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Abstract. Lignin oxidation products, oxygen uptake rates,
molar organic carbon to nitrogen (OC/N) ratio (from bulk
elemental analysis) andRpvalues (from loss on ignition ex-
periments, the ratio of the refractory to total organic matter,
OM) were determined for sediments along transects of Loch
Creran and Loch Etive. Lignin data indicated the importance
of riverine inputs contributing to land-derived carbon in the
lochs as total lignin (3, mg/100 mg organic carbon, OC) de-
creased from 0.69 to 0.45 and 0.70 to 0.29 from the head
to outside of Loch Creran and Loch Etive, respectively. In
addition, significant correlations of lignin content against to-
tal OM and OC (p<0.05) also suggested a distinct contribu-
tion of terrestrial OM to carbon pools in the lochs. The gen-
eral trend of decreasing oxygen uptake rates from the head
(20.8 mmole m−2 day−1) to mouth (9.4 mmole m−2 day−1)
of Loch Creran indicates decomposition of OM. Biodegrad-
ability of the sedimentary OM was also characterized by the
increase ofRp values from the head to mouth of the lochs:
0.40 to 0.80 in Loch Etive and 0.43 to 0.63 in Loch Creran.
Furthermore, the molar OC/N ratio decreased from 11.2 to
6.4 in Loch Creran, and from 17.5 to 8.2 in Loch Etive. De-
rived rate constants for OM degradation were found to de-
crease from LC0 to LC1, and increase from RE5 to RE6.
This work demonstrates that oxygen uptake rates,Rpvalues
and molar OC/N ratio are able to serve as useful proxies to
indicate the biodegradability of sedimentary OM.
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(psloh@staff.nsysu.edu.tw)

1 Introduction

The meaning of biodegradation is the biologically catalysed
reduction in the complexity of chemicals and usually results
in conversion of organic carbon (OC), nitrogen (ON), phos-
phorus and sulphur to inorganic products (Alexander, 1999).
Hence, “biodegradability” refers to the susceptibility of the
organic matter (OM) to degradation; or to the “freshness”
or “quality” or “diagenetic state” of OM. Early attempts to
determine biodegradability were carried out by Westrich and
Berner (1984), who studied oxygen uptake rates in laboratory
incubated sediments. Studies have since used the oxygen up-
take rate in intact incubated sediment cores, as this represents
the amount of OM directly oxidised during aerobic degrada-
tion (Parsons et al., 1977; Henrichs, 1992; Overnell et al.,
1995). Others have used oxygen uptake rate as a measure of
OM mineralization through an aerobic pathway, the oxygen
being supplied by the activity of burrowing organisms (Wass-
man, 1984; Grant and Hargrave, 1987; Glud et al., 1994).
However, there are some shortcomings of this approach. The
oxygen uptake could also be due to the oxidation of reduced
species formed during anaerobic OM degradation (Elsgaard
and Jorgensen, 1992; Overnell et al., 1995).

Because of its resistance to microbial degradation, the use
of lignin as a tracer to study land-derived OM has been well
documented (Hedges and Parker, 1976; Hedges and Ertel,
1982; and references therein). Numerous studies have used
lignin to study the distribution of marine and land-derived
OM (Hedges and Parker, 1976; Wilson et al., 1985; Mitra
et al., 2000). The importance of riverine inputs contributing
terrestrial debris into near shore sediments is also well docu-
mented (Liss et al., 1991; Milliman, 1991; Ward et al., 1994),
as is an offshore decrease of lignin-derived phenols (Hedges
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Figure 1.  Map of study area showing the sampling locations (inset, map of Scotland). 
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Fig. 1. Map of study area showing the sampling locations (inset, map of Scotland).

Table 1. Sampling locations and water depths in Lochs Creran and Etive (surface sediments and sediment trap).

Lochs Sampling locations Water depth (m) Latitude (N) Longitude (W)

Loch Creran LC0 15.42 56◦33′ 05◦15′

LC1 37 56◦33′ 05◦16′

LC2 17 56◦32′ 05◦19′

LC3 49 56◦31′ 05◦23′

LC5 13 56◦32′ 05◦24′

LC6 48.94 56◦31′ 05◦27′

Sediment trap 10 56◦33′ 05◦16′

Loch Etive RE2 37 56◦32′ 05◦06′

RE5 123 56◦27′ 05◦11′

RE6 57 56◦27′ 05◦15′

Camas Nathais 20 56◦29′ 05◦28′

and Parker, 1976; Miltner and Emeis, 2001; Bianchi et al.,
2002). Studies conducted at the Lower St. Lawrence Estu-
ary and Saguenay Fjord further reported lignin, together with
OC, total nitrogen and organic phosphate to indicate OM di-
agenesis (Louchouarn et al., 1997).

Lignin compounds are found only in vascular land plants
(Sarkanen and Ludwig, 1971). These lignin phenols can
be used to characterize different vegetation sources: for ex-
ample, elevated S/V ratios are indicative of angiosperm tis-
sues, whilst elevated C/V ratios indicate the presence of non-
woody tissues (Hedges and Mann, 1979b; Bianchi and Argy-
rou, 1997; Goni et al., 1998). The vanillic acid to vanillin ra-
tio, (Ad/Al)v is indicative of the diagenetic state, as relatively
high (Ad/Al)v indicates more degraded material (Hedges et
al., 1982; Miltner and Emeis, 2001). Lignin parameters such

as C/V, S/V and (Ad/Al)v ratios, along with molar OC/N ra-
tios, have been used to study lignin diagenesis (Ishiwatari
and Uzaki, 1987).

A valuable tool for linking OM source to sediment
biodegradability is theRp index (Kristensen, 1990). Cal-
culated as the ratio of the refractory to total OM, the au-
thor showed that the more easily degradable environmental
samples have lowerRpvalues, and vice versa.Rpvalues, in
conjunction with molar OC/N ratio, provide a strong tool to
measure the OM biodegradability. During the initial stages
of OM degradation the OC/N ratio increases due to prefer-
ential nitrogen utilization; later decreasing due to nitrogen
immobilization (Benner et al., 1991). Increase in the OC/N
ratio also implies the presence of plant materials which have
a higher proportion of C to N than marine OM (Pocklington,
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1976), whilst a decrease in the OC/N ratio, with an associ-
ated increase in (Ad/Al)v, indicates diagenesis (Pocklington
and MacGregor, 1973). The hypothesis of this study was that
oxygen uptake rates, molar OC/N ratio andRpvalues could
be used as proxies to indicate biodegradability of sedimen-
tary OM in sea loch systems.

2 Materials and methods

2.1 Study areas

Loch Creran and Loch Etive are neighbouring sea lochs lo-
cated on the west coast of Scotland (Fig. 1). Over the lower
ground surrounding the lochs and rivers, deciduous plants
such as oak, beech and birch dominate. Gymnosperms such
as spruce cover the higher ground.

2.1.1 Loch Creran

Loch Creran is 12.8 km long with a surface area of 13.5 km2.
This loch has a relatively small catchment area of 164 km2.
The mean freshwater input is 286×106 m3 yr−1 and the
flushing time is three days (Edwards and Sharples, 1986).
Since Loch Creran is relatively small and shallow, the sea-
sonal hydrography follows the pattern of the Firth of Lorne
and tidal flushing is sufficient to ensure mixing throughout
the water column (Gage, 1972). There are four sills which
separate the loch into distinct basins. There are five sam-
pling locations situated along the length of the loch: LC0,
LC1, LC2, LC3 and LC5; LC6 is located outside the loch in
the Firth of Lorne. LC0 and LC1 are situated in the upper
basin of the loch, after the sill at Creagan Bridge; LC2, LC3
and LC5 are situated in the second basin, between the sill
at Creagan Bridge and the sill separating the entrance to the
loch from the Firth of Lorne. River Creran, at the head, is the
major source of freshwater input to the loch (Table 1, Fig. 1).

2.1.2 Loch Etive

The larger of the two lochs, Loch Etive, is 29.5 km long with
surface area of 28.3 km2 and catchment of 1400 km2 (Gage,
1972; Wood et al., 1973; Edwards and Edelstens, 1977). The
mean freshwater input is 3037.5×106 m3 yr−1 (Edwards and
Sharples, 1986). Loch Etive is characterized by prolonged
periods of water stratification. The residence time of isolated
bottom waters may extend up to 30 months, with a mean
of 16 months (Edwards and Trusdale, 1997). Periodic in-
tense freshwater inflow, following prolonged periods of low
freshwater runoff, controls an occasional ventilation and re-
plenishment of the deep basins (Gage, 1972; Edwards and
Grantham, 1986; Edwards and Trusdale, 1997). Loch Etive
has a sill at the seaward entrance to the lower loch (Falls of
Lora), and a shallow narrow at the opening to the upper loch
(Bonawe). Sampling sites RE2 and RE5 are located in the
upper loch, RE6 in the lower loch and Camas Nathais in the

Firth of Lorne (Table 1, Fig. 1). The major freshwater in-
puts are River Etive at the head of the loch, and River Awe at
Bonawe (Gage, 1972; Edwards and Sharples, 1986).

2.2 Sampling and sample pre-treatment

Three undisturbed sediment cores were obtained from each
location using a Craib corer (Craib, 1965) lined with an
acrylic core tube of 24 cm long× 5.9 cm i.d. Site LC1 was
visited at monthly intervals. All other locations were visited
every four months. Loch Etive was visited for three consec-
utive months. A sediment trap was deployed in Loch Creran
(see Table 1 for location) 10 m below the surface (m.b.s.) of
water. The trap consisted of four collecting tubes (dimen-
sions: 11 cm internal diameter and 100 cm in length) and
was serviced once a month. In the laboratory, sediments in
the collecting tubes were allowed to settle, and the overly-
ing water was siphoned off. The sediment slurry was then
centrifuged at 600×g for 10 min and, after pouring off the
supernatant, was subjected to freeze-drying.

In the laboratory, oxygen uptake rates were measured on
whole sediment cores. Upon completion, the top 1 cm slice
was removed from each core, frozen overnight and freeze-
dried the following day. Dried sediments were then ground
to fineness using a pestle and mortar for the lignin, loss on
ignition and bulk elemental determinations.

2.3 Analytical methods

2.3.1 Oxygen uptake rate analysis

Oxygen uptake rates were determined by measuring the
decrease in dissolved oxygen concentration in the overly-
ing water from incubated intact sediment cores (Parkes and
Buckingham, 1986; Glud et al., 1994; Overnell et al., 1995).
After collection, the core tubes were sealed with rubber
bungs and transported back to the laboratory (Overnell et al.,
1995). Here the cores were transferred to a container of sea-
water collected from 10 m.b.s. at the sampling site (i.e. be-
low the mixed layer). The cores were kept overnight in the
dark at in situ temperature, with the upper bungs removed.
The overlying water column was gently aerated to maintain
a saturated dissolved oxygen concentration. On the follow-
ing day, submersible stirrers were fitted onto the core tubes,
thus isolating the core and its overlying water. The stirring
rate was adjusted to prevent stagnation of the overlying water
without causing sediment resuspension and in order to main-
tain uniform oxygen concentrations (Overnell et al., 1995).
At time zero, replicate water samples were collected from the
container using 10 ml glass syringes. The samples were fixed
immediately following collection. Every 10 ml water sample
was fixed with 0.1 ml alkaline iodide and 0.1 ml of MnSO4.
The cores were incubated for twenty four hours, after which
three samples were collected from the overlying water of
each core and fixed. The dissolved oxygen concentration was
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measured by Winkler titration with potentiometric detection
of the end point (Hansen, 1999). The oxygen uptake rate was
calculated from the difference in oxygen concentration of the
overlying water between the start and end of the incubation.
Method validation was based on repeated analyses of sam-
ples: 15 replicates of a single sample, plus routine triplicate
analyses of all samples for environmental interpretation. The
precision determined was over the range 0.10–7.90% coeffi-
cient of variation. Oxygen uptake rates were calculated after
Skoog et al. (1996) and Hansen (1999).

2.3.2 Lignin analysis

The alkaline CuO oxidation method used to extract lignin-
derived phenols from environmental samples follows the
methods detailed in previous studies (Hedges and Ertel,
1982; Readman et al., 1986; Goni and Hedges, 1992). The
CuO oxidation method used in this study has been described
by Loh et al. (2002, 2008); it consists of a series of steps in-
volving oxidation, extraction, silylation and finally detection
of a suite of eight simple lignin phenols, as their trimethylsi-
lylated forms, by gas chromatography (Hedges et al., 1982;
Miltner and Emeis, 2000).

Approximately 0.5 g dry sediment was oxidized at 155◦C
for three hours with 1.0 g CuO and 7 ml of 8% w/v NaOH
solution in an oxygen free atmosphere, in a PTFE-lined
stainless-steel reaction vessel. Products which had been ex-
tracted three times with diethyl ether were spiked with the
internal standard ethyl vanillin. The combined extracts and
standards were treated with anhydrous Na2SO4, filtered and
rotary evaporated to near dryness.

The dried extract was subjected to a silylation pro-
cess, to convert lignin phenols to their more thermody-
namically stable trimethylsilylated forms. The oxidation
product was dissolved in 100µl dried toluene. An equal
volume of bis(trimethylsilyl)trifluoroacetamide with 10%
trimethylchlorosilane (BSTFA:TMCS=10:1; Sigma Aldrich)
was added as a catalyst (Poole, 1979). Samples were heated
at 90◦C (Wilson et al., 1995) for 10 min and then anal-
ysed using a GC-FID (Perkin-Elmer 8410) fitted with a
0.25 mm i.d.×30 m of 100% dimethylpolysiloxane (ZB-1,
Phenomenex, Zebron) column and a split ratio of 100:1. The
initial temperature was 100◦C, increased at 5◦C per minute
to 200◦C, and held for 10 min. For the second ramp, the tem-
perature increased at 20◦C per minute to 300◦C and this was
held for 5 min. Both injector and detector temperatures were
300◦C. The equilibration time was 2 min.

Total lignin is the sum of vanillyl (V; vanillin, acetovanil-
lone and vanillic acid) syringyl (S; syringaldehyde, acetosy-
ringone and syringic acid) and cinnamyl (C; p-coumaric and
ferulic acids) phenols, reported as3 (mg/100 mg organic
carbon, OC; Hedges and Mann, 1979a). Based on replicate
analyses the range of sample reproducibilities for total lignin
concentrations was 7.8–37.4% (coefficient of variation).

Gas chromatography with mass spectrometry (GC-MS)
analysis was used to confirm the chemical nature of the lignin
phenol compounds (Hedges and Parker, 1976; Onstad et al.,
2000): a TRACE MS Thermo Quest, Finnigan instrument
was used, fitted with a 0.25 mm i.d.×30 m of 5% phenyl-
methylpolysiloxane capillary column (RTX-5MS, RESTEK
CORP.), employing a split ratio 100:1. The initial tempera-
ture was 100◦C, increasing at 5◦C per minute to 200◦C, and
held for 10 min. For the second ramp, temperature was in-
creased at 20◦C per minute to 300◦C. The inlet temperature
was 300◦C, the oven maximum temperature was 350◦C and
the equilibration time was 0.5 min.

2.3.3 Loss on ignition

Significant losses of mass between 250◦C and 300◦C have
been observed (Mook and Hoskin, 1982); hence 250◦C was
used in this work as the initial combustion temperature. Al-
though it is difficult to determine the exact nature of the ma-
terial burned off at 500◦C, it is likely that most refractory
terrestrial and aquatic OM will be included. Most inorganic
carbon has been shown to oxidize above 500◦C (Hirota and
Szyper, 1975; Kristensen and Andersen, 1987); hence 500◦C
was used as the higher temperature.

Method validation was carried out by subjecting a single
sample to repeated analyses. Approximately 0.5 g aliquots of
dried sediment were weighed precisely into crucibles. These
were ashed (250◦C for 16 h) in a muffle furnace, cooled and
reweighed. Sediments were then heated to 500◦C (Kris-
tensen and Andersen, 1987) for 16 h (Sutherland, 1998),
cooled and reweighed. The percentage weight losses after
combustion at these two temperatures were defined as the %
labile and % refractory OM respectively. The sum of % la-
bile and % refractory OM was taken to be the % total OM.
TheRpvalue, which is defined as the ratio of the refractory
to total OM, is used to determine the stage of decomposition
of biogenic materials (Kristensen, 1990). Percentage repro-
ducibility obtained from validation experiments and sample
analyses were within the range 10–20% coefficient of varia-
tion.

2.3.4 Bulk elemental and isotope analyses

For organic carbon (%OC) and total nitrogen (%TN) de-
terminations, approximately 10 mg sediment samples were
acidified with 1 ml of 5% w/v sulphurous acid in vials. These
were allowed to stand overnight in a fume cupboard and were
subsequently freeze-dried. The product was quantitatively
transferred into tin capsules and CHN analyses were per-
formed in triplicate using a LECO CHN-900 analyzer. For
total carbon (TC) determination, 10 mg dry sediment was
transferred into 8×5 mm tin capsules and analysed similarly.
Sample reproducibilities for the %TC and %TN ranged from
0–20.6% and 0–19.2%, respectively.
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Table 2. Lignin parameters for Lochs Creran and Etive (surface sediments and sediment traps).

Loch Creran Sediment trap LC0 LC1 LC2 LC3 LC5 LC6

V (mg/g) 0.13 0.15 0.09 0.08 0.03 0.05 0.02
S (mg/g) 0.09 0.09 0.06 0.05 0.02 0.02 0.01
C (mg/g) 0.08 0.09 0.07 0.05 0.02 0.03 0.02
Total lignin (mg/g) 0.30 0.33 0.22 0.18 0.07 0.10 0.05
Total lignin,3 (mg/100 mg OC) 0.50 0.69 0.55 0.58 0.39 0.43 0.45
S/V 0.69 0.60 0.67 0.63 0.67 0.40 0.50
C/V 0.62 0.60 0.78 0.63 0.67 0.60 1.00
(Ad/Al)v 2.69 1.07 0.83 0.96 1.19 0.52 0.90

Loch Etive RE2 RE5 RE6 Camas Nathais
V (mg/g) 0.16 0.14 0.14 0.03
S (mg/g) 0.17 0.14 0.14 0.02
C (mg/g) 0.09 0.07 0.07 0.01
Total lignin (mg/g) 0.42 0.35 0.35 0.06
Total lignin,3 (mg/100 mg OC) 0.70 0.71 0.71 0.29
S/V 1.06 1.00 1.00 0.67
C/V 0.56 0.50 0.50 0.33
(Ad/Al)v 0.74 0.72 0.71 0.52

Abbreviations: V = vanillyl phenols (sum of vanillin, acetovanillone and vanillic acid); S = syringyl phenols (sum of syringaldehyde,
acetosyringone and syringic acid); C = cinamyl phenols (sum of p-coumaric and ferulic acids);3 = sum of V+S+C (mg/100 mg OC); S/V =
ratio of syringyl:vanillyl phenols; C/V = ratio of cinnamyl:vanilly phenols; (Ad/Al)v = ratio of the vanillic acid to vanillin (Loh et al., 20081).

1 The lignin data was previously used as the biomarker for terrestrial OM in our studies to determine the fate of terrestrial OM in the lochs (Loh et al., 2008).

For the carbon isotope determination, approximately
0.1 mg dried sediment was weighed into a 8×5 mm tin
capsule and analysed using a 20-20 Stable Isotope Ana-
lyzer (PD2 Europa Scientific Instruments). Percentage re-
producibilities ranged from 0.0–16.9%. The standard used
was L-isoleucine, which was pre-calibrated against a Pee
Dee Belemnite (PDB; Bashkin, 2002) standard. Theδ13C
value was calculated from the measured carbon isotope ra-
tios of the sample and standard gases (Degens, 1969; Bout-
ton, 1991):

δ13C (‰)= × 103 (1)

where Rsample =
13C/12C ratio in the sample, and

Rstandard=
13C/12C ratio in the standard.

2.3.5 Statistical analyses

Single factor ANOVA was used to determine whether there is
any significant difference of results between sampling times.
Regression analyses were used to determine whether there
are significant correlations among these parameters: lignin,
oxygen uptake rates, labile, refractory and total OM, OC,Rp
values and OC/N ratios.
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Figure 2.  Mean oxygen uptake rates for sediment cores from locations in Loch Creran.  Each bar 

represents the highest and lowest values, and the first and third quartiles of the data.   
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Fig. 2. Mean oxygen uptake rates for sediment cores from locations
in Loch Creran. Each bar represents the highest and lowest values,
and the first and third quartiles of the data.

3 Results

3.1 Yields of land-derived organic matter

Overall, lignin parameters at individual locations exhibited
no distinct change with time hence these have been averaged
for presentation in Table 2. There was no temporal varia-
tion in either sediment trap or sedimentary organic matter.
The range of3 values in Loch Creran and Loch Etive (0.29
to 0.71; Table 2) are within limits reported for riverine, es-
tuarine and marine sediments (Hedges and Mann, 1979b;
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Table 3. Average oxygen uptake rates in Loch Creran.

Locations Oxygen uptake rate (mmole/m2/day) for 2002

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean

LC0 18.7> 16.7 15.9 17.1
LC1 14.5< 21.2 18.7< 26.4 27.8> 23.5> 18.9 24.3> 11.8 20.8
LC2 9.2 9.6 9.4
LC3 9.0< 13.6 14.8 12.5
LC5 12.3 14.4< 18.7 15.1
LC6 6.6 14.2> 7.5 9.4

The oxygen uptake rates were measured every month at LC1, but for the other locations, they were visited in successive orders. The symbols
“>” and “<” indicate significantly more and less than the value in the following month (ANOVA:p<0.05).

Readman et al., 1986; Requejo et al., 1986; Ishiwatari and
Uzaki, 1987; Prahl et al., 1994; Goni et al., 1997 and 1998;
Goni et al., 2000; Miltner and Emeis, 2001; Bianchi et al.,
2002). It was found that vanillyl phenols are the major lignin
oxidation products, followed by the syringyl and cinnamyl
phenols.

In Loch Creran, the highest3 values (0.69) were found in
LC0 surface sediments. Further down the loch,3 decreased
to 0.55 at LC1, and increased slightly to 0.58 at LC2, de-
creased to 0.39 at LC3, and increased slightly again to 0.43
(LC5) and 0.45 (LC6). Similarly to Loch Creran, Loch Etive
also displays lower lignin content away from the freshwater
input (ANOVA: p<0.05 between RE2, RE5 and RE6 with
Camas Nathais). Compared to Loch Creran, however, all
three stations (RE2, RE5 and RE6) in Loch Etive displayed a
higher yield of total lignin, with3 ranging from 0.70 to 0.71.
Camas Nathais in the Lynn of Lorn had by far the lowest3

of 0.29 (ANOVA: p<0.05). Sediments from LC0 surface
sediments show the most depletedδ13C values of−24.7‰,
respectively. Sediments from LC6 have the most enriched
values (−14.6‰). Similarly, in Loch Etive, theδ13C values
increased seawards; RE2, RE5 and RE6 had an averageδ13C
value of approximately−25.8‰, while Camas Nathais had
the highestδ13C values of−13.5‰.

3.2 Proxies for sediment biodegradability

3.2.1 Oxygen uptake rates

Results of the oxygen uptake rate analyses for Loch Creran
are presented in Table 3. At LC0, these were highest during
April (18.7 mmole m−2 day−1) and decreased significantly
during the following months (ANOVA:p<0.05). For other
locations, it seems that higher oxygen uptake rates occurred
later in the year. The mean oxygen uptake rate at LC1 was
20.8 mmole m−2 day−1, whilst the observed trend for LC1
was an increase from July to November 2002. The signif-
icant differences (ANOVA:p<0.05) of the rates between
some of the months are given in Table 3. There are no
significant differences (ANOVA:p>0.05) in the measured

rates at LC2, whilst at LC3 the rate increased significantly
(ANOVA: p<0.05) from March to April, and was highest in
October. At LC5 and LC6 the highest oxygen uptake rates
occurred during December and August respectively. The
mean rate within the upper most basin ranged from 17.1 to
20.8 mmole m−2 day−1 (from LC0 to LC1) and in the mid-
dle basin from 9.4 to 15.1 mmole m−2 day−1 (from LC2 to
LC5). Oxygen uptake rates decreased significantly from the
head to mouth of the loch (ANOVA:p<0.05; Fig. 2).

3.2.2 Loss on ignition and bulk elemental composition

As there was also no significant seasonal trend for the loss
on ignition and bulk elemental results at individual locations,
mean data are presented in Table 4. The sediment trap ma-
terial had the highest contents of labile (14.8%), refractory
(8.7%) and total OM (23.4%) compared to all surface sedi-
ments. However, during transport to the sediments, the OM
and OC contents decreased significantly (ANOVA:p<0.05).
Comparison between surface sediments shows that the lo-
cation nearest the river input (LC0) had the highest labile
(9.8%), refractory (7.3%) and total OM (17.1%). Overall the
Rp values increased significantly (ANOVA:p<0.05) from
0.43 at LC0 to 0.63 outside the loch at LC6, whilst the per-
centage labile, refractory and total OM decreased from the
head to mouth of the loch. The surface sediment molar OC/N
ratios in Loch Creran also decreased further down the loch:
the highest was found at LC0 (11.2) and the lowest at LC 6
(6.4). Rp values show negative correlation with total lignin
(Loch Etive,r2=0.98; Loch Creranr2=0.90), %TC (r2=0.91,
p<0.05,n=7) and %TN (r2=0.80,p<0.05,n=7) along the
length of the lochs.

Similarly, the %TC, %TN, and %TOC of surface sed-
iments decreased significantly from the head to mouth of
Loch Creran (ANOVA:p< 0.05). Of the surface sediments,
LC0 had the highest %TC (5.1), %TN (0.5) and %TOC (4.8)
whilst LC6 had the lowest contents of %TC (1.9), %TN (0.2)
and %TOC (1.1) respectively. Sediment trap material con-
tained the highest %TC (6.4) and %TN (0.8).
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Table 4. Loss on ignition and bulk elemental results for Lochs Creran and Etive (surface sediments and sediment traps).

Site δ13C (‰) Loss on ignition Bulk elemental results

% labile OM % refract OM % TOM Rp %TC %TN %TOC Molar OC/N

Loch Creran
LC0 −24.7 9.8 7.3 17.1 0.43 5.1 0.5 4.8 11.2
Sediment trap −21.3 14.8 8.7 23.5 0.37 6.4 0.8 6.0 8.8
LC1 −23.8 9.1 6.8 15.9 0.43 4.6 0.5 4.0 9.3
LC2 −23.8 6.8 6.1 12.9 0.47 3.6 0.4 3.1 9.0
LC3 −17.3 3.5 4.9 8.4 0.58 2.7 0.3 1.8 7.0
LC5 −21.0 1.3 3.2 4.5 0.71 3.3 0.3 2.3 8.9
LC6 −14.6 3.6 6.0 9.6 0.63 1.9 0.2 1.1 6.4

Loch Etive
RE2 −25.8 10.6 7.1 17.7 0.40 6.3 0.4 6.0 17.5
RE5 −25.8 10.9 9.4 20.3 0.46 5.6 0.5 4.9 11.4
RE6 −25.7 11.7 11.1 22.8 0.49 5.8 0.5 4.9 11.4
Camas Nathais −13.5 3.0 12.1 15.1 0.80 3.5 0.3 2.1 8.2

Abbreviations: OM = organic matter; TOM = total organic matter;Rp= % refractory/%TOM (Loh et al., 20082).

2 The loss on ignition and bulk elemental results were previously used in Loh et al (2008) to determine the fate of terrestrial OM in the water column, during transporta-
tion down the lochs, and upon burial in the sediment.

In Loch Etive the % labile OM was relatively constant
from RE2 to RE6, whilst % refractory OM increased by
∼56%. RE2, situated nearest the river input, had the high-
est %TC and %TOC and molar OC/N ratio. RE5 and RE6
had almost the same values for these variables and %TN.

At Camas Nathais there was a dramatic decrease in % la-
bile OM (74% lower than RE6), whilst % refractory OM re-
mained of a similar order to the other stations: the lowest
%TC, %TN, %TOC and molar OC/N ratio were also ob-
served here. Seemingly, during transportation the OM un-
dergoes decomposition; hence the OM at Camas Nathais was
relatively highly degraded.

4 Discussion

4.1 Sources of terrestrial organic matter

The distribution of total OM and OC in both lochs is largely
influenced by the terrestrial inputs from River Creran to Loch
Creran, and Rivers Etive and Awe to Loch Etive. Vanillyl
phenols were present in greater amounts than syringyl and
cinnamyl phenols (Table 2), most probably because vanil-
lyl phenols are produced by both angiosperms and gym-
nosperms; while syringyl phenols are produced only by an-
giosperms (Sarkanen and Ludwig, 1971; Hedges and Mann,
1979b; Hedges et al., 1982). Total lignin (3, mg/100 mg OC)
in the upper Loch Creran surface sediments ranged from 0.54
to 0.69, and in the lower loch from 0.39 to 0.45. The3 val-
ues in the upper Loch Etive surface sediments ranged from
0.70 to 0.71, falling to 0.29 at Camas Nathais. River Awe,

which drains into the loch between RE5 and RE6, most prob-
ably contributes to the high lignin and OM contents at both
sites. These results demonstrate the importance of Rivers Cr-
eran, Etive and Awe, contributing terrestrial materials to the
respective lochs. This is also supported by the gradual in-
creased ofδ13C values from the head to mouth of the lochs.
δ13C values from−22‰ to −35‰ indicate the dominance
of terrestrial OM (Cerling et al., 1995; Goni and Thomas,
2000), δ13C values from−12‰ to −23‰ indicate marine
OM (Gearing et al., 1984; Ruttenberg and Goni, 1997; Gor-
don and Goni, 2003), andδ13C values from−11‰ to−16‰
indicate contribution of C4 plants (Boom et al., 2001).

The contribution of terrestrially-derived materials to the
sedimentary carbon inventory in the lochs was investigated
by correlating total lignin with total OM and TC (Table 5).
Total lignin was highly correlated with % total OM and TC
suggesting that terrestrial materials make a major contribu-
tion to total OM and TC in both lochs (regression analy-
sis:p<0.05). %TC shows significant correlation (regression
analyses:p<0.05) with total lignin in Loch Creran. Terres-
trial material contributes significantly to the total OM and
specifically to the labile fraction of OM, as shown by signifi-
cant relationships for total lignin with % labile OM and with
% total OM along the length of Loch Creran, and lignin ver-
sus % labile OM in Loch Etive (Table 5). The importance
of terrestrial OM fuelling the biogeochemical cycling of car-
bon in the lochs was explained in better details by Loh et
al. (2008).

Degradation of lignin is a slow process owing to its com-
plex nature (Hurst and Burges, 1967; Zeikus, 1980). Some
authors found no quantifiable lignin degradation in aerobic
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Table 5. Correlation and regression analyses.

Correlation and regression results

Between oxygen uptake rates and:
LC1 total lignin r=−0.08
Loch Creran total lignin r=0.58,r2=0.33,p>0.05,n=6
Loch Creran labile OM r=0.51,r2=0.26,p>0.05,n=6
Loch Creran OC r=0.69,r2=0.48,p>0.05,n=6

Between lignin and:
Loch Creran % labile OM r=0.93,r2=0.87,p<0.05,n=6
Loch Creran % refractory OM r=0.39,r2=0.15,p>0.05,n=6
Loch Creran % total OM r=0.83,r2=0.68,p<0.05,n=6
Loch Creran %Rp r=−0.95,r2=0.90,p<0.05,n=6
Loch Etive % labile OM r=0.97,r2=0.93,p<0.05,n=4
Loch Etive % refractory OM r=−0.75,r2=0.56,p>0.05,n=4
Loch Etive % total OM r=0.68,r2=0.47,p>0.05,n=4
Loch Etive %Rp r=−0.99,r2=0.84,p<0.05,n=4

Between lignin andδ13C:
Sediment trap r=−0.68,r2=0.47,p<0.05,n=13
Loch Creran r=−0.76,r2=0.58,p<0.05,n=19
Loch Etive r=−0.96,r2=0.93,p<0.05,n=4

Between lignin and %OC:
Loch Creran r=0.85,r2=0.73,p<0.05,n=6
Loch Etive r=0.95,r2=0.91,p<0.05,n=4

Labile OM versus OC r=0.96,r2=0.92,p<0.05,n=7

Between OC/N ratio and:
Loch Creran lignin r=0.86,r2=0.72,p<0.05,n=6
Loch CreranRpvalues r=−0.60,r2=0.36,p>0.05,n=6
Loch Creran OC r=0.95,r2=0.89,p<0.05,n=6

aquatic environments (Hedges et al., 1986; Ertel et al., 1986;
Hamilton and Hedges, 1988) or in anaerobic environments
(Eriksson et al., 1990). As a result of these findings, lignin
is thought to be found in the refractory OM fraction. This
has not been identified in the systems studied here: lignin
contents do not have any correlation with the refractory frac-
tion of OM (Table 5). Whilst this may be due to the mask-
ing effects of variable inputs/components of the total OM,
it may also indicate that refractory material includes lignin
that has undergone diagenesis to an undefined “humic” struc-
ture (Hurst and Burges, 1967; Christman and Oglesby, 1971;
Zeikus, 1980; Hedges and Oades, 1997).

The characteristics, or sources, of plant materials are
also determined from the syringyl/vanillyl (S/V) and cin-
namyl/vanillyl (C/V) ratios (Bianchi and Argyrou, 1997;
Goni et al., 1998). As angiosperms produce more S than V
phenols, and gymnosperms produce only V, higher S/V ratios
indicate a higher abundance of angiosperms. As only non-
woody tissues produce C phenols, higher C/V ratios are in-
dicative of non-woody materials (Leo and Barghoorn, 1970;
Sarkanen and Ludwig, 1971; Hedges and Mann, 1979b;
Miltner and Emeis, 2001). The S/V ratios in Loch Creran
and Loch Etive ranged from 0.40 to 1.06, with a mean value

of 0.59 (from LC0 to LC5 surface sediments) within Loch
Creran, and 0.94 (from RE2 to RE6) in Loch Etive. The
range of C/V ratios in both lochs is 0.33–1.00, with mean
values of 0.66 within Loch Creran and 0.52 within Loch
Etive. The S/V and C/V ratios in both lochs are higher than
at other locations: for example the Washington continental
shelf and slope (Hedges and Mann, 1979a; Prahl et al., 1994),
Baltic Sea (Miltner and Emeis, 2001), Tamar Estuary (Read-
man et al., 1986) and Narragansett Bay Estuary (Requejo
et al., 1986). Accordingly, these high ratios are indicative
of the presence of non-woody angiosperm tissues (Hedges
and Parker, 1976; Goni et al., 2000). These non-woody tis-
sues most probably originate from the leaves of plants com-
monly found around the loch catchments: Hedges and Mann
(1979a) considered leaves as the non-woody tissue of a plant.

4.2 Proxies for sediment biodegradability

4.2.1 Oxygen uptake rate

The oxygen uptake rates determined in this study ranged
from 6.6 to 27.8 mmole m−2 day−1. These are within
the rates determined previously in other lochs. The
range of oxygen uptake rates determined in Loch Etive,
Loch Eil and Tay Estuary were 13.6–17.8, 17.8–24.6 and
67.4 mmole m−2 day−1, respectively (Parkes and Bucking-
ham, 1986). The rates determined for Lochs Linnhe,
Goil, Fyne and Etive ranged from 8 to 24 mmole m−2 day−1

(Overnell et al., 1995). The oxygen uptake rates in the
Gulf of Lions ranged from 0.6 to 48 mmole m−2 day−1 (Ac-
cornero et al., 2003). Oxygen uptake rates have previously
been seen to increase near riverine discharge, implying the
presence of a component of potentially degradable terrestrial
material (Rowe et al., 1994; Overnell et al., 1995; Accornero
et al., 2003). The various authors did not confirm the pres-
ence of terrestrial OM with a biomarker for terrestrial mate-
rials.

Seasonal studies show a slight increase in oxygen up-
take rates at LC1 from July to September 2002; probably
the result of enhanced microbial activity (Wassman, 1984;
Parkes and Buckingham, 1986; Overnell et al., 1995). The
oxygen uptake rates were averaged and showed a signif-
icant decrease from the head to mouth of Loch Creran
(Fig. 2) in agreement with Overnell et al. (1995) and Loh
et al. (2002). Overnell et al. (1995) determined the oxy-
gen uptake rates for several locations along transect of Loch
Etive: locations E2, E7 and E9 are represented as RE2,
RE5 and RE6 respectively in this study. Oxygen uptake
rates decreased from RE2 (22.9 mmole m−2 day−1) to RE5
(19.2 mmole m−2 day−1) and it is concluded that the high
rate at RE6 (52.3 mmole m−2 day−1) was most probably due
to the influence of terrestrial input from the River Awe. The
reoxidation of reduced species produced by, for example, sul-
phate reduction accounts for only 7–8% of the oxygen uptake
rate (Overnell et al., 1995).
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Oxygen uptake rates were higher at LC5 in December
2002, and transect wise, higher at LC3 and LC5 than LC2.
This fluctuation could be because LC5 is located in a shel-
tered area which accumulated more terrestrial OM and OC
(Tables 2 and 4) which in turn increased the rate of OM
degradation. Santos et al. (1994) also recognized small scale
sampling heterogeneities on the spatial variability in the sed-
imentary organic matter quality and quantity in marine sedi-
ments. As result there was no significant correlation between
oxygen uptake rates with the labile OM and OC (Table 5).
There was, however, a significant decrease in oxygen uptake
rates (ANOVA:p<0.05) progressing down the loch. Hence,
results presented here are proposed to demonstrate a contri-
bution from the degradation of terrestrial OM to the oxygen
uptake rate. The highest total lignin (3), % labile OM, %
refractory OM, % total OM, %TC and %TOC (Table 4) were
found in the sediments near the riverine input. Besides, there
were significant correlations between lignin and the labile
and total OM and OC, and between the OM and OC (regres-
sion analysis:p<0.05). This clearly indicates a contribution
of terrestrial OM to the carbon in the lochs. Hence, the de-
crease in oxygen uptake rates from the head to mouth of the
lochs strongly implies that terrestrial OM fuels biogeochem-
ical cycling in these systems. This terrestrially-derived OM
appears to include much more labile material, with some sus-
ceptibility to decomposition in situ.

Our data support the use of the oxygen uptake rate as
a proxy to measure sediment biodegradability, as increased
rates indicate an increase in mineralization rates of OM. The
oxygen uptake rate determination provides a measure of aer-
obic OM degradation at the sediment-water interface and is
closely related to the sedimentary OM and carbon content.
The overall significant decrease in the sediment oxygen up-
take rates along the length of Loch Creran indicates that it
can be used to provide an estimate of biodegradability.

4.2.2 Rp index

TheRp index can be used to provide an indirect measure of
sediment biodegradability. As an operational ratio of the re-
fractory to total OM concentrations, relatively highRpvalues
indicate more refractory OM, or decreased “freshness”, or
biodegradability, of the sedimentary OM. The usefulness of
Rpvalues is enhanced by correlating them with other param-
eters such as lignin and molar OC/N ratios. Lignin decreases
down the lochs, indicating a reduction in the contribution of
terrestrial materials seawards.Rpvalues show negative cor-
relation with total lignin (Table 5) implying that lignin mate-
rial and carbon content decreased through the lochs and the
OM became increasingly refractory. Sedimentary OM has
higher biodegradability near major riverine inputs.

The reason for decreasing lignin and OM concentrations
(Tables 2 and 3) is due to (i) dilution with marine OM; (ii)
sedimentation, as supported by the decrease in OM, OC and
lignin contents from the head to the mouth of the lochs, as

well as higher OM content in the trap than surface sediment;
and (iii) OM decomposition, as indicated by the more highly
degraded OM in surface sediments compared to trap materi-
als.

The (Ad/Al)v values (Table 2) in Loch Creran and Loch
Etive do not show a distinctive trend; implying that the lignin
materials had not undergone significant degradation in the
lochs. Conversely, theRpvalues do show a trend: increasing
through the lochs seawards, from LC0 (0.43) to LC6 (0.63),
and from RE2 (0.40) to Camas Nathais (0.80) respectively.
As the content of terrestrial OM decreased from the head to
mouth of the lochs, this indicates that there was a fraction of
labile terrestrial OM still susceptible to degradation. This la-
bile fraction most probably caused the decreased of the oxy-
gen uptake rates from the head to mouth of the lochs. The
gradual increase in the refractory nature of the OM from the
head to mouth of the lochs could be supported by the de-
creased in OC/N ratio. So, whilst it is clear thatRp index
can be used as a measure of sediment biodegradability, this
should be interpreted in the overall context of terrestrial OM
loadings, oxygen uptake, and OC/N ratio.

4.2.3 Molar OC/N ratio

It has long been known that fresh plant material has high
nitrogen content and degrades rapidly (Waksman and Ten-
ney, 1927). During the initial stage of OM degradation, mo-
lar OC/N ratios increase due to nitrogen utilization (Benner
et al., 1991). Care must be taken when interpreting OC/N
ratios because sources of OM can also be indicated using
these ratios; potentially providing an artefactual indication
of degradation. For example, an OC/N of∼7 points to a
marine source of OM (Goni and Hedges, 1995; Bashkin,
2002) and>20 for terrestrial OM (Zimmerman and Canuel,
2001; Gordon and Goni, 2003). Bianchi and Argyrou (1997)
and Bianchi et al. (2002) also found that terrestrial OM had
higher OC/N ratios compared to marine OM. Hence, the
molar OC/N ratios in the sediment trap (8.8), and at LC2
(9.0), LC5 (8.9), LC6 (6.4) and Camas Nathais (8.2) have
a stronger marine signal than other locations; whilst LC0
(11.2), RE2 (17.5), RE5 (11.4) and RE6 (11.4) show greater
terrestrial influence. This is supported by the significant cor-
relations between OC/N ratio with lignin and OC (Table 5).

The slightly higher OC/N ratios for LC0 (mean
OC/N=11.2) and LC1 (OC/N=9.3) sediments, compared to
the trap samples (OC/N=8.8), could imply greater abun-
dance of terrestrial OM in the surface sediments and more
phytoplankton detritus in the trap. This proposition is sup-
ported by the higherRp values for the LC0 (Rp=0.43) and
LC1 (Rp=0.43) surface sediments compared to trap materials
(Rp=0.37), which indicate more highly degraded plant mate-
rials in the surface sediments.

In trying to distinguish between vegetation source and
OM degradation stage,Rp index data provide valuable in-
formation. In the later stages of degradation the OC/N
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Table 6. Rate constants for the degradation of sedimentary OM
within the 0–1 cm and 9–10 cm sediment layers.

Location Rate constant,k (×10−5 d−1)

Labile OM Refractory OM OC TN Lignin
LC0 2.2 3.5 1.0 2.3 –
LC1 0.2 2.3 4.1 7.1 4.1
LC3 1.3 1.5 – – –
LC5 – 2.3 – – 4.3
LC6 – – – – 4.6

RE5 1.3 1.7 – – –
RE6 (17.1.2001) 3.7 – – – –
RE6 (20.3.2001) 9.3 3.9 – – –

The rate constant for the degradation of OM are determined only
for the above during the occasions when the OM contents for the
subsurface sediments were lower than the surface sediments, indi-
cating OM degradation upon sedimentation. Besides, some of the
data are not available for the subsurface 9–10 cm sediment layer.

ratios decrease due to nitrogen immobilization (Benner et
al., 1991; Meyers, 1997). The decrease of OC/N ratios sea-
wards through the lochs implies more advanced stages of
OM degradation; this is seen by the more pronounced de-
crease of %TOC compared to %TN further down the lochs.
In Loch Creran OC/N decreased from 11.2 to 6.4 and in Loch
Etive from 17.5 to 8.2. This is supported by the increase of
Rp values from 0.43 to 0.63, and from 0.40 to 0.80 respec-
tively. Published studies have also shown decreasing OC/N
ratios with advancing degradation stage for plants and soil
materials: Berg et al. (1987) found that the OC/N ratios of
plant materials decreased with increased incubation time due
to higher decreased in OC and a slight increased in %TN;
Xulux-Tolosa et al. (2003) found that the OC/N ratio de-
creased during the process of degradation of plant materials;
Chen et al. (2003) also found that OC/N ratios decreased dur-
ing OM decomposition of plant and soil residues.

4.3 Rate constant for OM degradation

Quantitative interpretation of the reactivity of OM was pro-
vided by the rate constant of OM degradation. Determination
of the degradation rate constant (k), has been based on OM
contents of surface and subsurface sediments:

k = −[ln(C/C0)]/t (2)

whereC = known concentration at the surface sediment,C0
= concentration at the time of deposition at the subsurface
sediment, andt = time for deposition (Canuel and Martens,
1996).

Based on the sediment accumulation rate in the upper and
lower Loch Creran of 0.5 and 0.2 cm yr−1 (Loh et al., in
preparation), and 0.7 cm yr−1 in Loch Etive (Howe et al.,
2001), the total deposition time beneath the 10 cm sediment
layer in Loch Creran are approximately 20 and 50 years, and

for Loch Etive 14.3 years. The degradation rate constant for
both lochs ranged from 0.2 to 9.3×10−5 d−1 for labile OM,
1.5 to 3.9×10−5 d−1 for refractory OM, 1.0 to 4.1×10−5 d−1

OC, 2.3 to 7.1×10−5 d−1 TN, and 4.1 to 4.6×10−5 d−1

lignin (Table 6). For labile OM,k was highest at RE6, fol-
lowed by LC0, LC3 and RE5; whilst for refractory OM,k

was highest at RE6, followed by LC0, LC1, LC5, RE5 and
LC3. The higher rate constants at the upper basin of Loch Cr-
eran, as well as RE6 compared to RE5, were most probably
due to the contribution of relatively fresh terrestrial OM be-
ing more susceptible to bacterial action. The “k” value for re-
fractory OM was higher at LC5 compared to the locations at
the upper Loch Creran. This, as well as the rate constant for
lignin which increased further down the loch, is most likely
related to the role of bioturbation, introducing oxygen to sub-
surface sediments. The higher degradation rate constant for
OC and TN in LC1 compared to LC0 could also be due to the
contribution of terrestrial OM, although more data is needed
to enable more detail interpretation.

5 Conclusions

Lignin studies indicate that rivers provide an important
source of land-derived carbon to Loch Creran and Loch
Etive. Non-woody angiosperm tissues predominate in these
two Scottish sea lochs. Although woody plants such as
beech, birch and oak are found in abundance around both
lochs, these non-woody tissues are indicative of the associ-
ated mass of leaf material. The observed decrease in lignin,
total OM and OC from the head through the lochs seawards,
along with significant correlations among these parameters
(regression analyses:p< 0.05), indicate that terrestrial mate-
rial contributes significantly to the sedimentary OM and car-
bon inventories. The offshore decreases in these parameters
further indicate the importance of rivers in contributing ter-
restrial OM to the lochs and that sedimentation of material
occurs during transportation along the lochs.

Lignin is a highly complex compound which is largely re-
fractory to biodegradation. In aquatic environments lignin
biodegradation is even more problematic, as water is typi-
cally less well oxygenated than surface soils. As a result,
published studies have reported no lignin degradation occur-
ring in natural waters. As lignin is closely related to the total
OM and OC, however, the overall decrease of oxygen uptake
rate through the lochs suggests that terrestrial OM does fuel
biogeochemical cycling in these systems.

Oxygen uptake rate and OC/N ratio, combined withRp
index, have been used successfully to indicate the degree
of freshness, or biodegradability, of the sedimentary OM.
Sediments near to riverine inputs have higher oxygen uptake
rates, indicating higher biodegradability of the sediment OM.
In these two lochs, terrestrial compounds constitute a sig-
nificant fraction of the O. LowerRp values indicate higher
fractions of labile OM, which also indicates the presence
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of fresher materials, more susceptible to degradation. Sed-
iments near to riverine inputs also have lowerRpvalues. Fi-
nally, we were able to relate the biodegradation of sedimen-
tary OM to molar OC/N ratios. In this work, the study of
lignin together with oxygen uptake rate, molar OC/N ratio
andRp index has shown that these parameters can be used
as simple proxies to determine the biodegradability of sedi-
mentary OM in sea loch systems; hence the hypothesis of the
study is accepted.
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