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Aiming at the accuracy of estimation of vehicle’s mass center sideslip angle, an estimation method of slip angle based on general
regression neural network (GRNN) and driver-vehicle closed-loop system has been proposed: regarding vehicle’s sideslip angle as
time series mapping of yaw speed and lateral acceleration; using homogeneous design project to optimize the training samples;
building the mapping relationship among sideslip angle, yaw speed, and lateral acceleration; at the same time, using experimental
method to measure vehicle’s sideslip angle to verify validity of this method. Estimation results of neural network and real vehicle
experiment show the same changing tendency. The mean of error is within 10% of test result’s amplitude. Results show GRNN can
estimate vehicle’s sideslip angle correctly. It can offer a reference to the application of vehicle’s stability control system on vehicle’s
state estimation.

1. Introduction

Electronic stability program (ESP) which includes antilock
brake system (ABS), traction control system (TCS), and
active yaw control system (AYC) can improve vehicle’s
maneuverability in the extreme driving situation. The
improvement of vehicle’s control ability depends on the
accuracy estimation of vehicle’s kinematics states. Vehicle’s
mass center sideslip angle is an important index of vehicle’s
stability. It is difficult to observe sideslip angle preciously
and timely according to ESP sensor signals [1, 2]. Now, the
commonmethods include fuzzy logic estimationmethod [3],
Kalman filter method [4, 5], state observer method (based
on lateral speed observation) [6], and synthetic method
(combination of integration method and state observation)
[7, 8]. The above methods are mainly based on the vehicle
model. The observation accuracy and real-time depend on
the complexity of model.

The neural network technology is used to estimate vehi-
cle’s sideslip angle in this paper. Yaw angle acceleration and
lateral acceleration are used to estimate vehicle body’s sideslip
angle based on back propagation (BP) neural network in the
literature [9], and the satisfactory result is attained. However,

BP neural network has disadvantages of slowly convergence
speed and local minimum value. But radial basis function
(RBF) neural network is a kind of feed forward neural
network with high performance. It needs less calculation
and has better efficient learning speed. It also has a stronger
ability of parameter approximation and classification than
BP neural network. GRNN is a special form of radial basis
function neural network [10, 11]. Its abilities of approximate
function and learning are very strong.Thus this special radial
basis function neural network could be used in this paper to
estimate the vehicle sideslip angle.

2. Driver-Vehicle Closed-Loop Model

2.1. Vehicle Model. In the model, the vehicle travels at a
constant speed 𝑢; the inertia and damping of the steering
system, the effect of suspension, the cornering property
change of left and right tires due to different vertical loads,
and the influence of tire aligning torque are all ignored. As
shown in Figure 1, two generalized coordinates, yawing angle
𝜓 and centroid sideslip angle 𝛽, are utilized to represent the
vehicle’s motion state.
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Figure 1: 2DOF vehicle model.

According to D’Alembert principle, the force equilibrium
equations of the vehicle’s motion are as follows:

𝑀𝑢(𝜔
𝑟
+

̇
𝛽) = − (𝑃

𝑦1
+ 𝑃
𝑦2
) ,

𝐼
𝑍
�̇�
𝑟
= −𝑎𝑃

𝑦1
+ 𝑏𝑃
𝑦2
,

(1)

where 𝐼
𝑍
is rotational inertia of the vehicle around 𝑧-axis

and 𝑃
𝑦1
, 𝑃
𝑦2

are cornering force of front and rear wheels,
respectively.

2.2. Driver Model. According to the “preview optimal curva-
ture control theory,” the driver-vehicle system block can be
presented as shown in Figure 2, where 𝑓(𝑠) is the road input,
𝑦(𝑠) is the lateral displacement response, 𝑉(𝑠) is the vehicle’s
transfer function, 𝑇 is the driver’s preview time, 𝑇

𝐶
is the

correction time, 𝑇
𝑑
is the neural lag time, 𝑇

ℎ
is the operation

lag time,𝐶
0
is the correction parameter, �̈�∗ is the ideal lateral

acceleration, 𝛿∗sw is the ideal steering-wheel angle, and 𝛿sw is
actual steering-wheel angle.

2.3. Closed-Loop Model. The state equation of driver-vehicle
2 DOF closed-loop model will be obtained after vehicle’s
model and driver model are confirmed:
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The output equation is as follows:
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where 𝑓
𝑟

= 𝑓(𝑡 + 𝑇) + 𝑇
𝑐

̇
𝑓(𝑡 + 𝑇), 𝑟 is vehicle’s yaw angle

acceleration, 𝛽 is sideslip angle of mass center, V
𝑎
is vehicle’s

lateral acceleration, 𝑆
1
and 𝑆

2
are lateral force coefficient

of front and back wheel, respectively, and 𝑥
1
, 𝑥
2
are state

variables of vehicle’s model.

3. Road Model

Double lane and serpentine lines are typical roadmodels that
are commonly used in vehicle handling stability evaluation.
To simulate vehicle state estimation, double lane and serpen-
tine lines are used as the ideal road input.Meanwhile, the road
trace takes the actual road centerline trajectory.

3.1. Double Lane Road Input Model. Double lane road test
model dimensions are shown in Figure 3. The actual road
segment size parameters in Figure 4 are 𝑠

0
= 𝑠
1

= 𝑠
2

=

𝑠
4

= 2𝑢, 𝑠
3

= 𝑢, 𝑠
5

= 5𝑢, and 𝑠
6

= 3𝑢, where 𝑢 is the
car’s driving speed, and the changing lanes distance width𝐵 =
3.5m (assumed to be a standard motor vehicle lane width).

Take the centerline of the test road for the ideal way
trajectory to track in the driver mind. Because the way in
the corner points has a mutation, the car’s actual travel path
cannot have a mutation, so smooth handling is conducted in
the mutation department to make the road close to the ideal
trajectory.Themost simple and effective treatment is carrying
out third-order curve to fit to this polyline, so after fitting the
road functions and a derivative at break point are continuous.
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Figure 4: A double shift line graphafter the third-order curve fit.

The ideal path input after third-order curve fit is shown in
Figure 4.

The abscissa 𝑥 is the longitudinal displacement of the car,
and the ordinate 𝑦 is the lateral displacement of the car.

The third-order curve expression after fitting is
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where parameters are as follows:
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Longitudinal displacement of the car can be obtained by
𝑥 = 𝑢𝑡, and the function𝑓(𝑥) in formula (4) can be converted
into a function of time 𝑓(𝑡). The specific expressions are
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where 𝑔
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(𝑗 = 1, 2, 3).

3.2. Serpentine Road InputModel. Serpentine test roadmodel
dimensions are shown in Figure 5.

The actual road segment size parameters in Figure 5 are
𝑠
0
= 𝐿 = 2𝑢, 5𝐿 = 10𝑢, and 𝑠 = 3𝑢. 𝑢 is vehicle speed; pole

width 𝐵 = 2.46m (the width of the text is designed according
to the car models in the test).
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The ideal tracking trajectory by an actual driver will be
shown in Figure 6. After a cubic fitting the road, the third-
order curve with continuous derivative is as follows.

The serpentine road function of time after fitting is as
follows (a similar derivation with double lane, so we will not
repeat them but only give results):
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where𝐻 = 𝐵/2.

4. Generalized Regression
Neural Network Structure

Generalized regression neural network (GRNN) is a special
form of the RBF neural network. GRNN has a good perfor-
mance in function approximation and learning ability. So it
can be used in this paper. Its topological structure is shown
in Figure 7.

The neurons of first layer in GRNN have the same
function of the RBF.The difference between GRNN and RBF
is the special linear layer. The output of radial basis layer
in GRNN computes with weight matrices LW

2,1
by using

“nprod” calculationmethod which does not compute in RBF.
Then the result is sent to linear transfer function. The above
process could be accomplished with neural network toolbox
in MATLAB.

The number of radial basis and special linear neurons in
GRNN is the same as the input sample vector. The weight
matrix LW

2,1
is set as output vector [𝑇]. So, if the input of

real network is 1, the objective output is much closer to the
network output vector [𝑇]. Therefore, the ability of function

approximation of GRNN is better than basic radial basis
neural network in general problems.

5. Sideslip Angle Neural
Network Estimation Model

The neural network model of vehicle sideslip angle is based
on the following assumption. The vehicle sideslip angle can
be expressed as function of yaw rate and lateral acceleration
[12]:

𝛽 (𝑘 + 1) = 𝑓 (𝜔
𝑟
(𝑘) , 𝜔

𝑟
(𝑘 − 1) , . . . , 𝜔

𝑟
(𝑘 − 𝑛) , 𝑎

𝑦
(𝑘) ,

𝑎
𝑦
(𝑘 − 1) , . . . , 𝑎

𝑦
(𝑘 − 𝑛)) .

(8)

Sideslip angle 𝛽 of mass center at current 𝑘+ 1 time is the
time series functionwhich is composed of the yaw rate𝜔

𝑟
and

lateral acceleration 𝑎
𝑦
in previous 𝑛 + 1moments. Then their

mapping relationship is established by using neural networks.
The 𝑛 decides the scale of neural networks. The study finds
that 𝑛 = 4 will be suitable by considering both computing
time and estimation precision.

Nervous response lag time 𝑇
𝑑
, control response lag time

𝑇
ℎ
, and preview time 𝑇 are parameters of describing driver’s

proficiency degree. Due to the differences among drivers,
𝑇
𝑑
, 𝑇
ℎ
, and 𝑇 have ranges [𝑇

𝑑
, 𝑇
𝑑
], [𝑇
ℎ
, 𝑇
ℎ
], and [𝑇, 𝑇]. By

combining different values of three parameters within their
ranges of variation to simulate different drivers driving the
same car, multisamples are obtained to train networks.

In the theory, as long as training samples are enough
and representative, neural networks can reveal the arbitrarily
complex law which is contained in it. The efficient uniform
design method is used to select the training samplesin this
paper. In this way, not only does the number of training
samples significantly reduces, but also each training sample
is more representative. The uniform design table 𝑈

15
(15
8

)

which is 8 factors, 15 standards, and 15 times experiments is
selected to simulate experiment design (as shown in Tables 1
and 2).

6. Comparison between
Estimates and Experimental Values

The real vehicle tests of double lane and serpentine line have
been done. Gyroscope is used to collect vehicle’s yaw rate and
lateral acceleration in real time. Contactless speed sensor is
used to obtain vehicle’s sideslip angle. The test road is set
according to double lane and serpentine line test procedures
ISO/3888 technical reports. Experienced driver drives the
tested vehicle to simulate driver parameters. Speed of double
lane test is 𝑢 = 80 km/h and serpentine line is 𝑢 = 65 km/h.
During the test period vehicle cannot touch benchmarks.

6.1. Double Lane. The measured data of yaw rate and lateral
acceleration during double lane vehicle test are shown in
Figures 8 and 9. The measured data in Figures 8 and 9 are
input to the trained GRNN sideslip angle estimation model.
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Table 1: 𝑈
15
(15
8

) uniform design table.

Test Column
1 2 3 4 5 6 7 8

1 1 2 4 7 8 11 12 14
2 2 4 8 14 1 7 11 13
3 3 6 12 6 9 3 9 12
4 4 8 1 13 2 14 7 11
5 5 10 5 5 10 10 5 10
6 6 12 9 12 3 6 3 9
7 7 14 13 4 11 2 1 8
8 8 1 2 11 4 13 14 7
9 9 3 6 3 12 9 12 6
10 10 5 10 10 5 5 10 5
11 11 7 14 2 13 1 8 4
12 12 9 3 9 6 12 6 3
13 13 11 7 1 14 8 4 2
14 14 13 11 8 7 4 2 1
15 15 15 15 15 15 15 15 15

Table 2: 𝑈
15
(15
8

) use table.

Factors Number of columns
2 1 6
3 1 3 4
4 1 3 4 7
5 1 2 3 4 7
6 1 2 3 4 6 8
7 1 2 3 4 6 7 8
8 1 2 3 4 6 6 7 8

Vehicle sideslip angle estimation curve 𝛽net is obtained. 𝛽real
is obtained by experiment in Figure 10.

The trend of estimation values and test values match well
from Figure 10. The error is under an allowable range of
engineering application. The absolute error between 𝛽net and
𝛽real is small form Figure 11.
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Figure 9: Vehicle lateral acceleration (double lane).

6.2. Serpentine Line. The measured data of yaw rate and
lateral acceleration during serpentine line vehicle test are
shown in Figures 12 and 13.

The measured data in Figures 12 and 13 is input to
the trained GRNN sideslip angle estimation model. Vehicle
sideslip angle estimation curve 𝛽net is obtained. 𝛽real is
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Table 3: Error of neural network side angle estimation method.

Error indicator Double lane Serpentine line
Error mean 0.029453∘ 0.037653∘

Error standard deviation 0.042356∘ 0.049782∘

obtained by experiment in Figure 14, but estimation error of
sideslip angle is larger in the relatively complicated serpentine
line test from Figure 15.

In order to compare the two estimation methods quan-
titatively, absolute error of sideslip angle of neural networks
estimation method and test method is given in Table 3.

Therefore, the vehicle sideslip angle estimation using
GRNN method is simple, clear, and of high precision.
The uniform design method greatly reduces the number of
simulation, so the response time of the method is faster as
well.

7. Conclusions

The estimation method of mass center sideslip angle based
onGRNN and drive-vehicle closed-loop system are proposed
in this paper. Vehicle sideslip angle is seen as the mapping
of time series which is easily measured variables between
yaw rate and lateral acceleration. The training samples are
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Figure 13: Vehicle lateral acceleration (serpentine line).

provided by using the efficient uniform design method.
The trained GRNN has a high precision and fast response
to estimate vehicle sideslip angle. The results show that
GRNN has a high estimation precision and fast speed by
comparing the estimation with experimental values. The
main conclusions are as follows:

(1) In the vehicle side angle estimation test environment,
the estimation speed of neural networks is close to real
vehicle test data.

(2) Whether it is double lane or serpentine line condition,
the estimation accuracy is high and the mean error is
within 10% of the test amplitude.

(3) Due to the relatively high path complexity degree,
the estimation error of serpentine line is bigger than
double lane.

(4) Because of the high estimation accuracy and fast
response speed, the neural network sideslip angle esti-
mation method has a certain theoretical significance
for vehicle dynamics control systemdesign. It also can
reduce vehicle’s sideslip angle test cost and achieve
the purpose of measuring flexibility in engineering
application domain.
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Figure 14: Comparison result (serpentine line).
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Figure 15: Absolute error (serpentine line).
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