing factor (0 ≤ 𝜔 ≤ 1).
4. Performance Analysis

In this paper, we extend the work of our previous study
[15] and evaluate the performance of our access management
scheme in terms of access success rate, collision rate, failure
rate, and access delay.

We adopted the traffic model for a smart metering
application as an experimental scenario in which a large
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Figure 2: A performance comparison for various values of 𝜔.

number of devices access RACHs in a highly synchronized
manner [1]. Smart metering is one of smart city applications.
In themodel, the housing density of an urban area of London
located within a single cell was used as the density of meters.
We set the number of meters 𝑁 to 35,670. Each meter
requested one data transmission for reading frequency 𝑇. We
set the reading frequency to 5min. 3GPPdefines two different
traffic models for smart metering applications. We adopted
a Beta distribution based model for our experiments. The
number of meters that start the RA procedure in the 𝑡th RA
slot is defined as

𝑛𝑡 = 𝑁∫𝑡+1
𝑡

𝑝 (𝑡) 𝑑𝑡, (4)

where 𝑝(𝑡) follows the Beta distribution. The 𝑝(𝑡) is defined
as

𝑝 (𝑡) = 𝑡𝛼 ⋅ (𝑇 − 𝑡)(𝛽−1)
𝑇𝛼+𝛽−1 ⋅ Beta (𝛼, 𝛽) , (5)

where Beta(𝛼, 𝛽) is the Beta function with 𝛼 = 3 and 𝛽 = 4.

In our QL model, we divided 𝑅succ
𝑡 evenly into 4 states: 𝑠1

for 0 ≤ 𝑅succ
𝑡 < 0.25, 𝑠2 for 0.25 ≤ 𝑅succ

𝑡 < 0.5, 𝑠3 for 0.5 ≤
𝑅succ
𝑡 < 0.75, and 𝑠4 for 0.75 ≤ 𝑅succ

𝑡 ≤ 1. delaymax was set
to the size of an RA slot multiplied by theMaximum Number
of Preamble Transmissions. We set the learning rate 𝛼 in (1)
to 0.9. For the 𝜖-greedy method, we set 𝜖 to 0.01. The basic
RACH capacity parameters for LTE FDD networks followed
[1].

Our scheme was trained using five different datasets.
Each dataset included four training sets and one test set.
The training sets contained the RA requests generated by
the meters in a series of four reading frequencies. After the
training, we measured the performance metrics of the test
set. In the figures, the plotted values indicate the averages of
values measured from the five datasets.

Figure 1 shows the scheme’s performance with respect
to various numbers of admissible actions. We defined the
set elements Δ = {𝛿1 = 0.2, 𝛿2 = 0.1} as operators to
be used in actions. We used only 𝛿1 when there were three
admissible actions: increasing 𝑝 by 𝛿1, decreasing 𝑝 by 𝛿1,
and maintaining the current value of 𝑝. We used both 𝛿1
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Figure 3: A performance comparison for various values of 𝛾.

and 𝛿2 when there were five admissible actions: increasing 𝑝
by 𝛿1 or 𝛿2, decreasing 𝑝 by 𝛿1 or 𝛿2, and maintaining the
current value of 𝑝. For the reward in (3), we set 𝜔 to 0.5
and we set the discount factor 𝛾 in (2) to 0.5. For the access
success rate, the failure rate, and the access delay, the scheme
with three admissible actions showed about 78%, 25%, and
26% better performances, respectively, than the scheme with
five admissible actions did. The failure rate was calculated
by taking the number of devices that ultimately failed RA
attempts because the preamble transmission counter had
reached Maximum Number of Preamble Transmission and
dividing it by the number of contending devices. The scheme
with three admissible actions showed a collision rate of about
4 times that of the scheme with five admissible actions. The
performance with respect to various numbers of admissible
actions is mainly influenced by the granularity of 𝛿. When
the granularity is properly coarse (e.g., 𝛿 = 0.2), the barring
factor swiftly copes with the variance of the number ofmeters
trying to access RACH. However, when the granularity
is too fine (e.g., 𝛿 = 0.1), the barring factor does not

promptly respond to the variance of RA requests. The issue
to determine the level of granularity is still open.

Figure 2 shows the scheme’s performance with respect to
various values of 𝜔, which influenced the rewards, as shown
in (3). We considered three admissible actions involving 𝛿1
with 𝛾 = 0.5. For the access success and failure rates, the
scheme with 𝜔 = 0.5 showed about 30% and 16% better
performances than those of the scheme with 𝜔 = 0.3.
Moreover, the scheme with 𝜔 = 0.5 showed about 3 times
and 35% better performance than the scheme with 𝜔 = 0.7
did. For collision rate, the scheme with 𝜔 = 0.7 showed about
11 times and 24 times better performances than those with
𝜔 = 0.3 and 𝜔 = 0.5, respectively. This is because the rewards
added more weight to the collision rate when 𝜔 = 0.7. For
access delay, the scheme with 𝜔 = 0.5 showed about 25%
and 73% better performances than those of the schemes with
𝜔 = 0.3 and 𝜔 = 0.7, respectively. In these cases, the rewards
added weight to access delay, and the scheme with 𝜔 =
0.3 showed about 38% better performance than that of the
schemewith𝜔 = 0.7. As shown in the figure, the performance
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Figure 4: A performance comparison with the original ACB.

is significantly influenced by 𝜔. When the weight is more
added to the collision rate, the collision rate is improved.
When the weight is more added to access delay, the access
delay is improved.Themechanism to dynamically control the
smoothing factor needs to improve the performance and we
leave it for our future research.

Figure 3 shows the scheme’s performance with respect to
various values for the discount factor 𝛾 in (2). We used three
admissible actions involving 𝛿1 with 𝜔 = 0.5. When 𝛾 was
low, weight was added to quicker rewards. For the success
rate, failure rate, and access delay, the scheme with 𝛾 = 0.5
showed about 37%, 22%, and 25% better performances than
the scheme with 𝛾 = 0.3 did. Compared to the scheme with
𝛾 = 0.7, the scheme with 𝛾 = 0.5 showed about 26%, 17%,
and 22% better performances, respectively. For collision rate,
the scheme with 𝛾 = 0.3 showed about 88% and 68% better
performances than those of the schemes with 𝛾 = 0.5 and
𝛾 = 0.7, respectively.

To evaluate the scheme’s performance, we compared our
scheme to the original ACB [7]. In the original ACB, when

congestion is detected, eNB regulates meters’ RA attempts by
setting the barring factor to 0.1. For our scheme,we used three
admissible actions involving 𝛿1 with 𝜔 = 0.5 and 𝛾 = 0.5. In
Figure 4, our scheme shows a success rate of about 5 times
better than that of the original ACB. In terms of the failure
rate and access delay, our scheme showed about 70% and
50% better performances, respectively. For collision rate, the
original ACB showed a very low value compared to that of
our scheme. In the ACB, because most meters have restricted
access to RACH and the competition for channel resources is
reduced, the success and collision rates decrease, but both the
failure rate and the access delay increase.

5. Conclusion

To tackle the RA congestion problem of MTC in LTE-A
networks, we modelled the ACB barring factor decision
problem using a Q-learning algorithm. The algorithm was
able to follow unexpected and burst traffic changes rapidly.
The goals of our model were minimizing both the RACH
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collision rate and the access delay. To meet these goals, we
defined sets of possible states and of admissible actions by
using both the access success rate and the unit values to
change the barring factor. To evaluate the performance of
our scheme, we adopted the traffic model for smart metering
applications. The results show that our scheme improves
system performance in terms of the access success rate, the
failure rate, the collision rate, and the access delay.
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