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Abstract

A general paired comparison model for the evaluation of sports compe-
titions is proposed. It efficiently uses the available information by allowing
for ordered response categories and team-specific home advantage effects.
Penalized estimation techniques are used to identify clusters of teams that
share the same ability. The model is extended to include team-specific
explanatory variables. It is shown that regularization techniques allow to
identify the contribution of explanatory variables to the success of teams.
The usefulness of the methods is demonstrated by investigating the perfor-
mance and its dependence on the budget for football teams of the German
Bundesliga.

Keywords: Paired comparison systems, Penalized Estimation, Bradley-Terry
model

1 Introduction

Bayern Munich has been the dominating team in the last season of the German
football league Deutsche Bundesliga. The dominance can be seen from the rank-
ing according to the final points order. In the Bundesliga the winning team gains
3 points, the loosing team receives nothing, and both teams gain 1 point if the
match is drawn. This scheme of distributing points according to the outcome
of the match can be seen as an ad hoc measure of the strengths of teams. But
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it is not without problems. In particular, if a team wins it is irrelevant if the
adversary was a weak or a strong team. In the same way, each team gains one
point in a draw, although, if the difference in strengths is large, the performance
is weak for the stronger team but strong for the weaker team. A more elaborate
way to measure the strength of teams is by considering the strength of a team as
a latent trait and the performance, that is, the observable results, as determined
by the latent traits of both teams. Models of this type have some tradition in
statistics, in particular Bradley-Terry (BT-) models have been used to model
competitions. Proposed by Bradley and Terry (1952), the model has been widely
used to measure underlying strength in sport competitions. Dynamic models
were considered, for example, by Fahrmeir and Tutz (1994), Knorr-Held (2000),
Glickman and Stern (1998), and, more recently, by Cattelan et al. (2013).

In this paper, we analyse the results of the German Bundesliga. We use a
general latent trait model that does not only account for draws but allows for
ordinal response categories that represent the competition results, thereby aiming
at the efficient use of the information in the data. The model also includes an
effect that represents the advantage in playing at home, which can also vary over
teams. Aspects of the model have been already proposed in the literature. Models
that allow for a draw were proposed by Rao and Kupper (1967), Davidson (1970)
and used to model sports tournaments by Cattelan et al. (2013), models that
allow for any number of ordered response categories were proposed by Tutz (1986)
and Agresti (1992). Heterogeneity of the home advantage has been considered
by Kuk (1995), Knorr-Held (2000), and Glickman and Stern (1998), but only
for models with a draw. An approach to find clusters of teams that can not
be distinguished has been proposed by Masarotto and Varin (2012). Here, it is
extended to work in the general model and also to find clusters of teams with the
same home advantage.

In a second step it is investigated how much of the variation in the strengths
of the teams is explained by team-specific covariates. It is especially interesting
how much of the strength of a team is explained by the budget. Is Bayern Munich
the best team because it is the richest club in Germany? For the analysis the
estimated strength parameters are used and a model that includes effects of
covariates is proposed. Estimation is based on penalization methods that allow
to group the abilities of teams. We analyse the German Bundesliga data and
demonstrate that the model with explanatory variables yields useful estimates.

In Section 2 we briefly describe the data. In Section 3 we introduce the general
ordinal model and give results for the Bundesliga. Section 5 is devoted to the
inclusion of team-specific explanatory variables.
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2 German Bundesliga

Before defining latent trait models, which will be quite general for the modelling
of competition results, we briefly describe the system German Bundesliga. The
tournament comprises m = 18 teams, we analyse the matches played in the 50th
season of the Bundesliga from August 24, 2012 to May 18, 2013 . The tournament
structure is that of a double round-robin, each team competes twice against all
the other teams, once on home ground and once away. On average, 42.5% of the
matches were won by the home team, 25.5% of the matches ended with a draw
and 32% of the matches were won by the away team. Table 1 shows the results
ranked according to the final points order.

Points Home Away Ability QSE Rank
FC Bayern München 91 44 47 2.562 0.377 1
Borussia Dortmund 66 33 33 1.361 0.314 2

Bayer 04 Leverkusen 65 39 26 0.983 0.306 3
FC Schalke 04 55 33 22 0.460 0.300 4

Eintracht Frankfurt 51 31 20 0.350 0.300 6
Sport-Club Freiburg 51 28 23 0.409 0.300 5

Hamburger SV 48 26 22 0.023 0.300 11
Borussia Mönchengladbach 47 29 18 0.235 0.300 7

Hannover 96 45 32 13 0.074 0.300 9
1. FC Nürnberg 44 27 17 0.057 0.300 10

VfB Stuttgart 43 19 24 -0.183 0.302 13
VfL Wolfsburg 43 17 26 0.000 0.300 12

1. FSV Mainz 05 42 26 16 0.084 0.300 8
SV Werder Bremen 34 20 14 -0.272 0.303 14

FC Augsburg 33 20 13 -0.562 0.307 16
1899 Hoffenheim 31 19 12 -0.616 0.308 17

Fortuna Düsseldorf 30 21 9 -0.287 0.303 15
SpVgg Greuther Fürth 21 4 17 -0.956 0.315 18

Table 1: Final ranking of the German Bundesliga 2012/2013 including points

in home matches and away matches; the last three columns show the estimated

abilities, quasi standard errors and the ranking corresponding to the estimated

abilities for the ordered model including a home advantage parameter

Two aspects from the final ranking are unique occurences in the history of
the Bundesliga. Bayern Munich was the dominating team for the season and set
several new records. For example, Bayern Munich gained the highest number of
points and victories for a team in one season. For the Spielvereinigung Greuther
Fürth, it was the first participation in the German Bundesliga, they were the
first team without a victory on home ground for a whole season.
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3 Ordered Paired Comparison Model with Home Advantage

In the following, latent trait models are considered. The basic concept is that
winning or loosing is the result of the underlying strengths of teams. While
the strengths are fixed the result of a competition is a random variable. The
models can be used in all competitions where two teams or players compete in
a tournament like tennis, football, and chess. In some sports there is a clear
winner, in others draws can occur. Another feature that depends on the form of
competition is that home effects can occur. In particular, in football playing at
the home ground seems to be advantageous. We will consider a general model
that can account for all these effects.

3.1 The Basic Binary Bradley-Terry Model

Let {a1, . . . , am} denote the set of teams or players that compete. In the simplest
case when a team can only win or loose the relation between the underlying
strengths of the teams and the outcome can be modeled by the Bradley-Terry
model (Bradley and Terry, 1952), which specifies for the probability that ar
dominates as

P (r � s | (ar, as)) =
exp(γr − γs)

1 + exp(γr − γs)
.

The parameters γr, r = 1, . . . ,m, can be interpreted as the strengths of the
teams {a1, . . . , am}. For γr = γs the probability that ar wins against as is 0.5,
for growing distance γr − γs the probability increases accordingly.

With the random variable Yrs = 1 if r � s and Yrs = 0 otherwise one obtains
the logit model

log
P (Yrs = 1)

P (Yrs = 0)
= γr − γs,

where the conditioning on the given pair (ar, as) is suppressed and the dependence
on the teams is contained in the subscript of Yrs. The model in this form is not
identifiable because strengths parameters γr + c for fixed value c yield the same
probabilities. Therefore, a constraint is needed. We choose to fix one parameter,
that is, γm is set to zero. In our case the reference team is Wolfsburg.

3.2 Ordinal Models including the Advantage in Playing at Home

Let now the success of team r in a competition between team r and s be measured
on an ordinal scale represented by Yrs ∈ {1, . . . , k}, for odd k, where low numbers
denote dominance of team r and high numbers dominance of team s. The scale
is assumed to be symmetric regarding the two teams. That means the numbers 1
to k represent categories like ”strong dominance of team r”, ”weak dominance of
team r” ”draw”, ”weak dominance of team s”, ”strong dominance of team s”. In
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the simplest case, where k = 3, the responses are ”team r wins”, ”draw”, ”team
s wins”. But to exploit the information contained in the results of matches one
might also consider the differences in scored goals as indicators of dominance. In
the application we use a difference of at least 2 goals as an indicator for strong
dominance and work with a 5-point scale. A model that allows for ordered
responses is the cumulative type model

P (Yrs ≤ t) = F (ηrst), ηrst = θt + γr − γs, (1)

where F (.) is a symmetric distribution function, which in Bradley-Terry type
models is the logistic distribution function. The linear predictor ηrst contains the
difference in strengths γr − γs and so-called threshold parameters that account
for the frequency of the response categories. The symmetry of the response
categories entails the restrictions θt = −θk−t, t = 1, . . . , [k/2]. That means, in
particular, that for teams with identical strengths, γs = γr, one obtains P (Yrs =
t) = P (Yrs = k + 1 − t). For the most important case k = 3 one obtains
P (Yrs = 1) = P (Yrs = 3), that means that the probability of winning is the
same for both teams. Similar restrictions are needed if the number of response
categories k is even, which is relevant only in competitions that do not allow for
a draw (see Tutz (1986)).

The cumulative model (1) is able to use the information contained in ordered
responses; with more categories better estimates are to be expected. In the
literature alternative models have been proposed. In particular, the adjacent
category models, proposed by Agresti (1992) is an alternative that also uses the
full information in ordinal data. It is an extension of the three category model of
Davidson (1970), which can also be estimated within a log linear model framework
(Dittrich et al., 2004). Further applications of the adjacent categories model are
found in Dittrich et al. (2000), Böckenholt and Dillon (1997a) and Böckenholt
and Dillon (1997b).

Home Effects

When modelling competitions one also has to account for the advantage deriving
from playing at home. Therefore, the linear predictor is extended to

ηrst = α + θt + γr − γs,

where α > 0 represents the home effect. It increases the probability for low
response categories that correspond to the dominance of team r. It is easily
derived that for k = 3 and equal strength, γr = γs, α reflects the proportion of
odds for winning of team r and winning of team s,

α =
1

2
log

P (Yrs = 1)/(1− P (Yrs = 1))

P (Yrs = 3)/(1− P (Yrs = 3)
.
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However, it is questionable that the home effect is the same for each team.
Some teams may profit more from playing at home than others. A team-specific
home effect is obtained by using the predictor

ηrst = αr + θt + γr − γs.
In this general model the γ-parameters do not represent the strengths of teams
per se because performance depends on whether playing at home or not. Again,
for k = 3 and equal strength, γr = γs, the home effect when playing at the home
ground of team r is given by the proportion of odds for winning (of team r)
against loosing

αr =
1

2
log

P (Yrs = 1)/(1− P (Yrs = 1))

P (Yrs = 3)/(1− P (Yrs = 3)
.

But in the general model, the proportion of odds for winning (of team r) against
loosing when playing at the home ground of the second team s are not just the
inverse of the proportion when playing at the home of team r as in the model
with constant home effect.

By defining γ̃r = αr + γr, the predictor obtains the form ηrst = θt + γ̃r − γs.
As in the basic model (1), the result of a match is determined by the difference
of strength, but now it is γ̃r − γs. Therefore, γ̃r represents the strength when
playing at home and γr the strength when not playing at home.

3.3 Fitting the Model

Estimation of the cumulative model can be embedded into the framework of
generalized linear models (GLMs), which were thoroughly investigated by Mc-
Cullagh and Nelder (1989). For data Yrs ∈ {1, . . . , k}, r, s ∈ {1, . . . ,m} the linear
predictor can be written as

ηrst = αr + θt + γr − γs = αr + θt + x
(r,s)
2 γ2 + · · ·+ x(r,s)m γm = αr + θt + (x(r,s))Tγ,

where the components of the (m− 1)-vector x(r,s) are given by

x
(r,s)
j =





1 j = r

−1 j = s

0 otherwise.

Thus, it is a cumulative model with threshold θt, the additional parameter αr

and ”predictor” x(r,s). The predictor can also be given by x(r,s) = 1r − 1s,
where 1r = (0, . . . , 0, 1, 0, . . . , 0) has length m− 1 with 1 at position r. Cumula-
tive models have been considered in particular by McCullagh (1980), estimation
within the framework of multivariate GLMs was considered by Fahrmeir and
Tutz (2001), Tutz (2012). The embedding into this framework allows to use
the familiar goodness-of-fit statistics as well as likelihood ratio statistics to test
hypotheses.
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3.4 Football Data

We first consider the modelling of the football data under the assumption that
the home advantage is global, that is, it does not depend on the team. Then,
one obtains one strength parameter for each team and has not to distinguish
between the strength when playing at home or away. In the following, we try to
use the available information by using a 5-point scale to evaluate the performance
in a competition. The categories refer to ”winning with a difference of at least
two goals”, ”winning with a difference of less than two goals” and ”draw” as the
middle category.

Global Home Effect Model

The estimated home advantage is α̂ = 0.293; for the threshold parameters one
obtains θ̂1 = −θ̂4 = −1.66 and θ̂2 = −θ̂3 = −0.65. If one assumes that two teams
have equal abilities, the threshold parameters correspond to probabilities of 0.41
for a victory of the home team, 0.31 for a draw and 0.28 for a victory of the away
team. Thus the home advantage can definitely not be ignored. The tendency is
also seen from the averages over all games, because 42.5% of the matches were
won by the home team, 25.5% of the matches ended with a draw and 32% of the
matches were won by the away team. But these numbers are averages over games
played by teams with differing abilities. The strength of the latent trait model
is that the home advantage takes this variation of abilities into account when
estimating the home advantage. Table 1 shows the estimated abilities together
with the ranks according to the final points. It is seen that for the best teams the
rank is in accordance with the estimated abilities but in the middle part of the
table there are some permutations. However, quasi standard errors, computed
following Firth and De Menezes (2004) suggest that the permutations are not to
be taken too seriously. This will be investigated in more detail in Section 4.

Team-Specific Home Effects

The question if home effects are team-specific is investigated by computing the
likelihood ratio test for the hypothesis that all effects are equal, yielding a value of
24.69 on 17 degrees of freedom, which corresponds to a p-value of 0.102. Therefore
it is not significant when using significance level 0.05, but nevertheless it is small.
If one uses a 3-point scale that only distinguishes between ”winning”, ”draw” and
”loosing”, the p-value is 0.022, which is definitely smaller. In Table 2 the estimates
and the corresponding ranks are given when one distinguishes between home and
away strength. As always in the applications we use the more informative 5-point
scale. It is seen that for the best performers the order is very stable. It is the same
when playing at home or away or when not distinguishing between the two. But
one also finds large differences. For example, Hannover has rank 4 at home, but
rank 17 when playing away with a difference of 1.167 in abilities. For Wolfsburg
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the ranks are just the opposite, it has rank 17 at home and rank 4 when playing
away.

Overall Home Away
Ability Rank Ability Rank Ability Rank

FC Bayern München 2.562 1 1.871 1 2.220 1
Borussia Dortmund 1.361 2 0.901 2 0.729 2

Bayer 04 Leverkusen 0.983 3 0.851 3 0.013 3
FC Schalke 04 0.460 4 0.191 6 -0.505 6

Eintracht Frankfurt 0.350 6 0.258 5 -0.782 11
Sport-Club Freiburg 0.409 5 -0.068 8 -0.334 5

Hamburger SV 0.023 11 -0.490 11 -0.708 8
Borussia Mönchengladbach 0.235 7 -0.020 7 -0.722 9

Hannover 96 0.074 9 0.338 4 -1.505 17
1. FC Nürnberg 0.057 10 -0.140 9 -0.999 14

VfB Stuttgart -0.183 13 -1.024 16 -0.564 7
VfL Wolfsburg 0.000 12 -1.262 17 0.000 4

1. FSV Mainz 05 0.084 8 -0.293 10 -0.782 10
SV Werder Bremen -0.272 14 -1.014 15 -0.803 12

FC Augsburg -0.562 16 -0.881 13 -1.541 18
1899 Hoffenheim -0.616 17 -0.966 14 -1.486 16

Fortuna Düsseldorf -0.287 15 -0.695 12 -1.204 15
SpVgg Greuther Fürth -0.956 18 -2.278 18 -0.906 13

Table 2: Comparison of the estimated abilities from the model with a global

home advantage to the estimated abilities from the model with team-specific

home advantages

Ranks and Abilities

The traditional measure for the performance of teams is the number of gained
points summarized over all games. It is interesting to investigate, how this mea-
sure that is defined by the association of the football league is related to the
abilities found by the fitting of a latent trait model. To our surprise, we found
that the correlation is quite high. For the 50th season we obtained a correla-
tion of 0.982, which means that gained points and abilities measure almost the
same. One may wonder if this is an effect of the specific scheme, which gives
winning team 3 points, the loosing team nothing, and both teams 1 point if the
match is drawn. Is this scheme appropriate under the assumption that the latent
trait model is an adequate representation of the link between the observations
and the latent abilities? Therefore, we shortly investigate how the scheme of
distributing points influences the correlation between number of points and es-
timated abilities. In a general scheme, the winning team gains w > 0 points,
the loosing team nothing and both teams d > 0 points if the match is drawn.
It is easily derived that for constant proportion w/d one obtains up to a scaling
factor the same number of points. Because a scaling factor is irrelevant when
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computing the correlation, it suffices to vary only one of the two parameters w
and d. Without loss of generality we set d = 1. Figure 1 shows the dependence of
the correlation on the gained points for winning w (bold faced curve). It is seen
that the maximum is obtained for w = 2.2, which is not far from the 3 points
fixed in the regulations. The surprise is in the slow decrease of the curve beyond
its maximum. Given that the estimated abilities measure the strength of a team
also much higher points could be given to the winning team and still the num-
ber of points is in strong accordance with the abilities. The strong correlation
found for the data could be related to the double round robin structure of the
tournament. In pair comparisons, where not all pairs are evaluated, we expect
lower correlations. To investigate the effects we have drawn sub samples of the
pair comparisons containing 50% of the pairs. Two specific sub samples are the
results of the first round and the second round. Figure 1 shows the corresponding
correlations. It is seen that, depending on the sample, correlations can be much
smaller. That means, in particular, for an ongoing season, when not all matches
have been played, the ranking by points and abilities are less strongly connected.

1 2 3 4 5 6

0.
85

0.
90

0.
95

w

r

2.2

Total season
First round
Second round
Random subsample

Figure 1: Correlations plotted against the points gained when winning for the

whole season (bold faced curve), first round (dashed), second round (dashed

dotted) and several sub samples.

4 Identification of Clusters

A disadvantage of simply measuring the performance of teams by points is that
there is no information on the precision of this measurement tool. In contrast the
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Figure 2: Coefficient paths for ability parameters in the model with a global

home advantage using an adaptive L1-penalty.

Cluster Ability
1 FC Bayern München 2.26
2 Borussia Dortmund 1.06
3 Bayer 04 Leverkusen 0.73
4 FC Schalke 04; Sport-Club Freiburg; Eintracht Frankfurt 0.01
5 Borussia Mönchengladbach; 1. FSV Mainz; Hannover 96; 0.00

1. FC Nürnberg; Hamburger SV; VfL Wolfsburg
6 VfB Stuttgart; SV Werder Bremen; Fortuna Düsseldorf -0.04
7 FC Augsburg; 1899 Hoffenheim -0.33
8 SpVgg Greuther Fürth -0.70

Table 3: Clusters of teams with corresponding abilities.

latent trait model allows to evaluate which teams are really to be distinguished.
One way is to consider the standard errors, which contain the information about
the relevance of differences between the estimated abilities. An alternative ap-
proach is to explicitly aim at finding clusters of teams which share the same ability
by using regularization techniques. Clustering techniques proposed by Bondell
and Reich (2009) and Gertheiss and Tutz (2010) have been used by Masarotto
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Figure 3: Coefficient paths for home abilities, away abilities and home ad-

vantages in the model with team specific home advantages using an adaptive

L1-penalty
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and Varin (2012) to cluster abilities in a paired comparison model which allows
for draws. In the next section we will use these techniques in the general case of
ordinal response data. In Section 4.2 the method is extended to find clusters of
abilities as well as clusters of home advantages.

4.1 Clustering of Teams

One way of obtaining regularized estimates is to use penalty terms that yield
structured estimates. Instead of maximizing the log-likelihood, one maximizes
the penalized log-likelihood

lp(β) = l(β)− λJ(β),

where l(β) denotes the familiar un-penalized log-likelihood, λ is a tuning param-
eter, and J(β) is a penalty term. A specific penalty term, which enforces the
clustering of abilities and which will also be useful later, is given by

J(β) =
∑

r<s

wrs|γr − γs|, (2)

where wrs are specific weights. The penalty is a fusion type penalty, which
enforces the fusion of abilities. By using the L1-norm it enforces, in particular,
that for growing λ abilities are set equal. The effect of the penalty is also seen
by looking at extreme values of the tuning parameter λ. If λ→∞, all strength
parameters γr are estimated as identical.

In the case of a global home advantage the procedure typically yields distinct
clusters. Figure 2 shows the coefficient paths with the weights given by wrs =
|γ̂(ML)

r − γ̂(ML)
s |, where γ̂(ML)

r denotes the maximum likelihood estimate of team r.
For details of this weighting scheme, which yields more stable coefficient paths
than un-weighted fusion penalties, see Gertheiss and Tutz (2010) and Masarotto
and Varin (2012). The straight lines in Figure 2 represent the BIC (Schwarz,
1978) and the AIC (Akaike, 1974) criterion. Based on the BIC criterion one finds
that the 18 teams are divided into eight clusters with abilities being identical
within clusters. Table 3 shows the clusters and the corresponding estimated
abilities. It is seen that the three best teams and the two worst teams form
clusters of their own. All other teams are collected in three big clusters, which
have rather similar abilities. In fact, if one measures abilities only up to one digit,
they form just one big cluster.

4.2 Clustering of Teams and Home Effects

Clustering becomes much more difficult if one suspects team-specific home ad-
vantages because then one has to distinguish the strength when playing at home
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Cluster (ability home) Ability
1 FC Bayern München 1.84
2 Borussia Dortmund 0.61
3 Bayer 04 Leverkusen 0.44
4 Hannover 96; FC Schalke 04; Eintracht Frankfurt; -0.21

Sport-Club Freiburg
5 Borussia Mönchengladbach; 1. FC Nürnberg; 1. FSV Mainz 05; Hamburger SV -0.22
6 Fortuna Düsseldorf -0.48
7 FC Augsburg; SV Werder Bremen; VfB Stuttgart; 1899 Hoffenheim -0.50
8 VfL Wolfsburg -0.55
9 SpVgg Greuther Fürth -1.56

Cluster (ability away) Ability
1 FC Bayern München 1.68
2 Borussia Dortmund 0.17
3 Bayer 04 Leverkusen; VfL Wolfsburg 0.00
4 Sport-Club Freiburg; FC Schalke 04 -0.65
5 Borussia Mönchengladbach; VfB Stuttgart; Hamburger SV; -0.66

Eintracht Frankfurt; 1. FSV Mainz 05; SV Werder Bremen;
1. FC Nürnberg; SpVgg Greuther Fürth

6 Fortuna Düsseldorf -0.91
7 Hannover 96; 1899 Hoffenheim;FC Augsburg -0.94

Cluster (home advantage) Ability
1 Hannover 96 0.73
2 Eintracht Frankfurt; Bayer 04 Leverkusen; 1. FC Nürnberg; 0.44

Borussia Mönchengladbach; FC Schalke 04; FC Augsburg;
1899 Hoffenheim; 1. FSV Mainz 05; Fortuna Düsseldorf

3 Sport-Club Freiburg; Hamburger SV; Borussia Dortmund 0.43
4 SV Werder Bremen; FC Bayern München; VfB Stuttgart 0.15
5 VfL Wolfsburg -0.55
6 SpVgg Greuther Fürth -0.90

Table 4: Clusters of teams when distinguishing between abilities when playing

at home and playing not at home, and clusters of home advantages.

and the strength when playing away. A penalty term that clusters the home ad-
vantage, αr, the abilities when playing at home, γr, as well as the abilities when
playing away, γr + αr, is

J(β) =
∑

r<s

wrs|γr − γs|+
∑

r<s

urs|γr − γs + αr − αs|+
∑

r<s

vrs|αr − αs|.

with wrs = |γ(ML)
r − γ(ML)

s |, urs = |γ(ML)
r − γ(ML)

s + α(ML)
r − α(ML)

s |, and vrs = |α(ML)
r −

α(ML)
s |. It enforces clustering of both abilities and the home advantage. For the

selection of the optimal tuning paramater λ, we again use the BIC criterion

BIC(λ) = −2 · l(β) + df(λ) · log(n),

where n is the number of observations. It depends on the degrees of freedom
df(λ) of the respective model. For penalized models, the degrees of freedom
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do not equal the number of parameters in the model because of the effects of
shrinkage and variable selection. Therefore, following Buja et al. (1989), the
degrees of freedom are calculated by tr(2H − HTH). Here, H represents the
hat matrix obtained in the last Fisher scoring step in the penalized iteratively
re-weighted least squares (PIRLS) algorithm that is used. The algorithm and
the corresponding hat matrix are described in more detail by Oelker and Tutz
(2013).

Figure 3 shows the coefficient build-ups and Table 4 the corresponding clus-
ters. For the strong teams one obtains very similar classes, but in particular in
the middle different clusters are found when playing at home and away. Cluster-
ing of the home effect yields essentially 5 classes; Hannover is a class of its own,
the big clusters 2 and 3 are hardly different and there are even two clusters with
negative home advantage.

5 Accounting for Explanatory Variables

Scaling of teams by use of paired comparison models yields estimated abilities but
does not explain why some teams are better than others. If one wants to explain
the variation in abilities, a natural way is to include covariates in the model. The
most interesting variables are variables that characterize the clubs and, therefore,
the teams, in contrast to variables that are shared by both teams like day of the
week or weather when playing. Explanatory variables of the latter type are more
interesting when items are compared and preference is to be modeled as a function
of characteristics of the person that chooses. Explanatory variables of this type
have been considered, for example, by Dittrich et al. (1998) when modeling the
preference for European universities.

5.1 A Model with Team-Specific Explanatory Variables

Let the data be given by (Yrs, r, s ∈ {1, . . . ,m},x1, . . . ,xm) where Yrs ∈
{1, . . . ,m} denotes the ordinal response and xr is a vector of explanatory vari-
ables linked to team ar. Exemplarily, we will consider the budget of a club, which
should be influential because the budget determines if a club is able to get the
best and most expensive players.

In a general model that accounts for team-specific variables, the strength of
the teams, γr, is replaced by γr + xT

r β yielding the linear predictor

ηrst = αr + θt + γr − γs + (xr − xs)
Tβ.

In this model, parameters are not identifiable because the parameters γr can
not be distinguished from the parameters γ̃r = γr + xT

r β. Therefore, additional
constraints are needed to obtain unique estimates. A very restrictive model that
is identifiable has been proposed by Springall (1973). He obtains identifiability
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by setting γr = 0, r = 1, . . . ,m. The corresponding model assumes that the
explanatory variables totally determine the abilities. It is hardly appropriate
when a limited number of explanatory variables is available.

An alternative way to constrain estimates is to use a random effects model
instead of a fixed effect model. By assuming that the strengths are random
effects, for example, by assuming γr ∼ N(0, σ2), parameters can be estimated
within a random effects model, see Firth (2005) and Turner and Firth (2012)
who used random effects models to account for correlations between responses.
A disadvantage of random effects models is that they assume that random effects
and covariates are uncorrelated, certainly not realistic in football if the covariates
contain the budget of teams, because it might be the main source of the strength
of a team. The assumption that random effects and covariates have to be uncor-
related in random effects models has been widely discussed. An early reference
is ?, more recently the topic was discussed, for example, by ?, ? and ?.

An alternative approach that is advocated here is to use penalized estimation
procedures. Assuming that teams are clustered one can use the penalty (2). It
penalizes the abilities that are not explained by covariates, γr, r = 1, . . . ,m, but
not the parameter β. If the tuning parameter gets large, λ → ∞, all strength
parameters γr are estimated as identical and the total strength is determined
solely by xT

r β as in the model proposed by Springall (1973). By using a regu-
larization term with positive tuning parameter the parameters are defined and
estimable, compare also Friedman et al. (2010), where this procedure has been
used in overparameterized multinomial regression models.

In Section 5.2, we will show that the procedure works. But first we show how
the performance of football teams in the German Bundesliga can be explained by
the budget. We use budgets as published by the German sports magazine Kicker
(Kicker, August 20, 2012) given in millions. Figure 4 shows the coefficient paths
for the coefficients plotted against varying strength of the constraints. Here, we
use budget in 100 millions for better visibility of the coefficient path. It is seen
that the effect of budget is very stable across constraints. As expected, when
including the budget different clusters are found because now the γ-parameters
represent the abilities that are not explained by the budget. For example, now
Borussia Dortmund forms a cluster of its own, whereas Bayern München is in a
cluster together with Eintracht Frankfurt and Mainz.

The estimated parameter β̂ = 2.16, obtained for λ chosen by BIC, implies
strong dependence on the budget. In order to get an impression on the reliability
of the parameter estimate of the budget at the BIC-optimal λ, we conducted a
parametric bootstrap analysis. The corresponding bootstrap confidence interval
for β̂ is [1.55; 2.77]; it supports that budget does have an influence on the team
abilities that is not to be neglected.

The effect of the budget can also be tackled in a different way. In Figure 5 the
estimated abilities are plotted against the budget. In addition, it shows the fit of
a linear regression model and a smoothed version. The smooth model was fitted
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by use of penalized B-splines (also called P-splines), see Eilers and Marx (1996),
with the smoothing parameter chosen by the generalized cross-validation (GCV)
criterion. Up to about 70, the linear model fits well, beyond 70 the fit of the
non-linear model is determined by just two observations, Wolfsburg and Bayern
München. The adjusted R-squared of the linear model is 0.49, that means almost
50% of the variation in abilities is explained by the budget. For the non-linear
model the value increases to 0.58. When accepting the linear model as a simple
model that shows almost the same explanatory strength as the non-linear model,
one can infer that Wolfsburg (with a budget of 90) is an underachiever. Given
the high budget, which is partly due to the fact that the city of Wolfsburg is the
home of Volkswagen, the ability is rather low. This holds even in the non-linear
model. Bayern München, the club with the highest budget, still shows a positive
deviation from the fitted expectation, which is strong for the linear and weak
for the the non-linear model. A distinct overachiever is Dortmund (budget of
48.5), which shows one of the strongest deviations from both models. Beyond
the identification of over- and underachievers, it is seen that budget is a strong
explanatory variable for the ability of a team. Thus, a strong part of the success
of Bayern München seems to be related to the high budget of the club.

5.2 Evaluation of Penalized Estimation

In this section, we investigate in a small simulation study how well the penalized
estimation procedure works for the model with explanatory variables. As true
coefficients, we chose values derived from the coefficient estimates of the model fit
for the real data from the Bundesliga. We used the thresholds θ1 = −1.66, θ2 =
−0.65, α = 0.29 and the budget parameter β = 2.13. The team abilities were
divided into 5 groups with the coefficients γ1 = γ2 = γ3 = 2.07, γ4 = γ5 = γ6 =
1.73, γ7 = γ8 = γ9 = γ10 = 1.40, γ11 = γ12 = γ13 = γ14 = γ15 = γ16 = γ17 = 0.88,
γ18 = 0.

Figure 6 shows the box plots for 100 simulations. Stars denote the true pa-
rameter values. In particular, the threshold parameters and the home advantage
parameter are estimated with high accuracy. As expected, the variation of esti-
mates is stronger for the abilities. But, and most important, the parameter of
the explanatory variable is estimated rather well.

6 Concluding Remarks

All calculations in this paper have been conducted by using the statistical soft-
ware R (R Core Team, 2013). Most of the available add-on packages for paired
comparison models in R are restricted to the case of binary response and cannot
deal with ordered response. The most popular packages are prefmod (Hatzinger
and Dittrich, 2012) and BradleyTerry2 (Turner and Firth, 2012). The former
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Figure 6: Box plots of coefficient estimates for 100 simulation iterations; esti-

mates for teams with equal abilities are collected in one box; stars denote true

values

uses the log linear representation of BT-models and can handle draws in the re-
sponse variable. The latter can also handle covariates by assuming random effects
for the ability parameters but only in the case of binary responses.

Here we favor a direct approach to the fitting of ordinal paired comparison
models (without regularization) that is based on the embedding into the frame-
work of generalized linear models. By including the restrictions on the thresholds
and the construction of specific design matrices that include the effect of home
advantages BT models for ordered response can be fitted by using the add-on
package VGAM (Yee, 2010). It also allows to use alternative link functions. The
procedure, but without team-specific covariates and regularization, has been im-
plemented in the package ordBTL (Casalicchio, 2013).

In our extended framework we have to also include penalty terms. A very
general approach that allows to combine a variety of different penalties in uni-
variate GLMs has been proposed by Oelker and Tutz (2013), and is available in
the package gvcm.cat (Oelker, 2013). With the help of Margret Oelker it has
been adapted such that also cumulative logit models can be fitted. It is available
from the authors.
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